
Discrete & Computational Geometry (2023) 69:1040–1078
https://doi.org/10.1007/s00454-022-00463-z

Deletion in Abstract Voronoi Diagrams in Expected Linear
Time and Related Problems

Kolja Junginger1 · Evanthia Papadopoulou1

Received: 21 July 2020 / Revised: 16 May 2022 / Accepted: 23 September 2022 /
Published online: 25 March 2023
© The Author(s) 2023

Abstract
Updating an abstract Voronoi diagram in linear time, after deletion of one site, has
been an open problem in a long time; similarly, for any concrete Voronoi diagram of
generalized (non-point) sites. In this paper we present a simple, expected linear-time
algorithm to update an abstract Voronoi diagram after deletion of one site. To achieve
this result, we use the concept of a Voronoi-like diagram, a relaxed Voronoi structure
of independent interest. Voronoi-like diagrams serve as intermediate structures, which
are considerably simpler to compute, thus, making an expected linear-time construc-
tion possible. We formalize the concept and prove that it is robust under insertion,
therefore, enabling its use in incremental constructions. The time-complexity analysis
introduces a variant to backwards analysis, which is applicable to order-dependent
structures. We further extend the technique to compute in expected linear time: the
order-(k + 1) subdivision within an order-k Voronoi region, and the farthest abstract
Voronoi diagram, after the order of its regions at infinity is known.

Keywords Abstract Voronoi diagram · Linear-time algorithm · Randomized
incremental construction · Backwards analysis · Site-deletion · Higher-order Voronoi
diagram · Farthest Voronoi diagram

Mathematics Subject Classification 68W05 · 68U05

Editor in Charge: Kenneth Clarkson

This research was supported in part by the Swiss National Science Foundation, project 200021E_154387.
A preliminary version of this paper appeared in Proc. 34th International Symposium on Computational
Geometry (SoCG) 2018.

Kolja Junginger
junginger.kolja@gmail.com

Evanthia Papadopoulou
evanthia.papadopoulou@usi.ch

1 Faculty of Informatics, USI Università della Svizzera italiana, Lugano, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-022-00463-z&domain=pdf
http://orcid.org/0000-0001-9741-2797
http://orcid.org/0000-0003-0144-7384

Discrete & Computational Geometry (2023) 69:1040–1078 1041

1 Introduction

TheVoronoi diagram of a set S of n simple geometric objects, called sites, is a versatile
geometric partitioning structure that reveals proximity information among the input
sites. Classic variants include the nearest-neighbor, the farthest-site, and the order-k
Voronoi diagram of the set S. Abstract Voronoi diagrams [11] offer a unifying frame-
work to many concrete and fundamental instances. Voronoi diagrams have been well
investigated andmany optimal construction algorithms exist in various cases. Formore
information, see, e.g., the book of Aurenhammer et al. [2], and the book of Okabe et
al. [17] for a wealth of applications.

For certain Voronoi diagrams with a tree structure, linear-time algorithms have
been well known to exist for their construction, see e.g., [1, 7, 8, 13]. The first linear-
time technique was introduced by Aggarwal et al. [1] for the Voronoi diagram of
points in convex position, given the order of points along their convex hull. The
same technique can be used to derive linear-time algorithms for other fundamental
problems: (1) updating a Voronoi diagram of points after deletion of one site in time
linear to the number of Voronoi neighbors of the deleted site; (2) computing the
order-(k+1) subdivision within an order-k Voronoi region; (3) computing the farthest
Voronoi diagram of point-sites in linear time, given their convex hull. A much simpler
randomized technique for the same problems was introduced by Chew [7]. The medial
axis of a simple polygon is another well-known problem that admits a linear-time
construction, as shown by Chin et al. [8].

Surprisingly, no linear-time constructions have been known for any of the prob-
lems (1)–(3) for Voronoi diagrams involving non-point sites, and similarly for abstract
Voronoi diagrams. Under restrictions, Klein and Lingas [13] adapted the linear-time
approach of [1] to the abstract framework showing that aHamiltonian abstract Voronoi
diagram can be computed in linear time, given the order of Voronoi regions along an
unbounded simple curve, which visits each region exactly once and can intersect each
bisector only once. This construction has been extended recently to include some for-
est structures within a given domain [4], under similar restrictions, where no region
can have multiple faces and each bisector can intersect this domain in one component.

In this paper we consider the fundamental problem of site-deletion in abstract
Voronoi diagrams and provide a simple expected linear-time technique to achieve
this task. We work in the framework of abstract Voronoi diagrams so that we can
simultaneously address all the concrete instances that fall under their umbrella. After
deletion (1), we extend the randomized linear-time technique to the remaining prob-
lems: (2) computing the order-(k + 1) subdivision within an order-k abstract Voronoi
region; and (3) computing the farthest abstract Voronoi diagram after the order of
its faces at infinity is known. The latter sequence of faces can be computed in time
O(n log n). To the best of our knowledge, no deterministic linear-time technique is
yet known for these problems.

To achieveour goal,wedefine theVoronoi-like diagram, a relaxedVoronoi structure,
which is interesting in its own right. Voronoi-like regions are supersets of real Voronoi
regions, and their boundaries correspond to simplemonotone paths in the arrangement
of the underlying bisector system (see Definition 3.1). We prove the correctness and

123

1042 Discrete & Computational Geometry (2023) 69:1040–1078

D (p, q) J (p, q)

p
qD (q, p)

Fig. 1 A bisector J (p, q) and its two dominance regions; D(p, q) is shown shaded

uniqueness of this structure, and use it to derive a simple randomized incremental
algorithm to address the above problems in linear expected time.

An earlier attempt towards a linear-time construction for the farthest-segment
Voronoi diagram appeared in [10] following a different geometric formulation, which
does not extend to the abstract setting. A preliminary version of the present paper,
regarding site deletion in abstract Voronoi diagrams, appeared in [9]. In three dimen-
sions, site-deletion in Delaunay triangulations of point-sites, as inspired by the
randomized approach of Chew [7], has been considered in [6].

Abstract Voronoi diagrams (AVDs). These diagrams were introduced by Klein [11].
Instead of sites and distance measures, they are defined in terms of bisecting curves
that satisfy some simple combinatorial properties. Given a set S of n abstract sites, the
bisector J (p, q) of two sites p, q ∈ S is an unbounded Jordan curve, homeomorphic
to a line, that divides the plane into two open domains: the dominance region of p,
D(p, q) (having label p), and the dominance region of q, D(q, p) (having label q),
see Fig. 1. The Voronoi region of p is

VR(p, S) =
⋂

q∈S\{p}
D(p, q).

The (nearest-neighbor) Voronoi diagram of S is

V(S) = R
2 \

⋃

p∈S
VR(p, S).

Following the traditional model of AVDs (see, e.g., [3, 4, 11]) the bisector system is
assumed to satisfy the following axioms, for every subset S′ ⊆ S:

(A1) Each Voronoi region VR(p, S′) is non-empty and path-connected.
(A2) Each point in the plane belongs to the closure of a Voronoi region VR(p, S′).
(A3) Each bisector J (p, q) is an unbounded curve, which after stereographic projec-

tion to the sphere can be completed to a closed Jordan curve through the north
pole.

(A4) Any two bisectors J (p, q) and J (r , t) intersect transversally and in a finite
number of points. (It is possible to relax this axiom, see [12]).

The abstract Voronoi diagram V(S) is a plane graph of structural complexity O(n)

whose regions are simply connected. It can be computed in time O(n log n), random-
ized [14] or deterministic [11].

To update V(S) after deleting one site s ∈ S, we need to compute V (S \ {s}) within
VR(s, S). This diagram is a tree, if VR(s, S) is bounded, and a forest otherwise.

123

Discrete & Computational Geometry (2023) 69:1040–1078 1043

However, its regions can be disconnected, i.e., one region may consist of multiple
faces. The site-occurrences along ∂ VR(s, S) form a Davenport–Schinzel sequence of
order 2. Disconnected regions introduce severe complications which differentiate the
problem from its counterpart on point-sites. For example, let S′ ⊂ S \{s}; the diagram
V(S′) ∩ VR(s, S′ ∪ {s}) may contain faces that do not even appear in V (S \ {s}) ∩
VR(s, S), and conversely, an arbitrary sub-sequence of arcs on ∂ VR(s, S) need not
be related to any Voronoi diagram of sites in S. At a first sight, a linear-time algorithm
may seem infeasible.

Our results. In this paper we formalize the concept of aVoronoi-like diagram, a relaxed
Voronoi structure defined as an acyclic graph (a tree or forest) in the arrangement of
the underlying bisector system, and prove that it is well defined and unique. This
structure provides a tool to deal with disconnected Voronoi regions, and thus, address
the site-deletion problem efficiently. We envision that it will be useful in other cases
of Voronoi diagrams with disconnected regions as well.

Given a Voronoi-like diagram, we define an insertion operation and prove its cor-
rectness. This makes a simple randomized incremental construction possible. The
time analysis of the randomized algorithm is non-standard because the intermediate
Voronoi-like structures are order-dependent. We give a technique, which offers a sim-
ple variant to backwards analysis that can be applied to order-dependent structures.We
partition the set of permutations of length i into manageable groups of i permutations
each, and show that the time complexity of step i in each group is O(i). We can then
conclude that step i is performed in expected O(1) time.

In this paper we focus on site-deletion, and compute V (S \ {s}) ∩ VR(s, S) in
expected time linear in the number of Voronoi neighbors of the deleted site. We also
extend the approach to address the aforementioned related problems for the order-k
and the farthest abstract Voronoi diagram, problems (2) and (3), respectively.

Examples of concrete diagrams that fall under the AVD umbrella, and thus, can
benefit from our approach include: disjoint line segments and disjoint convex polygons
of constant size in the L p norms, or under the Hausdorff metric; point-sites in any
convex distance metric or the Karlsruhe metric; additively weighted points that have
non-enclosing circles; power diagrams with non-enclosing circles.

This paper is organized as follows. Section 2 provides background on abstract
Voronoi diagrams. Section 3 formulates the Voronoi-like diagram, which is implied
by a subset of ∂ VR(s, S), given a fixed site s ∈ S. Section 4 defines an insertion
operation on a Voronoi-like diagram and proves its correctness. Section 5 proves
the uniqueness of the Voronoi-like diagram of a boundary curve. Section 6 outlines
the simple randomized incremental construction and proves its time complexity. To
this goal, Sect. 6.1 gives a variant of backwards analysis that is applicable to order-
dependent structures. To follow the algorithm in Sect. 6 only the basic definitions in
Sect. 3 are needed; the correctness and uniqueness proofs of the previous sections
are not necessary to follow the algorithm, and thus, they can be skipped. Sections 7
and 8 extend the technique further to the order-k and farthest abstract Voronoi diagram
respectively. Section 9 gives concluding remarks.

123

1044 Discrete & Computational Geometry (2023) 69:1040–1078

J (p, r)

r
q p

p
r

q
J (q, r)

J (p, q)

Fig. 2 The Voronoi diagram of three sites, if related bisectors (dashed lines) itersect twice; VR(p, {p, q, r})
is shown shaded

2 Preliminaries

Let S be a set of n abstract sites (a set of indices) that define an admissible system of
bisectors in the plane J = {J (p, q) : p �= q ∈ S}. J fulfills axioms (A1)–(A4), as
given in Sect. 1, for every S′ ⊆ S.

Bisectors in J that have a site p in common are called p-related or simply related.
Any two related bisectors can intersect at most twice [11, Lem. 3.5.2.5]. When two
related bisectors J (p, q) and J (p, r) intersect, bisector J (q, r) also intersects with
them at the same point(s), which are the Voronoi vertices of the diagram V ({p, q, r}).
TheVoronoi diagramof three sitesV ({p, q, r})mayhave atmost twoVoronoi vertices,
see Fig. 2. The set of all p-related bisectors that involve sites in any S′ ⊆ S is denoted
Jp,S′ = {J (p, q) : q ∈ S′, q �= p}.

Let VR(s, S) be the Voronoi region of a site s ∈ S. Although VR(s, S) is simply
connected, the sites in S \ {s} appearing along the boundary ∂ VR(s, S) may repeat,
forming a Davenport–Schinzel sequence of order 2. This is because s-related bisectors
can intersect at most twice, and thus, [21, Thm. 5.7] applies. This is a fundamental
difference from the classic case of point-sites in the Euclidean plane, where bisectors
are straight-lines, therefore, they intersect at most once, and no site repetition can
occur along the boundary of a Voronoi region.

Suppose we delete the site s ∈ S from V(S). To update the Voronoi diagram after
the deletion of s, we need to compute V (S \ {s}) within the Voronoi region VR(s, S),
i.e., compute V (S \ {s})∩VR(s, S). We first characterize the structure of this diagram
in the following lemma. An alternative proof can also be derived from the order-k
counterpart [5], which appeared after the preliminary version of this paper [9].

Lemma 2.1 V (S \ {s})∩VR(s, S) is a forest having exactly one face for each Voronoi
edge of ∂ VR(s, S). Its leaves are the Voronoi vertices of ∂ VR(s, S), and points at
infinity, ifVR(s, S) is unbounded (see Fig. 3). IfVR(s, S) is bounded thenV (S\{s})∩
VR(s, S) is a tree.

Proof Every face inV (S\{s})∩VR(s, S)must touch the boundary ∂ VR(s, S) because
Voronoi regions are non-empty and connected; this implies that the diagram is a forest.
Every Voronoi edge e ⊆ J (s, p) on ∂ VR(s, S) must be entirely in VR(p, S \ {s}).
Thus, no leaf can lie in the interior of a Voronoi edge of ∂ VR(s, S). On the other
hand, each Voronoi vertex of ∂ VR(s, S) must be a leaf of the diagram as its incident
edges are induced by different sites.

Now we show that no two edges of ∂ VR(s, S) can be incident to the same face
of V(S \ {s}) ∩ VR(s, S). Consider two edges on ∂ VR(s, S) induced by the same

123

Discrete & Computational Geometry (2023) 69:1040–1078 1045

Fig. 3 V(S \ {s}) ∩ VR(s, S) in red; ∂ VR(s, S) is shown in bold black

s sp p
s
qs

p

p pq q
VR(s, S)

J (s, p)

J (s, q)

J (p, q)

p pq q
VR(s, S)

s
q

Fig. 4 VR(p, S \ {s}) ∩ VR(s, S) cannot be connected because of J (p, q)

site p ∈ S \ {s}. Then there exists an edge between them, induced by a site q �= p,
such that the bisector J (s, q) has exactly two intersections with J (p, s) as shown
in Fig. 4. The bisector J (p, q) intersects with them at the same two points. Since
the bisector system is admissible, and thus VR(p, {s, p, q}) is connected, J (p, q)

connects these endpoints through D(p, s)∩D(q, s) as shown in Fig. 4, thus, J (p, q)∩
VR(s, {s, p, q}) consists of two unbounded connected components. This implies that
D(p, q)∩VR(s, S) must have two disjoint faces, each of which is incident to exactly
one of the two edges of p. Thus, VR(p, S \ {s}) ∩VR(s, S) cannot be connected and
the two edges of p must be incident to different faces of V (S \ {s}) ∩ VR(s, S).

If VR(s, S) is unbounded, two consecutive edges of ∂ VR(s, S) can extend to
infinity, in which case there is at least one edge of V(S \ {s}) ∩VR(s, S) extending to
infinity between them; thus, leaves can be points at infinity. If VR(s, S) is bounded,
all leaves of V(S \ {s}) ∩ VR(s, S) must lie on ∂ VR(s, S). Since no face is incident
to more than one edge of ∂ VR(s, S), in this case V (S \ {s}) ∩ VR(s, S) cannot be
disconnected, and thus is a tree. 	

Let Γ be a closed Jordan curve in the plane large enough to enclose all the inter-
sections of bisectors in J , and such that each bisector intersects Γ exactly twice and
transversally. To avoid dealing with infinity, and without any loss of generality, we
restrict all computations within Γ .1 The curve Γ can be interpreted as J (p, s∞), for
any p ∈ S, where s∞ is an additional site at infinity. Let DΓ denote the portion of
the plane enclosed by Γ . The domain of computation is VR(s, S) ∩ DΓ and Fig. 5
illustrates possible cases.

We first make some observations regarding an admissible bisector system, which
we then use as tools in the proofs throughout this paper.

Definition 2.2 LetCp be a cycle of p-related bisectors in the arrangement of bisectors
J ∪ {Γ }, see Fig. 6. If the label p appears inside the cycle, for every edge of Cp, then

1 The presence of Γ is conceptual and its exact position unknown; we never compute coordinates on Γ .

123

1046 Discrete & Computational Geometry (2023) 69:1040–1078

Γ
Γ Γ

Fig. 5 The domain of computation VR(s, S) ∩ DΓ (shaded)

p
p

p

p p p

p

p

Cp VR(p)p

p

p

p

pp

p

a b

Γ

Fig. 6 a A p-inverse cycle. b A p-cycle

Cp is called a p-cycle. If the label p appears on the outside of the cycle for every edge
in Cp, then Cp is called p-inverse.

Recall that Γ can be considered a p-related bisector, for any site p ∈ S, where the
label p is in the interior ofΓ . Thus, a p-cycle may contain arcs ofΓ , while a p-inverse
cycle cannot contain any Γ arcs.

Lemma 2.3 In an admissible bisector system there is no p-inverse cycle.

Proof Suppose a p-inverse cycle exists in the admissible bisector system. Let Cp

denote a minimal such cycle, where no p-related bisector may intersect the interior
of the cycle, which is denoted by Dp. Such a minimal cycle must exist, because if a
bisector J (p, q) intersects Dp, then it defines another (smaller) p-inverse cycle that is
contained in Cp ∪ Dp, whose interior is not intersected by J (p, q). Let S′ ⊆ S denote
the set of sites that define the edges of Cp. Considering S′, the farthest Voronoi region
of p is FVR(p, S′) = ⋂

q∈S′\{p} D(q, p). By its definition, Dp must be identical to
one face of FVR(p, S′). Since farthest Voronoi regions must be unbounded [3, 16],
we derive a contradiction. 	

The following transitivity lemma is a consequence of transitivity of dominance regions
[3, Lem. 2] and the fact that bisectors J (p, q), J (q, r), J (p, r) intersect at the same
point(s). Let X denote the closure of a region X .

Lemma 2.4 Suppose z ∈ R
2 and p, q, r ∈ S. If z ∈ D(p, q) and z ∈ D(q, r), then

z ∈ D(p, r).

We make a general position assumption that no three p-related bisectors intersect at
the same point. This implies that Voronoi vertices have degree 3.

123

Discrete & Computational Geometry (2023) 69:1040–1078 1047

γ

δ

ε

ζ

ηϑ

�

�

Fig. 7 Illustration of S = ∂ VR(s, S) in bold (black) and V(S) in red; S = (α, β, γ, δ, ε, ζ, η, ϑ)

3 Problem Formulation, Definitions and Properties

Consider the Voronoi region VR(s, S) for a fixed site s ∈ S. Let S denote the sequence
of Voronoi edges on the boundary of this region within the domain DΓ , i.e., S =
∂ VR(s, S) ∩ DΓ . S is a cyclically ordered set of arcs, where each arc is a piece of an
s-related bisector defining a Voronoi edge on the boundary of VR(s, S). The arcs in
S are called core arcs. Note that a single site in S \ {s} may induce several of the core
arcs in S. For any arc α ∈ S, let sα denote the site in S such that α ⊆ J (s, sα).

We interpret the core arcs in S as sites that induce a Voronoi diagram V(S) such
that V(S) = V(S \ {s}) ∩ VR(s, S) ∩ DΓ , see Fig. 7. By Lemma 2.1, each face of
V(S) is incident to exactly one core arc in S; thus, it can be interpreted as the Voronoi
region of its incident core arc. Then, V(S) can be viewed as the Voronoi diagram of
the arcs in S.

The arrangement of a bisector set J ′ ⊆ J is denoted by A(J ′). A path P in the
arrangement A(J ′) is a connected sequence of alternating edges and vertices in this
arrangement. An arc α of P (denoted as α ∈ P) is a maximally connected collection
of consecutive edges and vertices of the arrangement along P that belong to the same
bisector. The common endpoint of two consecutive arcs of P is a vertex of P . An
arc of P is also called an edge. Any two consecutive arcs in P are pieces of different
bisectors.

Consider the arrangement of a set of p-related bisectors Jp,S′ , S′ ⊆ S. Since it
may consist of several connected components, we also include Γ in this arrangement
to unify the various components, deriving A(Jp,S′ ∪ {Γ }).
Definition 3.1 A path in the arrangement of p-related bisectors Jp,S′ ∪ {Γ }, S′ ⊆ S,
is called p-monotone (or simply monotone) if any two consecutive arcs α, β on this
path, where α ⊆ J (p, sα) and β ⊆ J (p, sβ), coincide (within a neighborhood of their
common endpoint) with two Voronoi edges of ∂ VR(p, {p, sα, sβ}) (see Figs. 8, 9).
The boundary of the Voronoi region VR(p, S′ ∪ {p}) ∩ DΓ , S′ ⊆ S, is an example
of such a p-monotone path, which is called the envelope of Jp,S′ ∪ {Γ }. Figure 9
illustrates examples of p-monotone paths, where the envelope is shown in Fig. 9a.

Definition 3.2 Consider S′ ⊆ S and let S′ = {sα ∈ S : α ∈ S′} be the sites in S \ {s}
that define the arcs in S′. A boundary curveP for S′ is a closed s-monotone path in the

123

1048 Discrete & Computational Geometry (2023) 69:1040–1078

p p
s s

b

VR(p)

a

pp
ss

c

s
p

s
p

VR(p) VR(p)α

α

α

α

α

α
β

β β

β

β β

Fig. 8 a Arcs α, β fulfill the p-monotone path condition; they do not fulfill it in b and c

p r p
q

ptp
q

P

p
p p

q
r t

ba

p
r

Fig. 9 p-monotone paths in Jp,{q,r ,t}. a illustrates the envelope E of Jp,{q,r ,t}

arrangement of s-related bisectorsJs,S′ ∪{Γ } such that all arcs inS′ are contained inP .
The open portion of the plane enclosed by P is called the domain of P , denoted DP .
Given P , let SP = S′.

A set S′ ⊂ S can admit several different boundary curves, see e.g., the different p-
monotone paths in Fig. 9. One such boundary curve is the boundary of VR(s, S′ ∪
{s}) ∩ DΓ , which is called the envelope of S′, E = ∂ VR(s, S′ ∪ {s}) ∩ DΓ . The full
set S can have only one boundary curve, which is the boundary of VR(s, S) ∩ DΓ .
Recall that S is ordered according to ∂ VR(s, S), and the same ordering applies to any
subset (eqiv. subsequence) S′ ⊂ S. Figure 10 illustrates a boundary curve for a subset
of core arcs from Fig. 7.

A boundary curve P on S′ ⊆ S consists of pieces of s-related bisectors called
boundary arcs, and pieces of Γ , called Γ -arcs. Γ -arcs correspond to openings of the
domain DP to infinity. Among the boundary arcs, those containing a core arc of S′ are
called original and others, which contain no core arc, are called auxiliary. Original
boundary arcs inP are expanded versions of the core arcs in S′. To distinguish between
an original arc α and its core sub-arc in S′, we use an ∗ to denote the latter. Figure 10
illustrates a boundary curve P on S′ ⊆ S consisting of five original arcs, one auxiliary
arc (arc β ′) and one Γ -arc (arc g); the core arcs are illustrated in bold and the set S is
shown in Fig. 7. Let |P| denote the number of boundary arcs in P .

We now define the Voronoi-like diagram of a boundary curve P on S′ ⊆ S. Recall
that S′ = {sα ∈ S \ {s} | α ∈ S′} is the set of sites in S \ {s}, which define the core arcs
in S′.

Definition 3.3 Given a boundary curve P on S′ ⊆ S, the Voronoi-like diagram of P ,
denoted Vl(P), is a plane graph defined on the arrangement of the bisector system
Js,S′ that subdivides the domain DP as follows (see Fig. 10):

– for each boundary arc α ∈ P \Γ , there is exactly one distinct face R(α,P), whose
boundary is an sα-monotone path in Jsα,S′ ∪ Γ , plus arc α;

– the faces cover the domain DP :
⋃

α∈P\Γ R(α,P) = DP .

If the boundary curveP coincides with the envelope E = ∂ VR(s, S′ ∪{s})∩DΓ , then
Vl(P) is the ordinary Voronoi diagram of S′ as truncated within the domain of E . That

123

Discrete & Computational Geometry (2023) 69:1040–1078 1049

R ()

l ()
g

α

γ
ε

β

β

Fig. 10 A boundary curve P on S′ ⊆ S, where the core arcs in S′ are shown in bold, and its Voronoi-like
diagram Vl (P) is shown in red. The gray arc g is a Γ -arc, and the blue arc β ′ is an auxiliary arc; the
remaining arcs are original. The set of core arcs S is shown in Fig. 7

is, Vl(P) = Vl(E) = V(S′) ∩ DE (see Lemma 3.4 and Corollary 3.5 in the sequel).
For an arbitrary boundary curve P , the Voronoi-like regions in Vl(P) are related to
the real Voronoi regions in V(S′) ∩ DE as supersets (see the following lemma).

Let V(E) = V(S′) ∩ DE . Any face of the Voronoi diagram V(E) incident to a
boundary arc α ∈ E is regarded as the Voronoi region VR(α, E). We show that
R(α, E) = VR(α, E), thus, V(E) = Vl(E).

Lemma 3.4 Let P be a boundary curve on S′ ⊆ S and let E be the envelope of S′,
E = ∂ VR(s, S′ ∪ {s}) ∩ DΓ . Let α ∈ P and α̃ ∈ E be two overlapping arcs where
α, α̃ ⊆ J (s, sα). Then, R(α,P) ⊇ VR(α̃, E). Further, if α and α̃ are original, i.e.,
α ⊇ α̃ ⊇ α∗, where α∗ ∈ S′, then R(α,P) ⊇ VR(α̃, E) ⊇ VR(α∗, S).

Proof By the definition of a boundary curve, it holds that α ⊇ α̃. By the definition of a
Voronoi region, bisector J (sα, ·) cannot appear in the interior of any Voronoi region
in V(S′) ∩ DE = V(E). Since α ⊇ α̃, by the definition of a Voronoi-like region, it
follows that R(α,P) ⊇ VR(α̃, E). Suppose that α and α̃ are original; since S′ ⊆ S,
by the monotonicity property of Voronoi regions, we have VR(α̃, E) ⊇ VR(α∗, S). 	

As an example, refer to the Voronoi-like diagram Vl(P) of Fig. 10 versus the Voronoi
diagram V(S) in Fig. 7: the Voronoi-like region R(η,P) is a superset of the Voronoi
region VR(η∗, S) in Fig. 7; similarly R(α,P) ⊇ VR(α∗, S).

Another implication of Lemma 3.4 is that the adjacencies of the Voronoi diagram
V(E), among the original arcs of E , are all preserved in Vl(P) (see Figs. 7, 10). If
P = E , then Vl(E) and V(E) coincide as a direct consequence of Lemma 3.4.

Corollary 3.5 Vl(E) = V(S′) ∩ DE = V(E) for the envelope E of S′ ⊆ S.

In the remainder of this sectionwe give basic properties ofVoronoi-like regions involv-
ing their interaction with the bisectors in J , which we later use in subsequent sections
to derive correctness and establish that the Voronoi-like diagram is well defined.

123

1050 Discrete & Computational Geometry (2023) 69:1040–1078

sα

sβ

PR(α)
α

e
cut (e)

a

s
sβP

α

e

sα

sα
s

sβP
α

e

sα

sα

c d

sβ sαβ̃

β̃

J(s, sβ)
sα

sβ

α

e
s

b

sα

β̃

cut (e) cut (e) cut (e)

Fig. 11 Various cases of Lemma 3.8. The shaded region illustrates cut(e) ⊆ D(sβ , sα)

3.1 Properties of Voronoi-Like Regions

The following property establishes that a Voronoi-like region R(α,P) cannot be inter-
sected by J (s, sα).

Lemma 3.6 For any arc α ∈ P , R(α,P) ⊆ D(s, sα).

Proof The contrary would yield a forbidden sα-inverse cycle defined by a component
of J (s, sα) ∩ R(α,P) and the incident portion of ∂R(α,P). 	

Lemma 3.7 For a boundary curveP , its domain DP may not contain a p-cycle formed
by the bisectors of Js,SP ∪ {Γ } for any site p ∈ SP .

Proof Let p ∈ SP . Any original arc of p in P is bounding VR(p, SP ∪ {s}), thus, it
must have a portion within the interior of VR(p, SP) in V(SP). Hence, VR(p, SP)

must have some non-empty portion outside the closure of DP . However, VR(p, SP)∩
DΓ must be enclosed within any p-cycle of Js,SP ∪ {Γ }, by its definition. Thus, no
such p-cycle can be contained in DP . 	

Next, we give a key property of a Voronoi-like region R(α,P), called the cut property,
see Fig. 11. Consider a connected component e of J (sα, sβ) ∩ R(α,P) and let cut(e)
denote the portion of region R(α,P) that is cut out by e, as shown shaded in Fig. 11, and
defined as follows. If e does not intersect α, let cut(e) be the portion of the region at the
opposite side of e as α, see Fig. 11a. If e is the only component of J (sα, sβ)∩ R(α,P)

incident to α, let cut(e) be the portion of R(α,P) incident to the side of e labeled sβ ,
see Fig. 11, b and d. If two different components of J (sα, sβ) ∩ R(α,P) are incident
to α, let cut(e) be the portion of R(α,P) between these two components, see Fig. 11c.
Note that if β ∈ P then only the cases (a) and (b) are possible. On the other hand, if
P = E , and α, β ∈ E , then J (sα, sβ) cannot intersect VR(α, E), thus, none of these
cases is possible.

Lemma 3.8 Suppose bisector J (sα, sβ) intersects R(α,P) (see Fig. 11). For any con-
nected component e of J (sα, sβ) ∩ R(α,P), it holds cut(e) ⊆ D(sβ, sα).

Proof Suppose first that a component e of J (sα, sβ)∩R(α,P) does not intersect α, see
Fig. 11a. Then the label sα must appear on the same side of e as α, because otherwise,
∂cut(e) would be an sα-cycle, contradicting Lemma 3.7.

Suppose now that e intersects α. Then there is a component β̃ of J (s, sβ)∩R(α,P),
incident to the intersection point of e andα, that is contained in cut(e). Since s-bisectors

123

Discrete & Computational Geometry (2023) 69:1040–1078 1051

can intersect at most twice, it follows that β̃ may have both its endpoints on α only
if β /∈ P , because otherwise, J (s, sβ) and J (s, sα) would intersect more than twice.
Thus, if β ∈ P , e may only have one endpoint on α, and no other component of
J (sα, sβ) ∩ R(α,P) may be incident to α, see Fig. 11b. Otherwise, J (sα, sβ) may
intersect α twice, resulting in cases (c) or (d) of Fig. 11. No other cases exist.

Consider an arbitrary component e of J (sα, sβ) ∩ R(α,P). Suppose for the sake
of contradiction that cut(e) � D(sβ, sα). Then J (sβ, sα) must intersect the interior
of cut(e) with a component e′ of J (sβ, sα) ∩ R(α,P), e′ �= e. Among any such
component, let e′ be the first one following e in the direction away from α. Since
e′ cannot intersect e nor can it intersect α, it follows that e′ must create an sα-cycle
with ∂cut(e), contradicting Lemma 3.7. Figure 17 illustrates such a forbidden sγ -cycle
created by a piece of J (sβ, sγ), shown in dashed lines, and ∂R(γ,P). 	

Lemma 3.8 implies that any components of J (sα, sβ) ∩ R(α,P) must appear sequen-
tially along ∂R(α,P). That is, in a traversal of ∂R(α,P), starting at α, no component
of J (sα, sβ) ∩ R(α,P) may appear between the endpoints of another. Further, if
J (sα, sβ) intersects R(α,P), then J (s, sβ) must also intersect the domain DP . We
use this fact to establish that Vl(P) is unique in the following theorem; the proof is
deferred to Sect. 5.

Theorem 3.9 Given a boundary curveP of S′ ⊆ S,Vl(P) is unique, assuming it exists.

The complexity of Vl(P) is O(|P|) as it is a planar acyclic graph with exactly one
face per boundary arc and vertices of degree 3 (or 1).

4 Insertion in a Voronoi-Like Diagram

Consider a boundary curveP on a set of core arcs S′ ⊂ S and its Voronoi-like diagram
Vl(P). Let β∗ be a core arc in S \ S′. We define an insertion operation ⊕, which adds
β∗ to P , and derives the boundary curve Pβ = P ⊕ β∗ and its Voronoi-like diagram
Vl(Pβ) = Vl(P) ⊕ β∗. Since β∗ is a core arc, it must be entirely contained in the
closure of the domain DP .

Given P and β∗, let β ⊇ β∗ be the connected component of J (s, sβ) ∩ DP that
contains β∗ (see Fig. 12). Pβ is the boundary curve derived from P by substituting
its portion between the endpoints of β, with β itself. We say that Pβ is derived from
P by inserting the core arc β∗, or equivalently, by inserting the original arc β. The
insertion operation performs the following tasks algorithmically:

– Insert the core arc β∗ in P , deriving Pβ = P ⊕ β∗ = P ⊕ β. The various cases
are illustrated in Fig. 13, see Observation 4.1 below.

– Compute the merge curve J (β), which defines the boundary of R(β,Pβ).
– Update Vl(P), by inserting J (β) and deleting any portion of the diagram enclosed
by it, to derive Vl(Pβ) = Vl(P) ⊕ β.

These tasks are standard in relation to site insertion in any Voronoi diagram. We prove
their correctness in a Voronoi-like structure, see Theorems 4.3 and 4.4.

123

1052 Discrete & Computational Geometry (2023) 69:1040–1078

J (s , s)yx

β

β

β

Fig. 12 Pβ = P ⊕ β, core arc β∗ is bold, black. Endpoints of β are x, y

a b c d e f

β β β
β β β

Γ

Fig. 13 Insertion cases for an arc β

Observation 4.1 All possible cases of inserting arc β∗ ⊆ β in P are enumerated as
follows (see Fig. 13).

(a) Arc β straddles the endpoint of two consecutive boundary arcs; no arcs in P are
deleted.

(b) Auxiliary arcs in P are deleted by β; their regions are also deleted from Vl(Pβ).
(c) An arc α ∈ P is split into two arcs by β; R(α,P) will also be split in two parts.
(d) A Γ -arc is split in two by β; Vl(Pβ)may switch from being a tree to being a forest.
(e) A Γ -arc is deleted or shrunk by inserting β. Vl(Pβ) may become a tree.
(f) P already contains a boundary arc β̄ ⊇ β∗; then β = β̄ and Pβ = P .

In terms of auxiliary arcs, Pβ may contain fewer, the same number, or even one
additional auxiliary arc as compared to P .

Given Vl(P) and arc β, we define amerge curve J (β), which delimits the boundary
of R(β,Pβ).Wedefine J (β) algorithmically (seeDef. 4.2), starting at an endpoint ofβ,
and tracing sβ -related bisectorswithin the faces ofVl(P), refer to Fig. 14.Weprove that
J (β) is indeed an sβ -monotone path that connects the endpoints of β (Theorem 4.3).
Let x, y denote the endpoints of β, where xβ y appear in counterclockwise order. We
assume a counterclockwise traversal of P . Refer to Fig. 14.

Definition 4.2 Given Vl(P) and arc β ⊆ J (s, sβ), the merge curve J (β) is a path
(v1, . . . , vm) in the arrangement of sβ -related bisectors,A(Jsβ ,SP ∪{Γ }), connecting
the endpoints of β, v1 = x and vm = y. Each edge ei = (vi , vi+1) is an arc of a
bisector J (sβ, ·), called a bisector edge, or an arc on Γ . We assume a clockwise
ordering of J (β). For i = 1: if x ∈ J (sβ, sα), then e1 ⊆ J (sβ, sα); if x ∈ Γ , then
e1 ⊆ Γ . Given vi , vertex vi+1 and edge ei+1 are defined as follows.

(i) If ei ⊆ J (sβ, sα), let vi+1 be the other endpoint of the connected component of
J (sβ, sα) ∩ R(α,P) incident to vi . If vi+1 ∈ J (sβ, ·) ∩ J (sβ, sα), then ei+1 ⊆
J (sβ, ·). If vi+1 ∈ Γ , then ei+1 ⊆ Γ . (In Fig. 14, see ei = e′, vi = z, vi+1 = z′.)

(ii) If ei ⊆ Γ , let g be the Γ -arc in P incident to vi , in clockwise order. Let ei+1 ⊆
J (sβ, sγ), where γ ∈ P and R(γ,P) is the first region, incident to g clockwise

123

Discrete & Computational Geometry (2023) 69:1040–1078 1053

y

s
s

ss

s s

J ()

x

z

z

e

s
s

R ()

e

α
α β

β

β

β
β

γ

γ

δ

β

η

ε

εΓ

Fig. 14 The merge curve J (β) (thick, green) on Vl (P) (thin, red)

s

s

s

s

J ()

R (,)

x y

�
�

�

�

�

�

�

Fig. 15 If β splits α, J (β) ⊂ R(α,P) would yield a forbidden sα-inverse cycle

ei

yx

J i
x

i

J j
y

m j +1ei 1 em j +1

em j

β

Fig. 16 J ix and J j
y in Sect. 4.1

from vi such that J (sβ, sγ) intersects g ∩ R(γ,P); let vi+1 be this intersection
point. (In Fig. 14, see vi = v and vi+1 = w.)

The following theorem shows that J (β) forms an sβ -monotone path joining the end-
points of β. We defer its proof to the end of this section (Sect. 4.1).

Theorem 4.3 The merge curve J (β) is a unique sβ -monotone path in the arrangement
of sβ -related bisectors A(Jsβ ,SP ∪ Γ) connecting the endpoints of β. Further:

– If arc β splits a single arc α ∈ P (case (c) of Observation 4.1) then J (β) must
intersect R(α,P) in two different components, e1, em−1 ⊆ J (sα, sβ). J (β) can
intersect any other region in Vl(P) at most once.

– J (β) cannot intersect the region of any arc in P \ Pβ , which gets deleted by the
insertion of β, nor can it intersect arc β in its interior.

Let T (β) denote the portion of Vl(P) enclosed by J (β) and P \ Pβ . Let Vl(P) ⊕ β

denote the graph obtained from Vl(P) by deleting T (β) and substituting it with J (β),
i.e., Vl(P) ⊕ β = (Vl(P) \ T (β)) ∪ J (β),

123

1054 Discrete & Computational Geometry (2023) 69:1040–1078

J(β,P)

R(γ,P)
γ sγ sβ

sβsα

vi

vi+1

Fig. 17 Impossible configuration of J (sβ , sγ). Scanning ∂R(γ,P) from vi counterclockwise, Lemma 3.8
assures that vi+1 is the first encountered intersection of J (sβ , sγ) with ∂R(γ,P)

Theorem 4.4 Vl(P) ⊕ β is the Voronoi-like diagram Vl(Pβ).

Proof By construction, Vl(P) ⊕ β induces a subdivision of the domain DPβ
. By The-

orem 4.3, J (β), and thus, ∂R(β)\β, is an sβ -monotone path connecting the endpoints
of β. For any arc α ∈ P such that J (β) passes through R(α,P), the boundary of the
updated face in Vl(P) ⊕ β remains an sα-monotone path, by the definition of J (β).
Thus, for any face f of Vl(P) ⊕ β incident to an arc α �= β, its boundary ∂ f \ α is
an sα-monotone path, hence, it satisfies the first requirement of Definition 3.3.

Since J (β) can enter any region in Vl(P) at most once (except from case (c) of
Observation 4.1) it cannot create a face that may remain in the interior of DP . Further,
J (β) cannot pass through any region of an arc in P \Pβ , thus, such a region must be
enclosed by J (β) and will be deleted. Hence, any face of Vl(P) ⊕ β must be incident
to a boundary arc of Pβ , satisfying also the second requirement of Definition 3.3.
Since, by Theorem 3.9, the Voronoi-like diagram of a boundary curve is unique, it
follows that Vl(P) ⊕ β = Vl(Pβ). 	

The tracing of the merge curve J (β) within Vl(P) can be performed similarly to any
ordinary Voronoi diagram (see, e.g., [2, Ch. 7.5.3]). This is correct in a Voronoi-like
diagram as a result of the cut property of Lemma 3.8: when J (β) enters a region
R(γ,P) at a point vi , we can determine vi+1 by scanning ∂R(γ,P) counterclock-
wise sequentially, until we encounter the first intersection with J (sβ, sγ). Lemma 3.8
assures that no intersection of J (sβ, sγ) with ∂R(γ,P) between vi and vi+1 is possi-
ble, such as the one shown in Fig. 17. Thus, we can state the following fact.

Lemma 4.5 Let ei = (vi , vi+1) be an edge of J (β) in R(γ,P). Given vi , we can deter-
mine vi+1 by sequentially scanning ∂R(γ,P) counterclockwise from vi (i.e., away
from γ) until the first intersection of J (sβ, sγ) with ∂R(γ,P) which determines vi+1.

Special care is required in cases (c), (d), and (e) of Observation 4.1 to identify the
first edge of J (β), as β does not overlap any feature of Vl(P) in these cases. To handle
them we need to define some additional parameters.

Let P̃ denote the finer version of P derived by intersecting its Γ -arcs with Vl(P),
i.e., partitioning the Γ -arcs ofP into finer pieces by the incident faces of Vl(P). Since
the complexity of Vl(P) is O(|P|), it follows that |P̃| is also O(|P|).
Definition 4.6 Let α and γ denote the original arcs preceding and following β on Pβ .
We assume a counterclockwise traversal of P and Pβ .

123

Discrete & Computational Geometry (2023) 69:1040–1078 1055

(i) Let d1(β,Pβ) denote the number of auxiliary arcs that appear on Pβ from α to β.
(ii) Let d2(β,Pβ) denote the number of auxiliary arcs that appear on P between the

endpoints of β that get deleted by the insertion of β.
(iii) In case (c) of Observation 4.1, where β splits an arc ω in two arcs (ω1, ω2), let

r(β,Pβ) = min {|∂R(ω1,Pβ)|, |∂R(ω2,Pβ)|}; in other cases, let r(β,Pβ) = 0.
(iv) In case (d) of Observation 4.1, where β splits a Γ -arc, let d̃(β,Pβ) denote the

number of fine Γ -arcs on P̃β from α to β (i.e., the number of regions in Vl(Pβ)

incident to Γ from α to β); in all other cases, d̃(β,Pβ) = 0.

Lemma 4.7 Given α, γ , and Vl(P), the merge curve J (β) can be computed in time
O(|J (β)| + d1(β,Pβ) + d2(β,Pβ) + r(β,Pβ) + d̃(β,Pβ)).

Proof We assume a counterclockwise (ccw) ordering of P . We first determine the
endpoints of β in time O (d1(β,Pβ)+d2(β,Pβ)) by scanning sequentially the arcs in
P starting at α and moving ccw (towards γ) until the endpoints of β are determined.
Note that β contains the core arc β∗, therefore, we can easily identify the correct
component of J (s, sβ) ∩ DP during the scan, even if J (s, sβ) intersects P multiple
times. This scan also determines which case of Observation 4.1 is relevant.

Let T (β) denote the portion of Vl(P) that is enclosed by J (β) and P \ Pβ . T (β)

gets deleted by the insertion of β. It is an embedded forest, which by Theorem 4.3 is
incident to the following faces of Vl(P): one face for each bisector edge of J (β), and
one face for each auxiliary arc α′ ∈ P \Pβ . The latter number is counted in d2(β,Pβ).
We infer that T (β) has complexity O (|J (β)| + d2(β,Pβ)).

To compute J (β), we trace T (β) in time O(|T (β)|), after having identified one of
its leaves, as normally done in an ordinary Voronoi diagram. This statement is correct
due to Theorem 4.3 and Lemma 4.5. However, we first need to identify one leaf of
T (β), and certain cases of Observation 4.1 may require additional scans, which can
increase the time complexity over |T (β)|. We give the case analysis in the remainder
of this proof.

Suppose first that T (β) has a leaf onP . Then, in all cases of Observation 4.1, except
cases (d) and (e), a leaf of T (β) is identified by the initial scan. In case (e), β has at
least one endpoint on a boundary arc ρ ofP , see Fig. 14; we identify a leaf by scanning
P̃ starting at ρ and moving towards the other endpoint of β. This scan takes only one
step as the leaf will be incident to the first Γ -arc neighboring ρ on P̃ . In case (d), both
endpoints of β are on Γ . We scan P̃ from α to β until we locate the first endpoint x
of β. A leaf of T (β) must be incident to the fine Γ -arc that contains x . Since all the
encountered Γ -arcs remain in P̃β , the term O(d̃(β,Pβ)) is added to the overall time
complexity.

Suppose now that T (β)has no leaf onP . Thenβ is enclosedwithin a singleVoronoi-
like region R(ω,P). There are three cases to consider:Observation 4.1, (c), (d), and (e).

In case Observation 4.1 (c), the insertion of β splits arc ω in two parts, ω1 and ω2.
We scan ∂R(ω,P) sequentially until an intersection with J (sω, sβ) is found. This
intersection point is a leaf of T (β) within the domain of P . We start scanning from
both endpoints of ω, tracing the shorter among ∂R(ω1,Pβ) and ∂R(ω2,Pβ). This
adds the term r(β,Pβ) to the overall time complexity.

123

1056 Discrete & Computational Geometry (2023) 69:1040–1078

y

s

x
2

s
s

J()

g1

s
s

s

R(,) β
β

βω
ω

ω

ω

ω

ω

ω
Γ

Fig. 18 Case (e) of Observation 4.1, where T (β) has no leaf on P . Endpoint x lies on a fine Γ -arc g1
bounding R(ω,P), and y ∈ ω

y
s

s

x

R(,)

2

s
s J()

g1s
s m 1

s

ω
ω

ω

ω

ω

ω

�
�

ω

�

Γ

Fig. 19 Case (d) of Observation 4.1, where T (β) has no leaf onP . Both x, y lie on a fineΓ -arc g1 bounding
R(ω,P)

In cases (d) and (e) of Observation 4.1, J (β) ⊆ R(ω,P) ∪ Γ , since otherwise
J (β) would intersect the region R(ω,P) twice, contradicting Theorem 4.3. Thus,
J (β) consists of a single bisector J (sω, sβ) and one or two Γ -arcs, see Figs. 18
and 19, respectively. Therefore, we only need to identify ω. In case (e), ω is identified
during the initial scan. In case (d), β has both its endpoints on Γ , and we scan P̃ from
α to β until we encounter the fine Γ -arc that contains the first endpoint of β; the latter
Γ -arc bounds the region R(ω,P). This scan adds the term O(d̃(β,Pβ)) to the time
complexity. 	

4.1 Proving Theorem 4.3

In this sectionwe prove Theorem 4.3. The proof is technical but it is self-contained and
it is not necessary for following the rest of the paper. We first establish the following
lemma.

Lemma 4.8 The merge curve J (β) cannot intersect arc β, other than its endpoints.

Proof Suppose that an edge ei of J (β), such that ei ⊆ J (sα, sβ) and ei ⊆ R(α,P),
intersects arc β. Then J (s, sα) must also pass through the same intersection point
within R(α,P). But an s-related bisector J (s, sα) can never intersect R(α,P), by
Lemma 3.6. 	

The following observation is used throughout the proofs in this section.

Lemma 4.9 For any site p ∈ S\{s}, D(s, p)∩DP is connected. Thus, any components
of the same s-related bisector J (s, ·) ∩ DP must appear along P sequentially, one
after another.

Proof If we assume the contrary, we obtain a forbidden s-inverse cycle defined by
J (s, ·) and P , which contradicts Lemma 2.3. 	

123

Discrete & Computational Geometry (2023) 69:1040–1078 1057

s

s
s

s

R(,)

s
s

β
α

α
β

α

β

α

Fig. 20 Illustrations for Lemma 4.10

We now establish that J (β) cannot pass through any region of an auxiliary arc in
P \ Pβ that gets deleted by the insertion of β.

Lemma 4.10 Let α ∈ P but α � Pβ . Then R(α,P) ⊂ D(sβ, sα), see Fig. 20.

Proof By Lemma 3.6, it holds that R(α,P) ⊆ D(s, sα). Let Rs = R(α,P)∩D(s, sβ)

and Rβ = R(α,P) ∩ D(sβ, s). By transitivity of dominance regions we have Rβ ⊆
D(sβ, sα). ByLemma4.9, Rs is not incident toα. Thus, if J (sβ, sα) intersected Rs then
it would create an sα-cycle with the boundary of R(α,P), contradicting Lemma 3.7,
see the dashed gray line in Fig. 20. This also implies that Rs ⊆ D(sβ, sα). Thus,
R(α,P) = Rs ∪ Rβ ⊆ D(sβ, sα). 	

In the following we prove that J (β) is an sβ -monotone path connecting the endpoints
of β. To this aim we perform a bi-directional induction on the vertices of J (β).

Let J ix = (v1, v2, . . . , vi), 1 ≤ i < m, be the subpath of J (β) starting at v1 = x
up to vertex vi , including a small neighborhood of ei incident to vi , see Fig. 16. Note
that vertex vi uniquely determines ei , however, its other endpoint is not yet specified.
Similarly, let J j

y = (vm, vm−1, . . . , vm− j+1), 1 ≤ j < m, denote the subpath of J (β),
starting at vm up to vertex vm− j+1, including a small neighborhood of edge em− j . For
any bisector edge e� ∈ J (β), let α� denote the boundary arc that induces e�, i.e.,
e� ⊆ J (sα�

, sβ) ∩ R(α�,P).

Inductive hypothesis: Suppose J ix and J j
y , i, j ≥ 1, are disjoint sβ -monotone paths.

Suppose further that each bisector edge of J ix and of J j
y passes through a distinct

region R(α�,P) in Vl(P), where α� is distinct for 1 ≤ � ≤ i and m − j ≤ � < m,
except possibly αi = αm− j and α1 = αm−1.

Inductive step: Assuming that i + j < m, we prove that at least one of J ix or J
j
y can

grow to J i+1
x or J j+1

y respectively at a valid vertex (Lemmas 4.11, 4.12), entering a

new region of Vl(P) that has not been visited by J ix or J
j
y (Lemma 4.14). A vertex is

called valid if it belongs toA(Jsβ ,SP ∪{Γ }) or it is an endpoint of β. When i+ j = m,
a finish condition is given in Lemma 4.13. The base case for i = j = 1 is trivially
true. In the remaining section we prove correctness of the inductive step.

Suppose that ei ⊆ J (sαi , sβ) and vi ∈ ∂R(αi ,P). To show that vi+1 is a valid
vertex it is enough to show that (1) vi+1 cannot be on αi , and (2) if vi is on a Γ -arc
then vi+1 can be determined on the same Γ -arc. However, we cannot easily derive
these conclusions directly. Instead we show that if vi+1 is not valid then vm− j will
have to be valid. In the following lemmata we assume that the inductive hypothesis
holds.

123

1058 Discrete & Computational Geometry (2023) 69:1040–1078

ss C

m1

i+1

s

m1
s

i+1

C
s

m1
s

i+1

C

s

a b c

J i+1
x

J j
y

m j

m j

J1 J2

s s

Fig. 21 The assumption that edge ei = (vi , vi+1) of the merge curve J ix hits a boundary arc of P as in
Lemma 4.11

Lemma 4.11 Suppose ei ⊆ J (sαi , sβ) but vi+1 ∈ αi , that is, ei hits arc αi ∈ P , and
thus, vi+1 is not a valid vertex. Then vertex vm− j must be a valid vertex inA(Jsβ ,SP),
and vm− j cannot be on P .

Proof Suppose vertex vi+1 of ei lies on arc αi as shown in Fig. 21a. Vertex vi+1 is the
intersection point of related bisectors J (s, sαi), J (sβ, sαi) and thus also of J (s, sβ).
Thus, v1, vm, vi+1 ∈ J (s, sβ). By the inductive hypothesis, no other vertex of J ix
nor J j

y can be on J (s, sβ). Vertices v1, vi+1, vm appear on P in clockwise order,
because J i+1

x cannot intersect β. Arc β partitions J (s, sβ) in two parts: J1 incident to
v1 and J2 incident to vm . We claim that vi+1 must lie on J2, as otherwise, J i+1

x and
J1 would form a forbidden sβ -inverse cycle, see the dashed black and the green solid
curve in Fig. 21a, contradicting Lemma 2.3. This cycle must be sβ -inverse because
J i+1
x ⊆ DP , and all components of J (s, ·) ∩ DP must appear sequentially along P

by Lemma 4.9.
Thus, vi+1 lies on J2. Further, by Lemma 4.9, the components of J2∩DP appear on

P clockwise after vi+1 and before vm , as shown in Fig. 21b, which illustrates J (s, sβ)

as a black dashed curve.
Now consider J j

y . We show that vm− j cannot be on P . First observe that vm− j

cannot lie on P , clockwise after vm and before v1, since J j+1
y cannot cross β. We

prove that vm− j cannot lie on P clockwise after v1 and before vi+1. To see that,
note that edge em− j cannot cross any non-Γ edge of J i+1

x , because by the inductive
hypothesis, αm− j is distinct from all α�, � ≤ i . In addition, by the definition of a
Γ -arc, vm− j cannot lie on any Γ -arc of J ix . Finally, we show that vm− j cannot lie on
P clockwise after vi+1 and before vm . If vm− j lay on the boundary arc αm− j then we
would have vm− j ∈ J (s, sβ). This would define an sβ -inverse cycle Cβ , formed by

J j+1
y and J (sβ, s), see Fig. 21b, similarly to the first paragraph of this proof. If vm− j

lay on a Γ -arc then there would also be a forbidden sβ -inverse cycle formed by J j+1
y

and J (s, sβ) because in order to reach Γ , edge ei must cross J (s, sβ). See the dashed
black and the green curve in Fig. 21c. Thus vm− j /∈ P . Since vm− j ∈ ∂R(αi+1) but
vm− j /∈ P , it must be a vertex of A(Jsβ ,SP). 	

The proof for the following lemma is similar.

Lemma 4.12 Suppose vertex vi is on a Γ -arc g ∈ P but vi+1 cannot be determined
because no bisector J (sβ, sγ) intersects R(γ,P) ∩ g, clockwise from vi . Then vertex
vm− j must be a valid vertex in A(Jsβ ,SP) and vm− j cannot be on P .

123

Discrete & Computational Geometry (2023) 69:1040–1078 1059

s

m1

s
C

a b c

J i
x

m j

m j

i
g

z

s

m1

s

z
s
s

J j
y

s
C

s

m1

s

z

J j
y

s s

i iJ 2

s
s

β β β

β

β β
β β

β

β
β β

β

Fig. 22 The assumption that vi ∈ Γ and vi+1 of themerge curve J ix cannot be determined as in Lemma 4.12

Proof We truncate the Γ -arc g to its portion clockwise from vi ; let w be the endpoint
of g clockwise from vi , see Fig. 22a. If no J (sβ, sγ) ∩ R(γ,P) intersects g, as we
assume in this lemma, then R(γ,P)∩g ⊆ D(sβ, sγ), for any region R(γ,P) incident
to g. Thus, w ∈ D(sβ, s). However, vi ∈ D(s, sβ), since, by Lemma 3.6, R(αi−1) ⊆
D(s, sαi−1) and vi is incident to J (sβ, sαi−1) ∩ R(αi−1). Thus, J (s, sβ) must intersect
g at some point z clockwise from vi . Arc β partitions J (s, sβ) in two parts: J1 incident
to v1 and J2 incident to vm . Lemma 4.9 implies that all components of J2∩DP appear
onP clockwise after vi and before vm , as shown by the black dashed curve in Fig. 22a;
also z lies on J2.

Nowwe can show that vertex vm− j of J
j
y cannot be onP analogously to the proof of

Lemma 4.11. The only difference is that we must additionally show that vm− j cannot
lie on P clockwise after vi and before w. But this holds already by the assumption in
the lemma statement. Refer to Fig. 22, b and c. We conclude that vm− j cannot lie on
P and it is a valid vertex of A (Jsβ ,SP). 	

Lemma 4.13 in the sequel provides a finish condition for the induction, when J ix and

J j
y are incident to a common region or to a common Γ -arc. When it is met, the merge

curve J (β) is a concatenation of J ix and J j
y .

Lemma 4.13 Suppose i + j > 2 and either (1) or (2) holds: (1) vi and vm− j+1 are
incident to the same region R(αi ,P) and ei , em− j ⊆ J (sβ, sαi), i.e., αi = αm− j ; or
(2) vi and vm− j+1 are on the same Γ -arc g of P and ei , em− j ⊆ Γ . Then vi+1 =
vm− j+1, vm− j = vi , and m = i + j .

Proof Let α = αi . Suppose (1) holds, then ei , em− j ⊆ J (sβ, sα), see Fig. 23a. The
boundary ∂R(αi ,P) is partitioned in four parts, using a counterclockwise traversal
starting at αi : 1. ∂R1, from the endpoint of arc αi to vi ; 2. ∂R2, from vi to vm− j+1;
3. ∂R3, from vm− j+1 to the next endpoint of αi ; and 4. arc αi . We show that ei and
em− j cannot hit any of these parts, thus, ei = em− j .

(i) Edge ei cannot hit ∂R1 and edge em− j cannot hit ∂R3, by the cut property of
Lemma 3.8.

(ii) We prove that edge ei cannot hit ∂R2 (analogously for edge em− j). Let ρ be any
edge on ∂R2. (If vi ∈ ρ or vm− j+1 ∈ ρ, assume that ρ is truncated with endpoint
vi or vm− j+1 respectively).

123

1060 Discrete & Computational Geometry (2023) 69:1040–1078

yx

J i
x

i

J j
y

i = m j

s

R (i)

s

s

R()s

s
s

s

l ()

y

J j
yJ i

x

i

s

x

g

s s

a b

s

m j +1

m j +1R1

R2

R3

ei

β βγ

ρ

ρ

γ
β

β
α

αα

α

α α

β

β

β

γ

γ

Γ

γ
R()γ

Fig. 23 Illustrations for Lemma 4.13. a corresponds to condition (1) and b to condition (2). The label R(γ)

abbreviates R(γ,P) and the label R(αi) abbreviates R(αi ,P)

– Suppose that ρ is a bisector edge, ρ ⊆ J (sα, sγ), see Fig. 23a. Then at least

one of J j
y , J ix , or β must pass through R(γ,P). Suppose that J j

y does, as
shown in Fig. 23a. Then, by the cut property (Lemma 3.8), ρ ⊆ D(sβ, sγ).
By transitivity (Lemma 2.4) it also holds that ρ ⊆ D(sβ, sα). Thus, ei cannot
hit ρ. Symmetrically for J ix . If only β passes through R(γ,P), then we can
use Lemma 4.10 to derive that ρ ⊆ D(sβ, sγ); the rest follows.

– Suppose that ρ ⊆ Γ . Then either ρ itself is part of an edge of J j
y or of J ix , or

β passes through R(α,P) and ρ is at opposite side of it than α. In the former
case, ρ ⊆ D(sβ, sα) by the definition of a Γ -edge in the merge curve. In the
latter case, the same is derived by Lemma 3.6 and transitivity (Lemma 2.4).
Thus, ei cannot hit ρ.

(iii) Edge ei (resp. em− j) cannot hit ∂R3, because if it did, ei and em− j would not
appear sequentially on R(αi ,P) contradicting Lemma 3.8.

(iv) It remains to show that ei and em− j cannot both hit αi ; however, this is already
shown in Lemma 4.11.

Suppose now that (2) holds, see Fig. 23b. Let R(γ,P) be a region in Vl(P) incident
to the Γ -arc g and let ρ = R(γ,P) ∩ g be the Γ -arc bounding R(γ,P), which lies
between vi and vm− j+1. At least one of J

j
y or J ix or β must pass through R(γ,P). By

the exact same arguments as before, ρ ⊆ D(sβ, sγ). We infer that there is no bisector
J (sβ, sγ) in R(γ,P), for any region R(γ,P) incident to g between vi and vm− j+1.
Thus, ei+1 = em− j+1 ⊆ g.

We conclude that in both (1) and (2), vi+1 = vm− j+1, vm− j = vi , and m = i + j .

J (β) is the concatenation of J ix and J j
y with ei+1 = em− j+1. 	

Lemma 4.14 Suppose vertex vi+1 is valid and ei+1 ⊆ J (sβ, sai+1). Then R(αi+1,P)

has not been visited by J ix nor J
j
y , i.e., αi+1 �= α� for � ≤ i and for m − j < �.

Proof Let ek, k ≤ i , be a bisector edge of J ix . Denote by ∂R1
k the portion of ∂R(αk,P)

from αk to vk in a counterclockwise traversal, see the bold red part ∂R1
i in Fig. 24.

123

Discrete & Computational Geometry (2023) 69:1040–1078 1061

J i
x

ei
J j
y

i

cut (e)

m j+1

R1
i

i+1i+1

e

e

α β

α

α

α

Fig. 24 Illustration for Lemma 4.14

Analogously, for a bisector edge em− j of J
j
y , where ∂R1

m− j is defined in a clockwise
traversal of ∂R(αm− j ,P). Recall that cut(ek) denotes the portion of R(αk,P) cut out
by edge ek , at opposite side from αk .

The cut property of Lemma 3.8 implies that vi+1 cannot be on ∂cut(e�) for any �,
� < i and m − j < �, and that vi+1 cannot be on ∂R1

i . This implies that vi+1 cannot
be on ∂R1

� for any � < i , because we have a plane graph in DP and by its layout ∂R1
�

is not reachable from ei without first hitting ∂cut(e�) or ∂R1
i . See Fig. 24. Thus, vi+1

cannot be on ∂R(α�), � < i . By Lemma 4.13, vi+1 cannot be on ∂R1
m− j . This implies,

again by the layout, that vi+1 cannot be on ∂R1
� for all � > m − j . Thus, vi+1 cannot

be on ∂R(α�,P), for any � > m − j . This implies that αi+1 �= α�, for any �, � ≤ i or
� > m − j . 	

By Lemma 4.14, J i+1
x and J j+1

y always enter a new region of Vl(P) that has not been
visited by a lower index edge. Hence, conditions (1) or (2) of Lemma 4.13 must be
fulfilled at some point of the induction, completing the proof of Theorem 4.3.

Completing the bi-directional induction establishes also the remaining properties
for J (β). First, J (β) can never enter the same region twice (byLemma4.14), except the
region ofα1, ifα1 = αm . The latter isObservation 4.1 (c), where arcβ splits a single arc
α ∈ P . In this case J (β) enters R(α,P) exactly twice and both e1, em−1 ⊆ J (sα, sβ).
This is because J (β) must intersect ∂R(α,P), i.e., J (β) � R(α,P), as otherwise
J (β) = J (sα, sβ) (see Fig. 15) contradicting the labeling of the cut property in
Lemma 3.8.

Completing the induction for Theorem 4.3 establishes also that J (β) is unique and
that the conditions of Lemmas 4.11 and 4.12 can never be met. Thus, no vertex of
J (β), except its endpoints, can be on a boundary arc of P .

5 Vl(P) is Unique

In this section we prove Theorem 3.9 and establish that the Voronoi-like diagram
Vl(P) is unique, for any boundary curve P on S′ ⊆ S. We first use Theorem 4.3 to
show an essential property of Voronoi-like regions, which completes and extends the
cut property of Lemma 3.8.

Lemma 5.1 Let P be a boundary curve on S′, P �= E , and let α, β ∈ P be two arcs
such that sα �= sβ . Suppose that J (sα, sβ) intersects R(α,P) with a component e,

123

1062 Discrete & Computational Geometry (2023) 69:1040–1078

s

R (,)

se

e

e C

α

γ

γ

α

α
βv

Fig. 25 A component e of J (sα, ·) in R(α,P) as in Lemma 5.1

g

R (,)

s s

eg

e

Γ

u

β γ

γ

γ

Fig. 26 A component e of J (sα, ·) in R(α,P) with its endpoint v on a Γ -arc g as in Lemma 5.1

e ⊆ J (sα, sβ)∩ R(α,P). Then, J (s, sβ)must intersect the domain DP . Further, there
exists a component β ′ of J (s, sβ) ∩ DP such that the merge curve J (β ′) in Vl(P)

contains e, i.e., e ⊆ ∂R(β ′,P ⊕ β ′).

We say that the arc β ′ is missing from P .

Proof Suppose that a component e of J (sα, sβ) intersects R(α,P), however, J (s, sβ)

does not intersect DP , i.e., DP ⊆ D(s, sβ). Then, for any arc χ ∈ P , χ ⊆ J (s, sχ)

and χ ⊆ D(sχ , sβ), by the transitivity of dominance regions (Lemma 2.4). Let cut(e)
denote the portion of R(α,P) cut out by e, at opposite side from α, as defined in
Lemma 3.8; then cut(e) ⊆ D(sβ, sα), by Lemma 3.8.

Consider an endpoint v of e. There are two cases:

(i) If v is on an edge ρ incident to regions R(α,P) and R(γ,P), then J (sβ, sγ)

intersects R(γ,P) by an edge eρ , incident to v, leaving ρ and γ at opposite sides,
since DP ⊆ D(s, sβ), implying that γ ⊆ D(sγ , sβ), see Fig. 25.

(ii) If v is on aΓ -arc g, let R(γ,P) be the first region after v (on the side of e labeled sβ)
such that J (sβ, sγ) intersects g∩ R(γ,P) at a point u (see Fig. 26). Such a region
must exist because for all boundary arcs χ ∈ P , including the ones incident to g,
χ ⊆ D(sχ , sβ). Let eg be the component of J (sβ, sγ) ∩ R(γ,P) incident to u.

Therefore, given e and v, we derive an edge e′, either e′ = eρ or e′ = eg , with the same
properties as e, in a different region of Vl(P). This process repeats and there is no
way to break it because for any arc χ ∈ P , χ ⊆ D(sχ , sβ). Thus, we create a closed
curve on Vl(P) consisting of consecutive pieces of J (sβ, ·), possibly interleaved with
Γ -arcs, which has the label sβ in its interior. No two edges of this curve can intersect
in their interior, within a region R(χ,P), because these edges would be pieces of the

123

Discrete & Computational Geometry (2023) 69:1040–1078 1063

e

0

J ()

s
s

R (,)

α

α

βχ
β

β
v

Fig. 27 Arc β ′ ⊆ J (s, sβ) in DP . The merge curve J (β ′) contains e

same bisector J (sβ, sχ), which in turn would not be a simple curve. For exactly the
same reason, the curve may not enter R(β,P). Furthermore, no vertex of the curve
can repeat under our general position assumption, as no three sβ -related bisectors
can intersect at the same point. Thus, the closed curve must be an sβ -cycle C that is
contained in DP , see Fig. 25, which contradicts Lemma 3.7. Thus, our assumption
that J (s, sβ) ∩ DP = ∅ was false, and hence, J (s, sβ) must intersect P .

Let Je denote the sequence of encountered edges eρ , starting with the initial edge
e and ending on the first intersection of an arc χ0 in P with J (s, sβ). Let β ′ be the
component of J (s, sβ)∩ DP incident to χ0, see Fig. 27. Clearly β ′ �= β, as otherwise
Je would have entered R(β,P). Consider the merge curve J (β ′) for the arc β ′ on
Vl(P) (see Definition 4.2). By its definition, the path Je must be a portion of J (β ′).
Since by Theorem 4.3 the merge curve J (β ′) on Vl(P) is unique, it follows that J (β ′)
contains Je, and thus, it also contains edge e. 	

Note that no arc can be missing from the envelope E of S′. We can now prove
Theorem 3.9 from Sect. 3.

Theorem 3.9 Given a boundary curve P for S′ ⊆ S, Vl(P) is unique.

Proof LetP be a boundary curve for S′ ⊆ S such thatP admits a Voronoi-like diagram
Vl(P). Suppose there exist two different Voronoi-like diagrams of P , V(1)

l �= V(2)
l .

Then there must be an edge e(1) of V(1)
l bounding regions R(1)(α,P) and R(1)(β,P)

of V(1)
l , where α, β ∈ P , such that e(1) intersects region R(2)(α,P) of V(2)

l , since α is
common to both R(1)(α,P) and R(2)(α,P).

Let edge e ⊆ J (sβ, sα) be the component of R(2)(α,P) ∩ J (sβ, sα) overlapping
with e(1), see Fig. 28. From Lemma 5.1, it follows that there is a non-empty compo-
nent β0 of J (s, sβ) ∩ DP such that J (β0) in V(2)

l contains edge e. Since J (β0) and
∂R(1)(β,P) have an overlapping portion e ∩ e(1) and they bound the regions of two
different arcs β0 �= β of site sβ , they form an sβ -cycle C as shown in Fig. 28. But C
is contained in DP , deriving a contradiction to Lemma 3.7. 	

123

1064 Discrete & Computational Geometry (2023) 69:1040–1078

e

0

(2)
l

R (2)()

R (1)()

s CJ(0)

e(1)

s

α

α

β
β

β
β

β

β

V
Fig. 28 Illustrations for the proof of Theorem 3.9

6 A Randomized Incremental Algorithm

Consider a random permutation o = (α1, . . . , αh) of the set S of core arcs, where
h = |S|. For 1 ≤ i ≤ h, define the set Si = {α1, . . . , αi } ⊆ S to be the subset of the
first i arcs in o, and permutation oi = (α1, . . . , αi). Let Pi denote the boundary curve
derived by the arc insertion operation ⊕ by considering arcs in the order oi . Let Di

denote the corresponding domain enclosed by Pi .
Our randomized algorithm is inspired by the randomized, two-phase, approach of

Chew [7] for the Voronoi diagram of points in convex position. Here the sites are
core arcs in S, forming boundary curves, and the algorithm constructs Voronoi-like
diagrams within a series of shrinking domains Di ⊇ Di+1. The domain of P1 is
D1 = D(s, sα1)∩DΓ ; and Dh coincides with the Voronoi region VR(s, S)∩DΓ . The
boundary curves are obtained by the insertion operation ⊕, one at each step, starting
with P1 = J (s, sα1) ∩ DΓ , and ending with Ph = ∂ VR(s, S) ∩ DΓ . The algorithm
works in two phases.

In phase 1, the core arcs in S get deleted one by one, in the reverse order of o, while
recording the neighbors of an arc at the time of its deletion. Let P1 = J (s, sα1)∩ DΓ ,
R(α1,P1) = D(s, sα1) ∩ DΓ , and Vl(P1) = ∅.

In phase 2, we start with Vl(P1) and incrementally compute Vl(Pi), i = 2, . . . , h,
by inserting arcαi toPi−1, and obtainingPi = Pi−1⊕αi , andVl(Pi) = Vl(Pi−1)⊕αi .
When considering an arc αi , we use the information of its recorded neighbors from
phase 1 to determine its insertion point. At the end, we obtain Vl(Ph), where Ph

is a boundary curve for S. Since S has only one boundary curve, it follows that Ph

coincides with ∂ VR(s, S) ∩ DΓ .
We have already established the correctness of the insertion operation ⊕, thus, the

algorithm correctly computes Vl(Ph). We have also established that Vl(Ph) coincides
with the true Voronoi diagram V(S), by Corollary 3.5. Thus, the algorithm correctly
computes Vl(Ph) = V(S) = V(S \ {s}) ∩ VR(s, S) ∩ DΓ .

Next we analyze the time complexity of this algorithm and prove that the time
complexity of step-i is expected O(1). Thus, the overall time complexity is expected
O(h).

Lemma 6.1 Pi contains at most i − 1 auxiliary arcs; thus, |Vl(Pi)| = O(i).

Proof By definition, |P1| = 1. At each step of phase 2, exactly one original arc is
inserted, and at most one additional auxiliary arc is created by a split in case (c) of

123

Discrete & Computational Geometry (2023) 69:1040–1078 1065

level i

1 2 3 h. . .

.
. . .

...

. . .
2 h

4

i . . .G(oi)

αα

α α

α

α α α

Π

Fig. 29 There are h!/(h − i)! nodes nodes at level-i of the decision tree T , each corresponding to a unique
permutation of i core arcs; the label of a node indicates the last element in the permutation. Level i is
partitioned into disjoint groups of i nodes (permutations) each; (i − 1)! such groups constitute a block Πi .
The illustration is schematic, the grouped nodes are not consecutive.

Observation 4.1, except from i = 1 and i = h. Thus, the total number of auxiliary
arcs is at most i − 1 and the number of original arcs is at most i . Since an original arc
may be merged with its neighbor in case (f) of Observation 4.1, the number of original
arcs in Pi may indeed be less than i . Since the complexity of Vl(Pi) is O(|Pi |), the
claim follows. 	

6.1 Time Analysis of the Randomized Incremental Algorithm, a Variant of
Backwards Analysis

The time complexity of the algorithm, for each step i , has been expressed in
Lemma 4.7 as a function of the resulting diagram Vl(Pi). This calls for backwards
analysis to estimate its expectation, see [20]. However, although Vl(Pi) is unique, the
boundary curve Pi , and consequently its diagram, depend on the permutation order.
As a result, backwards analysis is not directly applicable, contrary to our prelimi-
nary paper. In this section we revisit the analysis of [9], and introduce a variation of
backwards analysis that is applicable to order-dependent structures.

Consider the decision tree T of all possible random choices that can be made by
our incremental algorithm on the input set of core arcs S, h = |S|, see Fig. 29. T has
h! leaves each corresponding to one permutation of the arcs in S. At level-i , there are
h!/(h − i)! nodes, and each node corresponds to a unique permutation of i core arcs.
A set of i core arcs Si is associated with i ! different nodes at level-i , which are called
the block of Si . We have

(h
i

)
distinct such blocks at level-i . Although all nodes within

one block are associated with the same set of core arcs, their corresponding boundary
curves may vary considerably depending on their permutation order.

We use the following strategy.We partition each block at level-i into (i−1)! disjoint
groups of i nodes each. For each group we show that step i requires total time O(i),
considering all the i permutations within the group. Thus, on average, the algorithm
spends O(1) time on each node of T . Since all permutations are equally likely, we
obtain the expected linear O(h) time complexity of our algorithm.

123

1066 Discrete & Computational Geometry (2023) 69:1040–1078

Di1

2

3

4

i

j

1

i

i

α

α

α

α

α
B

B

B

Fig. 30 Schematic differences between the boundary curves B1, . . . ,Bi . The domain Di is shown shaded

Let oi = (α1, α2, . . . , αi) be an arbitrary permutation of Si . From oi we define a
group G = G(oi) of i permutations as follows: for each 1 ≤ j < i , remove α j from
its position in oi and append it to the end of oi .

oi = (α1, α2, . . . , α j−1, α j , α j+1, . . . , αi−1, αi), (1)

o j = (α1, α2, . . . , α j−1, α j+1, . . . , αi−1, αi , α j) (2)

Let B j and Vl(B j), 1 ≤ j ≤ i , denote the boundary curves, and their Voronoi-like
diagrams, derived incrementally, by arc insertion, following the order o j , see Fig. 30.
The boundary curve Bi is the base one derived by following the order oi and its
domain is denoted Di . In the following we establish relations between Vl(B j) and
Vl(Bi) so that we can bound the time complexity of step i on the entire group G(oi)
(Lemma 6.11).

Before proceeding, we show that it is indeed possible to partition the block Πi of
all the i ! permutations of set Si in disjoint groups of i permutations each, using the
scheme of (1)–(2). The proof of the following lemma was pointed out to us by Stefan
Felsner in personal communication (Dec. 2019).

Lemma 6.2 The partitioning of Πi into disjoint groups by the scheme we defined
in (1)–(2) is possible, i.e., for all i ∈ N and any block Πi of permutations on Si there
exists a set F ⊂ Πi of (i − 1)! permutations such that Πi = ⋃̇

o∈FG(o); that is,
G(π) ∩ G(σ) = ∅, for any π, σ ∈ F.

Proof Following [15], denote by �π� the set of all permutations that are obtained from
a permutation π by deleting one element. Let F ⊆ Πi be a set of permutations such
that �π� and �σ� are disjoint, for each π, σ ∈ F . Levenshtein calls such a family F
of (i − 1)! permutations a code capable of correcting single deletions, and proves that
these codes exist for all i ∈ N [15, Thm. 3.1]. The set �π� is equivalent toG(π). Since
the set F exists, it follows that Πi is the disjoint union

⋃̇
o∈FG(o). 	

We can now proceed to estimate the time complexity of step i on one group of per-
mutations G(oi). We first introduce some terminology.

Definition 6.3 Let α′ be an auxiliary arc in B j and let α ∈ Si be a core arc of the same
site. We say that α′ is an auxiliary arc of α if, at step k, when α = αk is inserted in Bj ,

123

Discrete & Computational Geometry (2023) 69:1040–1078 1067

1

α α

α

γ

β β

B

Fig. 31 Illustration for Definition 6.3, o1 = (β, α, γ): The core arc α ∈ Si is the source of α′ ∈ in+
1 . The

expanded arc α̃ ⊇ α′ was created at the time of inserting α, while constructing B1

i
1

a b

α α α
γ γ

β β β

B B

Fig. 32 aBoundary curveBi ,whereoi = (γ, β, α).bBoundary curveB1,whereo1 = (β, α, γ), containing
arcs α′, β ′ ∈ in1, because γ was inserted last

the created original arc α̃ ⊇ α ∪ α′ (see Fig. 31). The core arc α ∈ Si is called the
source of α′, denoted source j (α′). If α′ appears on J (s, sα) counterclockwise (resp.
clockwise) from its source α, then α′ is called a ccw (resp. cw) auxiliary arc. For
example in Fig. 31, α′ is a cw auxiliary arc of α.

The source indicates the core arc in Si that creates α′. Si may contain several core arcs
of the same site, but only one of them is the source of α′.

The boundary curves B j , j < i , may get in and out of the domain Di , see Fig. 30.
To identify their differences from Bi , let in j = B j ∩ Di , and out j = B j \ Di , denote
the portion ofB j inside, and outside of Di , respectively.We partition the auxiliary arcs
of in j into in+

j and in−
j , where in

+
j (resp. in−

j) includes the ccw (resp. cw) auxiliary

arcs of in j , see Fig. 32. In the following we only consider in+
j as in−

j is symmetric.

Observation 6.4 The boundary curve B j , j �= i , contains no auxiliary arcs of α j , as
α j appears last in o j . All arcs in Bi appear in B j except any auxiliary arcs of α j . No
arc of out j can have a region adjacent to R(α j ,B j) in Vl(B j).

Proof Since the insertion order of all core arcs, except α j , is identical in oi and o j , it
follows that all auxiliary arcs of Bi , except any auxiliary arcs of α j , must also appear
in B j .

Observe that any auxiliary arc α′ ∈ out j must lie below (as seen from Di) an
auxiliary arc in Bi , by the definition of out j , and the fact that Bi and B j are defined on
the same set of core arcs. Thus, α′ must lie below an auxiliary arc of α j , see Fig. 33,
where α′ and α′′ in B1 lie below the auxiliary arcs γ ′ and γ ′′ of α1 = γ in Bi . Since
arcs of the same site cannot have adjacent regions, no auxiliary arc of α j can have a
region adjacent to R(α j ,B j); the claim follows. 	

Observation 6.5 Let α′ ∈ in j and let αk = source j (α′). Then k > j , i.e., αk follows
α j in oi . Further, if α′ ∈ in+

j then (αk, α j , α
′) appear ccw in B j .

123

1068 Discrete & Computational Geometry (2023) 69:1040–1078

i
1

a b

α δ γγ γ

β

α

α

α

δ
γ

βB B

Fig. 33 a Boundary curve Bi , where oi = (γ, α, β, δ). b Boundary curve B1 containing arcs α′, α′′ in
out1, where o1 = (α, β, δ, γ)

k

j

, , . . .

j
α

α

α

β β
α

Fig. 34 If α′, β ′ ∈ in+
j , then j < k < � and (αk , α�, α j , β

′, α′) appear in ccw order on B j

Observation 6.6 Figure 34 indicates the structure of in+
j . Let α′, β ′ ∈ in+

j such
that αk = source j (α′), α� = source j (β ′), and k < �. Then j < k < � and
(αk, α�, α j , β

′, α′) appear in ccw order along B j . Further, all auxiliary arcs of α�

must appear before the auxiliary arcs of αk as we move on B j counterclockwise
from α j .

Since many auxiliary arcs of in+
j can have the same source, we define

N j = {source j (α′) ∈ Si : α′ ∈ in+
j }.

All arcs in N j are of different sites. Sets in+
j and in+

k , k �= j , may contain many
common arcs, however, we have the following disjointness property.

Lemma 6.7 N j ∩ Nk = ∅, for all k �= j . Thus,
∑i

j=1 |N j | = O(i).

Proof Suppose α� ∈ N j ∩ Nk and j < k, then α� = source j (α′), where α′ ∈ in+
j and

α� = sourcek(α′′), where α′′ ∈ in+
k . (The arcs α′ and α′′ may or may not overlap). By

Observation 6.5, j < � (resp. k < �) and (α�, α j , α
′) (resp. (α�, αk, α

′′)) must appear
in ccw order on B j (resp. Bk).

Suppose first that (α�, αk, α j) appear in ccw order on Bi . Then, since k < �, the
arc αk is inserted before α� in B j , and thus, α′ cannot exist in B j , see Fig. 35. Suppose
now that (α�, α j , αk) appear in ccw order on Bi . Then, since j < �, the arc α j is
inserted before α� in Bk , thus, α′′ cannot exist on Bk , see Fig. 36. In either case we
derive a contradiction. 	

Next we establish that the parameters of the time complexity analysis for step i , as
given in Definition 4.6 and Lemma 4.7, sum up to O(i) on all boundary curves B j ,
j ≤ i .

123

Discrete & Computational Geometry (2023) 69:1040–1078 1069

j

i

r

J (s,)

k

α

α
αα

sα

Fig. 35 Illustration for Lemma 6.7. The case (α�, αk , α j) appear ccw

j

i

r

J (s, s)

k

rα

α

α α
α

α

Fig. 36 Illustration for Lemma 6.7. The case (α�, α j , αk) appear ccw

Lemma 6.8 Considering all the boundary curves of group G(oi),

i∑

j=1

(
d1(α j ,B j) + d2(α j ,B j) + d̃(α j ,B j)

) = O(i).

Proof Let α and γ denote the original arcs preceding and following α j respectively
in Bi (equiv. in B j). Let d(α j ,Bk) denote the auxiliary arcs on the boundary curve Bk ,
k = i, j , from α to γ .

We first observe that d(α j ,B j) cannot contain any portion of out j because no
auxiliary arc of α j may appear in Bi from α to γ , since α j is the only core arc on Bi

between α to γ . Thus, we only need to consider the auxiliary arcs of in j . Next, we
observe that no two auxiliary arcs in d(α j ,B j) can have the same source in N j for
the same reason, i.e., there is no core arc from α to γ except α j . Thus, we can bound
d(α j ,B j) ≤ d(α j ,Bi) + |N j |. Then, by Lemma 6.7,

i∑

j=1

d(α j ,B j) ≤ |Bi | + O(i) = O(i).

Since d1(α j ,B j) + d2(α j ,B j) ≤ d(α j ,B j), it follows

i∑

j=1

(d1(α j ,B j) + d2(α j ,B j)) = O(i).

If d̃(α j ,B j) > 0, we have case (d) of Observation 4.1. In this case, the endpoints of
α j are incident to Γ , both in B j and Bi . Then, by Observations 6.4 and 6.6, we have

123

1070 Discrete & Computational Geometry (2023) 69:1040–1078

R (j , i) R (j , j)

j j

a b

α

α

α

α

α
εε

α

Fig. 37 Illustration for Lemma 6.9. Between any two consecutive adjacencies of R(α j ,B j) with regions
of auxiliary arcs in in j of the same source, there must be an adjacency with an arc ε ∈ B j ∩ Bi

both in j = ∅ and out j = ∅, implying that B j = Bi ; thus, d̃(α j ,B j) = d̃(α j ,Bi).
Then,

i∑

j=1

|d̃(α j ,B j)| ≤ |B̃i | = O(i). 	

Lemma 6.9 |R(α j ,B j)| ≤ 2|R(α j ,Bi)| + |N j |.
Proof We compare R(α j ,B j) and R(α j ,Bi) and bound differences in their adjacen-
cies. By Observation 6.4 no arc in out j can have a region adjacent to R(α j ,B j). We
also observe the following: if an arc ε ∈ B j ∩ Bi , common to both B j and Bi , has a
region R(ε,B j) adjacent to R(α j ,B j) in Vl(B j), then R(ε,Bi) must also be adjacent
to R(α j ,Bi) in Vl(Bi), see Fig. 37. This is correct, because otherwise, the Voronoi
edge e bounding R(α j ,B j) and R(ε,B j) (or a portion of it) would be contained in a
region R(η, Bi) for an arc η that does not appear in B j , i.e., η ∈ out j . By Observa-
tion 6.4, this arc may only be an auxiliary arc of α j . However, by Lemma 5.1, if we
insert η to Vl(Bj), the region R(η, Bj ⊕ η) will contain a portion of the edge e, thus,
it will be adjacent to R(α j , Bj ⊕ η), deriving a contradiction, as arcs of the same site
cannot have adjacent regions.

Let |R(α j ,B j)|x denote the number of additional adjacencies that R(α j ,B j) may
have over R(α j ,Bi), i.e., |R(α j ,B j)| ≤ |R(α j ,Bi)| + |R(α j ,B j)|x . We show that
|R(α j ,B j)|x ≤ |R(α j ,Bi)| + |N j |. Since auxiliary arcs of the same site can never
have adjacent regions, it follows that between any two possible new adjacencies of
R(α j ,B j) with auxiliary arcs of the same source in in j , there must be an adjacency
with some arc that is common to both Bi and B j .

Since by Observation 6.6 auxiliary arcs of one source in N j must appear in a certain
order along B j , and they cannot alternate, the bound follows. 	

Lemma 6.10 Consider case (c) ofObservation 4.1 at the insertion ofα j inB j . Suppose
that the insertion of α j splits an existing arc ω into two pieces ω1 and ω2. Then at
least one of these two arcs (say ω1) must also exist in Bi . Further, |R(ω1,B j)| ≤
2|R(ω1,Bi)| + |N j |.

123

Discrete & Computational Geometry (2023) 69:1040–1078 1071

j

1
2

J +

j

α α

ω ω

ω

Fig. 38 Illustration for the proof of Lemma 6.10. If ω2 /∈ Bi , then ω1 ∈ Bi

Proof Suppose ω1α jω2 appear in B j in ccw order and ω2 /∈ Bi . Then ω2 ∈ in+
j , see

Fig. 38. Let α� = source j (ω2), then � > j as ω2 ∈ in+
j . We claim that ω1 must belong

to Bi .
Let ω̃ ⊃ α� denote the expanded arc created at the insertion time of α� following

the order o j . Clearly, ω̃ ⊃ ω. Let ω̂ ⊃ α� denote the expanded arc created at the
insertion time of α�, following oi . Since � > j , it follows that ω̂ can extend ccw at
most until α j and ω̂ ⊂ ω̃. Since ω̃ extends ccw past α j , it follows that no core arc αρ ,
with ρ < � can exist between αl and α j . Thus, ω̂ must extend ccw to α j and ω̂ ⊃ ω1.
In addition, no αρ , with ρ > �, can delete ω1 during its insertion, while following oi ,
because the same would happen in o j and ω1 exists in B j . Thus, ω1 must exist in Bi .

We can now bound |R(ω1,B j)| ≤ 2|R(ω1,Bi)|+ |N j | analogously to Lemma 6.9.
The only additional argument needed for the fact that no arc in out j can have a region
adjacent to R(ω1,B j) is the observation that each arc in out j lies below the sω-bisector,
because arc α j splits arc ω (case (c) of Observation 4.1). 	

Let T (i, o j) denote the time complexity of step-i following permutation o j , i.e.,
the time required by the last arc insertion of o j .

Lemma 6.11 The time for step-i on the entire group G = G(oi) is

T (i,G) =
∑

o j∈G
T (i, o j) = O(i).

Proof Lemmas 6.9 and 6.10 establish that |R(α j ,B j)|+|R(ω j ,B j)| ≤ 2(|R(α j ,Bi)|
+ |R(ω j ,Bi)| + |N j |), where ω j denotes one of the two arcs that is split and
belongs to Bi , if case (c) of Observation 4.1 is concerned. Since ω j is always an
immediate neighbor of α j , we count it at most twice, and thus, the total complex-
ity

∑i
j=1 |R(ω j ,Bi)| is O(i). Together with Lemma 6.7 this directly implies that

∑i
j=1(|R(α j ,B j)| + r(α j ,B j)) = O(i). Lemma 6.8 establishes that

i∑

j=1

(
d1(α j ,B j) + d2(α j ,B j) + d̃(α j ,B j)

) = O(i).

Then by Lemma 4.7 the claim is derived. 	

All permutations at level-i of the decision tree are equally likely. By Lemma 6.2, it
is possible to partition them into groups of i nodes each, which satisfy our scheme

123

1072 Discrete & Computational Geometry (2023) 69:1040–1078

of (1)–(2). By Lemma 6.11, each group requires total O(i) time to perform step i on
all its permutations. We thus conclude:

Theorem 6.12 The time complexity of step i of the randomized algorithm is expected
O(1).

We conclude with the following theorem.

Theorem 6.13 Given an abstract Voronoi diagram V(S), the diagram V(S \ {s}) ∩
VR(s, S) can be computed in expected O(h) time, where h is the complexity of
∂ VR(s, S). Thus, the updated Voronoi diagram V(S \ {s}) can be computed from
V(S), after the deletion of site s, in expected linear time O(h).

7 Computing the Order-k Voronoi Diagram Iteratively

Our algorithm to perform deletion in expected linear-time can be adapted to iteratively
compute the order-k abstract Voronoi diagram, for increasing values of k, in total time
O (k(n − k)n + n log n), if k ≤ n/2. In particular, given a face f of an order-k
Voronoi region, we can compute the order-(k + 1) subdivision within f in expected
time O(|∂ f |). In this section we describe the required adaptation over site-deletion.

The order-k abstract Voronoi region of a subset of sites H ⊂ S, |H | = k, is defined
[3] as

VRk(H , S) =
⋂

q∈H
p∈S\H

D(q, p).

The order-k abstract Voronoi diagram of S is [3]

Vk(S) = R
2 \

⋃

H⊂S|H |=k

VRk(H , S).

The combinatorial complexity of Vk(S) is O(k(n − k)). For k = 1, it is the nearest-
neighbor abstract Voronoi diagram V(S), and for k = n − 1, it is the farthest abstract
Voronoi diagram FVD(S). The vertices of the diagram are classified into new and old,
where a new vertex in Vk(S) is an old vertex of Vk+1(S).

Consider a face f of an order-k Voronoi region VRk(H), H ⊂ S, |H | = k. Let
S f ⊆ S \ H denote the set of sites, which together with H , induce the Voronoi edges
on the boundary ∂ f . Our goal is to compute the Voronoi diagram of S \ H within f ,
V(S f) ∩ f , in expected linear time, i.e., in time O(|∂ f |). This diagram is a tree (or
forest if f is unbounded) with properties analogous to Lemma 2.1 (see also [5]). To
extend Theorem 6.13 from k = 1 to an arbitrary k, there is a non-trivial challenge to
overcome: the complexity of the boundary ∂ f depends not only on |S f | but also on k.
Thus, a direct application of our deletion algorithm would not result in a linear-time
scheme, if k is not a constant.

123

Discrete & Computational Geometry (2023) 69:1040–1078 1073

Consider a face f of VRk(H , S) and its boundary ∂ f . We call any piece of ∂ f
between two consecutive new vertices, an order-k arc. Such an arc does not have
constant complexity but may contain a sequence of old Voronoi vertices on ∂ f . In this
section, let S denote the collection of the order-k arcs along the boundary of f .

An order-k arc α, bounding the face f , is a piece of the so-calledHausdorff bisector
between site sα ∈ S f and set H (see, e.g., [18] for the definition of the concrete
Hausdorff bisector between two point sets). In abstract terms, the Hausdorff bisector
between sα and H is the boundary of the farthest Voronoi region FVR(sα, H ∪ {sα}),
where FVR(s, S′) = ⋂

q∈S′\{s} D(q, s).
Let the Hausdorff bisector between a site sα ∈ S f and H , which is relevant to face

f , be defined as

J (sα, H) = ∂FVR(α, H ∪ {sα}),

where FVR(α, H ∪{sα}) denotes the face of region FVR(sα, H ∪{sα}) that is incident
to arc α. J (sα, H) is an unbounded Jordan curve dividing the plane in two open parts;
let D(sα, H) = FVR(α, H ∪ {sα}).

The complexity of J (sα, H) is Θ(|H |), and this is an obstacle to our randomized
linear time scheme. It is possible to overcome this problem by considering relaxed
Hausdorff bisectors whose complexity depends solely on order-k arcs, and which
define a series of even larger shrinking domains enclosing the face f . Let Hα ⊆ H
be the subset of sites in H that, together with sα , define the edges and vertices along
the arc α. Instead of J (sα, H), which is hard to compute, we consider the Hausdorff
bisector J (sα, Hα), where α ⊆ J (sα, Hα), and has complexity Θ(|Hα|). In fact,
α ⊆ J (sα, H̃α), for any Hα ⊆ H̃α ⊆ H . Let |α| denote the complexity of arc α,
|α| = |Hα|. We make use of the following property.

Lemma 7.1 J (sα, H) ⊆ D(sα, H̃α) ⊆ D(sα, Hα), where Hα ⊆ H̃α ⊆ H.

Proof Since Hα ⊆ H , we have

D(sα, H) = FVR(sα, H ∪ {sα}) ⊆ FVR(sα, Hα ∪ {sα}) = D(sα, Hα). (3)

Thus, it holds J (sα, H) = ∂D(sα, H) ⊆ D(sα, Hα). Analogously we can show the
subset relation for H̃α . 	

It is now straightforward to adapt the algorithm of Sect. 6, using appropriate Hausdorff
bisectors that are derived by the order-k arcs in S, in place of the s-related bisectors
in the previous sections. The complexity of each such Hausdorff bisector must be
proportional to the complexity of its underlying order-k arc. Lemma 7.1 implies the
correctness of this adaptation.

We start with domain D1 defined by J (sα1 , Hα1), i.e., D1 = D(sα1 , Hα1) ∩ DΓ ,
for the first order-k arc α1 of a random permutation of S. The boundary complexity of
D1 is O(|α1|).

Note that D1 is a superset of domain D(sα1 , H) ∩ DΓ . At step i , we insert arc αi

considering bisector J (sαi , H̃αi), where H ⊇ H̃αi ⊇ Hαi , and |H̃αi | ≤ |Hαi | + 2. We

123

1074 Discrete & Computational Geometry (2023) 69:1040–1078

use H̃αi , possibly a superset of Hαi , in order to include at most one site in H for each
neighbor of αi in Pi . This is done to correctly link two neighboring order-k arcs on
Pi so that they are both incident to a common (new) Voronoi vertex. By Lemma 7.1,
domain Di is a superset of the domain we would get if we instead considered bisector
J (sαi , H) ⊃ αi . Therefore, the relaxed construction works correctly. At the end,
Dh = f .

We conclude that Theorem6.13 applies, constructingV(S) = V(S f)∩ f in expected
time O(|∂ f |).

Since the complexity of Vk(S) is O(k(n − k)), the O (k2(n − k) + n log n) bound
for iteratively constructing the diagram, starting at V(S), easily follows for k ≤ n/2.
Although there are algorithms of better time complexity to construct Vk(S), such as
the O (k(n − k) log2n + n log3n) randomized incremental algorithm of Bohler et al.
[5], the iterative construction is nice and simple, therefore, it can be preferable for
small values of k.

8 The Farthest Abstract Voronoi Diagram

In this section we show how to modify (in fact simplify) the algorithm for the deletion
of one site to compute the farthest abstract Voronoi diagram, after the sequence of its
faces at infinity is known.

The farthest Voronoi region of a site p ∈ S is FVR(p, S) = ⋂
q∈S\{p} D(q, p)

and the farthest abstract Voronoi diagram of S is FVD(S) = R
2 \ ⋃

p∈S FVR(p, S).
FVD(S) is a tree of complexity O(n), however, regions may be disconnected and
a farthest Voronoi region may consist of Θ(n) disjoint faces [16]. Let D∗(p, q) =
D(q, p); then FVR(p, S) = ⋂

q∈S\{p} D∗(p, q).
Unless otherwise noted, we adopt the following convention: we reverse the labels

of bisectors and use D∗(· , ·), in the place of D(· , ·), in most definitions and con-
structs of Sects. 3 and 4. Under this convention the definition of e.g., a p-monotone
path remains the same but it uses ∂FVR(p, ·) in the place of ∂ VR(p, ·). The cor-
responding arrangement of p-related bisectors Jp,S′ , S′ ⊆ S, is considered with the
labels of bisectors and their dominance regions reversed from the original system J .

Consider the enclosing curve Γ as defined in Sect. 2, and let S be the sequence of
arcs on Γ derived by Γ ∩ FVD(S). S represents the sequence of the farthest Voronoi
faces in FVD(S) at infinity. The domain of computation is DΓ . For an arc α of S, let
sα denote the site in S for which α ⊂ FVR(sα, S). With respect to site occurrences,
S is a Davenport–Schinzel sequence of order 2. S can be computed in time O(n log n)

in a divide and conquer fashion, similarly to computing the hull of a farthest segment
Voronoi diagram, see e.g., [19].

We treat the arcs in S as sites and compute V(S) = FVD(S) ∩ DΓ . Let VR(α, S)

denote the face of FVD(S) ∩ DΓ incident to α ∈ S, see Fig. 39. V(S) is a tree whose
leaves are the endpoints of the arcs in S.

Consider S′ ⊆ S, and let S′ ⊆ S be the set of sites that define the arcs in S′.

Definition 8.1 A boundary curve P for S′ is a partitioning of Γ into arcs by the
bisector system Js,S′ , such that any two consecutive arcs α, β ∈ P are incident to
J (sα, sβ) ∈ Js,S′ , having consistent labels, and P contains an arc α ⊇ α∗, for every

123

Discrete & Computational Geometry (2023) 69:1040–1078 1075

VR(,)

()
s

s
s

s

δ
δ
α

α
γ

γ

αα

V

Fig. 39 The farthest Voronoi diagram V(S) = FVD(S) ∩ DΓ and the Voronoi region VR(α, S). Bisector
labels are shown in the farthest (reversed) sense

core arcα∗ ∈ S′.We say that the labels ofα, β are consistent, if there is a neighborhood
α̃ ⊆ α and β̃ ⊆ β incident to the commonendpoint ofα andβ such that α̃ ∈ D∗(sα, sβ)

and β̃ ∈ D∗(sβ, sα).

There can be several different boundary curves for S′. The arcs inP that contain a core
arc in S′ are called original and any remaining arcs are called auxiliary. The arcs inP ,
although they are arcs on Γ , they are all boundary arcs and none is considered a Γ -arc
in the sense of the previous sections. The endpoint J (sα, sβ)∩Γ on P separating two
consecutive arcs α, β is denoted by ν(α, β).

The Voronoi-like diagram of a boundary curve P is defined analogously to Defi-
nition 3.3. Since P consists only of boundary arcs, Vl(P) is a tree whose leaves are
the vertices of P . The properties of a Voronoi-like diagram in Sect. 3 remain the same
(under the conventions of this section).

Given Vl(P) for a boundary curve P of S′ ⊂ S, we can insert a core arc β∗ ∈
S \ S′ and obtain Vl(P ⊕ β∗). The insertion is performed analogously to Sect. 4. The
original arc β ⊇ β∗, with endpoints x, y is defined as follows: let δ be the first arc
on P counterclockwise (resp. clockwise) from β∗ such that J (sβ, sδ) ∩ δ �= ∅; let
x = ν(δ, β) (resp. y = ν(β, δ)). Let Pβ = P ⊕ β be the boundary curve obtained
from P by substituting with β its overlapping piece from x to y. No original arc of P
can be deleted by the insertion of β. Observation 4.1 remains the same, except from
cases (d) and (e) which do not exist.

The merge curve J (β), given Vl(P), is defined analogously to Definition 4.2; it is
only simpler as it does not contain Γ -arcs. Theorem 4.3 remains valid, i.e., J (β) is
an sβ -monotone path in Jsβ ,S′ connecting the endpoints of β. The proof structure is
the same as for Theorem 4.3, however, Lemma 4.11 now requires a different proof,
which we give in the sequel (see Lemma 8.3). Lemma 4.12 is not relevant; while
Lemmas 4.13 and 4.14 are analogous.

In the following lemma we restore the labeling of bisectors to the original.

Lemma 8.2 In an admissible bisector system J , there cannot be two p-cycles, p ∈ S,
with disjoint interior.

Proof By its definition, the nearest Voronoi region VR(p, S) (resp. VR(p, S) ∩ DΓ)
must be enclosed in the interior of any p-cycle of the admissible bisector system J

123

1076 Discrete & Computational Geometry (2023) 69:1040–1078

yx
J i
x

i+1

J j
y

m j

C1
C2

S

S S

S

β β

β

β

β

Fig. 40 Illustration for Lemma 8.3. Nearest labels are shown

(resp. J ∪ {Γ }). But VR(p, S) (resp. VR(p, S)∩ DΓ) is connected (by axiom (A1)),
thus, there cannot be two different p-cycles with disjoint interior. 	

Lemma 8.3 Consider themerge curve J (β). Suppose vi+1 is not a valid vertex because
vi+1 ∈ αi , i.e., ei hits arc αi . Then vertex vm− j cannot be on P .

Proof Suppose otherwise, i.e., vertex vm− j is on the boundary arc αm− j . Then J ix
and J j

y partition DΓ in three parts: a middle part incident to β, and two parts C1

and C2 at either side of J ix and J j
y respectively, whose closures are disjoint, see

Fig. 40. But the boundaries of C1 and C2 are sβ -cycles in the admissible bisector
system J ∪ {Γ } contradicting Lemma 8.2. Note that here we use the original labels
of bisectors, including Γ = J (sβ, s∞). 	

The diagram Vl(P) ⊕ β is defined analogously and the proof that Vl(P) ⊕ β is
the Voronoi-like diagram Vl(Pβ) for Pβ = P ⊕ β, is analogous to the proof of
Theorem 4.4.

The randomized algorithm for computing V(S) = FVD(S) ∩ DΓ is the same as in
Sect. 6. The time analysis is also completely analogous. For completeness we point
out that, here, the set out j consists of the auxiliary arcs in B j that overlap with the
auxiliary arcs of α j in Bi . The set in j are any remaining auxiliary arcs in B j \ out j
that differ from the corresponding auxiliary arcs in Bi . All observations of Sect. 6.1
remain intact under this updated notion of in j and out j . Thus, the (expected) linear
time complexity can be analogously established.

Theorem 8.4 Given the sequence of its faces at infinity, i.e., given the sequence of
arcs S implied by FVD(S) ∩ Γ , the farthest abstract Voronoi diagram FVD(S) can
be computed in expected linear time O(|S|).

9 Concluding Remarks

In this paper we formalized the notion of an abstract Voronoi-like diagram, which is
defined as a a tree (or forest) on the arrangement of the underlying bisector system
related to a set of abstract sites S. We defined the Voronoi-like diagram of a boundary
curve, which is implied by a subset of Voronoi edges bounding a Voronoi region
VR(s, S). We showed that the Voronoi-like diagram of a boundary curve is well

123

Discrete & Computational Geometry (2023) 69:1040–1078 1077

defined, unique, and robust under an arc-insertion operation, which enables its use
in incremental constructions. Using Voronoi-like diagrams as intermediate structures,
we derived a very simple, randomized incremental algorithm to update an abstract
Voronoi diagram, after deletion of one site, in expected linear time. The algorithm is
applicable to any concrete diagram that falls under the umbrella of abstract Voronoi
diagrams. In addition, the time complexity analysis offers a variant to backwards
analysis, applicable to order-dependent structures.

The technique can be adapted to compute the order-(k+1) subdivision within an
order-k abstract Voronoi region, and the farthest abstract Voronoi diagram, after the
order of its faces at infinity is known. The Voronoi-like structure provides the means
to deal with the underlying disconnected Voronoi regions, which is the common com-
plication of these, otherwise simple, Voronoi structures.

A deterministic linear-time construction of these diagrams remains an open prob-
lem. In future workwewould like to consider Voronoi-like structures in the linear-time
framework of Aggarwal et al. [1] aiming at a deterministic linear-time algorithm for
the same problems.

Acknowledgements We sincerely thank Stefan Felsner for the proof of Lemma 6.2 making the connection
to the seemingly unrelated result of Levenshtein [15] on perfect codes, which established this claim for the
time complexity analysis.

Funding Open access funding provided by Universitá della Svizzera italiana.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing the Voronoi
diagram of a convex polygon. Discrete Comput. Geom. 4(6), 591–604 (1989)

2. Aurenhammer, F., Klein, R., Lee, D.-T.: Voronoi Diagrams and Delaunay Triangulations. World Sci-
entific, Hackensack (2013)

3. Bohler, C., Cheilaris, P., Klein, R., Liu, Ch.-H., Papadopoulou, E., Zavershynskyi, M.: On the com-
plexity of higher order abstract Voronoi diagrams. Comput. Geom. 48(8), 539–551 (2015)

4. Bohler, C., Klein, R., Lingas, A., Liu, Ch.-H.: Forest-like abstract Voronoi diagrams in linear time.
Comput. Geom. 68, 134–145 (2018)

5. Bohler, C., Klein, R., Liu, Ch.-H.: An efficient randomized algorithm for higher-order abstract Voronoi
diagrams. Algorithmica 81(6), 2317–2345 (2019)

6. Buchin, K., Devillers, O., Mulzer, W., Schrijvers, O., Shewchuk, J.: Vertex deletion for 3D Delaunay
triangulations. In: 21st Annual European Symposium on Algorithms (Sophia Antipolis 2013). Lecture
Notes in Comput. Sci., vol. 8125, pp. 253–264. Springer, Heidelberg (2013)

7. Chew, P.L.: Building Voronoi diagrams for convex polygons in linear expected time. Technical report
PCS-TR90-147, Dartmouth College (1990). https://digitalcommons.dartmouth.edu/cs_tr/47/

8. Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. Discrete
Comput. Geom. 21(3), 405–420 (1999)

123

http://creativecommons.org/licenses/by/4.0/
https://digitalcommons.dartmouth.edu/cs_tr/47/

1078 Discrete & Computational Geometry (2023) 69:1040–1078

9. Junginger, K., Papadopoulou, E.: Deletion in abstractVoronoi diagrams in expected linear time. In: 34th
International Symposium on Computational Geometry (Budapest 2018). Leibniz Int. Proc. Inform.,
vol. 99, # 50. Leibniz-Zent. Inform., Wadern (2018)

10. Khramtcova, E., Papadopoulou, E.: An expected linear-time algorithm for the farthest-segmentVoronoi
diagram (2017). arXiv:1411.2816v3

11. Klein, R.: Concrete and Abstract Voronoi Diagrams. Lecture Notes in Comput. Sci., vol. 400. Springer,
Berlin (1989)

12. Klein, R., Langetepe, E., Nilforoushan, Z.: Abstract Voronoi diagrams revisited. Comput. Geom. 42(9),
885–902 (2009)

13. Klein, R., Lingas, A.: Hamiltonian abstract Voronoi diagrams in linear time. In: 5th International
Symposium on Algorithms and Computation (Beijing 1994). Lecture Notes in Comput. Sci., vol. 834,
pp. 11–19. Springer, Berlin (1994)

14. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi dia-
grams. Comput. Geom. 3(3), 157–184 (1993)

15. Levenshtein, V.I.: Perfect codes in the metric of deletions and insertions. Discrete Math. Appl. 2(3),
241–258 (1992)

16. Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Int. J. Comput. Geom.
Appl. 11(6), 583–616 (2001)

17. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. Wiley Series in Probability and Statistics. Wiley, Chichester (2000)

18. Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica 40(2),
63–82 (2004)

19. Papadopoulou, E., Dey, S.K.: On the farthest line-segment Voronoi diagram. Int. J. Comput. Geom.
Appl. 23(6), 443–459 (2013)

20. Seidel, R.: Backwards analysis of randomized geometric algorithms. In: New Trends in Discrete and
Computational Geometry. Algorithms Combin., vol. 10, pp. 37–67. Springer, Berlin (1993)

21. Sharir, M., Agarwal, P.K.: Davenport–Schinzel Sequences and Their Geometric Applications. Cam-
bridge University Press, Cambridge (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1411.2816v3

	Deletion in Abstract Voronoi Diagrams in Expected Linear Time and Related Problems
	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem Formulation, Definitions and Properties
	3.1 Properties of Voronoi-Like Regions

	4 Insertion in a Voronoi-Like Diagram
	4.1 Proving Theorem 4.3

	5 mathcalVl(mathcalP) is Unique
	6 A Randomized Incremental Algorithm
	6.1 Time Analysis of the Randomized Incremental Algorithm, a Variant of Backwards Analysis

	7 Computing the Order-k Voronoi Diagram Iteratively
	8 The Farthest Abstract Voronoi Diagram
	9 Concluding Remarks
	Acknowledgements
	References

