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Abstract
The convex hull of N independent random points chosen on the boundary of a simple
polytope in Rn is investigated. Asymptotic formulas for the expected number of ver-
tices and facets, and for the expectation of the volume difference are derived. This is
one of the first investigations leading to rigorous results for random polytopes which
are neither simple nor simplicial. The results contrast existing results when points are
chosen in the interior of a convex set.

1 Introduction and Statement of Results

Let K ⊂ Rn be a convex set of dimension n, n ≥ 2. Let N ∈ N and choose N random
points X1, . . . , XN uniformly distributed either in the interior of K or on the boundary
∂K of K . Write [A] for the convex hull of a set A, and denote by PN = [X1, . . . , XN ]
the convex hull of the random points. The expected number of vertices E f0(PN ), the
expected number of (n − 1)-dimensional faces E fn−1(PN ), and the expectation of
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the volume difference Vn(K ) − EVn(PN ) of K and PN are of interest. Since explicit
results for fixed N cannot be expected one investigates the asymptotics as N → ∞.

If the vertices of the random polytopes are chosen from the interior of a convex set,
there is a vast amount of literature. Investigations started with two famous articles by
Rényi and Sulanke [26, 27] who obtained in the planar case the asymptotic behavior
of the expected area EV2(PN ) when the boundary of K is sufficiently smooth and
when K is a polygon. In a series of papers these formulae were generalized to higher
dimensions. In the case when the boundary of K is sufficiently smooth, we know by
work of Wieacker [34], Schneider and Wieacker [30], Bárány [2], Schütt [32], and
Böröczky et al. [8] that the volume difference behaves like

Vn(K ) − EVn(PN ) = cn�(K )Vn(K )2/(n+1)N−2/(n+1)(1 + o(1)), (1.1)

where PN is the convex hull of uniform iid random points in the interior of K , �(K )

denotes the affine surface area of K and cn is a constant that depends only on n. The
generalization to all intrinsic volumes is due to Bárány [2, 3] and Reitzner [23]. The
corresponding results for random points chosen in a polytope P are much more diffi-
cult. In a long and intricate proof Bárány and Buchta [4] settled the case of polytopes
P ⊂ Rn ,

Vn(P) − EVn(PN ) = flag(P)

(n + 1)n−1(n − 1)!N
−1(ln N )n−1(1 + o(1)),

where flag(P) is the number of flags of the polytope P . A flag is a sequence of i-
dimensional faces Fi of P , i = 0, . . . , n − 1, such that Fi ⊂ Fi+1. The phenomenon
that the expression should only depend on this combinatorial structure of the polytope
had been discovered in connection with floating bodies by Schütt [31].

Due to Efron’s identity [11] the results on EVn(PN ) can be used to determine the
expectednumber of vertices of PN . Thegeneral results for the number of �-dimensional
faces f�(PN ) are due to Wieacker [34], Bárány and Buchta [4], and Reitzner [24]: if
K is a smooth convex body and � ∈ {0, . . . , n − 1}, then

E f�(PN ) = cn,��(K )N (n−1)/(n+1)(1 + o(1)), (1.2)

and if P is a polytope, then, with a different constant, but still denoted cn,�,

E f�(PN ) = cn,� flag(P)(ln N )n−1(1 + o(1)). (1.3)

Choosing random points from the interior of a convex body always produces a sim-
plicial polytope with probability one. Yet often applications of the above mentioned
results in computational geometry, the analysis of the average complexity of algo-
rithms and optimization necessarily deal with non-simplicial polytopes and it became
crucial to have analogous results for random polytopes without this very specific com-
binatorial structure. The only classical results for this question concern 0/1-polytopes
in high dimensions [6, 10, 13, 14, 20], which have a highly interesting combinatorial
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structure, yet in a very specific setting. And very recently Newman [21] used a some-
what dual approach to construct general random polytopes from random polyhedra.

In view of the applications it is also of high interest to show that the face numbers
of most realizations of random polytopes are close to the expected ones, and thus
to prove variance estimates, central limit theorems and deviation inequalities. There
has been serious progress in this direction in recent years, and we refer to the survey
articles [18, 19, 25].

In all these results there is a general scheme: if the underlying convex sets are
smooth then the number of faces and the volume difference behave asymptotically
like powers of N , if the underlying sets are convex polytopes then logarithmic factors
show up. Metric and combinatorial quantities only differ by a factor N .

In this paper we are discussing the case that the random points are chosen from
the boundary of a polytope P . In dimensions n ≥ 3, this produces random polytopes
which are neither simple nor simplicial with high probability as N → ∞, although
still most of the facets are simplices. Thus our results are a decisive step in taking into
account the point mentioned above. The applications in computational geometry, the
analysis of the average complexity of algorithms and optimization need formulae for
the combinatorial structure of the involved random polytopes and thus the question
on the number of facets and vertices are of interest.

From (1.3) it follows immediately that for random polytopes whose points are
chosen from the boundary of a polytope the expected number of vertices is

E f0(PN ) = cn−1,0 flag(P)(ln N )n−2(1 + o(1))

with cn−1,0 from (1.3), independent of P . Indeed, a chosen point is a vertex of a
random polytope if and only if it is a vertex of the convex hull of all the random points
chosen in the same facet of P . We define ln+ x = max {0, ln x}. By (1.3) we get that
the expected number of vertices equals

cn−1,0

∑

Fi

flag(Fi )E(ln+ Ni )
n−2(1 + o(1)),

where we sum over all facets Fi of P and Ni is a binomial distributed random vari-
able with parameters N and pi = λn−1(Fi )/

(∑
Fj

λn−1(Fj )
)
. Here λn−1 is the

(n − 1)-dimensional Lebesgue measure. It is left to observe that E(ln+ Ni )
n−2 =

(ln N )n−2(1 + o(1)) and
∑

Fi flag(Fi ) = flag(P).
For our first main results we restrict our investigations to simple polytopes. We

recall that a polytope in R
n is called simple if each of its vertices is contained in

exactly n facets.

Theorem 1.1 Let n ≥ 2 and choose N uniform random points on the boundary of a
simple polytope P in R

n, n ≥ 2. For the expected number of facets of the random
polytope PN , we have

E fn−1(PN ) = cn f0(P)(ln N )n−2(1 + O((ln N )−1)),
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with some cn > 0 independent of P.

The case n = 2 is particularly simple. E f1(PN ) is asymptotically, as N → ∞, equal
to 2 f0(P) = 2 f1(P). Note that for a simplicial polytope flag(P) = n! f0(P) and
therefore Theorem 1.1 can also be written as

E fn−1(PN ) = cn
n! flag(P)(ln N )n−2(1 + O((ln N )−1)).

We conjecture this formula to hold for general polytopes. Yet this seems to be much
more involved. We are showing here that for n ≥ 3 and for 1 ≤ � ≤ n − 2

E f�(PN ) ≥ cn−1,� flag(P)(ln N )n−2(1 + o(1))

with cn−1,� defined in (1.3). For this we count those �-dimensional faces which are
contained in the facets Fi of P . Analogous to the case � = 0 we have

E f�(PN ) ≥
∑

Fi

E f�(PN ∩ Fi )

= cn−1,�

∑

Fi

flag(Fi )E(ln+ Ni )
n−2(1 + o(1))

= cn−1,� flag(P)(ln N )n−2(1 + o(1)).

For the case � = n − 1 and n ≥ 3, we observe that each (n − 2)-dimensional face of a
polytope is contained in precisely two (n−1)-dimensional facets. Assume that not all
random points are contained in the same facet of P which happens with probability
tending to one as N → ∞. Then, each (n − 2)-dimensional face of PN in a facet F
of P is contained in at least one facet of PN not contained in F , and thus gives rise to
a facet of PN which is the convex hull of this face and one additional point in another
facet of P . This shows

E fn−1(PN ) ≥
∑

Fi

E fn−2(PN ∩ Fi )(1 − o(1)) + o(1)

= cn−1,n−2 flag(P)(ln N )n−2(1 + o(1))

for general polytopes P in dimension n ≥ 3.
This sheds some light on the geometry of PN if P is a simple polytope. The number

of those facets of the random polytope that are not contained in the boundary of P are
already of the same order as all facets that have one vertex in one facet of P and all
the others in another one. In fact it follows from our proof that for simple polytopes
the main contribution comes from those facets of PN whose vertices are on precisely
two facets of P . We refer to the end of Sect. 3.5 for the details.

Surprisingly this is no longer true for the expectation of the volume difference.
Here the main contribution comes from all facets of PN . And—to our big surprise—
the volume difference contains no logarithmic factor. This is in sharp contrast to the
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results for randompoints inside convex sets and shows that the phenomenonmentioned
above does not hold for more general random polytopes.

Theorem 1.2 For the expected volume difference between a simple polytope P ⊂ Rn

and the random polytope PN with vertices chosen from the boundary of P, we have

E(Vn(P) − Vn(PN )) = cn,P N
−n/(n−1)(1 + O

(
N−1/((n−1)(n−2))))

with some cn,P > 0 depending on n and P.

Intuitively, the difference volume for a random polytope whose vertices are chosen
from the boundary should be smaller than the one whose vertices are chosen from the
body. Our result confirms this for N sufficiently large. The first one is of the order
N−n/(n−1) compared to N−1(ln N )n−1. It is well known that for uniform random
polytopes in the interior of a convex set the expected missed volume is minimized
for the ball for N large [7, 16, 17], a smooth convex set, and—in the planar case—
maximized by a triangle [7, 9, 15] or more generally by polytopes [5]. Hence one
should also compare the result of Theorem 1.2 to the result of choosing random points
on the boundary of a smooth convex set. This clearly leads to a random polytope
with N vertices. And by results of Schütt and Werner [33], see also Reitzner [22],
the expected volume difference is of order N−2/(n−1) which is smaller as the order in
(1.1) as is to be expected, but also surprisingly much bigger than the order N−n/(n−1)

occurring in Theorem 1.2.
We give a simple argument that shows that the volume difference between the cube

and a random polytope is at least of the order N−n/(n−1). We denote by e1, . . . , en the
unit vectors of the standardorthonormal basis inR

n .Weconsider the cubeCn = [0, 1]n
and the subset of the boundary

∂Cn ∩ H+

((
(n − 1)!
nN

)1/(n−1)

, (1, . . . , 1)

)

=
n⋃

i=1

(
(n − 1)!
nN

)1/(n−1)

[0, e1, . . . , ei−1, ei+1, . . . , en],
(1.4)

where H+(h, u) = {x : 〈x, u〉 ≥ h}. These sets are the union of small simplices in
the facets of the cube close to the vertices. Then

1

N
=

n∑

i=1

λn−1

((
(n − 1)!
nN

)1/(n−1)

[0, e1, . . . , ei−1, ei+1, . . . , en]
)

,

where λn−1 denotes the (n − 1)-dimensional Lebesgue measure, and the probability
that none of the points x1, . . . , xN is chosen from this set equals

(
1 − 1

N

)N

∼ 1

e
.
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Therefore, with probability approximately 1/e the union of the simplices in (1.4) is
not contained in the random polytope and the difference volume is greater than

1

n!
(

(n − 1)!
nN

)n/(n−1)

∼ N−n/(n−1)

n
,

which is in accordance with Theorem 1.2.
The paper is organized in the following way. The next section contains a tool

from integral geometry and two asymptotic expansions. The proof of the asymptotic
expansions is rather technical and shifted to the end of the paper, Appendix A, B,
and C. The third section is devoted to the proofs of Theorems 1.1 and 1.2. There, first
we evaluate two formulas for the quantities appearing in Theorems 1.1 and 1.2 and
combine them with the necessary asymptotic results. These results are proven in in
Sects. 3.5–3.7, using computations for the moments of the volume of involved random
simplices in Sect. 3.3.

Throughout this paper cn, cm,P,n,..., . . . are generic constants depending on m, P ,
n, etc. whose precise values may differ from occurrence to occurrence.

2 Tools

Wework in the Euclidean spaceRn with inner product 〈 · , · 〉 and norm ‖ · ‖. We write
H = H(h, u) for the hyperplanewith unit normal vector u ∈ Sn−1 and signed distance
h to the origin, H(h, u) = {x : 〈x, u〉 = h}. We denote by H− = H−(h, u) = {x :
〈x, u〉 ≤ h} and by H+ = H+(h, u) = {x : 〈x, u〉 ≥ h} the the two closed halfspaces
bounded by the hyperplane H . For a set A ⊂ Rn we write [A] for the convex hull
of A.

In this paper we need a formula for n points distributed on the boundary of a
given convex body. A theorem of Blaschke–Petkantschin type which deals with such
a situation is a special case of Theorem 1 in Zähle [35]. We state it here only for a
(n − 1)-dimensional set X , which is what we need in the following. Denote byHn−1
the (n − 1)-dimensional Hausdorff measure. A set X is Hn−1-rectifiable if it is the
countable union of images of bounded subsets of Rn−1 under some Lipschitz maps,
up to a set ofHn−1-measure zero. Then, forHn−1-almost all points x ∈ X there exists
a (generalized) tangent hyperplane Tx at x to X consisting of all approximate tangent
vectors v at x . Essentially, v is an approximate tangent vector at x if for each ε > 0
there exists x ′ ∈ X with ‖x − x ′‖ ≤ ε and α > 0 such that ‖α(x − x ′) − v‖ ≤ ε.
For the precise definition we refer to the book by Schneider and Weil [29, p. 634], and
for a general introduction to Hausdorff measure, the existence of tangent hyperplanes
and facts on geometric measure theory we refer to Federer [12].

For two hyperplanes H1, H2 let J (H1, H2) be the length of the projection of a unit
interval in H1 ∩ (H1 ∩ H2)

⊥ onto H⊥
2 , or J (H1, H2) = 0 if H1 ‖ H2. Observe that

J (H(h1, u1), H(h2, u2)) is just the length of the projection of u2 onto H1, which
equals sin�(u1, u2).

Note that theorem of Zähle is stated for Hn−1-rectifiable sets, although Zähle
remarks that the result is true under the weaker assumption of Hn−1-measurability.
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Theorem 2.1 (Zähle [35]) Suppose X ⊂ Rn is an Hn−1-rectifiable set and let
g : (Rn)n−1 → [0,∞) be a measurable function. Then there is a constant β such that

∫

Sn−1

∫

R

∫

X∩H

· · ·
∫

X∩H

1(x1, . . . , xn in general position)g(x1, . . . , xn) dx1 . . . dxn dhdu

= β

(n − 1)!
∫

X

· · ·
∫

X

1(x1, . . . , xn in general position)g(x1, . . . , xn)

× λn−1([x1, . . . , xn])−1
n∏

j=1

J (Tx j , H(x1, . . . , xn)) dx1 . . . dxn,

with dx, du, dh denoting integration with respect to the Hausdorff measure on the
respective range of integration, and where the hyperplane H(x1, . . . , xn) is the affine
hull of x1, . . . , xn.

In our case X is the boundary of a polytope P , and almost all x ∈ ∂P are in the
relative interior of a facet of P where Tx is simply the supporting hyperplane. Thus
J (Tx j , H(x1, . . . , xn)) = 0 if all points are on the same facet of P . To exclude this from
the range of integration, we write (∂P)n�= for the set of all n-tuples x1, . . . , xn ∈ ∂P
which are not all contained in the same facet. Also, ignoring sets of Hn−1-measure
zero, we may assume that x1, . . . , xn are in general position when integrating on
(∂P)n�=. And, again ignoring sets of measure zero, a hyperplane H(h, u) meets ∂P at
least in d facets, or ∂P ∩ H(h, u) = ∅. Thus Zähle’s result takes the following form
useful in our context.

Lemma 2.2 Let g(x1, . . . , xn) be a continuous function. Then there is a constant β

such that

∫

(∂P)n�=

g(x1, . . . , xn) dx1 . . . dxn

= β−1(n − 1)!
∫

Sn−1

∫

R

∫

(∂P∩H)n�=

g(x1, . . . , xn)λn−1([x1, . . . , xn]) (2.5)

×
n∏

j=1

J (Tx j , H)−1 dx1 . . . dxn dh du

with dx, du, dh denoting integration with respect to the Hausdorff measure on the
respective range of integration.
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One of the essential ingredients of our proof are two asymptotic expansions of the
function

J (l) =
1∫

0

. . .

1∫

0

⎛

⎝1 − α

n∑

i=1

∏

j �=i

t j

⎞

⎠
N−n

n∏

i=1

tn−2−li
i dt1 . . . dtn (2.6)

of l = (l1, . . . , ln) as N → ∞. Here, li ∈ R, li > 0 for all i and α ∈ R, α > 0.
We need it for the computation of the expectations of the number of facets and of the
expected volume difference. The proof of these results is rather technical and lengthy,
and will be found in Sects. A–C of the appendix.

Lemma 2.3 Assume that n ≥ 2, 0 < α < 1/n, and that l = (l1, . . . , ln), L = ∑n
i=1 li ,

with n − 1 > li > L/(n − 1) − 1 for all i = 1, . . . , n. Then

J (l) = α−n+L/(n−1)(n − 1)−1
n∏

i=1

	

(
li − L

n − 1
+ 1

)

× N−n+L/(n−1)(1 + O
(
N−(mink lk−L/(n−1)+1)/(n−2)))

as N → ∞, where the implicit constant in O( · ) may depend on α.

Lemma 2.4 Assume that n ≥ 2, 0 < α ≤ 1/(2n), and l = (l1, . . . , ln), L = ∑n
i=1 li ,

with n − 1 > li ≥ L/(n − 1) − 1 for all i = 1, . . . , n. If for at least three different
indices i, j, k we have the strict inequality that li , l j , lk > L/(n − 1) − 1, then

J (l) = O
(
N−n+L/(n−1)(ln N )n−3)

as N → ∞, where the implicit constant in O( · ) may depend on α. If for exactly two
different indices i, j we have the strict inequality that li , l j > L/(n − 1) − 1 and
equality lk = L/(n − 1) − 1 for all other lk , then

J (l) = cnα
−n+L/(n−1) 	

(
li − L

n − 1
+ 1

)
	

(
l j − L

n − 1
+ 1

)

× N−n+L/(n−1)(ln N )n−2(1 + O((ln N )−1)
)

as N → ∞ with cn > 0, where the implicit constant in O( · ) may depend on α.

3 Proof of Theorems 1.1 and 1.2

3.1 The Number of Facets

Let P ⊂ Rn be a simple polytope, and assume w.l.o.g. that the surface area satisfies
λn−1(∂P) = 1. As usual denote byFk(P) the set of k-dimensional faces of P . Choose
random points X1, . . . , XN on the boundary of P with respect to Lebesgue measure,

123



Discrete & Computational Geometry (2023) 69:453–504 461

and denote by PN = [X1, . . . , XN ] their convex hull. In general Fn−1(PN ) consists
of facets contained in facets of P and facets which are formed by random points
on different facets of P . The latter facets are simplices, almost surely. The number of
facets contained in ∂P is bounded by the number of facets of P and thus by a constant.
Hence we assume in the following that (X1, . . . , Xn) ∈ (∂P)n�=. The convex hull of
such points Xi , i ∈ I = {i1, . . . , in}, forms a facet [Xi1 , . . . , Xin ] of PN if their affine
hull does not intersect the convex hull of the remaining points [{X j } j /∈I ].

E fn−1(PN )

= E
∑

I⊂{1,...,N }
|I |=n

1
(
aff[{Xi }i∈I ] ∩ [{X j } j /∈I ] = ∅,

{Xi }i∈I ∈ (∂P)n�=
) + O(1)

=
(
N

n

)
E1

(
aff[X1, . . . , Xn] ∩ [Xn+1, . . . , XN ] = ∅,

{Xi }i≤n ∈ (∂P)n�=
) + O(1).

To simplify notation we set H = aff[X1, . . . , Xn]. If the points X1, . . . , Xn form a
facet then their affine hull is a supporting hyperplane H = H(h, u) of the random
polytope PN . The unit vector u is the unit outer normal vector of this facet. Then the
halfspace H− = H−(h, u) = {x : 〈x, u〉 ≤ h} bounded by the hyperplane H contains
the random polytope PN . The probability that Xn+1, . . . , XN are contained in H−
equals

λn−1(∂P ∩ H−)N−n = (1 − λn−1(∂P ∩ H+))N−n,

thus

E fn−1(PN ) =
(
N

n

)
E
(
(1 − λn−1(∂P ∩ H+))N−n 1({Xi }i≤n ∈ (∂P)n�=)

) + O(1).

Denote by H(P, u) a support hyperplane with normal u, supporting P in v ∈ F0(P).
Then the normal cone N (v, P) is defined as (see e.g., [28]),

N (v, P) = {u ∈ R
n \ {0} : v ∈ H(P, u) ∪ {0}}.

With probability one the vector u is contained in the interior of one of the normal
cones N (v, P) of the vertices v ∈ F0(P) of P because the boundaries of the normal
cones have measure 0. Hence
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E fn−1(PN )

=
∑

v∈F0(P)

(
N

n

)
E
(
(1 − λn−1(∂P ∩ H+))N−n1(u ∈ N (v, P), {Xi }i≤n ∈ (∂P)n�=)

)

+ O(1)

=
∑

v∈F0(P)

(
N

n

)∫
· · ·

∫

(∂P)n�=

(1 − λn−1(∂P ∩ H+))N−n1(u ∈ N (v, P)) dx1 . . . dxn

+ O(1).

Now we fix a vertex v. Since P is simple, v is contained in precisely n facets
F1, . . . , Fn . There is an affine transformation Av which maps v to the origin and
the n edges [v, vi ] containing v onto segments [0, si ei ] on the coordinate axis. Here
we have a free choice for the n parameters si > 0 which we will fix soon. We assume
si ≥ n, i = 1, . . . , n, which implies

[0, 1]n ⊂ AvP.

The image measure λn−1,Av of the Lebesgue measure λn−1 on the facets of P under
the affine transformation Av is—up to a constant—again Lebesguemeasure, where the
constant may differ for different facets. We choose the n parameters si ≥ n in such a
way that the constant equals the same av > 0 for the n facets F1, . . . , Fn containing v,

λn−1(Fi ) = avλn−1(AvFi ).

Note that the last condition means that for all such facets Fi and all measurable
B ⊂ AvFi ,

λn−1,Av (B) = λn−1(A
−1
v B) = avλn−1(B). (3.7)

Note also that [0, 1]n−1 ⊂ AvFi , i = 1, . . . , n, and thus by (3.7),

n =
n∑

i=1

λn−1

(
[0, 1]n−1

)
≤ 1

av

n∑

i=1

λn−1(Fi ) ≤ S(P)

av

= 1

av

. (3.8)

Such a uniform bound on av is needed in Sect. 3.5 so that α = av/(n − 1)! ≤ 1/(2n).
To keep the notation short, we write dAv x = dλn−1,Av (x) for integration with

respect to this image measure of the Lebesgue measure on ∂P under the map Av .
Equation (3.7) shows that for x ∈ AvFi ,

dAv x = av dx (3.9)

for i = 1, . . . , n, where dx is again shorthand for Lebesgue measure (or equivalently
Hausdorff measure) on the respective facet Fi . This yields
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E fn−1(PN ) =
∑

v∈F0(P)

(
N

n

)∫
· · ·

∫

(∂Av P)n�=

(1 − λn−1,Av (∂AvP ∩ H+))N−n

× 1(u ∈ N (0, AvP)) dAv x1 . . . dAv xn + O(1).

We use Zähle’s formula (2.5) which transforms the integral over the points xi ∈ ∂P
into an integral over all the hyperplanes H = H(h, u), u ∈ Sn−1, h ∈ R, and integrals
over ∂P ∩ H :

E fn−1(PN ) =
∑

v∈F0(P)

(
N

n

)
β−1(n − 1)!

∫

Sn−1

∫

R

∫
· · ·

∫

(∂Av P∩H)n�=

(1 − λn−1,Av (∂AvP ∩ H+))N−n

× λn−1([x1, . . . , xn])
n∏

j=1

J (Tx j , H)−11(u ∈ N (0, AvP)) dAv x1 . . . dAv xn dhdu + O(1).

We haveN (0, AvP) = −Sn−1+ , where we denote Sn−1+ = Sn−1 ∩Rn+. The condition
1(u ∈ N (0, AvP)) will be taken into account in the range of integration in the form
u ∈ −Sn−1+ . Now we fix u and split the integral into two parts. In the first one H−
contains all the unit vectors ei . We write this condition in the form

max
i=1,...,n

ui ≤ h ≤ 0.

Note that h ≤ 0, since u ∈ −Sn−1+ . The second part is over h ≤ maxi=1,...,n ui . Thus
the expected number of facets is

E fn−1(PN )

=
∑

v∈F0(P)

(
N

n

)
β−1(n − 1)!

⎛

⎜⎜⎝

∫

−Sn−1+

0∫

max ui

(1 − λn−1,Av (∂R
n+ ∩ H+))N−n

×
∫

· · ·
∫

(∂Rn+∩H)n�=

λn−1([x1, . . . , xn])
n∏

j=1

J (Tx j , H)−1dAv x1 . . . dAv xn dhdu

+
∫

−Sn−1+

max ui∫

−∞
(1 − λn−1,Av (∂AvP ∩ H+))N−n

×
∫

· · ·
∫

(∂Av P∩H)n�=

λn−1([x1, . . . , xn])
n∏

j=1

J (Tx j , H)−1dAv x1 . . . dAv xn dhdu

⎞

⎟⎟⎠

+ O(1),

where we have used that in the first case ∂AvP ∩ H+ = ∂Rn+ ∩ H+. The substitution
u �→ −u and h �→ −h yields the more convenient formula

E fn−1(PN ) =
∑

v∈F0(P)

(
N

n

)
β−1(n − 1)!(I 1v + E1

v) + O(1)
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with

I 1v =
∫

Sn−1+

min ui∫

0

(1 − λn−1,Av (∂R
n+ ∩ H−))N−n

×
∫

· · ·
∫

(∂Rn+∩H)n�=

λn−1([x1, . . . , xn])
n∏

j=1

J (Tx j , H)−1 dAv x1 . . . dAv xn dhdu,

E1
v =

∫

Sn−1+

∞∫

min ui

(1 − λn−1,Av (∂AvP ∩ H−))N−n

×
∫

· · ·
∫

(∂Av P∩H)n�=

λn−1([x1, . . . , xn])
n∏

j=1

J (Tx j , H)−1 dAv x1 . . . dAv xn dhdu.

The asymptotically dominating term will be I 1v . Using (3.7) and (3.9) for I 1v we have

I 1v = anv

∫

Sn−1+

min ui∫

0

(1 − avλn−1(∂R
n+ ∩ H−))N−n

×
∫

· · ·
∫

(∂Rn+∩H)n�=

λn−1([x1, . . . , xn])
n∏

j=1

J (Tx j , H)−1 dx1 . . . dxn dhdu.

(3.10)

In Sect. 3.5 we will determine the precise asymptotics. Equation (3.28) will tell us
that

I 1v = cnN
−n(ln N )n−2(1 + O((ln N )−1))

with some constant cn > 0 as N → ∞. The error term E1
v can be estimated by using

the fact that there are constants a, a such that

aλn−1(B) ≤ λn−1,Av (B) ≤ aλn−1(B) (3.11)

for all v ∈ F0(P) and all B ⊂ ∂P . This shows

E1
v ≤ (2a)n

∫

Sn−1+

∞∫

min ui

(1 − aλn−1(∂AvP ∩ H−))N (3.12)

×
∫

· · ·
∫

(∂Av P∩H)n�=

λn−1([x1, . . . , xn])
n∏

j=1

J (Tx j , H)−1dx1 . . . dxn dhdu.
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In Sect. 3.6 we will show that this is of order O(N−n(ln N )n−3), see (3.35). This
implies

E fn−1(PN ) =
∑

v∈F0(P)

(
N

n

)
β−1(n − 1)!cnN−n(ln N )n−2(1 + O((ln N )−1))

= cn f0(P)(ln N )n−2(1 + O((ln N )−1)) (3.13)

with some cn > 0 which is Theorem 1.1.

3.2 TheVolume Difference

We are interested in the expected volume difference

E(Vn(P) − Vn(PN )).

With probability one the random polytope PN has the following property: For each
facet F ∈ Fn−1(PN ) that is not contained in a facet of P there exists a unique
vertex v ∈ F0(P), such that the outer unit normal vector uF of F is contained in the
normal coneN (v, P), or equivalently the hyperplane H containing F is parallel to a
supporting hyperplane to P at v. Clearly all the sets [F, v] are contained in P \ PN and
they have pairwise disjoint interiors. This is immediate in dimension two, and holds
in arbitrary dimensions because it holds for all two-dimensional sections through P
and PN containing two vertices of P . We set

CN =
⋃

v∈F0(P)

⋃

F∈Fn−1(PN )
uF∈N (v,P)

F�∂P

[F, v], DN = P \ (PN ∪ CN ), (3.14)

where DN is the subset of P \ PN not covered by one of the simplices [F, v] with
uF ∈ N (v, P). We have

E(Vn(P) − Vn(PN )) = EVn(CN ) + EVn(DN )

= E
∑

v∈F0(P)

∑

F∈Fn−1(PN )

Vn([F, v])1(uF ∈ N (v, P)) + EVn(DN ).

For the first summand we follow the approach already worked out in detail in the last
section. The convex hull [Xi1 , . . . , Xin ] forms a facet of PN if their affine hull does
not intersect the convex hull of the remaining point, and to simplify notation we set
u = uF and H(h, u) = H = aff[X1, . . . , Xn]. The halfspace H− contains the random
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polytope PN , and the probability that Xn+1, . . . , XN are contained in H− equals

λn−1(∂P ∩ H−))N−n = (1 − λn−1(∂P ∩ H+))N−n .

Thus

EVn(CN )

=
∑

v∈F0(P)

(
N

n

)
E
(
(1 − λn−1(∂P ∩ H+))N−n

× 1(u ∈ N (v, P), {Xi }i≤n ∈ (∂P)n�=)Vn[X1, . . . , Xn, v])

=
∑

v∈F0(P)

(
N

n

)∫
· · ·

∫

(∂P)n�=

(1 − λn−1(∂P ∩ H+))N−n

× 1(u ∈ N (v, P))Vn[x1, . . . , xn, v] dx1 . . . dxn .

We fix v and use the affine transformation Av defined in the last section which maps
v to the origin and the edges onto the coordinate axes. The transformation rule yields

EVn(CN )

=
∑

v∈F0(P)

(
N

n

)∫
· · ·

∫

(∂Av P)n�=

(1 − λn−1,Av (∂AvP ∩ H+))N−n1(u ∈ N (0, AvP))

× Vn[A−1
v x1, . . . , A

−1
v xn, 0] dAv x1 . . . dAv xn .

The volume of the simplex [{A−1
v xi }i=1,...,n, 0] is a constant dv = det A−1

v times the
volume of [{xi }i=1,...,n, 0] which equals n−1 times the height |h| times the volume of
the base [{xi }i=1,...,n]. By Zähle’s formula (2.5) we obtain

EVn(CN ) =
∑

v∈F0(P)

dv

(
N

n

)
β−1 (n − 1)!

n

×
∫

Sn−1

∫

R

∫
· · ·

∫

(∂Av P∩H)n�=

(1 − λn−1,Av (∂AvP ∩ H+))N−n

× λn−1([x1, . . . , xn])2
n∏

j=1

J (Tx j , H)−1

× 1(u ∈ N (0, AvP)) dAv x1 . . . dAv xn dhdu.

We split the integral into the two parts maxi=1,...,n ui ≤ h ≤ 0 and h ≤ maxi=1,...,n ui
and substitute u �→ −u, h �→ −h. The main part of the expected volume difference
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is

EVn(CN ) =
∑

v∈F0(P)

dv

(
N

n

)
β−1 (n − 1)!

n
(I 2v + E2

v )

with

I 2v = anv

∫

Sn−1+

min ui∫

0

(1 − avλn−1(∂R
n+ ∩ H−))N−n (3.15)

× h
∫

· · ·
∫

(∂Rn+∩H)n�=

λn−1([x1, . . . , xn])2
n∏

j=1

J (Tx j , H)−1 dx1 . . . dxn dhdu,

E2
v =

∫

Sn−1+

∞∫

min ui

(1 − λn−1,Av (∂AvP ∩ H−))N−n (3.16)

× h
∫

· · ·
∫

(∂Av P∩H)n�=

λn−1([x1, . . . , xn])2
n∏

j=1

J (Tx j , H)−1 dAv x1 . . . dAv xn dhdu.

The asymptotically dominating term will be I 2v . In Sect. 3.5 we determine the precise
asymptotics. Equation (3.27) will tell us that

I 2v = cna
−n/(n−1)
v N−n−n/(n−1)(1 + O

(
N−1/((n−1)(n−2))))

with some constant cn > 0 as N → ∞. The error term E2
v can be estimated by

E2
v ≤ (2a)n

∫

Sn−1+

∞∫

min ui

(1 − aλn−1(∂AvP ∩ H−))N (3.17)

× h
∫

· · ·
∫

(∂Av P∩H)n�=

λn−1([x1, . . . , xn])2
n∏

j=1

J (Tx j , H)−1 dx1 . . . dxn dhdu,

where a, a are as in (3.11). In Sect. 3.6, (3.36), we show that

E2
v = O

(
N−n−(n−1)/(n−2)).

It remains to estimate

EVn(DN ) = E

⎛

⎝P \
⎛

⎝PN ∪
⋃

F∈Fn−1(PN )

[F, vF ]
⎞

⎠

⎞

⎠ .
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The following argument is proved in detail in the paper of Affentranger and Wieacker
[1, p. 302] and will only be sketched here.

If y ∈ DN , then the normal cone N (y, [y, PN ]) is not contained in any of the
normal cones N (v, P) of P , v ∈ F0(P). Hence N (y, [y, PN ]) meets at least two
neighbouring normal cones N (v1, P),N (v2, P), and thus the normal cone of the
edge e = [v1, v2] ∈ F1(P). This implies that there exists a supporting hyperplane H
of P with H ∩ P = e with the property that the parallel hyperplane through y does
not meet PN .

We apply an affine map Ae similar to the one defined above which maps e = [v,w]
to the unit interval [0, en], v to the origin, and the image of other edges containing
v contain the remaining unit intervals [0, ei ]. After applying this map the situation
described above is the following: for x = (x1, . . . , xn) = Aey ∈ AeDN the supporting
hyperplane AeH = H(0, u) to AeP intersects AeP in the edge [0, en]. The parallel
hyperplane H(〈x, u〉, u) contains x and cuts off from AeP a cap disjoint from AePN .
This cap contains the simplex

[0,min(1, x1)e1, . . . ,min(1, xn−1)en−1, en].

Hence if x ∈ AeDN then

[0,min(1, x1)e1, . . . ,min(1, xn−1)en−1, en] ∩ AePN = ∅.

The probability of this event is given by

P([0, x1e1, . . . , xn−1en−1, en] ∩ AePN = ∅)

= (
1 − λn−1(A

−1
e (∂R

n+ ∩ [0,min(1, x1)e1, . . . ,min(1, xn−1)en−1, en]))
)N

≤ (
1 − aλn−1(∂R

n+ ∩ [0,min(1, x1)e1, . . . ,min(1, xn−1)en−1, en])
)N

,

with somea > 0.Wedenote by de the involved Jacobian of A−1
e and by d themaximum

of de. This implies the estimate

EVn(DN ) =
∫

P

P(x ∈ DN ) dx

≤
∑

e∈F1(P)

de

∫

Ae P

(
1 − aλn−1(∂R

n+

∩ [0,min(1, x1)e1, . . . ,min(1, xn−1)en−1, en])
)N

dx

≤ f1(P) d
∫

[0,τ ]n

(
1 − aλn−1(∂R

n+

∩ [0,min(1, x1)e1, . . . ,min(1, xn−1)en−1, en])
)N

dx
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assuming again that AeP ⊂ [0, τ ]n for all e. In Sect. 3.7 we prove that

EVn(DN ) = O
(
N−(n−1)/(n−2)). (3.18)

Combining our results we get

E(Vn(P) − Vn(PN )) =
∑

v∈F0(P)

dv

(
N

n

)
β−1 (n − 1)!

n
(I 2v + E2

v ) + EVn(DN )

= cn
∑

v∈F0(P)

d2va
−n/(n−1)
v N−n/(n−1)(1 + O

(
N−1/((n−1)(n−2))))

= cn,P N
−n/(n−1)(1 + O

(
N−1/((n−1)(n−2)))), (3.19)

which is Theorem 1.2.

3.3 Random Simplices in Simplices

For u ∈ Sn−1+ , h ≥ 0, and H = H(h, u) we set

Ek(h, u) =
∫

· · ·
∫

(∂Rn+∩H)n�=

λn−1([x1, . . . , xn])k
n∏

j=1

J (Tx j , H(1, u))−1 dx1 . . . dxn,

(3.20)

which is the (not normalized) k-th moment of the volume of a random simplex in
Rn+ ∩ H(h, u) where the random points are chosen on the boundary of this simplex
according to the weight functions J (Tx j , H(1, u))−1. Recall that for almost all x j ,
Tx j is the supporting hyperplane at x j . In fact it is the coordinate hyperplane which
contains x j .

Lemma 3.1 For k ≥ 0, there are constants Ek, f > 0 independent of u, such that

Ek(h, u) = h−(n+k)n−k/2(n − 1)−n/2
∑

f∈{1,...,n}n�=

(
n∏

i=1

h

ui

)n+k n∏

i=1

u fi

h
Ek, f .

Proof For a point x j in the coordinate hyperplane e⊥
i , the weight function J (Tx j ,

H(1, u))−1 is the sine of the angle between ei and u. Thus

J (Tx j , H(1, u)) = ‖u|e⊥
i
‖ = (1 − u2i )

1/2 (3.21)

and hence is independent of h as long as u is fixed. In (3.20) we substitute x j = hy j
with y j ∈ H(1, u). The (n−1)-dimensional volume is homogeneous of degree n−1,
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hence

λn−1([x1, . . . , xn]) = hn−1λn−1([y1, . . . , yn]),

and since x j are in the (n − 2)-dimensional planes ∂Rn+ ∩ H(h, u) we have dx j =
hn−2dy j .

Ek(h, u) = h(n−1)k+n(n−2)
∫

· · ·
∫

(∂Rn+∩H(1,u))n�=

λn−1([y1, . . . , yn])k

×
n∏

j=1

J (Tx j , H(1, u))−1dy1 . . . dyn (3.22)

= h(n−1)k+n(n−2)Ek(1, u).

To evaluate Ek(1, u) we condition on the facets in e⊥
1 , . . . , e⊥

n of Rn+ ∩ H(1, u) from
where the random points are chosen. Thus for

f ∈ {1, . . . , n}n

we condition on the event yi ∈ e⊥
fi
. Because {y1, . . . , yn} ∈ (∂Rn+ ∩ H(1, u))n�=,

which means that not all points are contained in the same facet, we may assume that
f ∈ {1, . . . , n}n�= where we remove all n-tuples of the form (i, . . . , i) and denote the
remaining set by {1, . . . , n}n�=. Recalling (3.21), we obtain

Ek(1, u) =
∑

f∈{1,...,n}n�=

n∏

i=1

(1 − u2fi )
−1/2 (3.23)

×
∫

· · ·
∫

(∂Rn+∩H(1,u))n�=

λn−1([y1, . . . , yn])k
n∏

i=1

1(yi ∈ e⊥
fi ) dy1 . . . dyn .

A short computation shows that H(1, u) meets the coordinate axis in the points
(1/ui )ei . We substitute z = Ay, y = A−1z, where A is the affine map transforming
H(1, 1n) into H(1, u). Here 1n is the vector (1, . . . , 1)T . The map is given by

A =
⎛

⎜⎝
u1 0 · · · 0
...

. . .
...

0 · · · 0 un

⎞

⎟⎠ . (3.24)

The volume of the simplex Rn+ ∩ H−(1, u) is given by (1/n!)∏n
i=1(1/ui ), thus the

‘base’ Rn+ ∩ H(1, u) of this simplex has (n − 1)-volume (1/(n − 1)!)∏n
i=1(1/ui ).
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The regular simplex Rn+ ∩ H (1, 1n) has (n − 1)-volume
√
n/(n − 1)!. Hence

λn−1([A−1z1, . . . , A
−1zn])k = n−k/2

(
n∏

i=1

1

ui

)k
λn−1([z1, . . . , zn])k .

The (n−1)-volumeof the simplex spanned by the origin and the facet of ∂Rn+∩H(1, u)

in e⊥
i is given by (1/(n−1)!)∏ j �=i (1/u j ), its height by ‖(u1, . . . , ui−1, ui+1, un)‖−1

= (1− u2i )
−1/2 and hence the (n − 2)-volume of the facet of ∂Rn+ ∩ H(1, u) in e⊥

i is

λn−2(∂R
n+ ∩ e⊥

i ∩ H(1, u)) = (1 − u2i )
1/2

(n − 2)!
∏

j �=i

1

u j
.

Comparing this to the volume
√
n − 1/(n − 2)! of the facet of the simplex ∂Rn+ ∩

H(1, 1n) in e⊥
i which equals the volume ofRn−1+ ∩H(1, 1n−1) shows that the Jacobian

in e⊥
fi
of the map A is

λn−2(∂R
n+ ∩ e⊥

i ∩ H(1, u))

λn−2(∂R
n+ ∩ e⊥

i ∩ H(1, 1n))
= (n − 1)−1/2(1 − u2fi )

1/2
∏

j �= fi

1

u j
1(zi ∈ e⊥

fi ).

Combining these Jacobians with (3.23) we obtain

Ek(1, u) = n−k/2(n − 1)−n/2
∑

f∈{1,...,n}n�=

(
n∏

i=1

1

ui

)n+k n∏

i=1

u fi

×
∫

· · ·
∫

∂Rn+∩H(1,1n)

λn−1([z1, . . . , zn])k
n∏

i=1

1(zi ∈ e⊥
fi ) dz1 . . . dzn

=: n−k/2(n − 1)−n/2
∑

f∈{1,...,n}n�=

(
n∏

i=1

1

ui

)n+k n∏

i=1

u fi Ek, f ,

where Ek, f is independent of u. Together with (3.22) this finishes the proof. ��

In Sect. 3.6 we need an estimate for E0(h, u) in the case when there is a k ≤ n − 1
such that

h

u1
, . . . ,

h

uk
≤ 1 and

h

uk+1
, . . . ,

h

un
≥ 1, (3.25)
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see (3.29). Then H meets the coordinate axes in the points (h/ui )ei ∈ [0, 1]n for
i = 1, . . . , k, and the other points of intersection are outside of [0, 1]n . We set

E1
0 (h, u) =

∫
· · ·

∫

(∂[0,1]n∩H)n

n∏

j=1

J (Tx j , H)−1

×
n∏

f =1

1(|{x1, . . . , xn} ∩ e⊥
f | ≤ n − 1) dx1 . . . dxn .

Lemma 3.2 Let k ≤ n − 1 be given such that (3.25) holds. Then we have

E1
0 (h, u) ≤ cn,kh

−n
k∏

j=1

(
h

u j

)n ∑

f∈{1,...,n}n

k∏

j=1

(
u j

h

)m j

with m j = m j ( f ) = ∑n
i=1 1( fi = j) ≤ n − 1 for j ≤ k, and

∑k
i=1 mi ≤ n.

Proof First we compare the intersection of H with the facet of [0, 1]n in e⊥
f to the

intersection of H with the opposite facet of [0, 1]n in e f + e⊥
f , f = 1, . . . , n. For

i �= f the hyperplane H meets the coordinate axes lin{ei } in e⊥
f in points (h/ui )ei .

It meets the shifted coordinate axes e f + lin{ei } in the opposite facet in the points
e f + ((h − u f )/ui )ei . Because u ∈ Sn−1+ we have u f ≥ 0. This shows that the facet
of H ∩ [0, 1]n in e⊥

f contains the simplex

[{
h

ui
ei

}

i≤k,i �= f

]
. (3.26)

The opposite facet contains either the smaller simplex

[{
h − u f

ui
ei

}

i≤k,i �= f

]

if f ≥ k + 1 and h/u f > 1, and otherwise the intersection is empty, (H ∩ [0, 1]n) ∩
(e f + e⊥

f ) = ∅. The simplex (3.26) has volume

1

(k − 2)! · 1

h(1 − u2f )
−1/2

∏

i≤k,i �= f

h

ui

for f ≤ k, and

1

(k − 1)! · 1

h(1 − u2f )
−1/2

∏

i≤k

h

ui
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for f ≥ k + 1, the volume in the opposite facet clearly is smaller for f ≥ k + 1 or
vanishes for f ≤ k. We use J (Tx , H(h, u))−1 = J (Tx , H(1, u))−1 = (1 − u2f )

−1/2

for x ∈ e⊥
f . For f ≤ k this proves

∫

([0,1]n∩H)∩e⊥
f

J (Tx , H)−1dx = (1 − u2f )
−1/2

∫

([0,1]n∩H)∩e⊥
f

dx

≤ (n − k)(n−k)/2

(k − 2)! · 1
h

∏

i≤k,i �= f

h

ui
,

since (n−k)1/2 is the diameter of the (n−k)-dimensional unit cube. In this case there
is no simplex in the opposite facet. Analogously, for f ≥ k + 1

∫

([0,1]n∩H)∩e⊥
f

J (Tx , H)−1 dx ≤ (n − k − 1)(n−k−1)/2

(k − 1)! · 1
h

∏

i≤k

h

ui
and

∫

([0,1]n∩H)∩(e f +e⊥
f )

J (Tx , H)−1 dx ≤ (n − k − 1)(n−k−1)/2

(k − 1)! · 1
h

∏

i≤k

h

ui
.

Again we condition on the facets ∂[0, 1]n ∩ H(1, u) from where the random points
are chosen. Because of the term 1(|{x1, . . . , xn} ∩ e⊥

f | ≤ n − 1), it is impossible that

all points are contained in one of the facets in e⊥
f . Thus for f ≤ k we have at most

n − 1 points in ([0, 1]n ∩ H) ∩ e⊥
f and no point in ([0, 1]n ∩ H) ∩ (e f + e⊥

f ) because

this set is empty. For f ≥ k + 1 we have at most n − 1 points in ([0, 1]n ∩ H) ∩ e⊥
f

and maybe some additional points in ([0, 1]n ∩ H) ∩ (e f + e⊥
f ).

Now for j = 1, . . . , n there is some f j such that x j is either in the facet [0, 1]n∩e⊥
f j

or in the opposite facet [0, 1]n ∩ (e f j + e⊥
f j
). This defines a vector

f ∈ {1, . . . , n}n,

and we take into account that for f ≤ k,

m f =
n∑

j=1

1( f j = f ) ≤ n − 1.

This yields

E1
0 (h, u) =

∑

f∈{1,...,n}n

∏

j : f j≤k

⎛

⎜⎝
∫

∂[0,1]n∩H

J (Tx j , H)−11(x j ∈ e⊥
f j ) dx j

⎞

⎟⎠
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×
∏

j : f j≥k+1

⎛

⎜⎝
∫

∂[0,1]n∩H

J (Tx j , H)−11
(
x j ∈ e⊥

f j ∪ (e f j + e⊥
f j )

)
dx j

⎞

⎟⎠

≤ cn,kh
−n

k∏

j=1

(
h

u j

)n ∑

f∈{1,...,n}n

k∏

j=1

(
u j

h

)m j

with m j = m j ( f ) = ∑
i 1( fi = j) ≤ n − 1 for j ≤ k, and

∑k
1 mi ≤ ∑n

1 mi = n.

��

3.4 The Crucial Substitution

In the next sections we will end up with integrals over u ∈ Sn−1+ and where we split
the integrals in the part where h ≥ min1≤i≤n ui and the part where h ≤ min1≤i≤n ui .
Then the following substitution is helpful.

Lemma 3.3 Let f : (R+)n → R be an integrable function such that both sides of the
following equation are finite. Then

∫

Sn−1+

∫

R+

f

(
h

u1
, . . . ,

h

un

)
h−(n+1)dhdu =

∫
· · ·

∫

(R+)n

f (t1, . . . , tn)
n∏

i=1

t−2
i dt1 . . . dtn .

In particular we will make extensive use of the following version where we use that
the range of integration 0 ≤ h ≤ ui for all i = 1, . . . , n, is equivalent to ti ∈ [0, 1]:

∫

Sn−1+

min1≤i≤n{ui }∫

0

(
1 − a

∑
ui∏
ui

hn−1
)N−n

h−(n+1)
n∏

i=1

(
ui
h

)−(n+1+ε)+mi

dhdu

=
1∫

0

. . .

1∫

0

⎛

⎝1 − a
∑

i

∏

j �=i

t j

⎞

⎠
N−n

n∏

i=1

tn−1+ε−mi
i dt1 . . . dtn,

where ε ∈ {0, 1}, N is the number of chosen points and the mi are as in Lemma 3.2.

Proof The goal is to rewrite the integration dhdu over the set of hyperplanes into an
integrationwith respect to t1, . . . , tn where these are the intersections of the hyperplane
H(h, u) with the coordinate axis. First, the substitution r = h−1 leads to dh =
−r−2dr . Then we pass from polar coordinates (r , u) to the Cartesian coordinate
system: for h, r ∈ R+ and u ∈ Sn−1+ this gives

h−(n+1) dhdu = rn−1 dr du = dx1 . . . dxn .
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Now we substitute xi = 1/ti and take into account that

h−1 = r =
(

n∑

i=1

|xi |2
)1/2

=
(

n∑

i=1

∣∣∣∣
1

ti

∣∣∣∣
2
)1/2

.

Thus finally we have

h−(n+1) dhdu =
n∏

i=1

t−2
i dt1 . . . dtn

with h−1ui = rui = xi = t−1
i . ��

3.5 TheMain Term

By (3.10) and (3.15), for ε ∈ {0, 1} we have to investigate

I 1+ε
v = anv

∫

Sn−1+

min ui∫

0

(1 − avλn−1(∂R
n+ ∩ H−))N−nhε

×
∫

· · ·
∫

(∂Rn+∩H)n�=

λn−1([x1, . . . , xn])1+ε
n∏

j=1

J (Tx j , H)−1 dx1 . . . dxn dhdu

= anv

∫

Sn−1+

min ui∫

0

(1 − avλn−1(∂R
n+ ∩ H−))N−nhεE1+ε(h, u) dhdu,

where we use the notation from (3.20). Recall that H = H(h, u)meets the coordinate
axis in the points ti ei = (h/ui )ei , and hence

λn−1(∂R
n+ ∩ H−) = 1

(n − 1)! ·
∑

ui∏
ui

hn−1.

We plug this and the result of Lemma 3.1 into I 1+ε
v , set mi = ∑

j 1( f j = i), and
obtain

I 1+ε
v = n−(1+ε)/2(n − 1)−n/2anv

∑

f∈{1,...,n}n�=
E1+ε, f

×
∫

Sn−1+

min ui∫

0

(
1 − av

(n − 1)! ·
∑

ui∏
ui

hn−1
)N−n
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h−(n+1)
n∏

i=1

(
ui
h

)−(n+1+ε)+mi

dhdu.

Note that
∑

mi = n. We use the substitution introduced in Lemma 3.3 and use the
notation from Lemmata 2.3 and 2.4, in particular we use the functionJ ( · ) introduced
in (2.6),

I 1+ε
v = n−(1+ε)/2(n − 1)−n/2anv (n − 1)−ε

∑

f∈{1,...,n}n�=
E1+ε, f

×
1∫

0

. . .

1∫

0

⎛

⎝1 − av

(n − 1)!
∑

i

∏

j �=i

t j

⎞

⎠
N−n

n∏

i=1

tn−1+ε−mi
i dt1 . . . dtn

= n−(1+ε)/2(n − 1)−n/2anv (n − 1)−ε
∑

f∈{1,...,n}n�=
E1+ε, f J (m − (1 + ε)1),

with m = (m1, . . . ,mn). In the case ε = 1,

I 2v = n−2/2(n − 1)−n/2anv (n − 1)−1
∑

f∈{1,...,n}n�=
E2, fJ (m − 2 · 1),

and Lemma 2.3 (with L = −n) implies with a constant cm,n that depends onm and n,

I 2v = cna
−n/(n−1)
v

∑

f

E2, f cm,n N
−n−n/(n−1)(1 + O

(
N−1/((n−1)(n−2))))

= cna
−n/(n−1)
v N−n−n/(n−1)(1 + O

(
N−1/((n−1)(n−2)))),

(3.27)

where the implicit constant in O( · ) may depend on av . Because cm,n > 0, all terms
with f ∈ {1, . . . , n}n�= contribute. Geometrically this means that the contribution for
the volume difference comes from all facets of PN .

In the case ε = 0 the asymptotic results from Lemma 2.4 (with L = 0) give

I 1v = n−1/2(n − 1)−n/2anv
∑

f∈{1,...,n}n�=
E1, fJ (m − 1)

= cn
∑

f :�{mi>0}=2

E1, f dm,nN
−n(ln N )n−2(1 + O((ln N )−1)) (3.28)

+ cn
∑

f :�{mi>0}≥3

O(N−n(ln N )n−3)

= cnN
−n(ln N )n−2(1 + O((ln N )−1)),

where only those terms contribute for which fi is concentrated on two values, and
where the implicit constant in O( · ) may depend on av . We can apply Lemma 2.4
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as (3.8) holds. Geometrically this implies that the main contribution comes from that
facets of PN whose vertices are on precisely two facets of P .

3.6 The Error of the First Kind

Denote by diam(K ) the diameter of a convex set K . By (3.17) and (3.12), for the error
term we have to estimate

E1+ε
v ≤ (2a)n

∫

Sn−1+

diam(Av P)∫

min ui

(1 − aλn−1(∂AvP ∩ H−))Nhε

×
∫

· · ·
∫

(∂Av P∩H)n�=

λn−1([x1, . . . , xn])1+ε
n∏

j=1

J (Tx j , H)−1 dx1 . . . dxn dhdu

≤ (2a)n
∫

Sn−1+

diam(Av P)∫

min ui

(1 − aλn−1(∂AvP ∩ H−))Nhε

× λn−1(AvP ∩ H)1+ε

∫
· · ·

∫

(∂Av P∩H)n�=

n∏

j=1

J (Tx j , H)−1 dx1 . . . dxn dhdu

for ε = 0, 1. Recall that the hyperplane H = H(h, u) meets the coordinate axes in
the points (h/ui )ei . Hence the halfspace H− contains at least one unit vector since
h ≥ min ui . W.l.o.g. we multiply by

(n
k

)
, assume that it contains ek+1, . . . , en , and

thus the points of intersection satisfy

h

u1
, . . . ,

h

uk
≤ 1 and

h

uk+1
, . . . ,

h

un
≥ 1 (3.29)

with some0 ≤ k ≤ n−1.Then the convexhull of (h/u1)e1, . . . , (h/uk)ek, ek+1, . . . , en
is contained in AvP ∩ H− and we estimate

λn−1(∂AvP ∩ H−) ≥ 1

(n − 1)!
n∑

j=1

∏

i �= j

min

(
1,

h

ui

)

≥ 1

(n − 1)!
k∑

j=1

∏

i≤k,i �= j

h

ui
.

(3.30)

For k = 0, 1we have λn−1(∂AvP∩H−) ≥ 1/(n−1)! and thus Eε = O
(
e−aN/(n−1)!),

so serious estimates are only necessary in the cases 2 ≤ k ≤ n − 1. Next we use that
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AvP ⊂ [0, τ ]n for all Av and for some τ > 0. Thus

λn−1(AvP ∩ H) ≤ λn−1([0, τ ]n ∩ H) ≤ cnh
−1

k∏

i=1

h

ui
τ n−k (3.31)

because H meets the first k coordinate axes in h/u1, . . . , h/uk . This gives

E1+ε
v ≤ (2a)ncn

n−1∑

k=0

(
n

k

)
τ (n−k)(1+ε)

×
∫

Sn−1+

∫

h≤u1,...,uk
h≥uk+1,...,un

⎛

⎝1 − a

(n − 1)!
k∑

j=1

∏

i≤k,i �= j

h

ui

⎞

⎠
N

h−1

×
k∏

1

(
h

ui

)1+ε ∫
· · ·

∫

(∂Av P∩H)n�=

n∏

j=1

J (Tx j , H)−1 dx1 . . . dxn dhdu.

Now we deal with the inner integration with respect to x1, . . . , xn . We want to replace
∂AvP ∩ H by ∂[0, 1]n ∩ H . The main point here is to estimate J (Tx , H)−1 for
x /∈ ∂Rn+.

In general we have J (Tx , H) ∈ [0, 1] by definition. Recall that x ∈ H . The critical
equality J (Tx , H) = 0 can occur only if Tx = H , thus if H is a supporting hyperplane
H(hAv P (u), u) or H(hAv P (−u),−u) to AvP . Since u ∈ Sn−1+ , in the second case we
have hAv P (−u) = 0 and x ∈ ∂Rn+.

To exclude the first case we assume that λn−1(∂AvP ∩ H−) ≤ 1/2. In this case
H− cannot contain the point n−1/(n−1)(1, . . . , 1)T since otherwise ∂AvP∩H− would
contain ∂AvP ∩n−1/(n−1)[0, 1]n (recall that u ∈ Sn−1+ ) and this part has surface are 1.
Now we claim that there is a constant cAv P > 0 such that

J (Tx , H) ≥ cAv P if λn−1(∂AvP ∩ H−) ≤ 1

2
and x ∈ ∂AvP \ ∂Rn+.

(3.32)

If such a positive constant would not exist then (by the compactness of ∂AvP) there
would be a convergent sequence (xk, Hk) → (x0, H0) with J (Txk , Hk) → 0, where
xk ∈ Hk yields x0 ∈ H0 = H(h0, u0), u0 ∈ Sn−1+ . But in this case also

J (Txk , H0) → 0

and H0 is a supporting hyperplane at x0. Since u0 ∈ Sn−1+ this leads to two cases. The
first case is that

x0 ∈ H0 = H(hAv P (−u0),−u0), x0 ∈ ∂AvP ∩ ∂Rn+,
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but xk is not in ∂AvP ∩ ∂Rn+ and thus contained in some other facet of AvP . This
implies J (Txk , H0) � 0 as xk → x0, which is impossible. The second case is that x0
is contained in H0 = H(hAv P (u0), u0) where (1, . . . , 1)T ∈ H0−. Since this point
is in AvP , but all Hk− do not contain n−1/(n−1)(1, . . . , 1)T this again contradicts the
convergence Hk → H0. Hence such a sequence xk cannot exist, and (3.32) holds with
some constant cAv P > 0. Thus fromnowonwe assume thatλn−1(∂AvP∩H−) ≤ 1/2,
take into account an error term of order

(
1 − a

2

)N

= e−cN , (3.33)

and obtain by (3.32) that

∫

(∂Av P\∂Rn+)∩H

J (Tx , H)−1 dx

≤ c−1
Av P

λn−2(∂[0, τ ]n ∩ H) = c−1
Av P

∫

∂[0,τ ]n∩H

dx

(3.34)

because AvP is contained in the larger cube [0, τ ]n .
In the following we denote by Fc the union of the facets of AvP contained in ∂Rn+,

andby F0 the unionof the remaining facetswhich cover ∂AvP\∂Rn+, ∂AvP = Fc∪F0.
Then

∫
· · ·

∫

(∂Av P∩H)n�=

n∏

j=1

J (Tx j , H)−1 dx1 . . . dxn ≤
∫

· · ·
∫

(Fc∩H)n�=

n∏

j=1

J (Tx j , H)−1 dx1 . . . dxn

+
n∑

k=1

(
n

k

) ∫
· · ·

∫

(F0∩H)k×(Fc∩H)n−k

n∏

j=1

J (Tx j , H)−1 dx1 . . . dxn .

Because of (3.34) and using Fc ⊂ ∂[0, τ ]n , we obtain the upper bounds

∫
· · ·

∫

(F0∩H)k

k∏

j=1

J (Tx j , H)−1 dx1 . . . dxk ≤ c−n
Av P

∫
· · ·

∫

(∂[0,τ ]n∩H)k

dx1 . . . dxk

and ∫
· · ·

∫

(Fc∩H)n−k
�=

n∏

j=k+1

J (Tx j , H)−1dxk+1 . . . dxn

≤
∫

· · ·
∫

(∂[0,τ ]n∩H)n−k
�=

n∏

j=k+1

J (Tx j , H)−1dxk+1 . . . dxn,
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where (Fc ∩ H)n−k
�= = (Fc ∩ H)n−k for k ≥ 1. Combining these we get for k ≥ 1

∫
· · ·

∫

(F0∩H)k×(Fc∩H)n−k

n∏

j=1

J (Tx j , H)−1dx1 . . . dxn

≤ c−n
Av P

∫
· · ·

∫

(∂[0,τ ]n∩H)n

n∏

j=k+1

J (Tx j , H)−1dx1 . . . dxn .

Observe that for the (n − 1)-dimensional polytope [0, τ ]n ∩ H the area of each
(n−2)-dimensional facet is bounded by the sum of the areas of all other facets. Hence
excluding a facet from the range of integration of the inner integral with respect to x1
can be compensated by a factor 2,

∫

∂[0,τ ]n∩H

dx1 ≤ 2
∫

∂[0,τ ]n∩H

n∏

f=1

1(|{x1, . . . , xn} ∩ e⊥
f | ≤ n − 1)) dx1.

Since J (Tx j , H) is always less or equal one, this yields

∫
· · ·

∫

(∂Av P∩H)n�=

n∏

j=1

J (Tx j , H)−1dx1 . . . dxn

≤ 2c−n
Av P

n∑

k=0

(
n

k

) ∫
· · ·

∫

(∂[0,τ ]n∩H)n

n∏

j=1

J (Tx j , H)−1

×
n∏

f =1

1
(|{x1, . . . , xn} ∩ e⊥

f | ≤ n − 1
)
dx1 . . . dxn

≤ 2n+1c−n
Av P

∫
· · ·

∫

(∂[0,τ ]n∩H)n

n∏

j=1

J (Tx j , H)−1

×
n∏

f =1

1
(|{x1, . . . , xn} ∩ e⊥

f | ≤ n − 1
)
dx1 . . . dxn .

Substituting xi by τ xi we obtain

∫
· · ·

∫

(∂Av P∩H)n�=

n∏

j=1

J (Tx j , H)−1dx1 . . . dxn ≤ 2nτ n(n−2)c−n
Av P

E1
0

(
h

τ
, u

)
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with E1
0 ( · ) defined in front of Lemma 3.2. We make use of Lemma 3.2 for E1

0 and the
error term (3.33): for mi = ∑

j 1( f j = i) we get

E1+ε
v ≤ cv,P

n−1∑

k=0

∫

Sn−1+

∫

h≤u1,...,uk
h≥uk+1,...,un

⎛

⎝1 − a

(n − 1)!
k∑

j=1

∏

i≤k,i �= j

h

ui

⎞

⎠
N

h−(n+1)

×
k∏

j=1

(
h

u j

)n+1+ε
⎛

⎝
∑

f∈{1,...,n}n

k∏

j=1

(
u j

h

)m j

⎞

⎠ dhdu + O(e−cN )

withmi ≤ n−1 for j ≤ k,
∑k

1 mi ≤ n, and where cv,P depends on n, cAv P ,max cn,k

and τ . Next we use the substitution from Lemma 3.3:

E1+ε
v ≤ cn,Av P

n−1∑

k=0

∑

f∈{1,...,n}n

∫
· · ·

∫

t1,...tk≤1
teak+1,...,tn≥1

⎛

⎝1 − a

(n − 1)!
k∑

j=1

∏

i≤k,i �= j

ti

⎞

⎠
N

×
k∏

i=1

tn−1+ε−mi
i

n∏

i=k+1

t−2
i dt1 . . . dtn + O(e−cN ).

The integrations with respect to tk+1, . . . , tn are immediate since the only terms occur-
ring are t−2

i , and we have

E1+ε
v ≤ cn,Av P

n−1∑

k=0

∑

f∈{1,...,n}n

1∫

0

. . .

1∫

0

⎛

⎝1 − a

(n − 1)!
k∑

j=1

∏

i≤k,i �= j

ti

⎞

⎠
N

×
k∏

i=1

tk−2−(mi−(n−k+1+ε))
i dt1 . . . dtk + O(e−cN ).

with 0 ≤ mi ≤ n − 1. We set li = mi − (n − k + 1 + ε)). To apply Lemma 2.4 in
the case ε = 0 we have to check that there are i �= j with li , l j > L/(k − 1) − 1. Set
M = ∑k

1 mi ≤ n. We have

li − L

k − 1
+ 1 = mi − (n − k + 1) − 1

k − 1

k∑

j=1

(m j − (n − k + 1)) + 1

= mi + n − M

k − 1
≥ 0

and equality holds only if M = n and mi = 0. But M = n and mi ≤ n − 1 imply
that there are at least two different indices i, j with mi > 0. Hence we may apply

123



482 Discrete & Computational Geometry (2023) 69:453–504

Lemma 2.4 (and if mi ≥ 1 for all i even Lemma 2.3) which tells us that the integral
is bounded by

O
(
N−k+L/(k−1)(ln N )k−2) = O

(
N (M−nk)/(k−1)(ln N )n−3) = O

(
N−n(ln N )n−3).

This finally proves

E1
v = O

(
N−n(ln N )n−3). (3.35)

In the case ε = 1 we have li = mi − (n − k + 2), and with M = ∑k
1 mi ≤ n this

gives

li − L

k − 1
+ 1 = mi − (n − k + 2) − 1

k − 1

k∑

j=1

(m j − (n − k + 2)) + 1

= mi + n + 1 − M

k − 1
> 0

since M ≤ n. Thus the integral is of order

O
(
N−k+L/(k−1)) = O

(
N (M−k(n+1))/(k−1)) = O

(
N−n−(n−1)/(n−2))

and

E2
v = O

(
N−n−(n−1)/(n−2)). (3.36)

3.7 The Error of the Second Kind

Here we have to evaluate the following estimate of EVn(DN ) of (3.18),

f1(P) d

τ∫

0

. . .

τ∫

0

(
1−aλn−1(∂R

n+ ∩ [0,min(1, x1)e1, . . . ,min(1, xn−1)en−1, en])
)N

dx1 . . . dxn .

The integration with respect to xn is immediate. We may assume without loss of
generality that for k = 0, . . . , n − 1 precisely k of the coordinates of x are bounded
by 1,

x1, . . . , xk ≤ 1, xk+1, . . . , xn−1 ≥ 1.

For k = 0, 1 we have

τ∫

0

. . .

τ∫

0

(
1 − a

(n − 1)!
)N

dx1 . . . dxn−1 = O
(
e−aN/(n−1)!).
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So we assume 2 ≤ k ≤ n − 1. Then the volume of the boundary of the simplex is
given by

λn−1
(
∂Rn+ ∩ [0,min(1, x1)e1, . . . ,min(1, xn−1)en−1, en]

)

=
n∑

j=1

1

(n − 1)!
∏

i≤n,i �= j

min(1, xi ) ≥
k∑

j=1

1

(n − 1)!
∏

i≤k,i �= j

xi .

Therefore we obtain

τ∫

0

. . .

τ∫

0

⎛

⎝1 − a

(n − 1)!
k∑

j=1

∏

i≤k,i �= j

xi

⎞

⎠
N

dx1 . . . dxn−1

≤ τ n

1∫

0

. . .

1∫

0

⎛

⎝1 − aτ k−1

(n − 1)!
k∑

j=1

∏

i≤k,i �= j

ti

⎞

⎠
N−k

dt1 . . . dtn−1

× τ n
(

aτ k−1

(n − 1)!
)−k/(k−1)

(k − 1)−1	

(
1

k − 1

)k
N−k/(k−1)(1 + o(1)),

where we used Lemma 2.3 with li = k − 2, L = k(k − 2), which implies li >

L/(k − 1) − 1 = k − 2 − 1/(k − 1). As k ≤ n − 1 we obtain

EVn(DN ) = O
(
N−(n−1)/(n−2)).
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Appendix: Some Asymptotic Expansions

Appendix A: A Useful Substitution

Let Sn is the set of all permutations of {1, . . . , n}. We start with the following obser-
vation.
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Lemma A.1 Let f : (0,∞)n → (0,∞)n be defined by

f j (x) =
∏

i �= j

xi , j = 1, . . . , n.

(i) The inverse function to f is g : (0,∞)n → (0,∞)n given by

gi (x) = 1

xi

(
n∏

k=1

xk

)1/(n−1)

.

(ii) f maps the open set (0, 1)n bijectively onto

{
y ∈ (0, 1)n

∣∣∣ ∀ i = 1, . . . , n :
n∏

k=1

yk < yn−1
i

}
. (A.37)

(iii) The set

{
x ∈ (0, β)n

∣∣∣ ∀ i = 1, . . . , n :
n∏

k=1

xk < β · xn−1
i

}
(A.38)

equals

⋃

π∈Sn

{(xπ(1), . . . , xπ(n)) | x ∈ M}, (A.39)

where M is the set of all x ∈ (0,∞)n with xn ≤ xn−1 ≤ . . . ≤ x1 and

β · x3 > x1 · x2,
β · x24 > x1 · x2 · x3,

...

β · xn−2
n > x1 · · · xn−1.

(A.40)

Proof (i) For all j = 1, . . . , n

f j (g(x)) =
∏

i �= j

gi (x) =
∏

i �= j

⎛

⎝ 1

xi

(
n∏

k=1

xk

)1/(n−1)
⎞

⎠ = x j

and for all i = 1, . . . , n

gi ( f (x)) = gi

⎛

⎝
∏

k �=1

xk, . . . ,
∏

k �=n

xk

⎞

⎠ =
⎛

⎝
∏

k �=i

xk

⎞

⎠
−1 ⎛

⎝
n∏

j=1

∏

k �= j

xk

⎞

⎠
1/(n−1)

= xi .
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(ii) We show that f maps an element x ∈ (0, 1)n to an element of the set defined
by (A.37). Indeed, for all x ∈ (0, 1) we have

∏

j �=i

x j ∈ (0, 1).

Moreover,

n∏

j=1

f j (x) =
n∏

j=1

∏

k �= j

xk =
⎛

⎝
n∏

j=1

x j

⎞

⎠
n−1

.

Since for all i = 1, . . . , n we have xi ∈ (0, 1) we get for all i = 1, . . . , n

n∏

j=1

f j (x) <

⎛

⎝
∏

j �=i

x j

⎞

⎠
n−1

= fi (x)
n−1.

Thus f maps (0,∞)n into the set defined by (A.37). Now we show that g maps an
element y of the set defined by (A.37) to an element of (0, 1)n . Since

∏n
k=1 yk < yn−1

i ,

gi (y) = 1

yi

(
n∏

k=1

yk

)1/(n−1)

< 1.

(iii) We show that the set defined by (A.39) contains the set defined by (A.38). Let x
be an element of the set defined by (A.38). There is a permutation π such that

xπ(n) ≤ xπ(n−1) ≤ . . . ≤ xπ(1)

and for all i = 1, . . . , n,

n∏

k=1

xπ(k) < βxn−1
π(i) . (A.41)

We prove by induction that (xπ(1), . . . , xπ(n)) ∈ M . The last inequality of (A.41)
follows from (A.38) for i = n. Suppose now thatwehaveverified the last k inequalities,
i.e.,

βxn−2
π(n) > xπ(1) · · · xπ(n−2) · xπ(n−1),

βxn−3
π(n−1) > xπ(1) · · · xπ(n−2),

...

βxn−k−1
π(n−k+1) > xπ(1) · · · xπ(n−k).
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By (A.40),

βxn−1
π(n−k) >

n∏

j=1

xπ( j).

We substitute for xn, . . . , xn−k+1 using the above inequalities already obtained.

xπ(n−k) >

⎛

⎝ 1

β

n∏

j=1

xπ( j)

⎞

⎠
1/(n−1)

>

⎛

⎝
(
1

β

)1+1/(n−2) n−1∏

j=1

x1+1/(n−2)
π( j)

⎞

⎠
1/(n−1)

=
⎛

⎝ 1

β

n−1∏

j=1

xπ( j)

⎞

⎠
1/(n−2)

>

⎛

⎝
(
1

β

)1+1/(n−3) n−2∏

j=1

x1+1/(n−3)
j

⎞

⎠
1/(n−2)

=
⎛

⎝ 1

β

n−2∏

j=1

xπ( j)

⎞

⎠
1/(n−3)

...

>

⎛

⎝
(
1

β

)1+1/(n−k−1) n−k∏

j=1

x1+1/(n−k−1)
π( j)

⎞

⎠
1/(n−k)

=
⎛

⎝ 1

β

n−k∏

j=1

xπ( j)

⎞

⎠
1/(n−k−1)

or, equivalently,

xn−k−2
π(n−k) >

1

β

n−k−1∏

j=1

xπ( j),

as long as n−k−2 ≥ 1. Thus the last inequality is x3 > (1/β) · x1 · x2. Now we show
that (A.39) is contained in (A.38). It is enough to show that M is a subset of (A.38).
Let x ∈ M . By the last inequality of (A.40)

x1 · x2 · . . . · xn < βxn−1
n .

Since xn < xn−1 < . . . < x1 we get for all i = 1, . . . , n

x1 · x2 · . . . · xn < βxn−1
n < βxn−1

i . ��
Recall the definition (2.6):

J (l) =
1∫

0

. . .

1∫

0

⎛

⎝1 − α

n∑

i=1

∏

j �=i

t j

⎞

⎠
N−n

n∏

i=1

tn−2−li
i dt1 . . . dtn .
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Lemma A.2 Let α > 0, and l = (l1, . . . , ln), L = ∑n
1 li , with li < n − 1 for all

i = 1, . . . , n. Then we have

J (l) =
(

1

α(N − n)

)n−L/(n−1) 1

n − 1

×
α(N−n)∫

0

. . .

α(N−n)∫

0︸ ︷︷ ︸
∀ i :∏n

1 s
1/(n−1)
j ≤(α(N−n))1/(n−1)si

(
1 − 1

N − n

n∑

i=1

si

)N−n n∏

i=1

sli−L/(n−1)
i dsn . . . ds1.

Proof By the assumption li < n − 1 for all i = 1, . . . , n the integral is finite. We use
the transformation of Lemma A.1: For i, j = 1, . . . , n,

v j =
∏

i �= j

ti and ti = 1

vi

(
n∏

k=1

vk

)1/(n−1)

. (A.42)

The partial derivatives of t with respect to v are for i �= j

dti
dv j

= 1

n − 1
· 1

v jvi

(
n∏

k=1

vk

)1/(n−1)

and for i = j

dti
dvi

=
(

1

n − 1
− 1

)
1

v2i

(
n∏

k=1

vk

)1/(n−1)

.

This allows computation of the Jacobian

J = det

(
∂ti
∂v j

)n

i, j=1

=
⎛

⎝
n∏

k=1

vk

⎞

⎠
n/(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
−1 + 1

n − 1

)
1

v21

1

n − 1
· 1

v1v2

1

n − 1
· 1

v1v3
· · · 1

n − 1
· 1

v1vn
1

n − 1
· 1

v1v2

(
−1 + 1

n − 1

)
1

v22

1

n − 1
· 1

v2v3
· · · 1

n − 1
· 1

v2vn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

n − 1
· 1

v1vn

1

n − 1
· 1

v2vn

1

n − 1
· 1

v3vn
· · ·

(
−1 + 1

n − 1

)
1

v2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (n − 1)−n

⎛

⎝
n∏

k=1

vk

⎞

⎠
n/(n−1)−2

∣∣∣∣∣∣∣∣∣∣

2 − n 1 1 · · · 1
1 2 − n 1 · · · 1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

1 1 1 · · · 2 − n

∣∣∣∣∣∣∣∣∣∣

.
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The remaining determinant can be calculated explicitly by use of the formula

∣∣∣∣∣∣∣∣∣

1 + x1 1 1 · · · 1
1 1 + x2 1 · · · 1
...

...
...

1 1 1 · · · 1 + xn

∣∣∣∣∣∣∣∣∣

=
n∏

i=1

xi +
n∑

i=1

⎛

⎝
∏

j �=i

x j

⎞

⎠ (A.43)

which yields, with xi = 1 − n,

J = (−1)n−1

n − 1

(
n∏

k=1

vk

)−(n−2)/(n−1)

= (−1)n−1

n − 1

(
n∏

i=1

ti

)−(n−2)

. (A.44)

Applying the transformation theorem gives

J (l) = 1

n − 1

1∫

0

. . .

1∫

0︸ ︷︷ ︸
∀i :∏n

1 v
1/(n−1)
j ≤vi

(
1 − α

n∑

i=1

vi

)N−n n∏

i=1

v
li−L/(n−1)
i dvn . . . dv1.

In the last step we substitute vi = si/(α(N − n)) and obtain

(
1

α(N − n)

)n−L/(n−1) 1

n − 1

α(N−n)∫

0

. . .

α(N−n)∫

0︸ ︷︷ ︸
∀i :∏n

1 s
1/(n−1)
j ≤(α(N−n))1/(n−1)si

(
1 − 1

N − n

n∑

i=1

si

)N−n

×
n∏

i=1

sli−L/(n−1)
i dsn . . . ds1. ��

Lemma A.3 Let α > 0, and l = (l1, . . . , ln), L = ∑n
1 li , with li < n − 1 for all

i = 1, . . . , n. Then we have

J (l) =
(

1

α(N − n)

)n−L/(n−1) 1

n − 1
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×
∑

π∈Sn

α(N−n)∫

0

s1∫

0

. . .

sn−1∫

0︸ ︷︷ ︸
∀i≥3 : (s1···si−1/(α(N−n)))1/(i−2)≤si

(
1 − 1

N − n

n∑

i=1

si

)N−n

×
n∏

i=1

s
lπ(i)−L/(n−1)
i dsn . . . ds1.

Proof By the assumption li < n − 1 for all i = 1, . . . , n the integrals are finite. The
result follows from Lemmas A.1 and A.2. ��

Appendix B: Proof of Lemma 2.3

Our goal is to prove Lemma 2.3, which is the asymptotic formula

J (l) =
1∫

0

. . .

1∫

0

⎛

⎝1 − α
∑

i

∏

j �=i

t j

⎞

⎠
N−n

n∏

i=1

tn−2−li
i dt1 . . . dtn

= α−n+L/(n−1)(n − 1)−1

×
n∏

i=1

	

(
li − L

n − 1
+ 1

)
N−n+L/(n−1)(1 + O

(
N−(mink lk−L/(n−1)+1)/(n−2)))

as N → ∞, where n ≥ 2, 0 < α < 1/n, and l = (l1, . . . , ln), L = ∑n
1 li , with

n − 1 > li > L/(n − 1) − 1.

Proof By Lemma A.2 we have

J (l) =
(

1

α(N − n)

)n−L/(n−1) 1

n − 1
α(N−n)∫

0

. . .

α(N−n)∫

0

n∏

i=1

1

(
(α(N − n))−1/(n−1)

n∏

i=1

s1/(n−1)
j ≤ si

)

×
(
1 − 1

N − n

n∑

i=1

si

)N−n n∏

i=1

sli−L/(n−1)
i dsn . . . ds1.

Because et (1 − t) ≥ (1 + t)(1 − t) = (1 − t2) for |t | ≤ 1 and (1 − t2)m ≥ 1 − mt2,
we have

0 ≤ e−x −
(
1 − x

N − n

)N−n

≤ e−x

(
1 −

(
1 − x2

(N − n)2

)N−n
)
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≤ e−x x2

N − n
(B.45)

for |x | ≤ N − n. This yields

J (l) =
(

1

α(N − n)

)n−L/(n−1) 1

n − 1
α(N−n)∫

0

. . .

α(N−n)∫

0

n∏

i=1

1

(
(α(N − n))−1/(n−1)

n∏

i=1

s1/(n−1)
j ≤ si

)−∑n
i=1 si

×
(
1 + O

(
N−1

n∑

i=1

s2i

))
n∏

i=1

sli−L/(n−1)
i dsn . . . ds1.

Integrating the terms containing O
(
N−1 ∑n

i=1 s
2
i

)
yields incomplete Gamma func-

tions times a term O
(
N−n+L/(n−1)−1

)
. The main term gives

α(N−n)∫

0

. . .

α(N−n)∫

0

n∏

i=1

1

(
(α(N − n))−1/(n−1)

n∏

1

s1/(n−1)
j ≤ si

)
e−∑n

i=1 si

×
n∏

i=1

sli−L/(n−1)
i dsn . . . ds1

≤
n∏

i=1

	

(
li − L

n − 1
+ 1

)
−

∫

DN

e−∑n
i=1 si

n∏

i=1

sli−L/(n−1)
i dsn . . . ds1,

where DN is the set where at least one of the terms

1

(
(α(N − n))−1/(n−1)

n∏

1

s1/(n−1)
j ≤ si ≤ α(N − n)

)

equals zero. Thus DN is covered by the unions of the sets

DN ,k = {sk : sk ≥ α(N − n)}, D′
N ,k =

⎧
⎨

⎩sk : sn−2
k ≤ (α(N − n))−1

∏

j �=k

s j

⎫
⎬

⎭ .

Integration on the set DN ,k gives

∫

DN ,k

e−∑n
i=1 si

n∏

i=1

sli−L/(n−1)
i dsn . . . ds1
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≤
∏

i �=k

	

(
li − L

n − 1
+ 1

) ∞∫

α(N−n)

e−sk slk−L/(n−1)
k dsk

= O
(
e−αN Nli−L/(n−1))

and the contribution of the sets D′
N ,k gives

∫

D′
N ,k

e−∑n
i=1 si

n∏

i=1

sli−L/(n−1)
i dsn . . . ds1

≤ (α(N − n))−(lk−L/(n−1)+1)/(n−2)

×
∫

· · ·
∫

si≥0
sk≤∏

j �=k s
1/(n−2)
j

e−∑
j �=k s j

n∏

i=1

sli−L/(n−1)
i dsn . . . ds1

= O
(
N−(lk−L/(n−1)+1)/(n−2)).

Hence the error term of the integration over DN is of order

O
(
N−(mink lk−L/(n−1)+1)/(n−2))

for li − L/(n − 1) + 1 > 0. ��

Appendix C: Proof of Lemma 2.4

Our next goal is to prove Lemma 2.4 which deals with the case when some of the li
are extremal in the sense that li = L/(n − 1) − 1. If for at least three different indices
i, j, k we have the strict inequality that li , l j , lk > L/(n − 1) − 1, then we want to
prove that

J (l) =
1∫

0

. . .

1∫

0

⎛

⎝1 − α
∑

i

∏

j �=i

t j

⎞

⎠
N−n

n∏

i=1

tn−2−li
i dt1 . . . dtn

= O
(
N−n+L/(n−1)(ln N )n−3).

If for exactly two different indices i, j we have the strict inequality that li , l j >

L/(n − 1) − 1 and equality lk = L/(n − 1) − 1 for all other lk , then we will show
that

J (l) = cnα
−n+L/(n−1)	

(
li − L

n − 1
+ 1

)

×	

(
l j − L

n − 1
+ 1

)
N−n+L/(n−1)(ln N )n−2(1 + O((ln N )−1))
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with some cn > 0. First we show that J (l) is at least of order N−n+L/(n−1)(ln N )n−2,
and thus the strict inequality cn > 0.

Lemma C.1 There is a constant cn,α > 0 such that for all n− 1 > li ≥ L/(n− 1)− 1
we have

J (l) ≥ cn,αN
−n+L/(n−1)(ln N )#{i |li=L/(n−1)−1}

for N sufficiently large.

Proof We use Lemma A.2. Since the integrand is positive, for N sufficiently large,

J (l) = cn,α(N − n)−n+L/(n−1)

α(N−n)∫

0

. . .

α(N−n)∫

0︸ ︷︷ ︸
∀i :∏n

1 s
1/(n−1)
j ≤(α(N−n))1/(n−1)si

(
1 − 1

N − n

n∑

i=1

si

)N−n

×
n∏

i=1

sli−L/(n−1)
i dsn . . . ds1

≥ cn,α(N − n)−n+L/(n−1)

1∫

0

. . .

1∫

0︸ ︷︷ ︸
∀i :∏n

1 s
1/(n−1)
j ≤(α(N−n))1/(n−1)si

(
1 − 1

N − n

n∑

i=1

si

)N−n

×
n∏

i=1

sli−L/(n−1)
i dsn . . . ds1

≥ cn,α(N − n)−n+L/(n−1)

1∫

0

. . .

1∫

0︸ ︷︷ ︸
∀i : 1≤(α(N−n))1/(n−1)si

(
1 − 1

N − n

n∑

i=1

si

)N−n

×
n∏

i=1

sli−L/(n−1)
i dsn . . . ds1

≥ cn,α(N − n)−n+L/(n−1)
(
1 − n

N − n

)N−n 1∫

(α(N−n))−1/(n−1)

. . .

1∫

(α(N−n))−1/(n−1)

×
n∏

i=1

sli−L/(n−1)
i dsn . . . ds1

= cn,α(N − n)−n+L/(n−1)
(
1 − n

N − n

)N−n n∏

i=1

1∫

(α(N−n))−1/(n−1)

sli−L/(n−1)
i dsi .
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For those i with li − L/(n − 1) = −1,

1∫

(α(N−n))−1/(n−1)

sli−L/(n−1)
i dsi = ln α(N − n)

n − 1
≥ ln N

2(n − 1)
,

and for those i with li − L/(n − 1) > −1,

1∫

(α(N−n))−1/(n−1)

sli−L/(n−1)
i dsi = 1 − α(N − n)−(li−L/(n−1)+1)/(n−1)

li − L/(n − 1) + 1

≥ 1

2(li − L/(n − 1) + 1)
,

both for N sufficiently large. ��
To show that this yields in fact the correct order we introduce in the light of LemmaA.3
integrals of the type

S(q) =
α(N−n)∫

0

s1∫

0

. . .

sn−1∫

0︸ ︷︷ ︸
∀i≥3 : (s1···si−1/(α(N−n)))1/(i−2)≤si

(
1 − 1

N − n

n∑

i=1

si

)N−n n∏

i=1

sqii dsn . . . ds1.

Lemma C.2 Assume α ≤ 1/(2n), and that q = (q1, . . . , qn) ∈ Rn, qi ≥ −1, and
there are i �= j with qi , q j > −1. Then there is a constant cq,n ≥ 0 independent of α
such that

S(q) = cq,n(ln N )n−2 + O((ln N )n−3)

as N → ∞. More precisely, if q1, q2 > −1 and q3 = . . . = qn = −1, then

S(q1, q2,−1, . . . ) + S(q2, q1,−1, . . . ) (C.46)

= cn	(q1 + 1)	(q2 + 1)(ln N )n−2 + O((ln N )n−3)

with some cn ≥ 0. If there exists an m ≥ 3 with qm > −1, then cq,n = 0 and

S(q) = O((ln N )n−3). (C.47)

In other words, the only asymptotically contributing terms are those with q1, q2 > −1
and q3 = . . . = qn = −1. We will prove Lemma C.2 below and before this show that
it implies Lemma 2.4.
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Proof of Lemma 2.4 For l = (l1, . . . , ln), L = ∑n
1 li , with li < n − 1, Lemma A.3

tells us that

J (l) =
(

1

α(N − n)

)n−L/(n−1) 1

n − 1

×
∑

π∈Sn

α(N−n)∫

0

s1∫

0

. . .

sn−1∫

0︸ ︷︷ ︸
∀i≥3 : (s1···si−1/(α(N−n)))1/(i−2)≤si

(
1 − 1

N − n

n∑

i=1

si

)N−n

×
n∏

i=1

s
lπ(i)−L/(n−1)
i dsn . . . ds1

=
(

1

α(N − n)

)n−L/(n−1) 1

n − 1

∑

π∈Sn

S
(
lπ − L

n − 1
1
)

.

Assume that li ≥ L/(n − 1) − 1 for all i , and there exists some tuple i �= j with
li , l j > L/(n − 1) − 1. If lπ(1), lπ(2) > L/(n − 1) − 1 and lπ(i) = L/(n − 1) − 1 for
all i ≥ 3, we have that

S
(
lπ − L

n − 1
1
)

= clπ−(L/(n−1))1,n(ln N )n−2 + O((ln N )n−3)

where the constant is non-negative. If lπ(i) > L/(n − 1) − 1 for some i ≥ 3, then

S
(
lπ − L

n − 1
1
)

= O((ln N )n−3).

Hence, depending on l = (l1, . . . , ln), there are two cases.

• We have lk = L/(n − 1) − 1 for all except two indices i �= j : Then there are
(n−2)! permutations which bring li , l j into the first two places with order (li , l j ),
resp. (l j , li ) and allow for an application of (C.46). All other permutations add
terms of order O((ln N )n−3). Summing over these possibilities, we have

J (l) =
(

1

α(N − n)

)n−L/(n−1)
(n − 2)!
n − 1

cn	

(
li − L

n − 1
+ 1

)

× 	

(
l j − L

n − 1
+ 1

)
(ln N )n−2(1 + O((ln N )−1)
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= cnα
−n+L/(n−1)	

(
li − L

n − 1
+ 1

)
	

(
l j − L

n − 1
+ 1

)

× N−n+L/(n−1)(ln N )n−2(1 + O((ln N )−1).

• There exist at least three different li , l j , lk > L/(n − 1) − 1. This yields

J (l) = O
(
N−n+L/(n−1)(ln N )n−3).

The implicit constants in O( · ) may depend on α. These estimates imply Lemma 2.4.
��

Proof of Lemma C.2 The proof of the lemma is divided into four parts. Lemmata C.3
andC.5 give the crucial estimates. Equation (C.46) when q3 = . . . = qn = −1 follows
from Lemma C.4,

S(q1, q2,−1, . . . ,−1)

= cn ln(N − n)n−2

α(N−n)∫

0

s1∫

0

(
1 − s1 + s2

N − n

)N−n

sq11 sq22 ds2ds1

+ O((ln N )n−3).

We replace (1 − (s1 + s2)/(N − n))N−n by the exponential function using (B.45):

α(N−n)∫

0

s1∫

0

(
1 − s1 + s2

N − n

)N−n

sq11 sq22 ds2ds1

=
α(N−n)∫

0

s1∫

0

e−(s1+s2)
(
1 + O(N−1(s1 + s2)

2)
)
sq11 sq22 ds2ds1

=
∞∫

0

∞∫

0

1(s2 ≤ s1)e
−(s1+s2)sq11 sq22 ds2ds1

−
∞∫

α(N−n)

s1∫

0

e−(s1+s2)sq11 sq22 ds2ds1 + O(N−1).

Clearly the integral in the last line is of order O(e−N Nq1). Hence

S(q1, q2,−1, . . . ,−1) + S(q2, q1,−1, . . . ,−1)

= cn	(q1 + 1)	(q2 + 1)(ln N )n−2 + O((ln N )n−3).

(C.47) is proved in Lemma C.6. ��
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Lemma C.3 Assume sn ≤ . . . ≤ s1 ≤ α(N − n), 3 ≤ m ≤ n, and sm−1 ≤ 1. Then for
α ≤ 1/(2n) and k ≥ 0 we have

1

k + 1

(
1 − 1

N − n

m−1∑

1

si

)N−n ((
− 1

m − 2
ln

s1 · · · sm−1

α(N − n)

)k+1

−(− ln sm−1)
k+1 − 2	(k + 2)

)

≤
sm−1∫

(s1···sm−1/(α(N−n)))1/(m−2)

(
1 − 1

N − n

m∑

1

si

)N−n

s−1
m (− ln sm)k dsm

≤ 1

k + 1

(
1 − 1

N − n

m−1∑

1

si

)N−n ((
− 1

m − 2
ln

s1 · · · sm−1

α(N − n)

)k+1

−(− ln sm−1)
k+1

)
.

Proof We use the notation S := (∑m−1
1 si )/(N − n). By assumption α ≤ 1/(2n).

This implies

S = 1

N − n

m−1∑

1

si ≤ ns1
N − n

≤ nα ≤ 1

2
.

And for S ≤ 1/2 and x ≥ 0 we have

(1 − S)(1 − 2x) ≤ (1 − (S + x)) ≤ 1 − S. (C.48)

The essential observation is that for a, b ∈ (0, 1) and k ≥ 0,

∫ b

a
(− ln s)k ds =

∫ − ln a

− ln b
tke−t dt ≤

∫ ∞

0
tke−t dt = 	(k + 1) (C.49)

and

∫ b

a
s−1(− ln s)k ds = − (− ln s)k+1

k + 1

∣∣∣
b

a
= (− ln b)k+1

k + 1
− (− ln a)k+1

k + 1
. (C.50)

Because of (C.48) and (C.50) we obtain

sm−1∫

(s1···sm−1/(α(N−n)))1/(m−2)

(
1 − S − sm

N − n

)N−n

s−1
m (− ln sm)k dsm
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≤ (1 − S)N−n

sm−1∫

(s1···sm−1/(α(N−n)))1/(m−2)

s−1
m (− ln sm)k dsm

= (1 − S)N−n

k + 1

((
− 1

m − 2
ln

s1 · · · sm−1

α(N − n)

)k+1

− (− ln sm−1)
k+1

)
.

Again by (C.48) and (C.50), by the elementary inequality (1 − y)k ≥ (1 − ky) for
y ≤ 1 and by (C.49)

sm−1∫

(s1···sm−1/(α(N−n)))1/(m−2)

(
1 − S − sm

N − n

)N−n

s−1
m (− ln sm)k dsm

≥ (1 − S)N−n

sm−1∫

(s1···sm−1/(α(N−n)))1/(m−2)

(1 − 2sm)s−1
m (− ln sm)k dsm

= (1 − S)N−n

k + 1

((
− 1

m − 2
ln

s1 · · · sm−1

α(N − n)

)k+1

− (− ln sm−1)
k+1

−2(k + 1)	(k + 1)

)
.

This proves the lemma. ��
With the help of this lemma we determine the asymptotic behavior of the dominant
terms.

Lemma C.4 There is a constant cn, such that for q1, q2 > −1 and α ≤ 1/(2n) we
have

S(q1, q2,−1, . . . ,−1)

= cn(ln(N − n))n−2

α(N−n)∫

0

s1∫

0

(
1 − s1 + s2

N − n

)N−n

sq11 s
q2
2 ds2ds1

+ O((ln N )n−3).

Proof We denote the range of integration of S(q) by I and dissect this along the sets

Ik := {0 ≤ sn ≤ . . . ≤ sk ≤ 1 ≤ sk−1 ≤ . . . ≤ s3},

for k = 3, . . . , n, and

In+1 := {1 ≤ sn ≤ . . . ≤ s3}.
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The dominant term is the one with I ∩ I3 = I ∩ {0 ≤ sn ≤ . . . ≤ s3 ≤ 1} as range
of integration. Hence in the first part of the proof we assume si ≤ 1 for i = 3, . . . , n.
For m = 2, . . . , n − 1 we define

Sn−m(s1, . . . , sm)

=
sm∫

(s1···sm/(α(N−n)))1/(m−1)

· · ·
sn−1∫

(s1···sn−1/(α(N−n)))1/(n−2)

(
1 − 1

N − n

n∑

i=1

si

)N−n

×
n∏

i=m+1

s−1
i dsn . . . dsm+1

and claim that

Sn−m(s1, . . . , sm) =
(
1 − 1

N − n

m∑

i=1

si

)N−n [
Pn−m(ln(N − n), ln s1, . . . , ln sm)

+ En−m(ln(N − n), ln s1, . . . , ln sm)
]

(C.51)

where Pn−m is a homogeneous polynomial of degree n − m independent of α, and
the error term En−m is a function whose absolute value is bounded by a polynomial
Qn−m−1 of degree at most n−m−1 whose coefficients may depend on α. To shorten
the following formulae we suppress the arguments of Pn−m , En−m , and Qn−m−1 from
now on.

We use induction in m, starting with m = n − 1 and going down to m = 2. For
m = n−1 and P0 = 1 in the first stepwe obtainS1 = (1−(N−n)−1(

∑
si ))(P1+E1)

by Lemma C.3 (where k = 0) with

− 1

n − 2
ln

1

α
− 2 = −Q0 ≤ E1 ≤ − 1

n − 2
ln

1

α
and

P1 = − 1

(n − 2)
ln

s1 · · · sn−1

N − n
+ ln sn−1.

Assume that (C.51) holds. Then

Sn−m+1(s1, . . . , sm−1)

=
sm−1∫

(s1···sm−1/(α(N−n)))1/(m−2)

(
1 − 1

N − n

m∑

i=1

si

)N−n

(Pn−m + En−m)s−1
m dsm

with

Pn−m =
n−m∑

k=0

(− ln sm)k pn−m−k (C.52)
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where the coefficients pn−m−k are polynomials in ln(N − n), ln s1, . . . , ln sm−1 of
degree n −m − k independent of α. And the absolute value of En−m is bounded by a
polynomial Qn−m−1 of degree n − m − 1.

In LemmaC.3 both bounds are—up to the term (1−S)N−n—polynomials of degree
k + 1 where the sum of the monomials of top degree k + 1 is denoted by Hk+1 and is
independent of α. We have

Hk+1 = 1

k + 1

(( −1

m − 2

)k+1(
ln

s1 · · · sm−1

N − n

)k+1

− (− ln sm−1)
k+1

)
.

Thus by Lemma C.3 the integration of Pn−m yields homogeneous polynomials Hk+1
of degree k + 1, and hence a homogeneous polynomial Pn−m+1 of degree n−m + 1:

Pn−m+1 =
n−m∑

k=0

Hk+1 pn−m−k,

independent of α. The other terms of lower degree and the error term in Lemma C.3
produce error terms which can be bounded by a polynomial of degree k. Multiplied
by the polynomials pn−m−k from the representation (C.52) this yields an error term
E ′
n−m+1 bounded by a polynomial Q′

n−m in ln(N − n), ln s1, . . . , ln sm−1 of order
n − m,

|E ′
n−m+1| ≤ Q′

n−m .

For the absolute value of the integration over En−m we obtain

|E ′′
n−m+1| =

∣∣∣∣∣∣∣

sm−1∫

(s1···sm−1/α(N−n))1/(m−3)

(
1 − 1

N − n

m∑

i=1

si

)N−n

En−ms
−1
m dsm

∣∣∣∣∣∣∣

≤
sm−1∫

(s1···sm−1/(α(N−n)))1/(m−3)

(
1 − 1

N − n

m∑

i=1

si

)N−n

|En−m |s−1
m dsm

≤
sm−1∫

(s1···sm−1/(α(N−n)))1/(m−3)

(
1 − 1

N − n

m∑

i=1

si

)N−n

Qn−m−1s
−1
m dsm ≤ Q′′

n−m,

where in the third line we used Lemma C.3 again which leads to a polynomial Q′′
n−m

of degree n−m. Hence En−m+1 := E ′
n−m+1+E ′′

n−m+1 is bounded by Q′
n−m+Q′′

n−m ,
a polynomial of degree n − m. This proves (C.51). On I ∩ I3 we take min(s2, 1) as
the upper limit of integration with respect to s3. Thus we obtain on I ∩ I3 that
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Sn−2(s1, s2) =
(
1 − s1 + s2

N − n

)N−n(
Pn−2(ln(N − n), ln s1, ln(min(s2, 1)))

+ En−2(ln(N − n), ln s1, ln(min(s2, 1)))
)
.

It remains to consider the last two integrations with q1, q2 > −1. The dominating
term in Lemma C.4 is the term of Pn−2 with (ln(N − n))n−2,

(ln(N − n))n−2

α(N−n)∫

0

s1∫

0

(
1 − s1 + s2

N − n

)N−n

sq11 sq22 ds2ds1. (C.53)

For the terms (ln(N−n))k(ln s1) j1(ln(min(s2, 1))) j2 with k = n−2− j1− j2 < n−2
we obtain

α(N−n)∫

0

s1∫

0

(
1 − s1 + s2

N − n

)N−n∣∣(ln(N − n))k(ln s1)
j1(ln(min(s2, 1)))

j2sq11 sq22
∣∣ ds2ds1

≤ (ln(N − n))k

∞∫

0

∞∫

0

e−s1−s2 |ln s1| j1 |ln s2| j2sq11 sq22 ds2ds1 = O((ln(N − n))k)

(C.54)

with k ≤ n − 3, since integrals of the form
∫ ∞
0 e−t t k |ln t | j dt are convergent. For the

integral over the error term we get

∣∣∣∣∣∣

α(N−n)∫

0

s1∫

0

(
1 − s1 + s2

N − n

)N−n

En−2(ln(N − n), ln s1, ln s2)s
q1
1 sq22 ds2ds1

∣∣∣∣∣∣

≤
α(N−n)∫

0

s1∫

0

(
1 − s1 + s2

N − n

)N−n

×

Qn−3(ln(N − n), ln s1, ln(min(s2, 1)))s
q1
1 sq22 ds2ds1 = O((ln(N − n))n−3).

Combining these estimates yields Lemma C.4 for s3 ≤ 1, i.e., on I ∩ I3.

It remains to show that the integration over I4∪· · ·∪ In+1 is of order O((ln N )n−3).
Consider the range of integration I ∩ Ik , k ≥ 4, with

Ik := {0 ≤ sn ≤ . . . ≤ sk ≤ 1 ≤ sk−1 ≤ . . . ≤ s3}.
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Then the integrations up to sk just yield (C.51) and in the remaining integrations we
have

∣∣∣∣∣∣∣

∫

I∩Ik

(
1 − 1

N − n

k−1∑

i=1

si

)N−n k−1∏

i=1

s−1
i Sn−k+1(s1, . . . , sk−1) dsk−1 . . . ds1

∣∣∣∣∣∣∣

≤
∞∫

1

· · ·
∞∫

1

exp

{
−

k−1∑

i=1

si

}
|Sn−k+1(s1, . . . , sk−1)| dsk−1 . . . ds1 (C.55)

= O ((ln(N − n))n−k+1) = O ((ln(N − n))n−3),

since Sn−k+1 is bounded by polynomials in ln(N − n), ln s1, . . . , ln sk−1 of order
n − k + 1, and all occurring integrals

∞∫

1

· · ·
∞∫

1

exp

{
−

k−1∑

i=1

si

}
(ln s1)

j1 . . . (ln sk−1)
jk−1 dsk−1 . . . ds1

are finite. This finishes the proof of Lemma C.4. ��
For the second part of Lemma C.2, i.e., for (C.47), we investigate the terms with
qm > −1 for somem ∈ {3, . . . , n}.We start by restating the following simple analogue
of Lemma C.3. We recall that S = (∑m−1

i=1 si
)
/(N − n).

Lemma C.5 For qm > −1, k ≥ 0, sm−1 ≤ 1, and sm−1 ≤ s2 we have

sm−1∫

(s1···sm−1/(α(N−n)))1/(m−2)

(
1 − S − sm

N − n

)N−n

sqmm (− ln sm)k dsm

≤ ck,qm (1 − S)N−nsqm+1
2 (− ln sm−1)

k .

Proof We use that the antiderivative of e−t t k is given by e−t Pk(t) where Pk is a
polynomial of degree k:

sm−1∫

(s1···sm−1/(α(N−n)))1/(m−2)

(
1 − S − sm

N − n

)N−n

sqmm (− ln sm)k dsm

≤ (1 − S)N−n

∞∫

− ln sm−1

e−t(qm+1)tk dt = (qm + 1)−(k+1)(1 − S)N−n

∞∫

−(qm+1) ln sm−1

e−t t k dt

= (qm + 1)−(k+1)(1 − S)N−ne−t Pk(t)|∞−(qm+1) ln sm−1

≤ ck,qm (1 − S)N−nsqm+1
m−1 (− ln sm−1)

k ≤ ck,qm (1 − S)N−nsqm+1
2 (− ln sm−1)

k .

��
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Lemma C.6 Assume that qn, . . . , qm+1 = −1, qm > −1 for some m ≥ 3, and
qm−1, . . . , q1 ≥ −1. Then we have

S(q1, . . . , qn) = O((ln(N − n))n−3).

Proof We proceed precisely as in the previous proof of Lemma C.4. We denote the
range of integration by I and dissect this set by

Ik := {0 ≤ sn ≤ . . . ≤ sk ≤ 1 ≤ sk−1 ≤ . . . ≤ s3},

for k = 3, . . . , n + 1. First we deal with the term with I ∩ I3 = I ∩ {. . . ≤ s3 ≤ 1} as
range of integration, hence we assume si ≤ 1 for i = 3, . . . , n. We define

Sn−m(s1, . . . , sm)

=
sm∫

(s1···sm/(α(N−n)))1/(m−1)

· · ·
sn−1∫

(s1···sn−1/(α(N−n)))1/(n−2)

(
1 − 1

N − n

n∑

i=1

si

)N−n

×
n∏

i=m+1

s−1
i dsn . . . dsm+1.

We know from the proof of Lemma C.3 that

|Sn−m(s1, . . . , sm)| ≤ Pn−m(ln(N − n), ln s1, . . . , ln sm).

Because qm > −1, the next integration by Lemma C.5 yields as a bound a polynomial
of again degree n − m in ln(N − n), ln s1, . . . , ln sm−1 times sqm+1

2 .
Proceeding in this way, each integration with respect to si with qi = −1 increases

the degree of the polynomial bound by one, and each integration with respect to sm
with qm > −1 leads to a polynomial bound again of the same degree and multiplies
this new polynomial bound by sqm+1

2 . Thus we obtain on I ∩ I3 that

Sn−2(s1, s2) = Pq−(ln(N − n), ln s1, ln(min(s2, 1)))s
q+
2

where we put q− = ∑n
l=3 1(ql = −1) and q+ = ∑n

l=3(ql + 1)1(ql > −1). This
now yields

α(N−n)∫

0

s1∫

0

(
1 − s1 + s2

N − n

)N−n

Pq−(ln(N − n), ln s1, ln(min(s2, 1)))s
q1
1 sq2+q+

2 ds2ds1

as a bound for S(q1, . . . , qn). By our assumption q− ≤ n − 3, q+ > 0, thus

q2 + q+ > −1 and q1 + q2 + q+ + 1 > −1.
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Hence S(q1, . . . , qn) is bounded by

α(N−n)∫

0

s1∫

0

e−(s1+s2)Pq−(ln(N − n), ln s1, ln(min(s2, 1)))s
q1
1 sq2+q+

2 ds2ds1

≤ 1

q2 + q+ + 1

∞∫

0

e−s1 Pq−(ln(N − n), ln s1, ln(min(s1, 1)))s
q1+q2+q++1
1 ds1

= O((ln(N − n))q−) = O((ln(N − n))n−3)

on I∩ I3. On I∩ Ik with k ≥ 4, the termS(q1, . . . , qm) is bymonotonicity (observe that
sk, . . . , sn ≤ 1) bounded by S(q1, . . . , qk−1,−1, . . . ,−1) which in turn is bounded
by

∫

I∩Ik

exp

{
−

k−1∑

i=1

si

}(
k−1∏

i=1

sqii

)
|Pn−k−1 + En−k−1| dsk−1 . . . ds1

≤ O ((ln(N − n))n−3)

as in the proof of Lemma C.4, (C.55). Hence the integration over I4 ∪ I5 ∪ . . . leads
to a term of order O ((ln(N − n))n−3). This proves our lemma. ��
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