
Discrete & Computational Geometry (2023) 69:4–25
https://doi.org/10.1007/s00454-022-00428-2

Lonely Points in Simplices

Maximilian Jaroschek1 ·Manuel Kauers2 · Laura Kovács3

Received: 21 May 2019 / Revised: 16 February 2022 / Accepted: 28 February 2022 /
Published online: 29 September 2022
© The Author(s) 2022

Abstract
Given a lattice L ⊆ Z

m and a subset A ⊆ R
m , we say that a point in A is lonely if

it is not equivalent modulo L to another point of A. We are interested in identifying
lonely points for specific choices of L when A is a dilated standard simplex, and in
conditions on L which ensure that the number of lonely points is unbounded as the
simplex dilation goes to infinity.

Keywords Integer points · Polytopes · Lattices · Discrete geometry

Mathematics Subject Classification 52C07

Editor in Charge: János Pach

M. Jaroschek: Supported by the Austrian Science Fund (FWF) Grant P 31427-N31. M. Kauers: Supported
by the Austrian Science Fund (FWF) grants F5004 and P31571-N32. L. Kovács: Supported by the ERC
CoG grant ARTIST 101002685, the Austrian Science Fund (FWF) Grant W1255-N23, and the WWTF
grant ProbInG ICT19-018.

Maximilian Jaroschek
maximilian@mjaroschek.com

Manuel Kauers
manuel.kauers@jku.at

Laura Kovács
laura.kovacs@tuwien.ac.at

1 QAware Gmbh, Aschauer Straße 32, 81549 München, Germany

2 Institute for Algebra, Johannes Kepler University Linz, Altenbergerstrasse 69, Linz 4040,
Austria

3 Institute for Logics and Computation, TU Wien, Favoritenstrasse 9–10, Wien 1040, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-022-00428-2&domain=pdf
http://orcid.org/0000-0001-8641-6661

Discrete & Computational Geometry (2023) 69:4–25 5

1 Introduction

The geometric problem considered in this article arose from an attempt to construct
an algorithm for simplifying so-called C-finite sequences. A sequence (an)∞n=0 in the
fieldC of complex numbers is calledC-finite [11] if it satisfies a linear recurrence with
constant coefficients1, i.e., if there are constants c0, . . . , cr ∈ C, not all zero, such that

c0an + c1an+1 + · · · + cran+r = 0

for all n ∈ N. A standard example is the sequence of Fibonacci numbers (take
c0 = c1 = 1 and c2 = −1). C-finite sequences and their properties are very well
understood [7, 11, 12, 16, 17]. In particular, it is known that a sequence is C-finite if
and only if it can be expressed as a linear combination of exponential terms with poly-
nomial coefficients, i.e., if there are polynomials p1, . . . , pm ∈ C[x] and constants
φ1, . . . , φm ∈ C, such that

an = p1(n)φn
1 + · · · + pm(n)φn

m

for all n ∈ N. We note that N, as it is used in this paper, always contains 0. If the φi

are pairwise distinct and all the pi are nonzero, then the order r of the corresponding
recurrence turns out to be m +∑m

i=1 deg(pi).
One of the consequences of the characterization above is that the class of C-finite

sequences is closed under addition andmultiplication, i.e., when the sequences (an)∞n=0
and (bn)∞n=0 are C-finite, then so are the sequences (an + bn)∞n=0 and (anbn)∞n=0. In
particular, when we plug a C-finite sequence into a polynomial, the result is again a
C-finite sequence. For example, since the sequence (Fn)∞n=0 of Fibonacci-numbers is
C-finite, so is the sequence (5F3

n −7F2
n +9Fn −4)∞n=0 obtained by plugging (Fn)∞n=0

into the polynomial 5x3 − 7x2 + 9x − 4 ∈ C[x].
Given a C-finite sequence (an)∞n=0, specified by a recurrence of order r and a set of

initial values, we want to decide whether there is a polynomial q ∈ C[x] of positive
degree such that the C-finite sequence (q(an))∞n=0 satisfies a recurrence of order less
than r . This problem is of interest because certain number-theoretic questions about C-
finite sequences can at the moment only be answered when the recurrence order is not
too large. In particular, the questionwhether for a givenC-finite sequence (an)∞n=0 there
exists an index n such that an = 0 is only known to be decidable for C-finite sequences
satisfying recurrences of small order. See [14] for a detailed discussion of the state of
the art. By using results of our paper to pass from (an)∞n=0 to (q(an))∞n=0, we hope to
extend the scope of these algorithms and advance, for example, their use in applications
of static analysis of computer systems. Static program analysis requires the synthesis
of polynomials q ∈ C[x] corresponding to polynomial invariants q(x) = 0 among
program variables x . These invariants in turn describe algebraic relations among C-
finite sequences (an)∞n=0 induced by the value distributions of program variables at
arbitrary loop iterations n ≥ 0. Moreover, one is interested in synthesizing a minimal

1 W.l.o.g., we consider C instead of an algebraically closed arbitrary field of characteristic zero.

123

6 Discrete & Computational Geometry (2023) 69:4–25

set of polynomial invariants q(x) = 0, in particular polynomial invariants with small
degrees enabling scalable approaches to static analysis. As such, results of our paper
may potentially contribute to the full and efficient automation of polynomial invariant
generation within software verification. See for example [9, 10] for further details.

The construction of an algorithm for finding q ∈ C[x], such that (q(an))∞n=0 yields a
C-finite sequence of lower order than a, has led us to the following geometric problem.
Let S ⊆ R

m be the standard simplex, i.e., the convex hull of 0 and the unit vectors
e1, . . . , em ∈ R

m . Moreover, let L ⊆ Z
m be a lattice, i.e., an additive subgroup of Zm .

Two points u, v ∈ R
m are called equivalent modulo L if we have u − v ∈ L . We

consider the integer points in a dilation dS of S, for some d > 0. A point u ∈ dS∩Z
m

is called lonely if there does not exist any other point v ∈ dS∩Z
m such that u−v ∈ L .

Equivalently, u is lonely if it is covered exactly once in the lattice arrangement L+dS.
In this paper, we are interested in describing properties of these lonely points.

In Sect. 2, we will give some more details on how the original problem about C-
finite sequences leads to the consideration of lonely points. This material is provided
only as background information and not strictly needed for the rest of the paper. In
Sect. 3, we summarize basic definitions and facts about cones, simplices, and lattices,
and fix the notation we use. In Sect. 4 we present algorithms that for a given lattice
L and a given d determine all the lonely points, and recognize whether the number is
unbounded as d goes to infinity. Finally, in Sect. 5 we derive a sufficient condition on
the lattice that guarantee that the number of lonely points is unbounded.

2 Ansatz and Exponent Lattice

Consider a C-finite sequence (an)∞n=0 which satisfies a recurrence of order r . We want
to know whether there is a polynomial q ∈ C[x] \ C such that (q(an))∞n=0 satisfies a
recurrence of lower order. If we have an upper bound d on the degree of q, then this
question can be answered as follows:

1. Compute p1, . . . , pm ∈ C[x] and φ1, . . . , φm ∈ C such that an = p1(n)φn
1 +

· · · + pm(n)φn
m for all n ∈ N (see [11] for how to do this).

2. Make an ansatz q = q0 + q1x + · · · + qd xd with undetermined coefficients
q0, . . . , qd , plug the closed form representation of step 1 into q.

3. Write the resulting expression in the form u1ψn
1 +· · ·+u�ψ

n
� where theψi ∈ C are

pairwise distinct and the ui are polynomials in n whose coefficients are C-linear
combinations of the unknowns q0, . . . , qd .

4. For every subset I ⊆ {1, . . . , �} such that |{1, . . . , �} \ I | = r − 1, equate the
coefficients with respect to n in all the ui belonging to some ψi with i ∈ I to zero
and solve the resulting linear system for the unknowns q0, . . . , qd . If the solution
space contains a vector (q0, . . . , qd) in which not only q0 is nonzero, return the
corresponding polynomial q0 + q1x + · · · + qd xd . Otherwise, try the next I .

5. When no subset I yields a solution, return “there is no such q”.

Example 2.1 1. The C-finite sequence (an)∞n=0 with an = 1 + 2n + 2−n satisfies a
recurrence of order 3 and no lower order recurrence. With d = 2, the algorithm

123

Discrete & Computational Geometry (2023) 69:4–25 7

sketched above finds the polynomial q(x) = x2−2x−1. Indeed, q(an) = 4n+4−n

satisfies a recurrence of order 2.
2. The C-finite sequence (an)∞n=0 with an = 1+3n +32n +2 ·33n −2 ·34n satisfies a

recurrence of order 5 and no lower order recurrence. For this input, the algorithm
finds the polynomial q(x) = x2−3x +2, and indeed, q(an) = −3n +7 ·34n −8 ·
37n +4 ·38n satisfies a recurrence of order 4. Similar examples can be constructed
using polynomials with sparse powers. Such polynomials have been studied for
example in [5].

3. The C-finite sequence (an)∞n=0 with an = 1 + 2n − 2−n satisfies a recurrence
of order 3, and with the algorithm sketched above we can show that there
is no polynomial q of degree d ≤ 5 such that q(an) satisfies a recurrence of
order 2.

When we have checked the existence of a polynomial q for a specific degree d and
found that no such polynomial exists, we can try again with a larger choice of d. It
would be good to know when we can stop: starting from the recurrence of (an)∞n=0,
can we determine a finite bound on the degree of the polynomials q that may lead to
lower order recurrences?

In order to see fromwhere such a bound could emerge, restrict the search to polyno-
mials q with qd = 1. Observe what happens in step 2 of the procedure sketched above.
Plugging the expression p1(n)φn

1 + · · · + pm(n)φn
m into the ansatz for q produces

q0 + q1

m∑

i=1

pi (n)φn
i + q2

n∑

i, j=1

pi (n)p j (n)(φiφ j)
n

+ · · · +
n∑

i1,...,id=1

d∏

j=1

pi j (n)

⎛

⎝
d∏

j=1

φi j

⎞

⎠

n

,

(1)

so the ψi ’s appearing in step 3 are precisely the products φ
v1
1 . . . φ

vm
m with v1 + · · · +

vm ≤ d. If these products are all distinct, then there is no way for the above expression
to vanish identically. More generally, a necessary condition for the above expression
to vanish identically for some choice of q0, . . . , qd−1, not all zero, is that a suffi-
cient amount of cancellation takes place among the various exponential sequences
((φ

v1
1 . . . φ

vm
m)n)∞n=0.

This leads to the consideration of the so-called exponent lattice

L = {
(v1, . . . , vm) ∈ Z

m : φ
v1
1 . . . φvm

m = 1
} ⊆ Z

m,

which also plays an important role for determining the algebraic relations among
C-finite sequences [13]. For example, for the Fibonacci numbers, where we have
φ1 = (1+ √

5)/2 and φ2 = (1− √
5)/2, the exponent lattice is generated by (2, 2).

A term (φ
v1
1 . . . φ

vm
m)n appearing in (1) cannot be canceled unless there is some other

point (ṽ1, . . . , ṽm) ∈ N
m with ṽ1 + · · · + ṽm ≤ d and (v1 − ṽ1, . . . , vm − ṽm) ∈ L .

If d is such that r or more of the terms have no partner for cancellation, then it is
clear that there is no solution q of degree d. Moreover, if L is such that the number of

123

8 Discrete & Computational Geometry (2023) 69:4–25

(a) 2d lattice in 2d space. (b) 2d lattice in 3d space.

Fig. 1 Lattices in the positive orthant. The orange areas mark the dilated simplices 12S and 4S respectively

terms without partner tends to infinity as d increases, then there is a finite bound on
the degree that a solution q may have.

3 Lattices and Cones

We start by recalling some basic concepts from discrete geometry. Further background
can be found in [2], for example.

Definition 3.1 (lattices) A set L ⊂ Z
m is called a lattice if it contains the origin

and for all u, v ∈ L and all α, β ∈ Z also αu + βv is an element of L . For vectors
�1, . . . , �k ∈ Z

m we write 〈�1, . . . , �k〉 for the smallest lattice containing �1, . . . , �k ,
which we call generators of the lattice. The dimension dim(L) of a lattice is defined
as the dimension of the R-vector space it generates.

We always view a lattice L ⊆ Z
m as a set of points in the ambient space Rm , spanned

by the unit vectors e1, . . . , em . In addition, it will be convenient to let e0 be the zero
vector. Note that we allow the dimension dim(L) of a lattice to be smaller than the
dimension m of its ambient space.

Example 3.1 The vectors (3, 3) and (6, 1) span a lattice in R
2 of dimension 2. Some

points in the lattice in the positive quadrant are depicted in Fig. 1a. The 2-dimensional
lattice spanned by the vectors (2, 1, 0) and (0, 2, 1) in R3 is illustrated in Fig. 1.

Definition 3.2 (standard simplex) The standard simplex S in R
m is the convex hull

of the points e0, . . . , em . For d ∈ N, the d-dilation dS of S is the convex hull of the
points de0, . . . , dem .

123

Discrete & Computational Geometry (2023) 69:4–25 9

Fig. 2 Corner cones of the standard simplex and the intersection of the translated cones in R2

We are interested in the integer points of a dilated simplex dS ⊆ R
m . Obviously, this

set consists of all points (v1, . . . , vm) inZm with v1, . . . , vm ≥ 0 and v1+· · ·+vm ≤ d.
We can also describe it as an intersection of translated cones.

Definition 3.3 (cones) A set C ⊆ Z
m is called a (discrete) cone if C contains the

origin and we have that for all u, v ∈ C and for all α, β ∈ N, the linear combination
αu + βv is also an element of C . For vectors c1, . . . , cn ∈ Z

m we write [c1, . . . , cn]
for the smallest cone containing c1, . . . , cn , which we call generators of the cone. For
a nonzero c ∈ C , [c] is called an edge of C if there exists a hyperplane H ⊂ R

m with
H ∩ C ⊆ [c]. We call edges of the form [ei] or [−ei], i ∈ {1, . . . ,m}, straight, while
all other edges are called slanted. For i ∈ {0, . . . ,m}, we define the i th corner cone
Ci of the standard simplex as [e0 − ei , e1 − ei . . . , em − ei] ⊆ Z

m .

Subsequently, we will only be concerned with finitely generated cones. We can there-
fore assume that a cone C is always given as a finite set of points ci , such that for
each i , [ci] is an edge of C , and for j �= i we have [ci] �= [c j].

The standard simplex in R
m has m + 1 distinct corner cones C0, . . . ,Cm , and the

set of all integer points in dS, d ∈ N, is equal to the intersection
⋂m

i=0(Ci − dei), as
illustrated for dimension 2 in Fig. 2.

As we outlined in the earlier sections, we look for integer points in dS that are not
connected to any other integer points in dS via a given lattice L . The next definition
formalizes this idea not only for simplices but general subsets of Rm .

Definition 3.4 (lonely points) Let L ⊆ Z
m be a lattice. We define the equivalence

relation∼ on Zm as u ∼ v :⇔ u− v ∈ L . Let A be an arbitrary subset ofRm . A point
v ∈ A is called lonely (with respect to L), if v ∈ Z

m and there is no ṽ ∈ (A∩Z
m)\{v}

such that ṽ − v ∈ L . We write lonelyL(A) for the set of lonely points in A and
lonelyL(A) ∈ N ∪ {∞} for the number of lonely points in A.

Example 3.2 We give two examples of lattices where the number of lonely points in
dS does not grow indefinitely with d.

123

10 Discrete & Computational Geometry (2023) 69:4–25

Fig. 3 Illustration of Example 3.2. Lonely points are encircled

(i) For L = 〈(2
−3

)〉 ⊆ Z
2 there are nine lonely points in all dS for all d ≥ 4 (Fig. 3,

left). Note that three of them depend on d while the six others are identical for
every d.

(ii) For L = 〈(1
1

)〉 ⊆ Z
2 there are four lonely points in all dS for all d ≥ 2 (Fig. 3,

right). In this case, all four points vary with d.

It is easy to show that in Z2 there is no lattice (other than {0}) such that the number of
lonely points in dS grows indefinitely with d.

Example 3.3 Let L ⊆ Z
4 be the lattice generated by the vectors (2, 0,−1, 0) and

(1, 1, 0,−1). Then there are infinitely many lonely points in any corner cone. For
example, for each i = 0, . . . , 4, all vectors of the form (0, n, 0, 0)−dei withd ≥ n ≥ 0
are lonely in Ci .

Our goal is to count the lonely points in a dilated simplex. As we will use the
translated corner cones to characterize the points inside of a dilated simplex, we want
to make sure that lonely points stay lonely after any translation.

Lemma 3.1 Let L ⊂ Z
m be a lattice and let v ∈ A ⊆ R

m. If v ∈ lonelyL(A), then
v + t ∈ lonelyL(A + t) for any t ∈ Z

m.

Proof Suppose v + t /∈ lonelyL(A+ t). Then there exists a ṽ ∈ A such that (v + t) ∼
(ṽ + t). It follows that v − ṽ = (v + t) − (ṽ + t) ∈ L , so v ∼ ṽ. ��

4 Counting and Identifying Lonely Points

In this section we develop algorithms for deciding whether in a given setting the
number of lonely points is finite or infinite, as well as an algorithm which in the finite
case determines how many lonely points there are. First we characterize loneliness of
points in cones, and then we relate the loneliness of points in a dilated simplex dS to
the loneliness of points in its corner cones.

Lemma 4.1 Let L ⊆ Z
m be a lattice and C ⊆ Z

m be a cone.

(i) If C has any lonely points, then 0 is one of them.

123

Discrete & Computational Geometry (2023) 69:4–25 11

(ii) C has lonely points if and only if L ∩ C = {0}.
(iii) If u ∈ C is not lonely, then also u + v is not lonely for any v ∈ C.

Proof (i) If 0 is not lonely, it is equivalent to some other point of C , say to u �= 0.
Then u = u − 0 ∈ L . Let v be an arbitrary element of C . Since u ∈ C , we have
v + u ∈ C , and since v and v + u are equivalent, v is not lonely.

(ii) IfC has lonely points, then, by the previous item, 0 is one of them, hence L∩C =
{0}. For the other direction, if L ∩ C = {0}, then 0 is lonely.

(iii) If u is not lonely, then there exists ũ ∈ C\{u}with u ∼ ũ. Then also u+v ∼ ũ+v,
and since ũ + v is in C and different from u + v, the claim follows. ��

Proposition 4.1 Let L ⊆ Z
m be a lattice and C = [c1, . . . , cn] ⊆ Z

m be a cone.

(i) If C has infinitely many lonely points, then there is an i ∈ {1, . . . , n} such that all
points in [ci] are lonely in C.

(ii) Let i ∈ {1, . . . , n}. Then all points in [ci] are lonely in C if and only if L∩C = {0}
and (L + 〈ci 〉) ∩ C = [ci].

Proof (i) Suppose to the contrary all edges [ci] contain a nonlonely point, say
α1c1, . . . , αncn are not lonely for certain positive integers α1, . . . , αn . By part (iii)
of Lemma 4.1, all points β1c1 + · · · + βncn with β1 ≥ α1, . . . , βn ≥ αn are not
lonely. Thus there remain only finitely many candidates for lonely points.

(ii) “⇒” If all points in [ci] are lonely, then C has lonely points, so L ∩ C = {0} by
(ii) of Lemma 4.1. It remains to shows that (L + 〈ci 〉) ∩ C = [ci]. The direction
“⊇” is clear. To show “⊆”, let v ∈ (L + 〈ci 〉) ∩ C , say v = � + αci ∈ C for
some nonzero � ∈ L and α ∈ Z. If α > 0, then v ∼ αci , in contradiction to
the loneliness of αci . Otherwise, for α ≤ 0, we have � = v + (−α)ci ∈ C , a
contradiction to L ∩ C = {0}.
“⇐” Assume u = αi ci is not lonely, say u ∼ v for some v ∈ C \ {u}. Then
u− v ∈ L implies v ∈ L + 〈ci 〉, so v ∈ [ci], say v = βi ci for some β ∈ N \ {αi }.
But then 0 �= sgn(βi − αi)(u − v) ∈ L ∩ C = {0}, a contradiction. ��

The conditions of Proposition 4.1 give rise to the following algorithm for deciding
whether a cone contains infinitely many lonely points.

Algorithm 1 (hasInfinitelyManyLonelyPoints)
Input: a lattice L ⊆ Z

m, a cone C = [c1, . . . , cn] ⊆ Z
m

Output: true or false, depending on whether C contains infinitely many lonely points

1 if L ∩ C �= {0} then return false
2 for i = 1, . . . , n, do:
3 if (L + 〈ci 〉) ∩ C = [ci] then return true
4 return false

The tests in lines 1 and 3 can be performed using integer linear programming [15].
If L = 〈�1, . . . , �k〉 = [�1, . . . , �k,−�1, . . . ,−�k], we can find nonnegative integers
α1, . . . , αk, α−1, . . . , α−k, β1, . . . , βn such that

(α1 − α−1)�1 + · · · + (αk − α−k)�k = β1c1 + · · · + βncn

123

12 Discrete & Computational Geometry (2023) 69:4–25

and such that β1 + · · · + βn is maximized. We have L ∩ C = {0} if and only if the
optimal solution is β1 = . . . = βn = 0.

Similarly, in order to check whether (L+〈ci 〉)∩C = [ci], we can find nonnegative
integers α1, . . . , αk, α−1, . . . , α−k, γ1, γ−1, β1, . . . , βn such that

(α1 − α−1)�1 + · · · + (αk − α−k)�k + (γ1 − γ−1)ci = β1c1 + · · · + βncn

and β1 + · · · + βi−1 + βi+1 + · · · + βn is maximized. If the intersection [ci] ∩
[c1, . . . , ci−1, ci+1, . . . , cn] only contains 0, then (L+〈ci 〉)∩C is contained in [ci] if
and only if the optimal solution is β1 = . . . = βn = 0. In our setting, we can always
assume that c1, . . . , cn are linearly independent overQ, and in this case, the condition
[ci] ∩ [c1, . . . , ci−1, ci+1, . . . , cn] = {0} is always satisfied.

When there are only finitely many lonely points, we can next determine how many
there are. Part (iii) of Lemma 4.1 says that when some v ∈ C is not lonely, then no point
in the translated cone v+C is lonely either. It follows from Dickson’s lemma ([3], see
also Lemma 4 of [1]) that the set of nonlonely points in C is in fact a finite union of
such translated cones v +C , quite similar to the leading-term ideals in Gröbner basis
theory [3, 4, 6]. Inspired by the FGLM-algorithm from that theory [6, 8], we arrive at
the following algorithm for counting the number of lonely points in a cone.

Algorithm 2 (numberOfLonelyPoints)
Input: a lattice L ⊆ Z

m and a cone C = [c1, . . . , cn] ⊆ Z
m

Output: # lonelyL(C)

1 if # lonelyL(C) = ∞, return ∞ ((using Algorithm 1))
2 if 0 is not lonely, return 0
3 todo = {e1, . . . , en} ⊆ R

n ((list of unit vectors of length n))
4 B = ∅ ((collected nonlonely points))
5 npoints = 1 ((number of lonely points seen so far))
6 while |todo| > 0 do:
7 select an element v = (v1, . . . , vn) with ‖v‖1 minimal from todo
8 todo = todo \ {v}
9 if v1c1 + · · · + vncn is a lonely point, then:
10 npoints = npoints + 1
11 for i = 1, . . . , n, do:
12 if ∀b ∈ B : v1c1 + · · · + vncn + ci /∈ b + C, then
13 todo = todo ∪ {v + ei }
14 else ((v1c1 + · · · + vncn is not lonely))
15 B = B ∪ {v1c1 + · · · + vncn}
16 return npoints

Three aspects need to be discussed in order to justify this algorithm: (1) that all
indicated operations can be performed algorithmically, (2) that it returns the correct
output, and (3) that it terminates for every input. Concerning the first point, the only
questionable steps are the checks in steps 2 and 9 whether a given point is lonely.
In order for v to be not lonely, there must be integers α1, . . . , αk , not all zero, such

123

Discrete & Computational Geometry (2023) 69:4–25 13

that v + α1�1 + · · · + αk�k also belongs to C , where �1, . . . , �k are generators of L .
Whether such integers exist can be determined with integer linear programming [15].

For the correctness, observe first that the output npoints is a lower bound on the
number of lonely points, because the counter is only incremented when we have found
a new lonely point. Since we always consider the candidate of least 1-norm and in
line 13 always add elements of larger 1-norm to the todo-list, it is excluded that we
count the same point more than once. In order to see that the output is also an upper
bound, observe that (iii) of Lemma 4.1 implies that when b is not lonely, then all the
points in b+C are not lonely either, so it is fair to exclude them from consideration in
step 12. Since all other points will be considered, there is no danger of undercounting.
This establishes the correctness.

Finally, for justifying the termination, observe that the number of iterations of the
main loop is bounded by the number of lonely points plus the number of points that
are not lonely but also not contained in a translated cone b+C where b is a nonlonely
point discovered earlier. By line 1, the number of lonely points is finite when the
algorithm reaches the main loop, and we have already argued above that the number
of nonlonely points not contained in a translated cone rooted at an earlier discovered
nonlonely point is finite as well.

Example 4.1 Consider the lattice L = 〈(2
−3

)〉 ⊆ Z
2 and the cone C = [e1, e2] ⊆ Z

2.
This cone is the corner cone C0 in the situation considered in Example 3.2 (i) and
depicted in Fig. 3. Algorithm 2 identifies the lonely points of C as follows.

iteration v todo B npoints comment

0
{(1

0
)
,
(0
1
)} ∅ 1 initialization

1
(1
0
) {(2

0
)
,
(1
1
)
,
(0
1
)} ∅ 2 v is lonely

2
(0
1
) {(2

0
)
,
(1
1
)
,
(0
2
)} ∅ 3 v is lonely

3
(2
0
) {(1

1
)
,
(0
2
)} {(2

0
)}

3 v is not lonely

4
(1
1
) {(1

2
)
,
(0
2
)} {(2

0
)}

4 v is lonely

5
(0
2
) {(1

2
)
,
(0
3
)} {(2

0
)}

5 v is lonely

6
(1
2
) {(1

3
)
,
(0
3
)} {(2

0
)}

6 v is lonely

7
(0
3
) {(1

3
)} {(20

)
,
(0
3
)}

6 v is not lonely

8
(1
3
) ∅ {(2

0
)
,
(0
3
)
,
(1
3
)}

6 v is not lonely

The next proposition connects the lonely points in a simplex to the lonely points in
its corner cones.

Proposition 4.2 Let L ⊆ Z
m be a lattice and let S ⊆ R

m be the standard simplex.

(i) A corner dei of dS is lonely for all sufficiently large d ∈ N if and only if 0 is a
lonely point of the corresponding corner cone Ci .

(ii) ∀ d ∈ N : lonelyL(dS) ⊇⋃ {v − dei | ∃ i > 0 : v ∈ lonelyL(Ci)} ∩ N
m.

123

14 Discrete & Computational Geometry (2023) 69:4–25

(iii) The following are equivalent:

(a) ∀ i : # lonelyL(Ci) = ∞,
(b) ∃ i : # lonelyL(Ci) = ∞,
(c) ∀ r ∈ N ∃d ∈ N : # lonelyL(dS) > r .

Proof (i) Let dei be a corner of dS, and suppose d is large. “⇒”We show: if 0 is not a
lonely point of the corner coneCi = [e0−ei , . . . , em−ei], then dei is not a lonely
point of dS. If 0 is not a lonely point of the corner cone, the corner cone contains
some nonzero element of L , say � = α0(e0 − ei) + · · · + αm(em − ei) ∈ L for
certain α0, . . . , αm ∈ N. Assuming, as we may, that d > α0 + · · · +αm , we have
that dei+� is an interior point of dS which is equivalent to dei , proving that dei is
not lonely. “⇐” We show: if dei is not a lonely point of dS, then 0 is not a lonely
point of the corner cone. Indeed, suppose that dei is equivalent to another point v
of dS, say to v = β1e1 + · · · + βmem for some β1, . . . , βm ≥ 0 whose sum is at
most d. Then v−dei = β1(e1− ei)+· · ·+βm(em − ei)+ (d−∑ j β j)(e0− ei)
belongs to the i th corner cone, so 0 is not a lonely point of that cone.

(ii) Denote the set on the right hand side by Ad . Then Ad ⊂ lonelyL(dS) holds for
any d: If v − dei ∈ N

m is such that v is lonely in Ci , then by Lemma 3.1, v − dei
is lonely in Ci − dei , which contains dS.

(iii) “(a)⇒ (b)” is trivial. “(b)⇒ (c)” is an immediate consequence of part (ii).
“(c)⇒ (a)” Suppose that lonelyL(Ci) only contains finitely many elements for
some corner cone Ci = [c1, . . . , cn]. Then, by (i) of Proposition 4.1 there exists
a d ′ such that for every edge [c j] in Ci the point d ′c j is not lonely. For each such
edge we let d j be the minimal euclidean distance of d ′c j to some other element
in Ci equivalent to d ′c j . Then any point v =∑

α j c j in Ci is equivalent to some
point in distance d j if α j ≥ d ′ for some j . Setting d to be the maximum of the d j

this means that every such v is equivalent to some point in distance ≤ d. Then a
point v in d̃ S for d̃ ≥ d is lonely only if the coordinates of v − d̃ei with respect
to the generators c j of the i th corner cone are bounded by d, leaving only finitely
many possible values for v − d̃ei . ��

For a specific d ∈ N, there are only finitely many points in dS, and for each of them,
we can decide whether it is lonely in a similar way as described above for a given
point in a cone. The issue reduces to an integer linear programming question. What
we are interested in is how far the number of lonely points can grow as d increases.
Proposition 4.2 says that the lonely points in dS for sufficiently large d are essentially
the lonely points of the corner cones.When a cone has only finitelymany lonely points,
they are all clustered near the apex, so as soon as d is sufficiently large, the number
of lonely points in the dilated simplex dS is exactly the sum of the number of lonely
points in its corner cones. When at least one corner cone has infinitely many lonely
points, then the number of lonely points in dS is unbounded as d goes to infinity. In
summary, we obtain the following algorithm.

Algorithm 3 (ultimateNumberOfLonelyPoints)
Input: a lattice L ⊆ Z

m

Output: limd→∞ # lonelyL(dS)

123

Discrete & Computational Geometry (2023) 69:4–25 15

1 s = 0
2 for all i ∈ {0, . . . ,m}, do:
3 C = [e0 − ei , . . . , em − ei] ((consider the i th corner cone))
4 s = s + # lonelyL(C) ((use Algorithm 2))
5 return s

The algorithms described in this section are easy to implement. A proof of concept
implementation in Mathematica consists of less than 100 lines of code. This code is
available at http://www.kauers.de/software/loneley.m. It is not designed to be efficient
but merely meant for the sake of illustration.

5 Lonely Points for Small Lattices

It is clear that all integer points in dS are lonely when L = {0} and that there are
no lonely points when L = Z

m . More generally, geometric intuition suggests that
there should be more lonely points when L is “small”. The main result of the present
section quantifies this intuition. We show that whenever the dimension of L is less
than a certain constant multiple of the ambient dimension m, then there is a corner
cone which satisfies the conditions of part (ii) of Proposition 4.1 and thus has infinitely
many lonely points.

In the subsequent proofs we make use of sign vectors and sign equations. The
possible components of a sign vector are+,−,⊕,�, or 0. We can assign a sign vector
s to a given v ∈ R

m in the following way. If the i th component of v is nonnegative,
then the i th component of s is + or ⊕. If the i th component of v is nonpositive, then
the i th component of s is − or�. If a component of v is zero, then the corresponding
component of s can be 0, +, −, ⊕, or �. A component of s is ⊕ or � only if the
absolute value of the corresponding component of v is greater than or equal to the
sum of the absolute values of all other components. With these rules, any equation
s1 + · · · + sk = s of sign vectors s1, . . . , sk, s is a valid sign equation if there are
vectors v1, . . . , vk, v ∈ R

m , such that v1 + · · · + vk = v and for each i = 1, . . . , k,
si is a valid sign vector for vi and s is a valid sign vector for v.

Example 5.1 For the equation

⎛

⎝
−2
1
0

⎞

⎠+
⎛

⎝
0
−1
0

⎞

⎠+
⎛

⎝
1
1
−1

⎞

⎠ =
⎛

⎝
−1
1
−1

⎞

⎠ ,

two valid sign equations are

⎛

⎝
�
+
−

⎞

⎠+
⎛

⎝
+
�
−

⎞

⎠+
⎛

⎝
+
+
−

⎞

⎠ =
⎛

⎝
−
+
−

⎞

⎠ and

⎛

⎝
−
+
0

⎞

⎠+
⎛

⎝
0
−
0

⎞

⎠+
⎛

⎝
+
+
−

⎞

⎠ =
⎛

⎝
−
+
−

⎞

⎠ .

123

http://www.kauers.de/software/loneley.m

16 Discrete & Computational Geometry (2023) 69:4–25

We use a shorthand matrix notation

[
s1 s2 . . . sk

] = s

for the sign equation s1 + · · · + sk = s, with the square brackets indicating that the
columns of the matrix are summed up to obtain the right hand side. To further shorten
notation, we use ⊕ and � for nonempty square blocks of the form

⊕ − · · · · · · · · · − −
− ⊕ − −
− − . . . − −
...

...
. . .

...
...

− − . . . − −
− − ⊕ −
− − · · · · · · · · · − ⊕

and

� + · · · · · · · · · + +
+ � + +
+ + . . . + +
...

...
. . .

...
...

+ + . . . + +
+ + � +
+ + · · · · · · · · · + �

respectively, where the number of rows/columns is either clear from the context or
irrelevant. Similarly we use + , − , and 0 for blocks that only contain +, −, or 0
respectively, with the difference that these blocks do neither have to be square blocks
nor nonempty.

Example 5.2 The first sign equation in Example 5.1 can be written as

[
�
−
]

+
⎛

⎝
+
+
−

⎞

⎠ =
⎛

⎝
−
+
−

⎞

⎠ .

For any vector v inRm we define the balance τ(v) of v to be the sum of the components
of v. The balance of a vector v with only nonnegative components is equal to ‖v‖1.
For any slanted edge [c] of a corner cone, c is the difference of two unit vectors, and
thus τ(c) = 0. For straight edges we have τ(c) = τ(±ei) = ±1.

Definition 5.1 (visible vectors) We call a vector v ∈ R
m i-visible, if

(+, . . . ,+,�,+, . . . ,+)

is a valid sign vector for v, where � is at the i th position.

The definition is motivated by corner cones. For i > 0, a vector is i-visible if and only
if it belongs to Ci . An i-visible vector v has nonpositive balance τ(v) ≤ 0.

Lemma 5.1 Let k ∈ {1, . . . ,m} and let v1, . . . , vk, v ∈ R
m be such that v1+v2+· · ·+

vk = v and that each vi lies in some corner cone. Suppose that there is an associated

123

Discrete & Computational Geometry (2023) 69:4–25 17

sign equation and indices r1, . . . , rk such that a valid sign equation projected to rows
r1, . . . , rk is of the form

[
�
]
=
(

+
)

.

Then for every j ∈ {r1, . . . , rk}, the j th component of v is zero, and for every j ∈
{1, . . . ,m} \ {r1, . . . , rk}, the j th component of vi is zero for every i .

Proof Let π : Rm → R
k be the projection on the components with indices r1, . . . , rk ,

and π the projection on the complementary components. The sign equation implies
that τ(π(vi)) ≤ 0 for all vi . It follows that τ(π(v)) has to be less than or equal to 0
as well. As π(v) only contains nonnegative entries, this is only possible if π(v) is the
zero vector. This shows the first part and also implies the equation

τ(π(v1)) + τ(π(v2)) + · · · + τ(π(vk)) = 0.

Since no summand on the left hand side is strictly positive, all the τ(π(vi)) have to be
equal to 0. As every vi lies in some corner cone, and their negative components only
have indices contained in {r1, . . . , rk}, we get that all the π(vi) only have nonpositive
components. Now it follows that all π(vi) are equal to zero, since

0 ≥ τ(π(vi)) = τ(π(vi)) + τ(π(vi)) = τ(vi) ≥ 0. ��

Remark 5.1 Clearly, if a v1, . . . , vk, v with v1 + · · · + vk = v are such that a valid
sign equation contains rows of the form

[
−
]
=
(

+
)

,

then v and the vi can only contain zero entries at the corresponding indices.

Proposition 5.1 Let v1, . . . , vm ∈ R
m \ {0} be such that each vi is i -visible. If no

subspace of V := Rv1 + · · · + Rvm can be decomposed into a direct sum of more
than one nonzero vector spaces, then dim(V) = m − 1.

Proof If V is of dimension m, it can be decomposed into the direct sum of m nonzero
vector spaces. Suppose that dim(V) < m − 1, and, without loss of generality, that
v1, . . . , vm−2 generate V , i.e., there are α1, . . . , αm−2 and β1, . . . , βm−2 ∈ R with
vm−1 = ∑

i<m−1 αivi and vm = ∑
i<m−1 βivi . For these we get corresponding sign

equations

±

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�
+
...

+
+
+
+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

± · · · ±

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+
+
...

+
�
+
+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+
+
...

+
+
�
+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2)

123

18 Discrete & Computational Geometry (2023) 69:4–25

±

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�
+
...

+
+
+
+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

± · · · ±

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+
+
...

+
�
+
+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+
+
...

+
+
+
�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3)

where the ± reflect the fact that the αi and βi can be positive or negative. We show
that there is no combination of signs for the αi and βi such that both equalities hold,
unless V can be decomposed into a direct sum. We first look at (3). From the last row
we see that at least one βi has to be strictly negative, as no vi on the left hand side has
a negative entry at index m, and vm is nonzero. So we can split the vectors into two
groups: those with positive βi and those with strictly negative βi . After changing the
summation order and reorganizing the rows if necessary, (3) becomes

⎡

⎢
⎢
⎢
⎣

�
+

+ · · · +
+ · · · +

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

−
⊕

− · · ·−
− · · · −

⎤

⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎜
⎝

+
+
+
�

⎞

⎟
⎟
⎟
⎠

.

Suppose at least one βi is strictly positive. Then Lemma 5.1 implies that some com-
ponents have to be zero, and we get a block diagonal form

⎡

⎢
⎢
⎢
⎢
⎣

�
0

0 · · · 0
0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

0
⊕

0 · · · 0
− · · · −

⎤

⎥
⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

+
+
0

�

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, the vi appearing with a nonzero coefficient in (2) span a vector space that can be
decomposed into a direct sum if at least one βi is strictly positive. Otherwise, with the
analogous reasoning for vm−1, we can suppose that all the αi and βi are nonpositive,
and conclude that the sign equations for vm−1 and vm are of the form

⎡

⎣
⊕

− · · · −
− · · · −

⎤

⎦ =
⎛

⎝
+
�
+

⎞

⎠ , (4)

⎡

⎣
⊕

− · · · −
− · · · −

⎤

⎦ =
⎛

⎝
+
+
�

⎞

⎠ . (5)

If all αi (implicitly used in (4)) were nonzero, then the last row in (4) implies that the
last components of all the vi would have to be zero, which is incompatible with the

123

Discrete & Computational Geometry (2023) 69:4–25 19

last row in (5). Again with the analogous reasoning for the βi we see that not all αi

and not all βi are nonzero. As before we split the vectors on the left hand side of each
equation into two blocks: vectors that appear with a nonzero coefficient in only one of
the equations and vectors that are shared in both equations with nonzero coefficients,
which gives, after reordering the rows and summands if necessary:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⊕
−
−

− · · · −
− · · · −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
⊕
−

− · · · −
− · · · −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+
+
+
�
+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
⊕
−

− · · · −
− · · · −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
shared

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
−
⊕

− · · · −
− · · · −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+
+
+
+
�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We use Remark 5.1 to determine zero components in the first equation:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⊕
−
0

− · · · −
0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
⊕
0

− · · · −
0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
shared

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+
+
0

�
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, doing the same for the second equation, and using the fact that we already know
some zero components in the shared vectors, we get:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
⊕
0

0 · · · 0
0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
shared

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
−
⊕

0 · · · 0

− · · · −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
+
+
+
�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

123

20 Discrete & Computational Geometry (2023) 69:4–25

Denote the number of shared vectors by s. If s is greater than 0, we look at the rows
in the equation for vm−1 where the shared vectors are nonzero:

[
−
]
+
[
⊕
]

︸ ︷︷ ︸
s many shared

=
(
+
)

.

As all nonshared vectors on the left hand side only have negative components, we can
bring them to the right hand side and get:

[
⊕
]

︸ ︷︷ ︸
s many shared

=
(
+
)

.

Note that here, all the hidden entries of the shared vectors are zero. We can suppose
that the shared vectors are linearly independent, otherwise we could replace some
coefficients with zero. As they are linearly independent, however, they span the whole
space R

s , thus the shared vectors can be replaced by unit vectors, which leads to a
decomposition of V into a direct sum of vector spaces. It remains to handle the case
where there are no shared vectors in (4) and (5). In that case, certain components in
(4) and (5) have to be zero:

⎡

⎢
⎢
⎢
⎣

⊕
0

− · · · −
0 · · · 0

⎤

⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎝

+
0
�
0

⎞

⎟
⎟
⎠ ,

⎡

⎢
⎢
⎢
⎣

0
⊕

0 · · · 0
− · · · −

⎤

⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎜
⎝

0
+
0
�

⎞

⎟
⎟
⎟
⎠

.

The zero entries on the left hand side imply that the space spanned by V can be
decomposed into a direct sum. This completes the proof. ��
Corollary 5.1 Let L ⊆ Z

m, m ≥ 3, be a lattice of dimension less than m− 1 such that
no subspace of the vector space spanned by L can be decomposed into a direct sum of
two nonzero spaces. Then there exists a corner cone C of the standard simplex such
that L ∩ C = {0}.
Proof Let vi ∈ L ∩ Ci for all i = 1, . . . ,m and assume they are all nonzero. Then,
since each vi is i-visible, Proposition 5.1 yields

dim(L) ≥ dim 〈v1, . . . , vm〉 = m − 1,

a contradiction. ��

123

Discrete & Computational Geometry (2023) 69:4–25 21

Corollary 5.2 Let L = 〈v1, . . . , vk〉 be a lattice inZm, m ≥ 3. If k = dim(L) < 2m/3,
then there exists a corner cone C of the standard simplex such that L ∩ C = {0}.
Proof Using Corollary 5.1 and projecting to the relevant coordinates shows that any
subset S of v1, . . . , vk of some cardinality s such that S cannot be decomposed into a
direct sum can only contain nonzero vectors of s + 1 corner cones. Additionally for
s = 1, S can only contain nonzero vectors of one corner cone. In fact, if there is a
v ∈ {v1, . . . , vk} and an i ∈ {1, . . . ,m} such that v is i-visible, then it is immediate
from the sign vector (+, . . . ,+,�,+, . . . ,+) of v that 〈v〉∩C j = {0} for all j �= i . It
follows that V can be decomposed into the sum of at most k/2 many two-dimensional
vector spaces, each containing nonzero vectors of three corner cones. ��
In order to derive a dimension bound such that both conditions in part (ii) of Proposi-
tion 4.1 are met, we need the following lemma that allows us to construct a nonlonely
point in a corner cone from a nonlonely point in a different corner cone. A geometric
interpretation of the statement is given in Fig. 4.

Lemma 5.2 Let Ci ⊂ Z
m be a corner cone, [c] be a slanted edge in Ci , and let

j ∈ N be such that the j th component of c is 1. If � ∈ Z
m and α ∈ N are such that

v := �+ αc ∈ Ci , then there exists a β ∈ N
∗ with �+ β(−c) ∈ C j \ {0}, where [−c]

is a slanted edge in the corner cone C j .

Proof By definition, the components of c are all zero except for the i th component,
which is−1, and the j th component for some j �= i , which is 1. Thus [−c] is a slanted
edge in C j . Set γ := max(−vi , α) + 1, where vi is the i th component of v. Then
ṽ := v − γ c is j-visible, as ṽi = vi + γ > 0, ṽk = vk ≥ 0 for all k �= i, j and
ṽ j = v j − γ ≤ 0 with

−ṽ j = −v j + γ = −v j − vi + (vi + γ) > −v j +
∑

k �=i

vk + ṽi =
∑

k �= j

ṽk .

Then, with β := γ − α ∈ N
∗, we get � + β(−c) = � + (α − γ)c = ṽ ∈ C j . ��

Theorem 5.1 Let L be a lattice in Z
m. If dim(L) < (m − 4)/3, then there exists a

slanted edge [c] in a corner cone C such that all elements of [c] are lonely.
Proof If m ≤ 4, there is nothing to show. Suppose m > 4. Without loss of generality,
wemay assumem is even, because if it is odd, then both (m−4)/3 and ((m+1)−4)/3
are fractions, so we have dim(L) < (m − 4)/3 iff dim(L) < ((m + 1) − 4)/3, so we
may add without harm an extra dimension to the setting.

By (ii) of Proposition 4.1, we have to show that L∩C = {0} and (L+〈c〉)∩C = [c].
If there exist such c and C , then there is no nonzero � ∈ L and no nonzero α ∈ Z

such that � + αc ∈ C . Thus we can prove the claim by showing that if for every
corner cone Ci , i = 1, . . . ,m, and every slanted edge [ci, j] of Ci , j = 1, . . . ,m,
j �= i , there are a nonzero �i, j ∈ Z

m and a nonzero αi, j ∈ Z such that the vector
vi, j := �i, j + αi, j ci, j is i-visible, then dim(L) ≥ (m − 4)/3. So suppose such �i, j

and αi, j exist. Then (+ ,�, +) is a valid sign vector for vi, j , with � at the i th

123

22 Discrete & Computational Geometry (2023) 69:4–25

αc

v

v → ṽ

β(−c)

ṽ

Fig. 4 Illustration of Lemma 5.2 in dimension 2 with c = (−1, 1), � = (1,−2), v = (−2, 1), α = 3,
γ = 4, β = 1, and ṽ = (2,−3)

position. We first show that each �i, j is either i-visible, j-visible, or has exactly two
strictly negative entries, at indices i and j . For the moment, we focus on i = 1, j = 2,
allowing us to drop both indices. The reasoning for all other pairs i, j is analogous.
We get the equation � + αc = v. If α ≤ 0, we can add −αc to both sides of the
equation, not perturbing the 1-visibility of the right hand side, which shows that � is
1-visible. Otherwise, we get a sign equation with unknown entries for �,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

?

?

?

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

�
⊕
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

αc

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

�
+
+

⎞

⎟
⎟
⎟
⎟
⎟
⎠

v

.

The signs for all but two components of � are immediate:

⎛

⎜
⎜
⎝

?
?

+

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

�
⊕
0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

�
+
+

⎞

⎟
⎟
⎠ .

As τ(c) = 0 and τ(v) ≤ 0, we get that τ(�) ≤ 0. Thus, if the second component of �

is positive, then it follows that � is 1-visible with a strictly negative first component.
If the second component of � is negative, we can apply Lemma 5.2 to see that there
exists a β ∈ N

∗ such that � + β(−c) is 2-visible, yielding

⎛

⎜
⎜
⎝

?
−
+

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

⊕
�
0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

+
�
+

⎞

⎟
⎟
⎠ .

123

Discrete & Computational Geometry (2023) 69:4–25 23

With the same reasoning as above we can determine that � is either 2-visible or its
first component is strictly negative. This shows our claim for the �i, j . It follows that
for each pair (i, j), the vector �i, j is such that it has a strictly negative entry at i , or j ,
or both. Thus we can find at least m/2 pairwise different �1, . . . , �m/2 ∈ L such that
no two �i have a negative entry at the same index, and for each index in {1, . . . ,m},
there is exactly one �i with a negative entry at that position. We now map these lattice
elements to i-visible vectors, i = 1, . . . ,m/2− 2, in Zm/2.

For any permutation π of 1, . . . ,m consider the surjective linear map

ψπ : Rm → R
m/2,

(u1, . . . , um) �→ (uπ(1) + uπ(2), uπ(3) + uπ(4), . . . , uπ(m−1) + uπ(m)).

There are n(m) := m!/2m/2 many such maps. We say a vector u and a map ψπ are
compatible, if:

– u is i-visible for some i , and ψπ(u) �= 0. If a ∈ N is such that π(a) = i , then ψπ

is (a + 1)/2"-visible.
– u contains exactly two strictly negative entries at indices i and j , and there is an
odd integer a such that π(a) = i and π(a + 1) = j , i.e., when applying ψπ on v,
the two negative entries are added together to give an ((a + 1)/2)-visible vector.

We now show that there exists a permutation π such that at least m/2− 2 many �i are
compatible to ψπ . In fact we can choose π such that all �i with exactly two negative
entries are compatiblewithψπ , as they do not have negative entries at the same indices.
This leaves us with some even number k ≥ 0 of indices not yet considered for π and
k many �i that could potentially be incompatible to such a permutation. Furthermore,
there are n(k) many permutations left to choose from. Each of the remaining �i is
contained in a different corner cone, say Ci , and so �i is incompatible if ψπ(�i) = 0.
For k > 2, each �i can be in the kernel of at most n(k − 2) many of the remaining
permutations (this is the case if �i is contained in a slanted edge of a corner cone). As
there are k (k > 2, even) many such �i , there has to be a ψπ for which the number of
i-visible �i that are mapped to zero is at most

⌊

k
n(k − 2)

n(k)

⌋

=
⌊

2

k − 1

⌋

= 0.

For k = 2, there is only one choice for π , and we could be in the situation where both
of the �i have to be mapped to zero. For any such π , the images of the �i therefore
contain at least m/2 − 2 many nonzero vectors with m/2 − 2 different sign patterns
(after potentially reordering the rows)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�
+
...

+
+
+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+
�
...

+
+
+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, . . . ,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+
+
...

�
+
+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

123

24 Discrete & Computational Geometry (2023) 69:4–25

By projecting to the first m/2− 2 coordinates and using Corollary 5.2, it follows that

dim 〈�1, . . . , �m/2〉 = dim 〈ψπ(�1), . . . , ψπ(�m/2)〉 ≥ 2

3

(
m

2
− 2

)

= m − 4

3
.

This proves the claim. ��

Without further restrictions on L , there is no analogous result for straight edges,
i.e., there is no upper bound for the dimension proportional to m such that lower
dimensional lattices necessarily lead to infinitely many lonely points on at least one
straight edge. For any m, the lattice generated by (1, 0, . . . , 0) yields only finitely
many lonely points on any straight edge.

6 Conclusion and Open Questions

We translated the problem of reducing the order of a C-finite sequence to questions
about which points in a dilated simplex are not connected to any other point in the
simplex via a specific lattice. Our answers to these questions are in the form of algo-
rithms that determine when the number of these points grows indefinitely with the
dilation, and also compute the exact number if there are only finitely many lonely
points. Furthermore we showed that if the dimension of the lattice is small enough,
then the number of lonely points always grows indefinitely.

Theorem 5.1 is helpful for our original application to C-finite sequences, because
the lattices appearing in this context are typically small, often even empty. We do not
know however whether the bound of Theorem 5.1 is tight enough to cover all cases of
interest. If it is not, we can still use the algorithms from Sect. 4 to see whether there
are enough lonely points to derive a finite degree bound for the ansatz.

Example 6.1 The Perrin numbers (Pn)∞n=0 are defined by Pn+3 = Pn + Pn+1 and
P0 = 3, P1 = 0, P2 = 2. Using the results of this paper, we an show that there is
no polynomial p(x) such that the C-finite sequence (p(Pn))∞n=0 satisfies a recurrence
of lower order. Indeed, the exponent lattice in this example is generated by (1, 1, 1),
and Algorithm 1 applied to this lattice asserts that there are infinitely many lonely
points. This means that all the points of at least one edge of a dilated simplex dS are
lonely. This in turn means that in step 3 of the algorithm from Sect. 2, we have � ≥ d,
and since we need � ≤ 4 in order to ensure that in step 4 we have at least one I of
size 2 that does not contain a lonely point, we get the degree bound d = 4. As the
algorithm returns “no solution” for d = 4, we can conclude that there does not exist
a polynomial p of any degree such that (p(Pn))∞n=0 satisfies a recurrence of order 2.

As for extensions of our theoretical results, there are immediate questions that are
rooted in discrete geometry: Can we find a closed form expression depending on d
for the number of lonely points in dS for a given lattice? How many lonely points
are there in more involved convex polytopes? How do linear transformations on the

123

Discrete & Computational Geometry (2023) 69:4–25 25

lattice affect lonely points? Although questions of this kind are not directly related to
our initial number theoretic motivation, their pursuit may still lead to valuable insight.

Funding Open access funding provided by the Austrian Science Fund (FWF).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aparicio Monforte, A., Kauers, M.: Formal Laurent series in several variables. Expo. Math. 31(4),
350–367 (2013)

2. Beck, M., Robins, S.: Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra.
Undergraduate Texts in Mathematics. Springer, New York (2007)

3. Becker, T., Weispfenning, V.: Gröbner Bases. Graduate Texts in Mathematics, vol. 141. Springer, New
York (1993)

4. Buchberger, B., Kauers, M.: Gröbner basis. Scholarpedia 5(10), # 7763 (2010)
5. Coppersmith, D., Davenport, J.: Polynomials whose powers are sparse. ActaArith. 58(1), 79–87 (1991)
6. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational.

Algebraic Geometry and Commutative Algebra. Undergraduate Texts inMathematics. Springer, Cham
(2015)

7. Everest,G., vander Poorten,A., Shparlinski, I.,Ward,T.:RecurrenceSequences.Mathematical Surveys
and Monographs, vol. 104. American Mathematical Society, Providence (2003)

8. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero dimensional Gröbner
bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)

9. Hrushovski, E., Ouaknine, J., Pouly, A.,Worrell, J.: Polynomial invariants for affine programs. In: 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford 2018), pp. 530–539. ACM,
New York (2018)

10. Humenberger, A., Jaroschek, M., Kovács, L.: Automated generation of non-linear loop invariants
utilizing hypergeometric sequences. In: ACM International Symposium on Symbolic and Algebraic
Computation (Kaiserslautern 2017), pp. 221–228. ACM, New York (2017)

11. Kauers, M., Paule, P.: The Concrete Tetrahedron. Texts and Monographs in Symbolic Computation.
Springer, Vienna (2011)

12. Kauers, M., Zeilberger, D.: Factorization of C-finite sequences. In: Advances in Computer Algebra
(Waterloo 2016), pp. 131–147. Springer, Cham (2018)

13. Kauers, M., Zimmermann, B.: Computing the algebraic relations of C-finite sequences and multise-
quences. J. Symbol. Comput. 43(11), 787–803 (2008)

14. Ouaknine, J.,Worrell, J.: Decision problems for linear recurrence sequences. In: Reachability Problems
(Bordeaux 2012). Lecture Notes in Computer Science, vol. 7550, pp. 21–28. Springer, Heidelberg
(2012)

15. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998)
16. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics, vol.

62. Cambridge University Press, Cambridge (1999)
17. Zeilberger, D.: The C-finite ansatz. Ramanujan J. 31(1), 23–32 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Lonely Points in Simplices
	Abstract
	1 Introduction
	2 Ansatz and Exponent Lattice
	3 Lattices and Cones
	4 Counting and Identifying Lonely Points
	5 Lonely Points for Small Lattices
	6 Conclusion and Open Questions
	References

