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Abstract
It goes back to Ahlfors that a real algebraic curve admits a real-fibered morphism to
the projective line if and only if the real part of the curve disconnects its complex part.
Inspired by this result, we are interested in characterising real algebraic varieties of
dimension n admitting real-fibered morphisms to the n-dimensional projective space.
We present a criterion to classify real-fibered morphisms that arise as finite surjec-
tive linear projections from an embedded variety which relies on topological linking
numbers. We address special attention to real algebraic surfaces. We classify all real-
fibered morphisms from real del Pezzo surfaces to the projective plane and determine
which suchmorphisms arise as the composition of a projective embeddingwith a linear
projection. Furthermore, we give some insights in the case of real conic bundles.
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1 Introduction

This work concerns the study of real-fibered morphisms from real algebraic varieties
to projective spaces of same dimension. The topology of the real part of smooth
real algebraic varieties admitting such a morphism is bound to be a disjoint union of
spheres and real projective spaces. We mainly focus on real del Pezzo surfaces and
real conic bundles whose real classification is well known. The study of real algebraic
varieties dates back to the nineteenth century. One of the first significant results was
the classification of real cubic surfaces presented in [33]. Then, in [37], the study of
real plane algebraic curves of degree 4 and their bitangents was carried out (which is
equivalent to the study of real del Pezzo surfaces of degree 2). Thefirst systematic study
of real algebraic varieties was pursued by Harnack, Klein, Hilbert, and Comessatti [3,
4, 12, 17, 22]. In particular, Comessatti classified real rational algebraic R-minimal
surfaces. Moreover, since we can obtain any real rational surface as a sequence of real
blow-ups of a real rational R-minimal surface, Comesatti’s approach in [4] leads to a
complete classification of real del Pezzo surfaces.

Let X be a non-singular algebraic variety of dimension n (by variety we will always
mean an integral and separated scheme of finite type overR). In this article, we suppose
that all varieties have non-empty real part unless otherwise stated.

Definition 1.1 Let X and Y be non-singular algebraic varieties of dimension n. We
say that a real morphism f : X → Y is real-fibered, if X(R) is non-empty and
f −1(Y (R)) = X(R).

As already mentioned, we are particularly interested in real-fibered morphisms
X → P

n where Pn is the scheme Pn
R

= Proj(R[x0, . . . , xn]). According to a result by
Ahlfors [1, § 4.2], it is known which projective irreducible smooth curves C admit a
real-fibered morphism C → P

1. This is the case if and only if C is of Type I or sepa-
rating in the sense that its real points C(R) disconnect its set of complex points C(C).
Note that C is separating whenever C is an M-curve, i.e., the number r of connected
components ofC(R) equals g+1 where g is the genus ofC . On the other hand, ifC is
separating then r has the same parity as g+1. Separating curves and their real-fibered
morphisms to P

1 have been studied by several authors, see for example [5, 6, 9, 26,
30]. While any separating curve C admits real-fibered morphisms to P

1 of arbitrary
large degree, the situation is much more rigid for varieties of higher dimension. This is
mainly due to the fact that for any real-fibered morphism X → Y of smooth varieties
the restriction to the real parts is an unramified covering map [25, Thm. 2.19]. Among
others, this implies that for any smooth variety X of dimension n ≥ 2, the topol-
ogy of X(R) already determines the degree of any real-fibered morphism X → P

n .
More precisely, if X is a smooth variety of dimension n ≥ 2 and f : X → P

n a
real-fibered morphism, then X(R) is homeomorphic to a disjoint union of s spheres
and r real projective spaces such that deg f = 2s + r (or X(R) is empty). However,
there is no topological characterisation known, similar to Ahlfors’ above result on
curves of Type I, of those n-dimensional varieties that admit a real-fibered morphism
X → P

n . A possible approach to extend the notion of being Type I to all varieties is
presented in [36], where Viro introduces the definition of bound in complexification
for a smooth n-dimensional variety X : this is the case if X(R) realises the trivial ele-
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ment in the homology group Hn(XC;Z/2Z). Unlike the case of curves, for a smooth
n-dimensional variety X with n ≥ 2, the property of bounding in complexification
is not equivalent to that of admitting a real-fibered morphism. For example, any odd
degree hyperbolic surface in P3 admits a real-fibered morphism but it does not bound
in complexification; see [36, Cor. 1.2.C]. On the other hand, any M-surface of even
degree in P

3 bounds in complexification (see [36, Cor. 1.2.F]), but not all such M-
surfaces have as real part a disjoint union of spheres and real projective planes (see
examples in [20, 21]). The interested reader can find more examples in Corollary 3.8
and Example 6.7.

In this article, we give criteria to characterise smooth n-dimensional varieties admit-
ting real-fiberedmorphisms X → P

n .Moreover, we completely characterise del Pezzo
surfaces which admit real-fibered morphisms to P2.

In the following, for a non-singular algebraic variety X of dimension n, we write
real Picard group for the Picard group of XR, respectively Picard group for the Picard
group of XC. We say that a morphism of real varieties is a finite real-fibered morphism
if it is real-fibered and a finite morphism in the sense of [14, p. 84]. We first present the
following characterisation of finite real-fibered morphisms X → P

2 from a del Pezzo
surface X .

Theorem 1.2 Let X be a del Pezzo surface such that each connected component of
X(R) is homeomorphic to either the sphere or the real projective plane. There is a
finite real-fibered morphism X → P

2 if and only if we have one of the following:

(i) X has real Picard rank 1;
(ii) X is a conic bundle of real Picard rank 2;
(iii) X is the blow-up of one of the above surfaces at one or two real points.

Since the blow-up at a pair of complex conjugate points is always real-fibered, we
obtain the following.

Corollary 1.3 Let X be a del Pezzo surface with X(R) �= ∅. There is a (possibly non-
finite) real-fibered morphism X → P

2 if and only if each connected component of
X(R) is homeomorphic to either the sphere or the real projective plane.

A concept closely related to real-fibered morphisms is the notion of hyperbolic
varieties.

Definition 1.4 Let X ⊂ P
N be an embedded variety and E ⊂ P

N a linear subspace
of dimension d = codim(X ,PN ) − 1 with E ∩ X = ∅. Then X is hyperbolic with
respect to E if for all linear subspaces E ′ ⊃ E of dimension d+1 we have that E ′ ∩ X
consists only of real points.

Note that X is hyperbolic with respect to E if and only if the linear projection
πE : X → P

dim X from center E is real-fibered. Hyperbolic embeddings of curves
were studied for instance in [26, 30]. For example it was shown in [26] that any
embedding of a separating curve via a complete linear system of large enough degree
is hyperbolic. Hyperbolic curves also played an important role in the recent classifica-
tion of maximally writhed real algebraic links [29]. For higher dimensional varieties
we give the following characterisation of hyperbolic varieties that allows us to reduce
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the problem to smaller dimensions. From now on, wewill write X(R) 
 sSk�rRPk in
order to express that the real part is homeomorphic to the disjoint union of s k-spheres
and r real projective spaces of dimension k.

Theorem 1.5 Let X ⊂ P
n be a smooth variety of dimension k ≥ 2. Let H ⊂ P

n be
a hyperplane such that C = X ∩ H is a smooth (k − 1)-variety. Assume that each
connected component of X(R) contains exactly one connected component of C(R).
Moreover, let E ⊂ H be a linear space of dimension n− k − 1 with X ∩ E = ∅. Then
the following are equivalent:

(i) X is hyperbolic with respect to E.
(ii) X satisfies X(R) 
 sSk �rRPk such that deg X = 2s+r . The class of each con-

nected component that is homeomorphic to a real projective space is nontrivial
in Hk(P

n(R);Z2) and C ⊂ H = P
n−1 is hyperbolic with respect to E.

This allows us to characterise del Pezzo surfaces which can be embedded in some
projective space as a hyperbolic variety.

Theorem 1.6 Let X be a del Pezzo surface such that each connected component of
X(R) is homeomorphic to either the sphere or the real projective plane. There is an
embedding X ↪→ P

n such that the image is a hyperbolic variety if and only if we have
one of the following:

(i) X has real Picard rank 1;
(ii) X is a conic bundle of real Picard rank 2;
(iii) X is the blow-up of one of the above surfaces at one real point.

Furthermore, we characterise these embeddings.

Theorem 1.7 Let X ⊂ P
n be a smooth real del Pezzo surface embedded via a complete

linear system. There exists a linear subspace E ⊂ P
n of codimension 3 such that X is

hyperbolic with respect to E if and only if:

(i) X(R) 
 sS2 � rRP2;
(ii) deg X = 2s + r; and
(iii) the genus of a hyperplane section on X equals s + r − 1.

In this case we further have r ∈ {0, 1} and n = s + 2.

Part (ii) of Theorems 1.2 and 1.6 motivates the question of which real conic
bundles X (over P1) with real Picard rank 2 admit a real-fibered morphism to P

2,
respectively which ones admit a hyperbolic embedding. In order to treat this question,
we will consider those surfaces X as the zero set of a section of OP(E)(2), for P(E)

a projective plane bundle over P1. This will allow us to construct hyperbolic conic
bundles with an arbitrary large number of components homeomorphic to a sphere.
Finally, for all pairs (s, r) of nonnegative integers we decide whether there exist a
smooth hyperbolic surface with real part homeomorphic to sS2 � rRP2, except for
the case s = 2, r ≥ 2. We provide a construction when s ≥ 3, r ≥ 0, using the
tautological embedding of the projective bundle P(E).

The paper will be organised as follows. We start by recalling several facts and
notations about real del Pezzo surfaces in Sect. 2.We then give in Sect. 3 a classification
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of ample divisors D on real del Pezzo surfaces X satisfying some necessary conditions
for the associated morphism f : X → P

2 to be finite real-fibered. In Sect. 4, we give
a criterion for a real variety X ⊂ P

n of dimension k to be hyperbolic with respect
to a given linear subspace E of dimension n − k − 1, in terms of linking numbers
(generalising the criterion for real curves given in [26]). This will allow us to prove
Theorem 1.5. In the subsequent Sect. 5 we apply this to prove the Theorems 1.2, 1.6,
and 1.7 as well as Corollary 1.3. For some examples of real del Pezzo surfaces X we
construct in Sect. 6 an explicit linear subspace E ⊂ P

n of codimension 3 such that
X is hyperbolic with respect to E . Finally, in Sect. 7, we treat the case of hyperbolic
minimal conic bundles and the question of which topological types are realisable as
real part of a hyperbolic surface.

2 Preliminaries and Notation

Let X be a real smooth surface. By a surface we always mean a projective and irre-
ducible variety of dimension 2. We will denote by −KX , or simply −K if there is no
ambiguity, the anti-canonical class of X .

Definition 2.1 If −K is ample, then X is a del Pezzo surface of degree K 2.

Let X be a del Pezzo surface. From the complex view point XC is either P2
C
blown up

in r points in general position, where r ≤ 8, or P1
C

× P
1
C
. In the former case one has

K 2 = 9 − r and K 2 = 8 in the latter. In particular K 2 ≤ 9.

Definition 2.2 Let X be a smooth irreducible surface.

• If every (real) birational morphism from X into a smooth surface is an isomor-
phism, then we say that X is minimal (over R).

• If X is a conic bundle of real Picard rank two, we say that X is a minimal conic
bundle.

Every real del Pezzo surface is one of the following or a blow-up of one of the following
at a zero dimensional real subvariety:

• The projective plane P2 which is a del Pezzo surface of degree 9 whose real part
is the real projective plane RP2.

• The quadric hypersurface

Qn,4−n = V
⎛
⎝

n∑
i=1

x2i −
4∑

j=n+1

x2i

⎞
⎠ , n ∈ {0, 1, 2},

in P
3 which is a del Pezzo surface of degree 8. Its real part is empty when n = 0

and homeomorphic to the sphere S2 resp. the torus S1 × S1 when n = 1 or n = 2
respectively.

• The direct product P1 ×C where C is a smooth rational curve without real points.
This is a del Pezzo surface of degree 8 whose real part is empty.
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• A minimal conic bundle D4 which is a del Pezzo surface of degree 4 whose real
part is homeomorphic to a disjoint union of two spheres.

• A minimal conic bundle D2 which is a del Pezzo surface of degree 2 whose real
part is homeomorphic to a disjoint union of three spheres.

• A minimal surface G2 which is a del Pezzo surface of degree 2 whose real part is
homeomorphic to a disjoint union of four spheres.

• A minimal surface B1 which is a del Pezzo surface of degree 1 whose real part is
homeomorphic to a disjoint union of four spheres and a real projective plane.

Let X be a real surface such that all connected components of X(R) are homeomorphic
to each other. We indicate by X(a, 2b) the real surface obtained by blowing up the
real surface X in a real points and b pairs of complex conjugated points. If a = 1, the
topology of X(a, 2b)(R) does not depend on the real point at which we blow up. If
a = 2, we denote by X(2, 2b)20 resp. X(2, 2b)11 the surfaces obtained by blowing up
two real points from the same or two points from different connected components of
X(R) respectively. The case a ≥ 3 will not occur in this work.

3 Necessary Conditions for Surfaces

We first derive some necessary conditions on the ample divisor classes on a surface
that arise from a finite real-fibered morphism to P2 (Lemma 3.1, Theorem 3.3). Then,
we specify such conditions to the case of del Pezzo surfaces (Corollary 3.4). The case
of conic bundles is treated in Sect. 7.

Lemma 3.1 Let X be a smooth irreducible surface and f : X → P
2 a real-fibered

morphism. Further let X(R) �= ∅. Then f is generically finite to one. Let us denote
its degree by d. Then X(R) 
 sS2 � rRP2 such that d = r + 2s. The preimage of a
general real line in P2 is a smooth irreducible separating curve C such that C(R) has
s + r connected components.

Proof Since f is real-fibered, the fiber f −1( f (p)) for any p ∈ X(R) must be finite
as any nonfinite variety has nonreal points. Since the dimension of a fiber is upper-
semicontinuous [13, Thm. 11.12], this shows that f is generically finite to one. Let
U ⊂ P

2 be the open subset of all p ∈ P
2 such that f −1(p) is finite and let X ′ =

f −1(U ). The restriction f ′ : X ′ → U of f to X ′ is quasi-finite in the sense that
each fiber is finite. Moreover, it is proper because f is proper as a morphism between
projective varieties. Thus f ′ is finite by [11, Thm. 8.11.1]. Furthermore, we have
X(R) ⊂ X ′ and P

2(R) ⊂ U . Thus by [25, Thm. 2.19] the map X(R) → P
2(R)

obtained by restricting f to the real part of X(R) is an unramified covering map. This
implies that the real part X(R) is homeomorphic to the disjoint union of s spheres and
r projective planes such that d = r + 2s, see also [25, Cor. 2.20]. By Bertini’s lemma
[19, Thm. 6.10], the preimage of a general real line in P2 is a smooth irreducible curve
C with C(R) having r + s connected components, one for each connected component
of the covering space X(R). Furthermore, the restriction of f toC is again real-fibered.
Thus C is separating, see e.g. [25, Thm. 2.8]. ��
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Example 3.2 By the Noether–Lefschetz Theorem we can approximate the polynomial
x41+x42+x43−x40 arbitrarily close by a homogeneous polynomial p ∈ R[x0, x1, x2, x3]
of degree 4 such that the zero set X = V(p) ⊂ P

3 is a smooth surface whose Picard
group is generated by the class of a hyperplane section. In particular, there is no
morphism f : X → P

2 of degree 2. Further we can choose p in such a way that X(R)

is homeomorphic to a sphere as this is the case for the real zero set of x41 +x42 +x43 −x40 .
Thus byLemma3.1 there is no real-fiberedmorphism f : X → P

2. In particular, for an
abstract smooth surface X the criterion X(R) 
 sS2 � rRP2, r , s ∈ Z≥0, is necessary
but not sufficient for admitting a real-fibered morphism f : X → P

2.

Theorem 3.3 Let f : X → P
2 be a finite real-fibered morphism from a smooth surface

X and D the corresponding ample divisor class. Then we have the following:

(i) X(R) 
 sS2 � rRP2;
(ii) D.D = r + 2s;
(iii) r ≤ D.K + 4;
(iv) D.K ≡ r mod 4;
(v) D.L > 0 for all effective divisors L ⊂ XC.

Proof (i) and (ii) are part of the previous lemma. In order to prove the inequality
of (iii), we note that by the preceding lemma the preimage of a general line in P2 is a
smooth separating curve whose real part has r + s connected components. Its genus
g is according to the Adjunction Formula [14, V, Prop. 1.5]:

g = D.(D + K )

2
+ 1 = r + D.K

2
+ s + 1.

Now Harnack’s inequality says that

r + s ≤ g + 1 = r + D.K

2
+ s + 2

which implies r ≤ D.K + 4. Since the curve is separating, we furthermore have that
g + r + s = (r + D.K )/2 + 2s + r + 1 is odd which implies claim (iv). Part (v) is
clear because f is finite and D therefore ample. This remains true under a base change
to C. ��

From Theorem 3.3 and the Kodaira Vanishing Theorem, one obtains the following
statement for del Pezzo surfaces. The Kodaira Vanishing Theorem is used to prove
the right-hand inequality in (iii) of Corollary 3.4. This allows us to narrow down the
ample divisor classes that can possibly arise as the pull-back of a hyperplane section
under a finite real-fibered morphism X → P

2 to a finite list.

Corollary 3.4 Let f : X → P
2 be a finite real-fibered morphism from a del Pezzo

surface X and D the corresponding ample divisor class. Then we have the following:

(i) X(R) 
 sS2 � rRP2;
(ii) D.D = r + 2s;
(iii) r ≤ D.K + 4 ≤ r + 2s;
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(iv) D.K ≡ r mod 4;
(v) D.L > 0 for all lines L ⊂ XC.

In particular, there are only finitely many possibilities for such D.

Proof In order to prove the missing inequality of (iii), we will compute �(D) using the
Riemann–Roch Theorem for surfaces [14, V, Thm. 1.6]. For this we note that by [14,
V, Cor. 3.5] the arithmetic genus of X is zero. Furthermore, because D and −K are
ample, we have that D− K is ample as well and thus the Kodaira Vanishing Theorem
[14, V, Rem. 7.15] implies that hi (D) = 0 for i > 0. Therefore, we have

�(D) = D.(D − K )

2
+ 1

by Riemann–Roch. Since D comes from a morphism to P
2, we have �(D) ≥ 3.

Together with (ii) this implies D.K + 4 ≤ r + 2s. Finally, it follows from the Hodge
Index Theorem [14, Rem. 1.9.1] and the fact that −K is ample that there can be only
finitely many D satisfying (ii) and (iii). ��

For each real del Pezzo surface X whose real part X(R) consists of connected
components that are homeomorphic to spheres and real projective planes only, we
determined all divisor classes on X that satisfy all requirements of Corollary 3.4 via
a brute-force search. The result is listed in Table 1. In this table, we use the following
notation regarding generators of the real Picard group of real del Pezzo surface:

• Pic(D2) = 〈−K , F〉, where F denotes the class of a fiber (when regarding D2 as
a conic bundle D2 → P

1) and −K .F = 2;
• Pic(D2(1, 0)) = 〈−K , F̃, E〉,where E and F̃ are (−1)-curves and any twodistinct
generators have intersection equal to one;

• Pic(G2(1, 0)) = 〈−K , E〉, where E is a (−1)-curve and −K .E = 1.

In the following example, we carry this computation out for the real del Pezzo sur-
face D2. The other cases can be treated analogously but we do not write down the
explicit calculations here.

Example 3.5 The real part of the del Pezzo surface D2 of degree two consists of three
connected components that are homeomorphic to a sphere [32, Cor. 4.3]. Thus we
have s = 3 and r = 0. The complexification (D2)C of D2 is the blow-up of P2 at
seven points. Thus the Picard group of (D2)C is the free abelian group generated by
the pull-back ofOP2(1) and the classes of the seven exceptional divisors E1, . . . , E7.
In this basis the complex conjugation on Pic(D2)C is given by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 3 1 1 1 1 1 1
−3 −2 −1 −1 −1 −1 −1 −1
−1 −1 −1 0 0 0 0 0
−1 −1 0 −1 0 0 0 0
−1 −1 0 0 −1 0 0 0
−1 −1 0 0 0 −1 0 0
−1 −1 0 0 0 0 −1 0
−1 −1 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where the first coordinate corresponds to the pull-back of OP2(1), see [32, Exam. 2].
The real Picard group of D2 consists of those divisor classes of (D2)C that are
fixed under this involution. Thus it is generated by the two divisor classes F =
(1,−1, 0, 0, 0, 0, 0, 0) and K = (−3, 1, 1, 1, 1, 1, 1, 1) where the latter is the canon-
ical divisor class. We observe that F .F = 0, F .K = −2, and K .K = 2. Assume that
the divisor D = hF − lK for h, l ∈ Z satisfies the conditions from Corollary 3.4.
Condition (ii) says that 2(2h + l)l = 6. Here are the only pairs (h, l) of integers that
satisfy this condition:

(1,−3), (−1,−1), (1, 1), (−1, 3).

Finally, condition (v) applied to L = E6 for instance rules out the possibility of l < 0,
so we are left with (h, l) = (1, 1) and (h, l) = (−1, 3). Alternatively, this is also
implied by conditions (iii) and (iv) which show that h + l ∈ {0, 2}.

In the next section we will prove that in fact all these divisors come from a real-
fibered morphism f : X → P

2 (and a hyperbolic embedding of X in the very ample
cases). The last column of Table 1 indicateswhere a detailed treatment of these divisors
can be found. Note that for determining which divisors are very ample we can employ
[7]. For now we extract from Table 1 the following.

Corollary 3.6 Let X be a smooth del Pezzo surface such that X(R) 
 sS2 � rRP2.
If there is a finite and real-fibered morphism f : X → P

2, then the preimage of a
generic real line is an M-curve, i.e., has genus r + s − 1. Furthermore, the space of
global sections of f ∗OP2(1) has dimension s + 3 and if f ∗OP2(1) is very ample, then
r ∈ {0, 1}.
Remark 3.7 In some cases it is rather easy to verify that a morphism is real-fibered.
For example, it is clear that any real automorphism P

2 → P
2 is real-fibered. Denote

by D4(2, 0)11 the blow-up of D4 at two points belonging to different connected com-
ponents. The anti-canonical map D4(2, 0)11 → P

2 is a double cover of P2 ramified
along a plane quartic curve without real points. This is clearly real-fibered. Finally,
the hypersurfaces Q3,1 and D4(1, 0) in P3 are hyperbolic with respect to any point in
the interior of the 2-sphere as each 2-sphere disconnects P3(R), and the intersection
of any P

1(R) with any P
2(R) is odd (see also [16, Thm. 5.2]).

Corollary 3.8 Let X be a smooth del Pezzo surface admitting a real-fibered morphism
f : X → P

2. Then X bounds in complexification if and only if X = G2.

Proof For X and P
2, the complexifications XC and P

2
C
come equipped with anti-

holomorphic involutions τ and conj such that X(R) can be identified with XC(C)τ ,
andP2(R)withP2

C
(C)conj. Therefore f has a correspondingmorphism fC : XC → P

2
C

such that fC ◦ τ = conj ◦ fC.
The homology class of P2(R) in H2(P

2
C
;Z/2Z) equals the homology class of a line

in P
2
C
. The pull-back of a line via fC is the divisor associated to fC, i.e., one of the

divisors listed in Table 1. Moreover, since fC is real-fibered, the pull-back of [P2(R)]
via fC realises the class [X(R)]. In conclusion the homology class [X(R)] is trivial
in H2(XC;Z/2Z) if and only if X = G2. ��
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Table 1 A list of all del Pezzo surfaces X whose real part consists of spheres and real projective planes
together with all divisor classes D that satisfy the conditions of Corollary 3.4

X Degree s r D �(D) g Very ample? See also

P
2 9 0 1 O

P2 (1) 3 0 Yes 3.7

Q3,1 8 1 0 O
P2 (1, 1) 4 0 Yes 3.7

P
2(0, 2) 7 0 1 – – – – 1.3, 5.6

Q3,1(0, 2) 6 1 0 – – – – 1.3, 5.6

P
2(0, 4) 5 0 1 – – – – 1.3, 5.6

Q3,1(0, 4) 4 1 0 – – – – 1.3, 5.6

D4 4 2 0 −K 5 1 Yes 6.4

P
2(0, 6) 3 0 1 – – – – 1.3, 5.6

D4(1, 0) 3 1 1 −K 4 1 Yes 3.7

D4(2, 0)
1
1 2 0 2 −K 3 1 No 3.7

Q3,1(0, 6) 2 1 0 – – – – 1.3, 5.6

D4(0, 2) 2 2 0 – – – – 1.3, 5.6

D2 2 3 0 F − K 6 2 Yes 5.5, 5.7

−F − 3K 6 2 yes 5.5, 5.7

G2 2 4 0 −2K 7 3 Yes 6.5

P
2(0, 8) 1 0 1 – – – – 1.3, 5.6

D4(1, 2) 1 1 1 – – – – 1.3, 5.6

D2(1, 0) 1 2 1 −3K − F̃ + E 5 2 Yes 5.5, 5.7

−5K − F̃ − E 5 2 Yes 5.5, 5.7

−K + F̃ + E 5 2 Yes 5.5, 5.7

−3K + F̃ − E 5 2 Yes 5.5, 5.7

G2(1, 0) 1 3 1 −2K + E 6 3 Yes 6.6

1 −4K − E 6 3 Yes 6.6

B1 1 4 1 −3K 7 4 Yes 6.1

The 7th column keeps track of the genus of the divisor D. In the last column, the references are Remarks
3.7 and 5.6, Corollary 1.3, Proposition 5.5, Examples 6.1, 6.4, and 6.6

4 Linking Lemma and Varieties of Higher Dimension

In this section, we give a criterion to determine whether an embedded variety of
dimension k is hyperbolic in terms of linking numbers.

Definition 4.1 (see for example [31, §2.5]) Let X ,Y be disjoint embedded oriented
spheres in Sn of dimensions l and m respectively, where n = l +m + 1. Consider the
fundamental cycles [X ] and [Y ] as cycles in the integral homology of Sn . There exists
a chain W whose boundary is [X ]. The linking number lk(X ,Y ) is defined to be the
intersection number of W and [Y ].
Remark 4.2 For l and m non zero, the linking number does not depend on the choice
of W . Indeed, given another chain W ′ satisfying ∂W ′ = [X ], the chain W ′ − W is
a cycle, and hence the boundary of a chain e. Then the intersection number between
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W ′ −W and [Y ] is the intersection number between ∂e and [Y ], which is equal to the
intersection number between e and ∂[Y ] = 0, hence it is equal to zero. If one of l,m
is zero (saym), then the linking number must be computed as the intersection number
of a 1-dimensional chain W with boundary [Y ] with the cycle [X ] (and it will not
depend on the choice of W in that case), as otherwise the intersection number would
depend on the choice of chain W with boundary [X ].

The definition of linking numbers can be extended to spheres and linear subspaces
inside a real projective space.

Definition 4.3 Let K ⊂ P
n(R) be an embedded k-sphere in Pn(R) and L ⊂ P

n(R) be
a linear subspace of dimension n−k−1. Let p : Sn → P

n(R) be an unramified double
cover. The linking number lk(K , L) is defined as the linking number of K1 � K2 with
p−1(L) in Sn , where K1 � K2 is the preimage of K via p (one of the Ki may be
empty).

The followingproposition is a generalisation of [26, Prop. 2.12] to the case of projective
subvarieties of any dimension.

Proposition 4.4 Let X ⊂ P
n be a smooth subvariety of dimension k and degree 2s+r

such that the set of real points X(R) is homeomorphic to sSk � rRPk . Let E ⊂ P
n be

a linear subspace of dimension n − k − 1 with X ∩ E = ∅. Let X1, . . . , Xr+s be the
connected components of X(R). Then X is hyperbolic with respect to E if and only if

r+s∑
i=1

|lk(Xi , E(R))| = 2s + r .

Proof The variety X is hyperbolic with respect to E if and only if every dimension
n − k real linear space L that contains E intersects X in deg X many (distinct) real
points. Let p : Sn → P

n(R) be an unramified double cover. For any choice of such an
L ⊂ P

n containing E , the preimage p−1(E(R)) is a sphere of dimension n − k − 1
inside p−1(L(R)) which in turn is a sphere of dimension n − k. Let W ⊂ p−1(L(R))

be a hemisphere whose boundary is p−1(E(R)). If X is hyperbolic with respect to E ,
then the absolute values of the linking numbers lk(Xi , E(R)), which are the intersec-
tion numbers of the p−1(Xi ) withW , sum up to deg X . Conversely, if the intersection
number of W with the preimage of X(R) is deg X , then L has (at least) deg X many
real intersection points with X . ��
The following proposition is a direct application of Proposition 4.4 and is used in
Sect. 6.

Proposition 4.5 Let X ⊂ P
n, for some n ≥ 3, be a smooth surface and let X0 be a

connected component of X(R) homeomorphic to S2. Let E ⊂ P
n be a linear subspace

of codimension 3with E∩X = ∅. If E(R) intersects a 3-dimensional discW ⊂ P
n(R),

whose boundary is X0, in exactly one point, then |lk(X0; E(R))| = 2.

Proof Let p : Sn → P
n(R) be an unramified double cover, and let f : S2 → P

n(R) be
a continuous map. Let p∗, f∗ be the corresponding induced homomorphisms between
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fundamental groups. Since π1(Sk) = 0 for k ≥ 2, we have that f∗(π1(S2)) ⊆
p∗(π1(Sn)) and, by theLifting Property [15, Prop. 1.33], there exists a lift f̃ : S2 → Sn

of f . As homology is functorial (and covariant), it preserves compositions, hence we
have f∗ = p∗ ◦ f̃∗ for the induced homomorphisms between Z2-homology groups.
As H2(Sn;Z2) = 0 for n ≥ 3, the homomorphism f∗ factors through zero, therefore
it is the zero homomorphism. In particular, if [S2] ∈ H2(S2;Z2) is the fundamental
class of S2, then f∗[S2] = 0. From this, we get that the linking number between X0
and E(R) must be even. By assumption, the real part E(R) intersects a 3-dimensional
discW ⊂ P

n(R) of boundary X0 in exactly one point, therefore lk(X0, E(R)) = ±2.

��
We conclude this section by giving a proof of Theorem 1.5.

Proof of Theorem 1.5 The varietyC is hyperbolic with respect to E if and only if every
dimension n − k linear space L that contains E intersects C in degC many (distinct)
real points. Let p : Sn−1 → H(R) be an unramified double cover. For any choice
of such a L ⊂ H containing E , the preimage p−1(E(R)) is a sphere of dimension
n − k − 1 inside p−1(L(R)) which in turn is a sphere of dimension n − k. Let
W ⊂ p−1(L(R)) be a hemisphere whose boundary is p−1(E(R)). If C is hyperbolic
with respect to E , then the absolute values of the linking numbers lk(Ci , E(R)), which
are the intersection numbers of the p−1(Ci )withW , sumup to degC (Proposition 4.4).
Now, let j : Sn−1 ↪→ Sn , i : H(R) ↪→ P

n(R), and q : Sn → P
n(R) respectively be

two inclusions and a double unramified cover. One has that j ◦ p−1 = q−1 ◦ i .
Denote by Ẽ ⊂ Sn the image of p−1(E(R)) via j , which is still a sphere of

dimension n− k − 1 in Sn . The n− k sphere L̃ := j (p−1(L(R)) has Ẽ as an equator,
and W̃ := j(W ) is one of its two hemispheres of boundary Ẽ . It follows that q−1(Xi )

has to intersect W̃ in at least |lk(Ci , E(R))| number of points. Therefore,

r+s∑
i=1

|lk(Xi , i(E(R)))| ≥ 2s + r , (1)

as Ẽ = j(p−1(E(R)) = q−1(i(E(R)). Moreover the inequality (1) is an equality,
since the sum on the left-hand side is at most deg X = 2s + r . Thus by Proposition
4.4, the variety X is hyperbolic with respect to i(E) = E .

The converse can be seen by taking the restriction of the set of linear spaces of
dimension n−k−1 through E to the hyperplane H . Every such linear space intersects
C = X ∩ H in 2s + r real points. The hyperbolicity of X with respect to E implies
that C is hyperbolic with respect to E . ��

5 Hyperbolic del Pezzo Surfaces

In this section we will prove Theorems 1.2, 1.6, and 1.7.

Lemma 5.1 Let X ⊂ P
n be a smooth surface such that X(R) is homeomorphic to

sS2 � RP
2 with deg X = 2s + 1. The connected component that is homeomorphic to

a real projective plane realises the nontrivial homology class in H2(P
n(R);Z2).
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Proof Since X has odd degree, its real part X(R) realises the nontrivial homology
class in H2(P

n(R);Z2). Every sphere embedded to Pn(R) is homologous to zero (see
the proof of Proposition 4.5). Thus the remaining connected component must realise
the nontrivial class. ��

Recall that a subvariety X ⊂ P
n is called nondegenerate if it is not contained in

any hyperplane.

Lemma 5.2 Let X ⊂ P
n be a smooth nondegenerate surface such that X(R) is home-

omorphic to sS2 � rRP2 with deg X = 2s + r , n = s + 2, and r ∈ {0, 1}. Assume
that the sectional genus of X is s + r − 1. There is a hyperplane H ⊂ P

n such that
C = X ∩ H is a smooth and nondegenerate M-curve with the property that each
connected component of X(R) contains exactly one connected component of C(R).

Proof For any choice of one point pi on each connected component of X(R) that is
homeomorphic to a sphere, there is a hyperplane of Pn that contains these points since
n > s. If we choose these points general enough, then by Bertini’s lemma there is
such a hyperplane H whose intersection with X is smooth and nondegenerate in H .
Let C be X ∩ H . By construction and Lemma 5.1, each connected component of
X(R) contains at least one connected component of C(R). But since the genus of C
is s + r − 1, it must be exactly one connected component of C(R) on each connected
component of X(R). ��
Lemma 5.3 Let C ⊂ P

s+1 be a smooth nondegenerate M-curve of genus g = s+r−1
and degree 2s + r such that r components of C(R) realise the nontrivial homology
class in H1(P

s+1(R);Z2). Then C is hyperbolic.

Proof First we note that C has s + r connected components. A general enough hyper-
plane H that intersects each of the s connected components C1, . . . ,Cs of C(R) that
realise the trivial homology class will intersect C in 2s + r distinct real points. Let D
be the divisor corresponding to this hyperplane section. It is of the form

D = D0 +
s∑

i=1

Pi

for some effective divisor D0 and points Pi ∈ Ci that are not in the support of D0. Note
that D0 is the sum of one point from each connected component of C(R). The divisor
Dk = D0+∑k

i=1 Pi is nonspecial by [18, Thm. 2.5] for all k = 1, . . . , s. The complete
linear system |D0| has dimension 2 and the corresponding morphism C → P

1 is real-
fibered by [9, Prop. 4.1]. Therefore, an iterated application of [26, Prop. 3.2] shows
together with [26, Lem. 2.10] that the embedding of C via the complete linear system
|D| is hyperbolic. But since D is nonspecial, Riemann–Roch shows that this is exactly
our embedding C ⊂ P

s+1 we started with. ��
Theorem 5.4 Let X ⊂ P

n be a smooth nondegenerate surface such that X(R) is
homeomorphic to sS2�rRP2 with deg X = 2s+r , r ∈ {0, 1}, and n = s+2. Assume
that the genus of a hyperplane section on X is s + r − 1. Then X is hyperbolic.
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Proof By Lemma 5.2 there is a hyperplane H ⊂ P
n such that C = X ∩ H is a smooth

and nondegenerateM-curvewith the property that each connected component of X(R)

contains exactly one connected component of C(R). Note that by Lemma 5.1 exactly
r connected components of C(R) realise the nontrivial homology class. This curve C
is hyperbolic by Lemma 5.3. Thus X is hyperbolic by Theorem 1.5. ��
Proposition 5.5 All the divisors listed in Table 1 correspond to a real-fibered mor-
phism. In addition, those divisors which are very ample correspond to a hyperbolic
embedding.

Proof This follows from Theorem 5.4 together with Corollary 3.6 and Remark 3.7. ��
Proof of Theorem 1.2 All del Pezzo surfaces admitting a real-fibered morphism (i.e.,
those given by Proposition 5.5) satisfy one of the conditions (i)–(iii). Namely, the
surfaces P2, G2, and B1 have real Picard rank 1, the surfaces D4 and D2 are conic
bundles of real Picard rank 2, and the other surfaces listed are blow-ups of one of the
previous surfaces at one or two real points. ��
Proof of Corollary 1.3 Excluding the cases already treated in Theorem 1.2 and those
where X(R) is not homeomorphic to sS2 � rRP2, we get that each remaining del
Pezzo surface X is a blow-up at pairs of complex conjugate points of another del
Pezzo surface which admits finite real-fibered morphisms. Therefore X does admit
real-fibered morphisms to P2. ��
Proof of Theorem 1.6 All del Pezzo surfaces admitting a hyperbolic embedding (i.e.,
those given by Proposition 5.5 with the very ampleness condition) satisfy one of the
conditions (i)–(iii). Those satisfying (i) or (ii) are the same as for Theorem 1.2, and
all other surfaces listed satisfy (iii), except for D4(2, 0)11, whose divisor was the only
one not satisfying very ampleness. ��
Proof of Theorem 1.7 First assume that we have (i)–(iii) from Theorem 1.7. Then the
divisor D given by a generic hyperplane section satisfies (i)–(v) from Corollary 3.4.
The conditions (i), (ii), and (v) are clear and (iii) and (iv) follow from our assumption
on the genus of a hyperplane section. Indeed, the Adjunction Formula implies that
r = D.K + 4. Thus by Table 1 we also have r ∈ {0, 1} and n = s + 2. Now Theorem
5.4 implies that X is hyperbolic. Conversely, if X is hyperbolic, then (i)–(iii) follow
from Corollary 3.6. ��
Remark 5.6 Let X be either Q3,1(0, 2h)with 1 ≤ h ≤ 3, or P2(0, 2 j)with 1 ≤ j ≤ 4,
or D4(0, 2), or D4(1, 2). Each X admits a real-fibered morphism (Corollary 1.3) but
no finite real-fibered morphism (Theorem 1.2). Therefore, each such X can only admit
non-finite real-fibered morphisms.

Remark 5.7 Let us consider the surface D2 and the divisors D1 = F − K and D2 =
−F−3K . Thanks to Theorem 5.4, both divisors correspond to hyperbolic embeddings
in P

5. Observe that Di is obtained by applying the Geiser involution to Dj , where
{i, j} = {1, 2} (see [32, §4, Exam. 3] for a description of Geiser involution). A similar
approach works for the surface D2(1, 0) and the divisors D1 = −3K − F̃ + E ,
D2 = −3K + F̃ − E , D3 = −5K − F̃ − E , and D4 = −K + F̃ + E , one has that all
divisors correspond to hyperbolic embeddings in P4. Moreover, the Bertini involution
sends Dj to Dj+1, for j = 1, 3 (see [32, §5, Exam. 4]).
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Fig. 1 The quadrangle, whose vertical sides are identified accordingly with the arrows and horizontal sides
represent the vertex V , is Q(R). The cubic section S(R) is in thick black, while Ci jk (R) and C jkt (R) in
dashed. The generatrices Li (R) and Lt (R) are in grey.

6 Explicit Constructions and Examples

Here we construct for most of the embeddings in Table 1 explicit linear subspaces with
respect to which the del Pezzo surfaces under consideration are hyperbolic. Moreover,
we give one more example showing that the concepts of bounding in complexification
and admitting a real-fibered morphism are not equivalent.

Example 6.1 Consider the embedding h : B1 → P
6 associated to |−3K |. We will

explicitly construct linear subspaces E ⊂ H ⊂ P
6 of dimension 3 and 5 to which we

can apply Theorem 1.5. The anti-bicanonical map φ of B1 is the double cover of the
quadratic cone Q in P3 ramified along the vertex V of Q and a real non-singular cubic
section S ⊂ Q disjoint from V that is an M-curve of genus four. Via the map φ, we
want to construct three smooth curves C1, C2 and C3 on X that are linearly equivalent
to −3K . Let us pick C3 as φ−1(S) (set-theoretical preimage). We observe that each
connected component of B1(R) contains exactly one connected component of C3(R).
We construct C1 and C2 as follows. Choose a point pi on each connected component
of Q(R) \ S(R) homeomorphic to a disk for i = 1, 2, 3, 4. Pick two curves Ci jk and
C jkt on Q as the intersection of Q with the hyperplane passing through pi , p j , pk
and p j , pk, pt respectively, where {i, j, k, t} = {1, 2, 3, 4}. Moreover, pick the two
generatrices Lt and Li of Q passing through pt and pi respectively (see Fig. 1). One
can perturb the union of Ci jk and Lt resp. the union of C jkt and Li to a smooth
curve X1 resp. X2 (see [28, Sect. 4] for details) such that S(R) ∩ Xi (R) consists of
nine distinct real points and Xi (R) intersects each connected component of S(R), for
i = 1, 2. Then we let Ci = φ−1(Xi ) for i = 1, 2. We further choose hyperplanes
Hi ⊂ P

6 such thatCi = X∩Hi for i = 1, 2, 3. The linear subspace E = H1∩H2∩H3
has dimension 3 and the divisors Hi ∩ C3 on C3 for i = 1, 2 interlace on C3 in the
sense of [26, § 2.1]. Thus [26, Lem. 2.1] shows thatC3 is hyperbolic with respect to E .
Therefore, by Theorem 1.5 applied to E and H = H3 we find that B1 is hyperbolic
with respect to E as well.

Remark 6.2 Let X be a real non-singular del Pezzo surface and D a real very ample
divisor on X .An analogue construction toExample 6.1 canbe applied to the embedding
associated to |D|, where X = G2 and D = −2K .

Now, we study in more details the cases of real del Pezzo surfaces obtained as a double
cover of some real surfaces ramified along a real curve. In particular, the real part of
these surfaces consist of spheres. The double cover assumption allows us to talk about
the “interior” of these spheres, enabling us to choose a suitable linear space E in order
to apply Proposition 4.4.
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Proposition 6.3 Let Y ⊂ P
n be a smooth surface of degree n − 2 contained in some

hyperplane H ⊂ P
n. Let p ∈ P

n be a real point that is not in H and let Ỹ ⊂ P
n be the

cone over Y with apex p. Finally, let X ⊂ Ỹ be a smooth surface with X(R) �= ∅ that
does not contain p such that the projection πp : X → Y is a double cover branched
along the intersection C of Y with a quadratic hypersurface.

(i) If C(R) = ∅ and Y is hyperbolic, then X is hyperbolic.
(ii) If C(R) �= ∅ and X(R) is homeomorphic to the disjoint union of n − 2 spheres,

then X is hyperbolic. Furthermore, for any v ∈ X(R) the embedding of Blv X
to Pn−1 obtained by projecting X from v is also hyperbolic.

Proof Without loss of generality, we can assume that H = V(x0) and p =
[1 : 0 : . . . : 0]. Then there is a quadratic polynomial f ∈ R[x1, . . . , xn] such that
X is the intersection of Ỹ with V(x20 − f ). In case (i) the quadratic polynomial f
is strictly positive on the real part of Y and the map πp is real-fibered. Thus if Y is
hyperbolic with respect to a linear subspace E ⊂ H , then X is hyperbolic with respect
to the subspace spanned by E and p. Now assume that we are in case (ii). Consider
the set W ⊂ Ỹ (R) of all points x with x20 ≤ f (x). This set has n − 2 connected
components W1, . . . ,Wn−2 and the boundary of each Wi is a connected component
Xi of X(R). Let E be a linear space of dimension n − 3 that intersects each Wi \ Xi

in (at least) one point pi . Then since deg Ỹ = n − 2 there are no further intersec-
tion point of E and Ỹ (note that this implies that E is spanned by the pi and that
E ∩ X = ∅). Thus E intersects each Wi in exactly one point, so by Proposition 4.5
we have |lk(Xi ; E(R))| = 2 for i = 1, . . . , n − 2. Therefore, by Proposition 4.4 the
variety X is hyperbolic with respect to E . For the additional statement assume without
loss of generality that v ∈ X1 and take v j ∈ W1 \ X1 a sequence of points that con-
verges to v. Let E j be the linear subspace of dimension n−3 that is spanned by v j and
p2, . . . , pn−2. This sequence converges to the linear subspace Ẽ that is spanned by v

and p2, . . . , pn−2. Thus, since X is hyperbolic with respect to each E j , every linear
subspace E ′ of dimension n − 2 that contains Ẽ intersects X only in real points. This
implies that the image of X under the projection from v is hyperbolic with respect to
the image of Ẽ under this projection. ��
Example 6.4 The anticanonical divisor on X = D4 gives an embedding intoP4 = P

n+2

where n = 2 is the number of spheres in X(R). The image is cut out by a pencil of
quadrics. The corresponding complex pencil contains (counted with multiplicity) five
singular quadrics. Thus the image of D4 is contained in at least one real singular
quadric Q ⊂ P

4. The projection from the vertex of Q realises D4 as a double cover of
a quadratic hypersurface Y ⊂ P

3 ramified along a smooth curve C of bidegree (2, 2).
If C(R) = ∅, then Y = Q3,1 and we can apply part (i) of Proposition 6.3 to obtain a
plane E with respect to which the image ofD4 is hyperbolic. Otherwise, we can apply
part (ii) of Proposition 6.3.

Example 6.5 Consider the embedding G2 → P
6 associated to |−2K |. We have

l(−2K ) = 7, hence |−2K | embedsG2 into P6 = P
n+2 for n the number of spheres in

the real part ofG2. The canonical mapG2 → P
2 is a double cover ofP2 ramified along

a smooth quartic curve with four connected components in its real part. Therefore, we
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can apply part (ii) of Proposition 6.3 to Y ⊂ P
5 being the image of P2 under second

Veronese map.

Example 6.6 Now consider the embeddings G2(1, 0) → P
5 associated to |Di | for

i = 1, 2 with D1 = −2K + E and D2 = −4K − E . By applying part (ii) of
Proposition 6.3 to the situation considered in Example 6.5, we obtain a hyperbolic
embedding ofG2(1, 0) to P5. This correspond to the divisors D1. The other divisor is
obtained by applying the Bertini involution τ on D1 [32, §5, Exam. 4].

Example 6.7 Let us consider the del Pezzo surfaces G2 and D2 whose real parts are
homeomorphic to the disjoint union of four and three spheres respectively. The com-
plexification XC of both surfaces is the blow-up of P2 at seven points. In the following
we adopt the notation of Example 3.5. Theorem 1.2 implies that both surfaces admit
a real-fibered morphism to P2. We will show that G2 bounds in complexification and
that D2 does not. Recall that the anti-canonical map of XC is a real double cover of
P
2 ramified along a non-singular plane quartic Q and that every (−1)-curve of XC

corresponds to one of the 28 bitangent lines of Q. Consider the class

[X(R)] = aL −
7∑

i=1

bi Ei

in H2(XC;Z), for X = G2 and D2.

(i) The homology class [G2(R)] has self-intersection equal to−8; see [2].Moreover
each bi must be 0 or ±2 because bi is given as intersection number of Ei with
[G2(R)]. It follows that [G2(R)] ∈ H2(G2(C);Z/2Z) is trivial in homology.

(ii) On the other hand, the homology class [D2(R)] has self-intersection −6 and
each integer bi must be 0 or ±1 or ±2. Therefore a2 and

∑7
i=1 b

2
i are bounded

as follows:

6 ≤
7∑

i=1

b2i ≤ 28, 0 ≤ a2 ≤ 22,

and this implies that at least one b j must be odd, for some j ∈ {1, . . . , 7}. In
conclusion D2 does not bound in complexification.

7 Conic Bundles

In this section π : X → P
1 will denote a geometrically irreducible smooth minimal

conic bundle, i.e., each fiber of π is isomorphic to a plane conic and the real Picard
rank of X is 2. Assume that X(R) consists of s spheres. Let F denote a fiber of π .
Then Pic(X) is generated by −K and F . We clearly have F .F = 0. We further have
K .K = 8 − 2s and F .K = −2, see [23, p. 5]. Applying the necessary criteria for
the existence of a real-fibered morphism X → P

2 from Theorem 3.3 to this situation,
gives the following.
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Corollary 7.1 Let f : X → P
2 be a finite real-fibered morphism and D = aF − bK ,

a, b ∈ Z, the corresponding ample divisor class. Then we have the following:

(i) b ≥ 1;
(ii) a ≥ −1;
(iii) s = b · (b(4 − s) + 2a);
(iv) a + b(4 − s) ≤ 2;
(v) a ≡ sb mod 2;
(vi) 2a > b(s − 4).

Proof Since F is effective and D ample we must have 2b = F .D > 0. This shows (i).
By Theorem 3.3 (ii) we have

2s = D.D = 4ab + b2(8 − 2s)

which shows (iii). By Theorem 3.3 (iii) we have

0 ≤ D.K + 4 = −2a − b(8 − 2s) + 4

which shows (iv). Part (v) follows from Theorem 3.3 (iv). Finally, part (iv) implies

2a + b(4 − s) ≤ 2 + a.

Multiplying this with b and using part (iii) we obtain

s = b · (2a + b(4 − s)) ≤ b(2 + a).

Since b, s > 0, we obtain 2 + a > 0. For part (vi) we observe that since D is ample
we must have

0 < D.D = 4ab + b2(8 − 2s).

Since b > 0, this shows 0 < 2a + b(4 − s). ��
Lemma 7.2 Let D = aF − bK be an ample divisor class satisfying (i)–(vi) of Theo-
rem 7.1. Then �(D) ≥ s + 3.

Proof By Riemann–Roch and since X is rational we have

�(D) + �(K − D) ≥ D.(D − K )

2
+ 1 = s + 3.

Thus it suffices to show that �(K − D) = 0. We note that F is nef as the pullback
of a nef divisor [27, Exam. 1.4.4]. But since we have (K − D).F = −2(1 + b), the
divisor K − D cannot be effective. ��
This gives us a good candidate for a linear system giving rise to a hyperbolic embed-
ding. Namely, for any fixed s, the divisor D = (s − 2)F − K satisfies all of the
necessary conditions in Theorem 7.1 and we have the following.
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Corollary 7.3 If D = (s − 2)F − K is very ample, then it gives rise to a hyperbolic
embedding of X.

Proof By the Adjunction Formula we compute the sectional genus of D as

D.(D + K )

2
+ 1 = ((s − 2)F − K ).(s − 2)F

2
+ 1 = s − 1.

Thus by Lemma 7.2 we can apply Theorem 5.4. ��
Remark 7.4 The divisor D = (s − 2)F − K from Corollary 7.3 is the only divisor for
which equality holds in Theorem 3.3 (iii).

Remark 7.5 Observe that D4 and D2 are minimal conic bundles with s = 2 and s = 3
respectively. The only divisors of these surfaces corresponding to real-fibered mor-
phisms are of the form (s−2)F−K (Table 1). Note that in the case ofD2 we have two
different divisors which is due to the fact that D2 can be equipped with two different
structures of a conic bundle. In both cases, these divisors are very ample.

We focus on the divisor class D = (s − 2)F − K on a minimal conic bundle X .
We first observe the existence of a particular rank 3 bundle E for any given X by
Proposition 7.6. Then we look at some minimal conic bundles for which D is always
very ample.

Proposition 7.6 There is a vector bundle E of rank 3 on P
1 with first Chern class s

and a section t of OP(E)(2) such that X is the zero set of t and π is the restriction of
the natural projection f : P(E) → P

1 to X. Furthermore, the restriction OP(E)(1)|X
corresponds to the class (s − 2)F − K.

Proof By [24, Exam. 3.13.4], there is a rank 3 vector bundleE ′ onP1 and an embedding
X → P

1 where X is realised as a family of conics in the projective plane fibers ofP(E ′).
From [8, Sect. 9.3], the Chow ring of P(E ′) is given by Z[H , E]/(E2, H3 − cEH2),
where H is the class of the line bundle OP(E ′)(1), the class E is a fiber of the map
P(E ′) → P

1 and c is the first Chern class of E ′. The class of a point is EH2. Because
X has codimension 1 in P(E ′), its class of X in the Chow ring of P(E ′) must be of the
form aE+a′H for some integers a, a′. Because the intersection of X with a fiber E is a
plane conic, wemust have a′ = 2. The canonical class onP(E ′) is (c−2)E−3H . Thus
by the Adjunction Formula [8, Prop. 1.33] the canonical class of X can be obtained
by intersecting ((a + c − 2)E − H) with X . This implies that we have

K .K = ((a + c − 2)E − H)2.(2H + aE) = 8 − 3a − 2c.

On the other hand, we know that K .K = 8− 2s which implies that s = 3b+ c where
b is an integer satisfying 2b = a. Consider the vector bundle E = E ′(b) on P

1. The
first Chern class of E is c+ 3b = s [8, Prop. 5.17] and P(E) is isomorphic to P(E ′) as
scheme over P1 [8, Cor. 9.5]. Finally, we have thatOP(E)(1) = OP(E ′)(1)⊗ f ∗OP1(b)
[8, Cor. 9.5], i.e., the zero set of a nonzero section in OP(E)(1) has the class H + bE .
This shows that the class corresponding to OP(E)(2) is 2H + 2bE , the class of X . In
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order to prove the additional statement we can, after replacing E ′ by E , assumewithout
loss of generality that c = s and a = 0. Let xF + yK be the class of OP(E)(1)|X . On
one hand, we have (xF + yK ).F = −2y in the Chow ring of X . We can compute the
same number in the Chow ring of P(E) as

2H .H .E = 2

which shows that y = −1. Similarly,wehave in theChow ring of X that (xF−K ).K =
−2x − 8 + 2s. This can be computed in the Chow ring of P(E) as

2H .H .((s − 2)E − H) = −4

which implies x = s − 2. ��
Remark 7.7 Conversely, let E be a vector bundle of rank 3 on P1 with first Chern class
s and X the smooth zero set of a section ofOP(E)(2). Then clearly the restriction of the
natural projection P(E) → P

1 to X gives X the structure of a conic bundle. A direct
computation as in the proof of Proposition 7.6 shows that X has 2s singular fibers and
that the restriction of OP(E)(1) to X corresponds to the divisor class (s − 2)F − K .

Let E be a vector bundle as in Proposition 7.6. By Grothendieck’s splitting theorem
[8, Thm. 6.29] we have E = OP1(a1)⊕OP1(a2)⊕OP1(a3) where the integers ai sum
up to s. If each ai > 0, thenOP(E)(1) is very ample [8, Proof of Cor. 9.9], and therefore
D is also very ample on X . It follows that one can construct explicit examples in which
D is very ample and embeds X in some projective space as a hyperbolic variety, see
Example 7.8.

Example 7.8 (very ample) Consider the zero set X of the bihomogeneous polynomial

G = uvx20 + (u2 − v2)x21 + (u2 − 4v2)x22

inside P
1 × P

2. Clearly X is a conic bundle with 2s = 6 singular fibers. Letting
E = OP1(1)

3 we have P(E) = P
1 × P

2 and G is a global section of OP(E)(2). The
Segre embedding of P1 × P

2 to P5 is the embedding associated to OP(E)(1). Via this
embedding X is hyperbolic.

Here is an example in which the very ampleness fails.

Example 7.9 (not very ample) Consider the vector bundle E = O2
P1

⊕ OP1(2) and

let P(E) = Proj(SymE) the associated projective plane bundle over P1. We define
X ⊂ P(E) to be the Zariski closure of the zero set of

(t3 − t)x20 + x21 + x22

in a chart A1 × P
2 ⊂ P(E). One can check that X is a smooth conic bundle with

singular fibers at t = −1, 0, 1,∞. It is a desingularisation of the intersection of

S(0, 0, 2) = V (y0y2 − y21 ) ⊂ P
4
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with the quadratic hypersurface defined by

y23 + y24 − y0y1 + y1y2 = 0.

For example using the package Divisor [34, 35] for the computer algebra system
Macaulay2 [10] one can show that in this case −K is not very ample.

If not all of the ai are positive, we can still get a hyperbolic embedding under some
conditions.

Proposition 7.10 Let E = OP1 ⊕OP1(a1)⊕OP1(a2) be the vector bundle from Propo-
sition 7.6 with 0 < a1 ≤ a2 (and a1 + a2 = s by Proposition 7.6). Then we have an
hyperbolic embedding X → P

s+2 if the image of X does not contain the vertex of
S(0, a1, a2).

Proof The morphism induced by OP(E)(1) is an immersion

ϕ : P(E) → P
s+2 = P

a1+a2+2.

The image of P(E) via ϕ is the rational normal scroll S(0, a1, a2), which is a cone over
the rational normal scroll S(a1, a2) [8, §9.1]. The immersionϕ is an embedding except
for the vertex of the cone. Since X is given as the zero set of a section ofOP(E)(2), the
restriction of ϕ to X is an immersion, which is an embedding if ϕ(X) does not contain
the vertex of S(0, a1, a2). Since the restrictionOP(E)(1)|X is associated to the divisor
D = (s − 2)F − K on X by Proposition 7.6, and by Corollary 7.3, the embedding
ϕ|X is hyperbolic. ��
We conclude this section with the following question on the topology of hyperbolic
surfaces.

Question Forwhich pairs (s, r) does a smooth irreducible hyperbolic surface X ⊂ P
n

exist such that X(R) is homeomorphic to the disjoint union of s spheres and r real
projective planes?

From [16, Thm. 5.2] it is known that for arbitrary s ∈ Z≥0 and r ∈ {0, 1} there is a
smooth irreducible hyperbolic hypersurface X ⊂ P

3 such that X(R) is homeomorphic
to the disjoint union of s spheres and r real projective planes. Moreover, when s ∈
{0, 1}, then we must have r ∈ {0, 1} as well. This follows from [26, Lems. 2.16 and
2.17] by intersecting X with ageneric hyperplane containing the spaceof hyperbolicity.
We want to show that for s ≥ 3, we can have arbitrary r ∈ Z≥0.

Proposition 7.11 Let s ≥ 3 and r ≥ 0. There exists a smooth irreducible hyperbolic
surface X ⊂ P

n such that X(R) is homeomorphic to the disjoint union of s spheres
and r real projective planes.

Proof Let a1, a2, a3 > 0 such that s = a1+a2+a3 and let E = OP1(a1)⊕OP1(a2)⊕
OP1(a3). We denote by H the class of the line bundle OP(E)(1) and by E the class of
a fiber of the map P(E) → P

1. For i = 1, 2, 3, let pi ∈ R[u, v]2ai be a binary form
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of degree 2ai which has only simple, real zeros and assume that the pi are pairwise
coprime. Then

t = p1x
2
1 + p2x

2
2 + p3x

2
3

is a global section of OP(E)(2). Here the xi ’s are the coordinates on the projective
plane fibers. After a small perturbation if necessary, the zero set X of t is smooth and
irreducible by Bertini’s Theorem [19, Thm. 6.10]. It is thus a minimal conic bundle
which has by construction 2s singular fibers.We also note that X(R) is homeomorphic
to the disjoint union of s spheres. Now let X ′ be the union of X with r different fibers of
P(E) → P

1 all of whose real parts are disjoint from X(R). This guarantees that X ′(R)

is smooth and X ′ ⊂ S(a1, a2, a3) ⊂ P
s+2 is hyperbolic as the union of hyperbolic

varieties. The divisor class of X ′ on P(E) is D = 2H +r E . Since H is very ample and
E is base-point free, we have that D is also very ample. Thus by Bertini’s theorem, a
general member of the linear system |D| is smooth and irreducible [19, Thm. 6.10].
In particular, a sufficiently small perturbation of X ′ in |D| gives a surface with the
desired properties. ��

Remark 7.12 The above construction does not work for s = 2 and r ≥ 2 as in this
case we must have a1 = 0 and a2 = a3 = 1. The image of P(E) in P

4 under the map
associated to the linear system |H | is then S(0, 1, 1), i.e., the cone over a quadratic
hypersurface in P3. Letting F ⊂ P(E) be the preimage of the vertex of S(0, 1, 1), we
find that X ′.F = (2H + r E).F > 1 which implies that the image of X ′ in P4 cannot
be smooth. We do not know the possible values for r when s = 2.
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