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Abstract
The Gram spectrahedron Gram( f ) of a form f with real coefficients is a compact
affine-linear section of the cone of psd symmetric matrices. It parametrizes the sum
of squares decompositions of f , modulo orthogonal equivalence. For f a sufficiently
general positive binary form of arbitrary degree, we show that Gram( f ) has extreme
points of all ranks in the Pataki range. We also calculate the dimension of the set of
rank r extreme points, for any r . Moreover, we determine the pairs of rank two extreme
points for which the connecting line segment is an edge of Gram( f ). The proof of
the main result relies on a purely algebraic fact of independent interest: Whenever
d, r ≥ 1 are integers with

(r+1
2

) ≤ 2d + 1, there exists a length r sequence f1, . . . , fr
of binary forms of degree d for which the

(r+1
2

)
pairwise products fi f j , i ≤ j , are

linearly independent.
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1 Introduction

Given a form f that is a sum of squares of forms, there are usually many ways
to write f = p21 + · · · + p2r as a sum of squares. The set Gram( f ) of all sum
of squares (sos) representations of f , modulo orthogonal equivalence, has a natural
structure of a spectrahedron, so it is an object of geometric nature. Minimizing a
homogeneous degree 2 polynomial in the coefficients of the pi means to minimize a
linear form over Gram( f ), hence can be performed using semidefinite programming.
With probability one, the optimizer for a random such problem will be a unique
extreme point of Gram( f ). Studying the convex-geometric properties of Gram( f ),
and in particular its extreme points, is therefore a question relevant for optimization
problems. For example, minimizing the L2-norm of (the tuple of coefficient vectors
of) a sum of squares representation f = p21 + · · · + p2r means to minimize the trace
form over Gram( f ). From an algebraic perspective, studying the extreme points of
Gram( f ) is natural since every sos representation of f arises as a convex combination
of representations that correspond to extreme points of Gram( f ).

Let f ∈ R[x1, . . . , xn] be a form of even degree 2d, let X = (xd1 , xd−1
1 x2, . . . , xdn )t

be the sequence of all degree d monomials in some fixed order, let N = (n+d−1
n−1

)
be

their number. Then Gram( f ) is the set of all psd symmetric real N × N matrices G
for which XtGX = f . For example, if n = 2 and f = x61 + x62 , Gram( f ) consists of
all psd real matrices of the form

G =

⎛

⎜⎜
⎝

1 0 −a −b
0 2a b −c

−a b 2c 0
−b −c 0 1

⎞

⎟⎟
⎠ . (1)

The first to introduce Gram spectrahedra were Choi et al. [4] in 1995. Among other
things, they showed that the elements of Gram( f ) are in natural bijective correspon-
dence with the orthogonal equivalence classes of sum of squares representations of f
(see [4, Prop. 2.10]). In fact, the Gram matrix of f corresponding to an sos repre-
sentation f = ∑r

i=1 p
2
i is

∑r
i=1 uiu

t
i where ui is the coefficients (column) vector

of pi . A more systematic study of Gram spectrahedra was begun only recently. Gram
spectrahedra of ternary quartics were considered by Plaumann et al. in [14]. The paper
[5] by Chua et al. is a survey of results and open questions on Gram spectrahedra.
Among others, the authors discuss Gram spectrahedra of binary forms, and they relate
the Gram spectrahedra of sextic binary forms to Kummer surfaces in P

3, see also [12].
For fixed positive integers m and n, consider spectrahedra of the form S = L ∩

Symn(R) where L is an m-dimensional affine-linear subspace of Symn(R). There are
upper and (for generically chosen L) lower bounds for the ranks r of extreme points
of S, expressed in terms ofm and n. The corresponding interval of values for r is known
as the Pataki interval. For points of a Gram spectrahedron, the rank is identified with
the length of the corresponding sos decomposition. In particular, the sum of squares
length of f , or the collection of different sum of squares representations of a given
length, are naturally encoded in Gram( f ). These are invariants that have received a
lot of attention in particular cases, starting with Hilbert [6], and more recently [15],
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for ternary quartics. Lately, results in a similar spirit were obtained for varieties of
minimal or almost minimal degree, see [1, 2, 5, 17].

In this paper we focus onGram spectrahedra in themost basic case possible, namely
binary forms. For f a sufficiently general positive binary form of arbitrary degree, we
show that Gram( f ) has extreme points of all ranks in the Pataki range (Theorem 5.3).
This gives a positive answer to [5, Quest. 4.2]. In fact we calculate the dimension of
the set of extreme points of any given rank r , for f chosen generically (Corollary 5.5).

The proofs for these facts rely on a purely algebraic result of independent interest
(Theorem 4.2): For any integers d ≥ 0 and r ≥ 1 with

(r+1
2

) ≤ 2d + 1, there exists a

sequence p1, . . . , pr of binary forms of degree d for which the
(r+1

2

)
products pi p j ,

1 ≤ i ≤ j ≤ r , are linearly independent. Any sequence with this property will be
called quadratically independent.

Speaking generally, the boundary structure of a convex set reflects how complicated
the set is. In the case of spectrahedra, onemeasure for this complicatedness is the ranks
of the extreme points. From this perspective, Theorem5.3 says thatGram spectrahedra,
even of binary forms, are as complicated as the most general spectrahedra.

When f is a strictly positive binary form without multiple roots, Gram( f ) has
precisely 2d−1 extreme points of rank 2, where deg( f ) = 2d. Given two of these
points, the line segment connecting themmay or may not be a face (edge) of Gram( f ).
For sextic forms we show that it never is an edge, while for 2d ≥ 10 it always is an
edge. Most interesting is the case deg( f ) = 8, where the edges between the eight rank
two extreme points form a complete bipartite graph K4,4 (Theorem 6.4).

We briefly comment on our methods. If F is the supporting face of a point
ϑ ∈ Gram( f ), we constantly use the following characterization of dim(F): If
f = p21 + · · · + p2r is the sos representation that corresponds to ϑ (with p1, . . . , pr
linearly independent forms), dim(F) is the number of quadratic relations between
p1, . . . , pr . In particular, ϑ is an extreme point of Gram( f ) if and only if p1, . . . , pr
are quadratically independent. Arguments of this kind are one reason why we prefer
to use a coordinate-free approach, where symmetric matrices are replaced by sym-
metric tensors of polynomials. In this setting, the point (Gram matrix) of Gram( f )
corresponding to a given sos decomposition f = ∑r

i=1 p
2
i is simply the symmetric

tensor
∑r

i=1 pi ⊗ pi .
The paper is organized as follows. In Sect. 2 we review well-known facts on the

facial structure of spectrahedra, together with the Pataki range for the rank. We then
specialize to Gram spectrahedra and state the dimension formula for faces in terms of
quadratic relations. Section 4 contains the proof for the existence of long quadratically
independent sequences of binary forms. In Sects. 5 and 6 we present our analysis of
the ranks of extreme points and of the edges between rank two extreme points.

For related recent work we refer to the paper [9] by Mayer, who proves that Gram
spectrahedra of sufficiently general binary forms have polyhedral faces of large dimen-
sions.

We use standard terminology from convex geometry. For K ⊆ R
n a closed convex

set, aff(K ) denotes the affine-linear hull of K and relint(K ) is the relative interior
of K , i.e., the interior of K relative to aff(K ). A convex subset F ⊆ K is a face of K
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if x, y ∈ K , 0 < t < 1, and (1 − t)x + t y ∈ F imply x, y ∈ F . For every x ∈ K
there is a unique face F of K with x ∈ relint(F), called the supporting face of x .

2 Review of Facial Structure of Spectrahedra

All results in this section are known, see for example Ramana and Goldman [16] for
the first part and Pataki [13] for the second. We nevertheless give them a coordinate-
free review here, i.e., without making reference to a particular basis of the underlying
vector space, in order that we can freely use them later on.

2.1 Let V be a vector space over R with dim(V ) < ∞. Let V ∨ be the dual space
of V , and let S2V ⊆ V ⊗V denote the space of symmetric tensors, i.e., tensors that are
invariant under the involution v⊗w 
→ w⊗v. Of course, S2V is canonically identified
with S2V , the second symmetric power of V , but it seems preferable in our context
to work with S2, rather than with S2. The natural pairing between v ∈ V and λ ∈ V ∨

is denoted 〈v, λ〉 = 〈λ, v〉. Elements of S2V can be identified either with symmetric
bilinear forms V ∨ ×V ∨ → R, or with self-adjoint linear maps ϕ : V ∨ → V , where the
adjoint refers to the natural pairing between V and V ∨. We shall adapt the second point
of view.Letϕϑ : V ∨ → V denote the linearmap that corresponds to a symmetric tensor
ϑ = ∑r

i=1 vi ⊗ wi ∈ S2V . So ϕϑ(λ) = ∑r
i=1 λ(vi )wi = ∑r

i=1 λ(wi )vi for λ ∈ V ∨.
The range of ϑ ∈ S2V , written im(ϑ), is the range (image) of the linear map ϕϑ . Thus,
if v1, . . . , vr and w1, . . . , wr are linearly independent, im(ϑ) = span(v1, . . . , vr ) =
span(w1, . . . , wr ). The rank of ϑ is rk(ϑ) = dim(im(ϑ)).

2.2 ϑ ∈ S2V is positive semidefinite (psd), written ϑ � 0, if 〈ϕϑ(λ), λ〉 ≥ 0 for every
λ ∈ V ∨. If ϑ = ∑

i vi ⊗ wi , this says
∑

i λ(vi )λ(wi ) ≥ 0 for every λ ∈ V ∨. The set
S+
2V = {ϑ ∈ S2V : ϑ � 0} is a closed convex cone in S2V . If v1, . . . , vn ∈ V are
linearly independent and ϑ = ∑n

i=1 ai jvi ⊗ v j , where ai j = a ji ∈ R, then ϑ � 0 if
and only if the real symmetric matrix (ai j ) is psd, i.e., has nonnegative eigenvalues. So
S+
2V gets identified with the cone of real symmetric psd n×n matrices (n = dim(V )),
after fixing a linear basis of V . We say that ϑ ∈ S2V is positive definite, written ϑ � 0,
if 〈ϕϑ(λ), λ〉 > 0 for every 0 �= λ ∈ V ∨. The fact that every real symmetric matrix
can be diagonalized implies that every ϑ ∈ S2V can be written ϑ = ∑r

i=1 εivi ⊗ vi ,
with r ≥ 0, εi = ±1 and with v1, . . . , vr ∈ V linearly independent. Of course, ϑ � 0
is equivalent to ε1 = . . . = εr = 1.

Lemma 2.3 Given ϑ ∈ S2V and a linear subspace U ⊆ V , we have im(ϑ) ⊆ U if
and only if ϑ ∈ S2U.

Proof The “if” direction is clear. Conversely assume im(ϑ) ⊆ U , and write
ϑ = ∑r

i=1 civi ⊗ vi with 0 �= ci ∈ R and v1, . . . , vr ∈ V linearly indepen-
dent. If λ1, . . . , λr ∈ V ∨ are chosen with 〈vi , λ j 〉 = δi j for all i, j , we have
ϕϑ(λ j ) = ∑

i ciλ j (vi )vi = c jv j , and by assumption this element lies in U for
every j . Therefore ϑ ∈ S2U . ��
Lemma 2.4 If ϑ, ϑ ′ ∈ S2V are psd, then im(ϑ + ϑ ′) = im(ϑ) + im(ϑ ′).
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Proof This translates into thewell-known fact that, for any two symmetric psdmatrices
A, B, one has im(A + B) = im(A) + im(B). ��
Lemma 2.5 Let ϑ, γ ∈ S2V with ϑ � 0 and im(γ ) ⊆ im(ϑ). Then there is a real
number ε > 0 with ϑ − εγ � 0.

Proof This translates into the following well-known fact about real symmetric matri-
ces: If A, B are such matrices with im(B) ⊆ im(A), and if A � 0, there is ε > 0 with
A − εB � 0. ��
2.6 For the following we fix an affine-linear subspace L ⊆ S2V together with the
corresponding spectrahedron S = L ∩ S+

2V . See Ramana and Goldman [16] for the
results in 2.7–2.14 below. For any subset T ⊆ S we consider the linear subspace

U (T ) :=
∑

ϑ∈T
im(ϑ)

of V . For any linear subspace U ⊆ V , the set

F (U ) := {ϑ ∈ S : im(ϑ) ⊆ U } = L ∩ S+
2U

(Lemma 2.3) is a face of S by Lemma 2.4.

Lemma 2.7 For any face F �= ∅ of S there is a linear subspace U ⊆ V with F =
F (U ). In fact we may take U = U (F).

Proof The inclusion F ⊆ F (U (F)) is trivial. Conversely, there exist finitely many
ϑ1, . . . , ϑm ∈ F with U (F) = ∑m

i=1 im(ϑi ). Hence there exists a single ϑ ∈ F
with U (F) = im(ϑ), e.g. ϑ = (1/m)

∑m
i=1 ϑi (Lemma 2.4). In order to prove

F (im(ϑ)) ⊆ F let γ ∈ F (im(ϑ)), so γ ∈ S and im(γ ) ⊆ im(ϑ). Choose a real
number t > 0 so that ϑ ′ := ϑ − t(γ − ϑ) � 0, using Lemma 2.5. Since ϑ ′ ∈ S and
ϑ is a convex combination of ϑ ′ and γ , we conclude that γ ∈ F . ��
Definition 2.8 We say that a linear subspace U of V is facial, or a face subspace (for
the given spectrahedron S = L ∩ S+

2V ), if there exists ϑ ∈ S with U = im(ϑ).

The following lemma is obvious (cf. 2.4):

Lemma 2.9 If U ,U ′ ⊆ V are face subspaces for S then so is their sum U +U ′.
Note that the intersection U ∩U ′ need not contain any face subspace.

Proposition 2.10 There is a natural inclusion-preserving bijection between the
nonempty faces F of S and the face subspaces U ⊆ V for S, given by F 
→ U (F).
The inverse is U 
→ F (U ).

Proof Let F �= ∅ be a face of S. As in the proof of Lemma 2.7, there is ϑ ∈ F with
im(ϑ) = U (F). Hence the subspaceU (F) of V is facial, and F = F (U (F)) holds
by 2.7. On the other hand, if U ⊆ V is a face subspace then U = U (F (U )) holds.
Indeed, ⊇ is tautologically true. Conversely there is ϑ ∈ S with U = im(ϑ), since U
is facial, so we have ϑ ∈ F (U ) and therefore U ⊆ U (F (U )) = ∑

γ∈F (U ) im(γ ).
��
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In particular we see that:

Corollary 2.11 If U ⊆ V is a face subspace, the relative interior ofF (U ) is {ϑ ∈ S :
im(ϑ) = U }. The supporting face of ϑ ∈ S isF (im(ϑ)).

Corollary 2.12 Let F be a face of S. Then rk(ϑ) = dim(U (F)) for every ϑ ∈
relint(F). We call this number the rank of F, denoted rk(F). If F ′ is a proper subface
of F then rk(F ′) < rk(F).

Here are equivalent characterizations of face subspaces:

Proposition 2.13 For a linear subspace U ⊆ V , the following are equivalent:

(i) U is facial, i.e., there is ϑ ∈ S with im(ϑ) = U;
(ii) U has a linear basis u1, . . . , ur for which

∑r
i=1 ui ⊗ ui ∈ S;

(iii) U is linearly spanned by vectors u1, . . . , ur for which
∑r

i=1 ui ⊗ ui ∈ S;
(iv) for every u ∈ U there are ε > 0 and u2, . . . , ur ∈ U such that εu ⊗ u +∑r

i=2 ui ⊗ ui ∈ S.

Proof (i)⇒ (ii): Let ϑ ∈ S with im(ϑ) = U . By Lemma 2.3 we can write ϑ =∑r
i=1 ui⊗ui where u1, . . . , ur ∈ U are linearly independent. Since the ui span im(ϑ),

they are a linear basis ofU . (ii)⇒ (iii) is trivial. (iii)⇒ (iv): Let ϑ = ∑r
i=1 ui ⊗ui ∈ S

as in (iii). Then im(ϑ) = span(u1, . . . , ur ) = U by Lemma 2.4. Given u ∈ U
there exists ε > 0 such that γ := ϑ − εu ⊗ u ∈ S+

2U (Lemma 2.5). Hence there
exist u2, . . . , ur ∈ U with γ = ∑r

i=2 ui ⊗ ui . (iv)⇒ (i): Let u ∈ U , and let γ =
εu ⊗ u + ∑r

i=2 ui ⊗ ui be as in (iv). Then u ∈ im(γ ) (Lemma 2.4), and im(γ ) ⊆ U .
This shows that there is a (finite) family of tensors γ j ∈ F (U ) with

∑
j im(γ j ) = U .

Hence U is facial. ��
Proposition 2.14 Let S = L ∩ S+

2V , with L ⊆ S2V an affine-linear subspace. If F
is a nonempty face of S and U = U (F), then aff(F) = L ∩ S2U. In particular,
dim(F) = dim(L ∩ S2U ).

Proof Here aff(F) denotes the affine-linear hull of F . Since F = L ∩ S+
2U , it is clear

that aff(F) ⊆ L∩S2U . For the other inclusion letϑ ∈ relint(F), so im(ϑ) = U (2.11),
and let γ ∈ L ∩ S2U be arbitrary. Then γt := (1− t)ϑ + tγ � 0 for |t | < ε and small
ε > 0 (2.5), and therefore γt ∈ S for these t . Since ϑ = (γt + γ−t )/2, these γt lie
in F , and we have proved γ ∈ aff(F). ��
The following result can be found in Pataki [13]. It describes the interval in which the
ranks of the extreme points of a spectrahedron can possibly lie:

Proposition 2.15 [Pataki inequalities] Let dim(V ) = n, let L ⊆ S2V be an affine
subspace with dim(L) = m, and let S = L ∩ S+

2V .

(a) For any extreme point ϑ of S, the rank rk(ϑ) = r satisfies

m +
(
r + 1

2

)
≤

(
n + 1

2

)
.
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(b) When L is chosen generically among all affine subspaces of dimension m, every
ϑ ∈ L ∩ S+

2V satisfies

m ≥
(
n − rk(ϑ) + 1

2

)
.

This formulation is taken from [5, Prop. 3.1]. See also [13, Cor. 3.3.4] and [11, Prop. 5].

Remark 2.16 Let S = L ∩ S+
2V , where dim(V ) = n and L ⊆ S2V is a nonempty

affine subspace, dim(L) = m. The Pataki interval for the rank r of extreme points of
S is described by the inequalities

m ≥
(
n − r + 1

2

)
and m +

(
r + 1

2

)
≤

(
n + 1

2

)
(2)

from Proposition 2.15. This amounts to the range of integers r satisfying

n + 1

2
−

√
8m + 1

2
≤ r ≤ −1

2
+

√
(2n + 1)2 − 8m

2
.

Indeed, the first (resp. second) inequality in (2) says A1 ≤ r ≤ A2 (resp. B1 ≤ r ≤ B2)
where

Ai = n + 1

2
+ (−1)i

√
8m + 1

2
, Bi = −1

2
+ (−1)i

√
(2n + 1)2 − 8m

2
,

i = 1, 2. It is elementary to check that B1 < 0 < A1 ≤ B2 < A2 holds. Therefore
the Pataki interval is �A1� ≤ r ≤ �B2�.

3 Gram Spectrahedra

See Choi et al. [4] for an introduction to Grammatrices of real polynomials, and Chua
et al. [5] for a survey on Gram spectrahedra. In contrast to these texts we emphasize
a coordinate-free approach.

3.1 Let A be an R-algebra. The multiplication map A ⊗ A → A, (a, b) 
→ ab (with
⊗ = ⊗R always) induces the R-linear map μ : S2A → A, where S2A ⊆ A ⊗ A is
the space of symmetric tensors as in Sect. 2. Given f ∈ A, the symmetric tensors
ϑ ∈ S2A with μ(ϑ) = f are called the Gram tensors of f .

3.2 Let V ⊆ A be a finite-dimensional linear subspace, and let f ∈ A. We define the
Gram spectrahedron of f , relative to V , to be the set of all psd Gram tensors of f in
S2V , i.e.,

GramV ( f ) := S+
2V ∩ μ−1( f ).
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It is well known that GramV ( f ) parametrizes the sums of squares representations
f = ∑r

i=1 p
2
i with pi ∈ V for all i , up to orthogonal equivalence. This means, the

elements of GramV ( f ) are the symmetric tensors
∑r

i=1 pi ⊗ pi with r ≥ 0 and
p1, . . . , pr ∈ V such that

∑r
i=1 p

2
i = f . Given two such tensors ϑ = ∑r

i=1 pi ⊗ pi
and ϑ ′ = ∑s

j=1 q j ⊗ q j , we may assume r = s; then ϑ = ϑ ′ if and only if there is
an orthogonal real matrix (ui j ) such that q j = ∑r

i=1 ui j pi for all j . See [4, §2].

Lemma 3.3 GramV ( f ) is a spectrahedron, and is compact provided that the identity∑r
i=1 p

2
i = 0 with p1, . . . , pr ∈ V implies p1 = . . . = pr = 0.

Proof By its definition, GramV ( f ) is a spectahedron. If GramV ( f ) is unbounded, it
has nonzero recession cone, which means that there is 0 �= ϑ ∈ S2V with η + ϑ ∈
GramV ( f ) for every η ∈ GramV ( f ). It follows that μ(ϑ) = 0 and ϑ � 0, so
ϑ = ∑r

i=1 pi ⊗ pi with 0 �= pi ∈ V where
∑r

i=1 p
2
i = 0. ��

3.4 For U ⊆ A a linear subspace let 	U 2 = {∑r
i=1 u

2
i : r ≥ 1, ui ∈ U

}
. Usually

we will consider Gram spectrahedra only in the case where sums of squares in A
are strongly stable [10]. This means that there exists a filtration U1 ⊆ U2 ⊆ . . . ⊆⋃

i≥1Ui = A by finite-dimensional linear subspacesUi such that for every i ≥ 1 there
is j ≥ 1withUi∩	A2 ⊆ 	U 2

j . In this casewe simplywriteGram( f ) := GramUj ( f )
for f ∈ Ui . Examples are the polynomial rings A = R[x1, . . . , xn] = R[x] with
Ui = R[x]≤i , the space of polynomials of degree ≤ i .

Example 3.5 Let A = R[x1, x2], consider the form f = x61 +x62 as in the introduction.
The Gram spectrahedron of f has dimension 3, and has four extreme points of rank 2,
given by the coefficient vectors (a, b, c) = (0, 0, 0), (2, 0, 2), and (1/2)(1,

√
3, 1)

in (1). They correspond to the four essentially different ways of writing f as a sum of
two squares, namely x61 + x62 , (x

3
1 − 2x1x22 )

2 + (2x21 x2 − x32)
2, and

(
2x31 − x1x22 ∓ √

3x32
2

)2
+

(
2x21 x2 ± √

3x1x22 − x32
2

)2
.

The first one minimizes the sum of the squares of the coefficients of the pi , the second
one maximizes it, over all sos representations f = ∑r

i=1 p
2
i of f .

3.6 We summarize what the formalism of Sect. 2 means. Let V ⊆ A be a linear
subspace, dim(V ) < ∞, and let f ∈ A. We will say that a linear subspace U ⊆ V
is a face subspace for f if U is a face space for the spectrahedron GramV ( f ) in the
sense of 2.8. In other words, U is a face subspace for f if there is ϑ ∈ GramV ( f )
withU = im(ϑ). According to Proposition 2.13, the nonempty faces F of GramV ( f )
are in bijection with the face subspaces U for f , via F 
→ U (F) and U 
→ F (U ).

The dimension formula 2.14 for faces takes a particularly appealing form for Gram
spectrahedra. If U ⊆ A is a linear subspace, let UU denote the linear subspace of A
spanned by the products pp′, p, p′ ∈ U .

Proposition 3.7 For U ⊆ V a face subspace for f , the faceF (U ) of GramV ( f ) has
dimension

dim(F (U )) = 1

2
r(r + 1) − s
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with r = dim(U ) and s = dim(UU ).

Proof By Proposition 2.14, dim(F (U )) is the dimension of the affine spaceμ−1( f )∩
S2U . Hence dim(F (U )) = dim(W ) where W is the kernel of the surjective linear
map μ : S2U → UU . Since dim(W ) = dim(S2U ) − dim(UU ) = r(r + 1)/2 − s,
the proposition follows. ��
Corollary 3.8 Let f = ∑r

i=1 p
2
i with p1, . . . , pr ∈ V linearly independent, let ϑ =∑r

i=1 pi ⊗ pi be the correspondingGram tensor of f . The dimension of the supporting
face of ϑ in GramV ( f ) equals the number of independent linear relations between
the products pi p j , 1 ≤ i ≤ j ≤ r .

We say that a sequence p1, . . . , pr in A is quadratically independent if the
(r+1

2

)

products pi pj , 1 ≤ i ≤ j ≤ r , are linearly independent. Using this terminology we
get:

Corollary 3.9 A psd Gram tensor
∑r

i=1 pi ⊗ pi of f , with p1, . . . , pr ∈ V linearly
independent, is an extreme point of GramV ( f ) if and only if the sequence p1, . . . , pr
is quadratically independent. ��
In particular, whether or not ϑ = ∑r

i=1 pi ⊗ pi (with the pi linearly inde-
pendent) is an extreme point of GramV ( f ), depends only on the linear subspace
U := span(p1, . . . , pr ), but not on f = ∑r

i=1 p
2
i .

Corollary 3.10 Let f ∈ A, let U ⊆ V be the linear subspace generated by all p ∈ V
with f − p2 ∈ 	V 2. Then

dim(GramV ( f )) = r

2
(r + 1) − s,

where r = dim(U ) and s = dim(UU ).

4 Quadratically Independent Binary Forms

4.1 Let k be a field, let A be a (commutative) k-algebra. If U ⊆ A is a k-linear
subspace, letUU be the linear subspace of A spanned by the products pp′, p, p′ ∈ U ,
as in 3.6. Assuming dim(U ) = r < ∞, we say that U is quadratically independent
if the natural multiplication map S2U → A is injective, i.e., if dim(UU ) = (r+1

2

)
.

A sequence p1, . . . , pr of elements of A is quadratically independent if the pi are a
linear basis of a quadratically independent subspace U of A.

We will prove the following general result for binary forms:

Theorem 4.2 Let k be an infinite field, and let d, r ≥ 1 such that
(r+1

2

) ≤ 2d + 1.
Then there exists a sequence of r binary forms of degree d over k that is quadratically
independent.

4.3 For the rest of this section write A = k[x1, x2] = ⊕
d≥0 Ad , where Ad is the

space of binary forms of degree d. Note that dim(Ad) = d+1. Clearly, the existence of
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a single quadratically independent sequence of length r in Ad implies that the generic
length r sequence in Ad will be quadratically independent. We can therefore assume
that the field k is algebraically closed. (This assumption is only made to simplify
notation.)

4.4 Our proof of Theorem 4.2 proceeds by induction on r ≥ 1, the start being the case
r = 1 and d = 0 (which is obvious). So let r ≥ 2 in the sequel. By induction there is a
quadratically independent sequence q1, . . . , qr−1 in Ae, where e ≥ 0 is minimal with(r
2

) ≤ 2e + 1. Let d ≥ 1 be minimal with
(r+1

2

) ≤ 2d + 1. Given z1, . . . , zm ∈ P
1 we

put

Wd(z1, . . . , zm) := { f ∈ Ad : f (z1) = . . . = f (zm) = 0}.

Let ∞ ∈ P
1 be a fixed point, let 0 �= l ∈ A1 with l(∞) = 0.

Lemma 4.5 Under these assumptions the following hold:

(a) For any linear subspace U ⊆ Wd(∞) and any p ∈ U,

dim(pAd ∩UU ) ≥ max {dim(U ), dim(UU ) − d + 1}.

(b) There exists a subspace U ⊆ Wd(∞) with dim(U ) = r − 1 and dim(UU ) = (r
2

)
,

together with a form p ∈ U, such that equality holds in (a).

Proof (a) From pU ⊆ pAd ∩ UU we get dim(pAd ∩ UU ) ≥ dim(U ). Moreover
dim(pAd +UU ) ≤ 2d since pAd +UU ⊆ W2d(∞), therefore dim(pAd ∩UU ) ≥
d + 1 + dim(UU ) − 2d = dim(UU ) − d + 1.

(b) By induction we have a quadratically independent sequence q1, . . . , qr−1 in Ae.
Since e < d, the r − 1 forms pi := ld−eqi (1 ≤ i ≤ r − 1) are in Wd(∞) and are
quadratically independent. Let V = span(p2, . . . , pr−1), we have dim(VV ) = (r−1

2

)
.

For sufficiently general q ∈ Wd(∞) we claim that q Ad ∩ VV = {0} (if r ≤ 5), resp.
q Ad ∩ VV has codimension d − 1 in VV (if r ≥ 5). Indeed, if q has distinct zeros
z1, . . . , zd−1,∞ in P

1, we have q Ad ∩ VV = W2d(z1, . . . , zd−1) ∩ VV . For general
enough choice of q, therefore, this intersection has codimension d − 1 in VV , resp.
is zero if dim(VV ) ≤ d − 1 (which happens precisely for r ≤ 5). We can therefore
modify p1 ∈ Wd(∞) in such a way that

dim(p1Ad ∩ VV ) =
⎧
⎨

⎩

0 r ≤ 5,(
r − 1

2

)
− d + 1 r ≥ 5

holds and the sequence p1, . . . , pr−1 remains quadratically independent. Writing
U := span(p1, . . . , pr−1) = kp1 ⊕ V we have UU = p1U ⊕ VV since U is
quadratically independent. Therefore

p1Ad ∩UU = p1U ⊕ (p1Ad ∩ VV ),

and this subspace has dimension r−1 (if r ≤ 5) resp. r−1+(r−1
2

)−d+1 = (r
2

)−d+1
(if r ≥ 5). ��
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4.6 According to Lemma 4.5, we can now fix a quadratically independent subspace
U ⊆ Wd(∞) with dim(U ) = r − 1 and such that

dim(pAd ∩UU ) ≥
⎧
⎨

⎩

r − 1 r ≤ 5,(
r

2

)
− d + 1 r ≥ 5

holds for all p ∈ U , with equality holding for p sufficiently general. We are going
to show that we can extend U to a quadratically independent subspace of Ad of
dimension r . Let PU resp. PAd denote the projective spaces associated to the linear
spaces U resp. Ad , and consider the closed subvariety

X := {([p], [q]) ∈ PU × PAd : pq ∈ UU }

of PU × PAd . (Here we write [p] for the element in PU represented by 0 �= p ∈ U ,
and similarly [q] for 0 �= q ∈ Ad .) Let π1 : X → PU and π2 : X → PAd denote the
projections onto the two components.

Let ε ∈ {0, 1} be defined by 2d + 1 = (r+1
2

) + ε. We can calculate the dimension
of X :

Lemma 4.7 dim(X) = d − 1 if r ≤ 5, and dim(X) = d − 1 − ε if r ≥ 5.

Proof Clearly π1 is surjective since ([p], [p]) ∈ X for 0 �= p ∈ U . For 0 �= p ∈ U ,
the fibre π−1

1 ([p]) has (projective) dimension dim(pAd ∩ UU ) − 1. From 4.6 we
therefore see that the generic fibre of π1 has dimension r − 2 (if r ≤ 5) resp.

(r
2

) − d
(if r ≥ 5). It follows that dim(X) = 2r − 4 = d − 1 if r ≤ 5, resp. dim(X) =
r − 2 + (r

2

) − d = (r+1
2

) − d − 2 = 2d + 1 − ε − d − 2 = d − 1 − ε if r ≥ 5. ��
4.8 In particular, dim(X) < dim(PAd ). For generically chosen q ∈ Ad , therefore, we
have π−1

2 ([q]) = ∅, which means qU ∩UU = {0}. In particular there is such q ∈ Ad

with q(∞) �= 0. Since qU ⊕ UU ⊆ W2d(∞) and q2 /∈ W2d(∞), we see that the
r -dimensional subspace U + kq of Ad is quadratically independent. This completes
the induction step, and thereby the proof of Theorem 4.2.

5 Pataki Range for Gram Spectrahedra of Binary Forms

5.1 Let n ≥ 2 be fixed. For d ≥ 1, R[x]d denotes the space of forms of degree d in
R[x] = R[x1, . . . , xn]. We write Nd = dim(R[x]d) = (n+d−1

d

)
. Let 	2d ⊆ R[x]2d

denote the sums of squares cone, i.e., 	2d = 	R[x]2d . For f ∈ 	2d let Gram( f ) be
the (full) Gram spectrahedron of f , i.e., Gram( f ) := GramV ( f ) with V := R[x]d .
Since Gram( f ) = μ−1( f ) ∩ S+

2V and

dim(μ−1( f )) = dim(S2V ) − dim(VV ) =
(
Nd + 1

2

)
− N2d ,
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the Pataki interval (2.16) for Gram( f ) is characterized by the inequalities

N2d +
(
Nd − r + 1

2

)
≤

(
Nd + 1

2

)
and

(
r + 1

2

)
≤ N2d .

For f ∈ int(	2d) we have dim(Gram( f )) = dim(μ−1( f )) = (Nd+1
2

) − N2d . In the

case n = 2 of binary forms this means dim(Gram( f )) = (d+2
2

) − (2d + 1) = (d
2

)

for f ∈ int(	2d), and the Pataki range is described by the inequalities r ≥ 2 and(r+1
2

) ≤ 2d + 1. (A rank one point exists in Gram( f ) if and only if f is a perfect
square.)

In what follows we always work with binary forms, i.e., n = 2 and R[x] = R[x1, x2].
From Theorem 4.2 we get:

Corollary 5.2 Let d ≥ 1 and r ≥ 0 such that
(r+1

2

) ≤ 2d + 1. The set of quadratically
independent r-tuples (p1, . . . , pr ) in (R[x1, x2]d)r is open and dense.

Here is our first main result on extreme points of Gram spectrahedra. It gives an
affirmative answer to [5, Quest. 4.2].

Theorem 5.3 For any given d ≥ 1, there is an open dense set of psd binary forms f
of degree 2d for which the Gram spectrahedron Gram( f ) has extreme points of all
ranks in the Pataki interval.

Proof Let k ≥ 1 be the largest integer with
(k+1

2

) ≤ 2d + 1, so the Pataki interval for
Gram spectrahedra of degree 2d forms is {2, 3, . . . , k}. Fix r ∈ {2, 3, . . . , k}, and let
Wr ⊆ (R[x]d)r be the set of all quadratically independent r -tuples (p1, . . . , pr ) of
forms. By Corollary 5.2, the set Wr is open and dense in (R[x]d)r . Let

Sr := {p21 + · · · + p2r : (p1, . . . , pr ) ∈ Wr }.

Since every psd form in R[x] is a sum of two squares, the set Sr is a dense semi-
algebraic subset of 	2d , which means that dim(	2d � Sr ) < dim(	2d). Whenever
(p1, . . . , pr ) ∈ Wr , if we put f := ∑r

i=1 p
2
i , the symmetric tensor

∑r
i=1 pi ⊗ pi

is an extreme point of Gram( f ) of rank r (Corollary 3.9). Therefore every f ∈ Sr
has a rank r extreme point in its Gram spectrahedron. It now suffices to consider
the intersection S := ⋂k

r=2 Sr . Then S is a dense semialgebraic subset of 	2d since
dim(	2d � S) < dim(	2d). And for every f ∈ S, the Gram spectrahedron of f has
extreme points of all ranks in the Pataki interval. ��
Remark 5.4 It seems that only few families of spectrahedra of unbounded dimensions
are known which have extreme points of all ranks in the Pataki interval (see the
discussion in [5] before Question 4.2). Theorem 5.3 provides such a family. Another
notable example are elliptopes, i.e., the sets of correlation matrices of fixed size. The
possible ranks of extreme points, and in fact of arbitrary faces, were determined for
elliptopes in [7, 8]. In particular, the entire Pataki interval is realized by extreme points.

We can also determine the dimensions of the sets of extreme points of a fixed rank, for
suitably general f . To have a short notation, let us write Exr ( f ) for the (semialgebraic)
set of all extreme points of Gram( f ) of rank r .
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Corollary 5.5 Let d ≥ 1. There is an open dense subset U of 	2d such that, for every
f ∈ U and every r in the Pataki range, we have

dim(Exr ( f )) = (r − 2)(2d − r + 1)

2
.

Proof Let r be in the Pataki range. Using notation from the previous proof, consider the
sum of squares map σ : Wr → R[x]2d , (p1, . . . , pr ) 
→ ∑r

i=1 p
2
i . Its image is dense

in 	2d . It follows from local triviality of semialgebraic maps (Hardt’s theorem, see
e.g. [3, Thm. 9.3.2]) that, for every f in an open dense setUr ⊆ 	2d , the fibre σ−1( f )
has dimension r (d + 1) − (2d + 1). The orthogonal group O(r) has dimension

(r
2

)
. It

acts on the fibre σ−1( f ) with trivial stabilizer subgroups, and the orbits are precisely
the extreme points of Gram( f ) of rank r . So we get

dim(Exr ( f )) = r (d + 1) − (2d + 1) −
(
r

2

)
= (r − 2)(2d − r + 1)

2

for every f ∈ Ur . Take U to be the intersection of the sets Ur for all r in the Pataki
range, to get the desired conclusion. ��
Remark 5.6 For strictly positive f with deg( f ) = 2d ≥ 12, the boundary of Gram( f )
is a union of positive dimensional faces. Indeed, let ϑ be an extreme point of Gram( f ),
and let r be its rank. Let ϑ ′ be any extreme point of rank 2, different from ϑ . Now
r satisfies

(r+1
2

) ≤ 2d + 1, and one checks readily that this implies r + 2 ≤ d since
d ≥ 6. In particular, r +2 < d +1, which means that the supporting face F of {ϑ, ϑ ′}
is proper.

The fact that ∂Gram( f ) is a union of positive dimensional faces is reflected by the
fact that, for 2d ≥ 8 and any r in the Pataki range, the number (r − 2)(2d − r + 1)/2
from Corollary 5.5 is smaller than the dimension of the boundary of Gram( f ), which
is

(d
2

) − 1, for general f ∈ 	2d .

6 Edges Between Extreme Points of Rank Two

6.1 Wekeep considering binary forms, sowework inR[x] = R[x1, x2]. Let f ∈ 	2d .
Recall ([4, Exam. 2.13], [5, Prop. 4.1]) how Gram tensors ϑ ∈ Gram( f ) of rank ≤ 2
correspond to product decompositions f = gg with g ∈ C[x], where g is the form
that is coefficient-wise complex conjugate to g. Any ϑ ∈ Gram( f ) with rk(ϑ) ≤ 2
has the form ϑ = p ⊗ p + q ⊗ q where p, q ∈ R[x] satisfy f = p2 + q2 =
(p + iq)(p − iq). Conversely, a factorization f = gg with g ∈ C[x] gives a Gram
tensor ϑ = p⊗ p+q ⊗q of f , namely p = (g+ g)/2 and q = (g− g)/(2i) ∈ R[x].
Two factorizations f = gg = hh give the same Gram tensor of f if and only if
h is a scalar multiple of g or g. In particular, if we assume that f has no multiple
complex roots, we see that f has (no Gram tensors of rank one and) precisely 2d−1

Gram tensors of rank two. All of them are extreme points of Gram( f ).
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6.2 When g has only real zeros, Gram( f ) ∼= Gram( f g2) naturally. Hence we discuss
Gram( f ) for strictly positive f only. Then dim(Gram( f )) = (d

2

)
, and points in the

relative interior ofGram( f ) have rank d+1. Let d ≥ 1, let f ∈ 	2d be strictly positive,
and let us first consider the cases of very small degree. If d = 1 then Gram( f ) is a
single point of rank two. If d = 2 then Gram( f ) is a nondegenerate interval, the
relative interior of which consists of points of rank 3. If f has simple roots, both end
points have rank 2. Otherwise f is a square, and one end point has rank 1, the other
has rank 2. The case d = 3 is covered in the next result (see also [5, Sect. 4.2]):

Proposition 6.3 Let f ∈ 	6 be any strictly positive form of degree 6. Then

(a) Gram( f ) has no faces of dimension 1 or 2,
(b) Gram( f ) has four, three, or two extreme points of rank 2,
(c) all other extreme points have rank 3.

Proof The extreme points of rank ≤ 2 correspond to complex factorizations f = pp.
Depending on whether f has six, four, or two different roots, there are four, three,
or two essentially different such factorizations. The corresponding psd Gram tensors
have rank two except when f is a square, i.e., has only two different roots; then one of
the Gram tensors has rank one. If Gram( f ) had a proper face of positive dimension,
its rank would have to be 3. To prove (a) it therefore suffices to show that, for any
two extreme points ϑ �= ϑ ′ of rank ≤ 2, the segment [ϑ, ϑ ′] meets the interior of
Gram( f ). Let f = pp = qq be the two factorizations corresponding to ϑ and ϑ ′. We
can assume p = gh, q = gh with

g = (x − a1)(x − a2), h = x − a3,

and {a1, a2, a3}∩ {a1, a2, a3} = ∅. For the supporting face F of (ϑ +ϑ ′)/2 we have

U (F) = span(gh, gh, gh, gh).

Calculating the determinant gives

(a1 − a1)(a1 − a2)(a2 − a1)(a2 − a2)(a3 − a3)
2 �= 0.

This means that (ϑ + ϑ ′)/2 has rank 4, and hence lies in the interior of Gram( f ). ��
When the positive sextic f is general, the algebraic boundary ofGram( f ) is a Kummer
surface, see [12, Sect. 5] and [5, Sect. 4.2]. In this case, assertion (a) also follows from
the fact that a Kummer surface in P

3 does not contain a line.
Nowwe are interested in arbitrary degrees. Let f ∈ R[x]2d be a sufficiently general

positive form. We ask: For which pairs ϑ �= ϑ ′ in Ex2( f ) is the line segment [ϑ, ϑ ′]
an edge of Gram( f ), i.e., a one-dimensional face?

Theorem 6.4 Let d ≥ 4. For all forms f in an open dense subset of	2d , the following
is true:
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(a) d = 4: For each of the
(8
2

) = 28 pairs ϑ �= ϑ ′ in Ex2( f ), the interval [ϑ, ϑ ′] is
contained in the boundary ofGram( f ). For precisely 16 of these pairs, [ϑ, ϑ ′] is a
face of Gram( f ). These 16 edges form a graph isomorphic to K4,4, the complete
bipartite graph on two sets of four points each.

(b) d ≥ 5: For any two ϑ �= ϑ ′ in Ex2( f ), the line segment [ϑ, ϑ ′] is a face of
Gram( f ).

6.5 Let f = pp = qq be complex factorizations of f that correspond to ϑ

and ϑ ′, respectively. The supporting face F of [ϑ, ϑ ′] therefore has U (F)C =
span(p, p, q, q) ⊆ C[x]d , and dim(F) is the number of quadratic relations between
p, p, q, and q . We can split p = gh into two nontrivial complex factors in such a way
that ϑ ′ corresponds to the factorization f = qq with q = gh. Thus

U (F)C = span(gh, gh, gh, gh).

For general f we have dim(U (F)) = 4. Assuming this, [ϑ, ϑ ′] is an edge of Gram( f )
if and only if there is only one quadratic relation between p = gh, p = gh, q = gh,
and q = gh, i.e., if and only if the nine products

ga1g a2hb2h
b2

, ai , bi ≥ 0, a1 + a2 = b1 + b2 = 2, ()

are linearly independent. (To be sure, there always is one quadratic relation between
p, p, q and q , namely pp = qq .) The key case for Theorem 6.4 is d = 4. It is made
more explicit in the next two lemmas.

Lemma 6.6 Let g1, g2 ∈ C[x] have degree 3, let h1, h2 ∈ C[x] have degree 1. Then
the nine octic forms

ga11 ga22 hb11 hb22 , ai , bi ≥ 0, a1 + a2 = b1 + b2 = 2 (3)

are linearly independent if (and only if) gcd(g1, g2) = gcd(h1, h2) = 1.

Lemma 6.7 For arbitrary g1, g2, h1, h2 ∈ C[x] of degree 2, the nine octic forms (3)
are linearly dependent.

Corollary 6.8 Let g1, g2, h1, h2 ∈ C[x] with deg(g1) = deg(g2) = δ ≥ 1, deg(h1) =
deg(h2) = ε ≥ 1, and δ + ε ≥ 5. If g1, g2, h1, h2 are chosen generically, the nine
forms (3) (of degree 2(δ + ε)) are linearly independent.

6.9 Before establishing 6.6, 6.7, and 6.8, we show how these imply Theorem 6.4.
First let d = 4, let f ∈ 	8 have simple complex zeros, and let f = pp = qq
be two nontrivial factorizations corresponding to extreme points ϑ �= ϑ ′ in Gram( f )
(cf. 6.5). Since rk(ϑ +ϑ ′) ≤ rk(ϑ)+rk(ϑ ′) = 4, it is obvious that [ϑ, ϑ ′] is contained
in the boundary of Gram( f ). Write p = g1g2 and q = g1g2 as in 6.5. If deg(g1) =
deg(g2) = 2, the nine forms () (see 6.5) are linearly dependent by Lemma 6.7, and
so [ϑ, ϑ ′] is not an edge. Otherwise {deg(g1), deg(g2)} = {1, 3}. By Lemma 6.6,
therefore, the nine forms () are linearly independent, and so [ϑ, ϑ ′] is an edge.
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This proves the d = 4 case of Theorem 6.4. Indeed, the eight points of Ex2( f ),
corresponding to the eight essentially different factorizations f = pp, decompose into
two subclasses of four points each, where two different factorizations f = pp = qq
belong to the same subclass if and only if p and q have precisely two roots in common.

If d ≥ 5, if f ∈ 	2d is sufficiently general, and if f = pp = qq are two factor-
izations belonging to ϑ �= ϑ ′, Corollary 6.8 shows that () are linearly independent,
whence [ϑ, ϑ ′] is an edge.

Proof of Lemma 6.6 It is obvious that gcd(g1, g2) = gcd(h1, h2) = 1 are necessary
for the nine octics to be linearly independent. For the converse assume these conditions,
and consider the ideals I = 〈g1, g2〉 and J = 〈h1, h2〉 in A = k[x]. We have to prove
(I 2 J 2)8 = A8. Now gcd(h1, h2) = 1 implies J1 = A1 and hence (J 2)2 = A2. So
(I 2 J 2)8 contains (I 2)6A2 = (I 2)8, and it is enough to prove (I 2)8 = A8. The ideal
I is a complete intersection since gcd (g1, g2) = 1, hence a Gorenstein ideal of socle
degree 4. So I5 = A5, and so (I 2)8 contains I5 I3 = A5 I3 = I8 = A8. ��

Proof of Lemma 6.7 Let U1 = span(g1, g2), U2 = span(h1, h2) ⊆ C[x]2, we have
to show that U1U1U2U2 is a proper subspace of C[x]8. Since U1 ∩ U2 �= {0} we
find p, g, h ∈ C[x]2 with U1 = span(p, g) and U2 = span(p, h). So we have
U1U2 ⊆ pC[x]2 + Cgh, which implies

(U1U2)(U1U2) ⊆ p2C[x]4 + pghC[x]2 + Cg2h2.

The first two subspaces on the right intersect non-trivially, since both contain p2gh.
Hence the right hand side has dimension ≤ 8, and so it is a proper subspace of C[x]8.

��

Proof of Corollary 6.8 It suffices to prove the assertion for one specific choice of the gi
and hi . We can assume δ ≥ 3. Let G1,G2, H1, H2 satisfy deg(Gi ) = 3, deg(Hi ) = 1,
and gcd(G1,G2) = gcd(H1, H2) = 1, and let l �= 0 be any linear form. Then by
Lemma 6.6, the assertion is true for gi := Gi�

δ−3, hi := Hi�
ε−1, i = 1, 2. ��
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