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Abstract
Motivated by recent work on Delaunay triangulations of hyperbolic surfaces, we con-
sider the minimal number of vertices of such triangulations. First, we show that every
hyperbolic surface of genus g has a simplicial Delaunay triangulation with O(g) ver-
tices, where edges are given by distance paths. Then, we construct a class of hyperbolic
surfaces for which the order of this bound is optimal. Finally, to give a general lower
bound, we show that the �(

√
g) lower bound for the number of vertices of a simpli-

cial triangulation of a topological surface of genus g is tight for hyperbolic surfaces
as well.
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1 Introduction

The classical topic of Delaunay triangulations has recently been studied in the con-
text of hyperbolic surfaces. Bowyer’s incremental algorithm for computing simplicial
Delaunay triangulations in the Euclidean plane [5] has been generalized to orientable
hyperbolic surfaces and implemented for some specific cases [4,11]. Moreover, it has
been shown that the flip graph of geometric (but not necessarily simplicial) Delaunay
triangulations on a hyperbolic surface is connected [7].

In this work, we consider the minimal number of vertices of a simplicial Delaunay
triangulation of a closed hyperbolic surface of genus g. Motivated by the interest in
embeddingswhere edges are shortest paths between their endpoints [8,10], which have
applications in for example the field of graph drawing [17], we restrict ourselves to
distance Delaunay triangulations, where edges are distance paths.

Our main result is the upper bound on the number of vertices with sharp order of
growth:

Theorem 1.1 An orientable closed hyperbolic surface of genus g ≥ 2 has a distance
Delaunay triangulation with at most O(g) vertices. Furthermore, there exists a family
of surfaces, Xg, g ≥ 2, such that the number of vertices of any distance Delaunay
triangulation of them grows like �(g).

The above result is a compilation of Theorems 3.1 and 4.1 where explicit upper and
lower bounds are given.

Another reason to study triangulations whose edges are distance paths, comes from
the study of moduli spaces Mg , which we can think of as a space of all hyperbolic
surfaces of genus g ≥ 2 up to isometry. These spaces admit natural coordinates
associated to pants decompositions (the so-called Fenchel–Nielsen coordinates, see
Sect. 2 for details). It is a classical theorem of Bers [2] that any surface admits a short
pants decomposition, meaning that the length of each of its simple closed geodesics
is bounded by a function that only depends on the topology of the surface (but not its
geometry). As these curves provide a local description of the surface, one might hope
that they are also geodesically convex, meaning that the shortest distance path between
any two points of a given curve is contained in the curve. It is perhaps surprising that
most surfaces admit no short pants decompositions with geodesically convex curves.
Indeed it is known that any pants decomposition of a random surface (chosen with
respect to a natural probability measure onMg) has at least one curve of length on the
order of g1/6−ε as g grows (for any fixed ε > 0) [9]. And it is a theorem ofMirzakhani
that these same random surfaces are also of diameter on the order of log g [13]. Hence
the longest curve of any pants decomposition of a random surface is not convex.

Apart from the Fenchel–Nielsen coordinates, the lengths of edges in a given trian-
gulation are also a parameter set forMg . By Theorem 1.1, such a parameter set can be
chosen with a reasonable number of vertices such that the edges are all convex. Using
the moduli space point of view, one has a function ω : Mg → Nwhich associates to a
surface the minimal number of vertices of any of its distance Delaunay triangulations.
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Theorem 1.1 implies that

lim sup
g→∞

max
X∈Mg

ω(X)

g

is finite and strictly positive, but for instance we do not know whether the actual limit
exists.

The examples we exhibit are geometrically quite simple, as they are made by gluing
hyperbolic pants, with bounded cuff lengths, in something that resembles a line as the
genus grows. One might wonder whether all surfaces have this property, but we show
this is not the case by exploring the quantity minX∈Mg ω(X). This quantity has a
precise lower bound on the order of �(

√
g) because we ask that our triangulations be

simplicial [12]. We show how to use the celebrated Ringel–Youngs construction [15]
to construct a family of hyperbolic surfaces that attain this bound for infinitely many
genera (Theorem 5.2), showing that one cannot hope for better than the simplicial
lower bound in general.

Although our results provide a good understanding on the extremal values of ω,
there are still plenty of unexplored questions. For example, what is the behavior of
ω for a random surface (using Mirzakhani’s notion of randomness [13] alluded to
above)?

This paper is structured as follows. In Sect. 2, we introduce our notation and give
some preliminaries on hyperbolic surface theory and triangulations. In Sect. 3, we
prove our linear upper bound for the number of vertices of aminimal distanceDelaunay
triangulation. In Sect. 4, we construct classes of hyperbolic surfaces attaining the order
of this linear upper bound. Finally, in Sect. 5, we construct a family of hyperbolic
surfaces attaining the general �(

√
g) lower bound. The proof of a technical lemma

appears in the appendix.

2 Preliminaries

We will start by recalling some hyperbolic geometry. There are several models for the
hyperbolic plane [1]. In the Poincaré disk model, the hyperbolic plane is represented
by the unit disk D in the complex plane equipped with a specific Riemannian metric
of constant Gaussian curvature −1. With respect to this metric, hyperbolic lines, i.e.,
geodesics are given by diameters ofD or circle segments intersecting ∂D orthogonally.
A hyperbolic circle is a Euclidean circle contained inD. However, in general the center
and radius of a hyperbolic circle are different from the Euclidean center and radius.

We refer to [6] for all of the following facts. A hyperbolic surface is a 2-dimensional
Riemannian manifold that is locally isometric to an open subset of the hyperbolic
plane [16], thus of constant curvature −1. Our surfaces are assumed throughout to
be closed and orientable, and because they are hyperbolic, via Gauss–Bonnet, their
genus g satisfies g ≥ 2 and their area is 4π(g − 1). Note that we will frequently be
interested in subsurfaces of a closed surface which we think of as compact surfaces
with boundary consisting of a collection of simple closed geodesics. The signature
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of such a subsurface is (g′, k) where g′ is its genus and k is the number of boundary
geodesics.

Via the uniformization theorem, any hyperbolic surface X can be written as a
quotient space X = D/� of the hyperbolic plane under the action of a Fuchsian
group � (a discrete subgroup of the group of orientation-preserving isometries of D).
The hyperbolic plane D is the universal cover of X and is equipped with a projection
π : D → D/�.

In the free homotopy class of any non-contractible closed curve on a hyperbolic
surface lies a unique closed geodesic. If the curve is simple, then the corresponding
geodesic is simple, and hence it is a straightforward topological exercise to decompose
a hyperbolic surface into 2g − 2 pairs of pants by cutting along 3g − 3 disjoint simple
closed geodesics (Fig. 1). A pair of pants is a surface homeomorphic to a three times
punctured sphere but we generally think of its closure, and thus of a hyperbolic pair
of pants as being a surface of genus 0 with three simple closed geodesics as boundary,
i.e., a surface of signature (0, 3).

It is a short but useful exercise in hyperbolic trigonometry to show that a hyperbolic
pair of pants is determined by its three boundary lengths. This is done by cutting the pair
of pants along the three geodesic paths, orthogonal to the boundary, which realize the
distance between the different boundary geodesics and then arguing on the resulting
right angled hexagons. Hence, the lengths of the 3g − 3 geodesics determine the
geometry of each of the 2g − 2 pairs of pants, but to determine X , one needs to add
twist parameters that control how the pants are pasted together. How one computes the
twist coordinate is at least partially a matter of taste, and although we will not make
much use of it, for completeness we follow [6], where the twist is the signed distance
between marked points on the boundary curves.

The length and twist parameters determine X and are called Fenchel–Nielsen coor-
dinates. These parameters can be chosen freely in the set (R>0)3g−3 × R

3g−3. What
they determine ismore than just an isometry class of a surface: they determine amarked
hyperbolic surface, homeomorphic to a base topological surface	. As the lengths and
twists change, the marked surface changes, and the Fenchel–Nielsen coordinates pro-
vide a parameter set for the space of marked hyperbolic surfaces of genus g, called
Teichmüller space Tg . The underlyingmoduli spaceMg can be thought of as the space
of hyperbolic surfaces up to isometry, obtained from Tg by “forgetting” the marking.

Throughout the paper, lengths of closed geodesics will play an important role. As
mentioned above, in the free homotopy class of a non-contractible closed curve lies a
unique geodesic representative, and as the metric changes, the length of the geodesic
changes, but the free homotopy class does not.Generallywewill be dealingwith a fixed
surface X ∈ Tg , and the length of a geodesic γ will be denoted by �(γ ). Nonetheless,
it is sometimes useful to think of the length of the corresponding homotopy class as a
function over Tg which associates to X the length of the geodesic corresponding to γ .

To a pair of pants decomposition, we can associate a 3-regular graph. In this 3-
regular graph, each pair of pants is represented by a vertex and two vertices share an
edge if the corresponding pairs of pants share a boundary geodesic. For example, Fig. 2
shows the 3-regular graph corresponding to the pair of pants decomposition in Fig. 1.
As our parametrization of Tg depends on a choice of pair of pants decomposition, one
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Fig. 1 Decomposition of a genus 3 surface into four pairs of pants using six disjoint simple closed geodesics

Fig. 2 3-Regular graph corresponding to the pair of pants decomposition shown in Fig. 1

can think of the Fenchel–Nielsen coordinates associating a length and a twist to each
edge.

Around a simple closed geodesic γ , the local geometry of a surface is given by its
so-called collar. Roughly speaking, for small enough r , the set

Cγ (r) = {x ∈ X | d(x, γ ) ≤ r}

is an embedded cylinder. A bound on how large one can take the r to be while retaining
the cylinder topology is given by the Collar Lemma:

Lemma 2.1 ([6, Thm. 4.1.1]) Let γ by a simple closed geodesic on a closed hyperbolic
surface X. The collar Cγ (w(γ )) of width w(γ ) given by

w(γ ) = arcsinh
1

sinh(�(γ )/2)
(1)

is an embedded hyperbolic cylinder isometric to [−w(γ ),w(γ )] × S
1 with the Rie-

mannian metric ds2 = dρ2 + �2(γ ) cosh2ρ dt2 at (ρ, t). Furthermore, if two simple
closed geodesics γ and γ ′ are disjoint, then the collars Cγ (w(γ )) and Cγ ′(w(γ ′))
are disjoint as well.

This paper is about distance Delaunay triangulations on closed hyperbolic surfaces.

Definition 2.2 A distance Delaunay triangulation is a triangulation satisfying the fol-
lowing three properties:
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– it is a simplicial complex,
– it is a Delaunay triangulation,
– its edges are distance paths.

The set of all distance Delaunay triangulations of a closed hyperbolic surface X is
denoted by D(X).

We will describe each of the three properties of distance Delaunay triangulations in
more detail below.

Simplicial complexes. We will use the standard definition of a simplicial complex.
In our case, an embedding of a graph into a surface is a simplicial complex if and only
if it does not contain any 1- or 2-cycles. In particular, a geodesic triangulation of a
point set in the Euclidean or hyperbolic planes is always a simplicial complex. This
is because there are no geodesic monogons or bigons.

Delaunay triangulations. Given a set of vertices in the Euclidean plane a triangle
is called a Delaunay triangle if its circumscribed disk does not contain any vertex in
its interior. A triangulation of a set of vertices in the Euclidean plane is a Delaunay
triangulation if all triangles areDelaunay triangles.Using the correspondence between
hyperbolic and Euclidean circles, we define Delaunay triangulations in the hyperbolic
plane similarly.

Delaunay triangulations on hyperbolic surfaces can be defined by lifting vertices
on a hyperbolic surface X to the universal cover D [3,7]. More specifically, let P be
a set of vertices on X and let π : D → D/� be the projection of the hyperbolic plane
D to the hyperbolic surface X = D/�. A triangle (v1, v2, v3) with vi ∈ P is called a
Delaunay triangle if there exist pre-images v′

i ∈ π−1({vi }) such that the circumscribed
disk of the triangle (v′

1, v
′
2, v

′
3) in the hyperbolic plane does not contain any point of

π−1(P) in its interior. A triangulation of P on X is a Delaunay triangulation if all
triangles are Delaunay triangles.

A Delaunay triangulation of a point set on a hyperbolic surface X is related to a
Delaunay triangulation in D as follows [3]. Given a point set P on X , we consider a
Delaunay triangulation T ′ of the infinite point set π−1(P). Then, we let T = π(T ′).
By definition, T is a Delaunay triangulation. Moreover, because every triangulation in
D is a simplicial complex, T ′ is a simplicial complex. However, T is not necessarily
a simplicial complex, because projecting T ′ to X might introduce 1- or 2-cycles.
We will use the correspondence between Delaunay triangulations in D and in X in
Definition 3.7 and the proof of Theorem 3.1 and show explicitly that in these cases
the result after projecting to X is simplicial.

Tomake sure thatT = π(T ′) is awell-defined triangulation,wewill assumewithout
loss of generality that T ′ is �-invariant, i.e., the image of any Delaunay triangle in
T ′ under an element of � is a Delaunay triangle. Otherwise, it is possible that in so-
called degenerate cases T contains edges that intersect in a point that is not a vertex
[4]. Namely, suppose that T ′ contains a polygon P = {p1, p2, . . . , pk} consisting
of k ≥ 4 concircular vertices and let TP be the Delaunay triangulation of P in T ′.
Because the Delaunay triangulation of a set of at least four concircular vertices is not
uniquely defined, assume that there exists A ∈ � such that the Delaunay triangulation
TA(P) of A(P) in T ′ is not equal to A(TP ). Because π(P) = π(A(P)), there exists
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an edge of π(TA(P)) and an edge of π(A(TP )) that intersect in a point that is not a
vertex.

Distance paths. Suppose we are given an edge (u, v) in a triangulation of a hyper-
bolic surface X . Because (u, v) is embedded in X , there exists a geodesic segment γ
mapping bijectively to (u, v). We say that (u, v) is a distance path if �(γ ) = d(u, v),
where d(u, v) is the infimum of the lengths of all curves joining u to v.

3 Linear Upper Bound for the Number of Vertices of a Minimal
Distance Delaunay Triangulation

As our first result, we prove that for every hyperbolic surface there exists a distance
Delaunay triangulation whose cardinality grows linearly as a function of the genus.
Note that the constant 150 is certainly not optimal.

Theorem 3.1 For every closed hyperbolic surface X of genus g there exists a distance
Delaunay triangulation T ∈ D(X) with at most 150g vertices.

The idea of the proof is the following. Given a hyperbolic surface X , we construct a
vertex set P on X consisting of at most 150g vertices such that the projection T of
a Delaunay triangulation of π−1(P) in D to X is a distance Delaunay triangulation
of X .

It is known that T is a simplicial complex if P is sufficiently dense and well
distributed [3]. More precisely, there are no 1- or 2-cycles in T if the diameter of the
largest disk in D not containing any points of π−1(P) is less than sys(X)/2, where
sys(X) is the systole of X , i.e., the length of the shortest homotopically non-trivial
closed curve. However, the systole of a hyperbolic surface can be arbitrarily close
to zero, which means that we would need an arbitrarily dense set P to satisfy this
condition.

Instead, for a constant ε > 0 we subdivide X into its ε-thick part

Xε
thick = {x ∈ X | injrad(x) > ε}

and its ε-thin part Xε
thin = X \ Xε

thick, where injrad(x) is the injectivity radius at x , i.e.,
the radius of the largest embedded open disk centered at x . Note that the minimum
of injrad(x) over all x ∈ X is given by sys(X)/2. We will see in Sect. 3.1 that, for
a sufficiently small ε > 0, Xε

thin is a collection of hyperbolic cylinders (see Fig. 3).
In these hyperbolic cylinders we want to construct a set of vertices the cardinality of
which does not depend on sys(X). To do this, we put three vertices on the “waist” and
each of the two boundary components of the cylinders that are “long and narrow”.
In the cylinders that are not “long and narrow” it suffices to place three vertices on
its waist only. The notions of “waist” and “long and narrow” will be specified in
Sect. 3.1. Because injrad(x) > ε for all x ∈ Xε

thick, we can construct a sufficiently
dense and well-distributed point set in Xε

thick whose cardinality does not depend on
sys(X) but only on ε. In Sect. 3.2 wewill describe howwe combine the vertices placed
in the hyperbolic cylinders with the dense and well-distributed set of vertices in Xε

thick.
Finally, the proof of Theorem 3.1 is given in Sect. 3.3.
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Fig. 3 Decomposition of a hyperbolic surface into a thick part consisting of two connected components
and two narrow hyperbolic cylinders (in red)

3.1 Distance Delaunay Triangulations of Hyperbolic Cylinders

We now describe our construction of a set of vertices for the ε-thin part Xε
thin of the

hyperbolic surface X . The following lemma describes Xε
thin in more detail.

Lemma 3.2 ([6, Thm. 4.1.6]) If ε < arcsinh 1 then Xε
thin is a collection of at most

3g − 3 pairwise disjoint hyperbolic cylinders.

The following description of the geometry of the hyperbolic cylinders in Xε
thin is based

primarily on a similar description in the context of colourings of hyperbolic surfaces
[14]. Each hyperbolic cylinder C in Xε

thin consists of points with injectivity radius
at most ε and the boundary curves γ + and γ − consist of all points with injectivity
radius equal to ε. Every point on the boundary curves is the base point of an embedded
geodesic loop of length 2ε (Fig. 4), which is completely contained in the hyperbolic
cylinder. All points on the boundary curves have the same distance KC to a closed
geodesic γ (called the waist of C), where KC only depends on ε and the length �(γ )

of γ . To see this, fix a point p on γ + and consider a distance path ξ from p to γ (Fig. 4).
Cutting along γ, ξ and the loop of length 2ε with base point p yields a hyperbolic
quadrilateral. The common orthogonal of γ and the geodesic loop subdivides this
quadrilateral into two congruent quadrilaterals, each with three right angles. Applying
a standard result from hyperbolic trigonometry yields [6, Formula Glossary 2.3.1(v)]

sinh ε = sinh
�(γ )

2
cosh �(ξ).

Because KC = �(ξ), it follows that

KC = arccosh
sinh ε

sinh(�(γ )/2)
. (2)

We see that γ + consists of points that are equidistant to γ . Moreover, γ + and γ −
are smooth.

123



576 Discrete & Computational Geometry (2023) 69:568–592

pp

1
2
( )

+

–

–

( )

γ

γ

γ

γ

�

�

ξ
ξ

ε

Fig. 4 Computing KC

Recall the notion of a collar from Sect. 2. In particular, each hyperbolic cylinder
C in Xε

thin is a collar of width KC , i.e., C = Cγ (KC ). Comparing equation (2) for
KC with equation (1) in the statement of the Collar Lemma, we see that w(γ ) > KC ,
because sinh ε < 1. This inequality will be used in the proof of Lemma 3.4 to give a
lower bound for the distance between distinct hyperbolic cylinders in Xε

thin.
We distinguish between two kinds of hyperbolic cylinders in Xε

thin, namely ε′-thin
cylinders and ε′-thick cylinders, where ε′ = 0.99ε. An ε′-thick cylinder with waist γ
satisfies 2ε′ < �(γ ) ≤ 2ε, where the first inequality follows from γ being contained
in an ε′-thick cylinder and the second inequality from γ being contained in the ε-thin
part Xε

thin. An ε′-thin cylinder satisfies �(γ ) ≤ 2ε′.
Lemma 3.10 in Sect. 3.2 states that the triangulation depicted in Fig. 5 is a Delaunay

triangulation for ε′-thin cylinders. We call this triangulation a standard triangulation
and describe it in more detail in the following definition. For ε′-thick cylinders we use
a different construction defined in Definition 3.6.

Definition 3.3 Let X be a closed hyperbolic surface. Let C be an ε′-thin hyperbolic
cylinder in Xε

thin withwaist γ and boundary curves γ +, γ −. Place three equally-spaced
points xi , i = 1, 2, 3, on γ (see Fig. 5). Then, place three points x+

i , i = 1, 2, 3, on
γ + and three points x−

i , i = 1, 2, 3, on γ − such that the projection of x±
i on γ is equal

to xi for i = 1, 2, 3. Let V be the set consisting of xi , x−
i , and x+

i for i = 1, 2, 3. Let
E be the set of edges of one of the forms

(x−
i , x−

i+1), (x−
i , xi ), (x−

i , xi+1), (xi , xi+1), (xi , x+
i ), (xi , x+

i+1), (x+
i , x+

i+1)

for i = 1, 2, 3 (counting modulo 3), where the embedding of an edge in C is as shown
in Fig. 5. We call (V , E) a standard triangulation of C .

We not only have to prove that a standard triangulation of an ε′-thin cylinder is
a Delaunay triangulation, we also have to show that its edges are distance paths.
Corollary 3.5 states that all edges in a standard triangulation are distance paths if
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Fig. 5 Standard triangulation of an ε′-thin cylinder

ε ≤ (3 logφ)/2, where φ = (1 + √
5)/2 is the golden ratio. Before we can prove

Corollary 3.5, we first need the following lemma.

Lemma 3.4 Let X be a closed hyperbolic surface and let ε ≤ (3 logφ)/2, where φ

is the golden ratio. For each pair of distinct closed geodesics γ1 and γ2 in Xε
thin the

collars Cγ1(KC1 + ε/3) and Cγ2(KC2 + ε/3) are embedded and disjoint.

Proof See Fig. 6. We will show that w(γi ) − KCi ≥ ε/3 for i = 1, 2. Namely, this
implies that Cγi (KCi + ε/3) ⊆ Cγi (w(γi )). Because Cγ1(w(γ1)) and Cγ2(w(γ2)) are
embedded and disjoint by the Collar Lemma, it follows that Cγ1(KC1 + ε/3) and
Cγ2(KC2 + ε/3) are embedded and disjoint as well.

Comparing expression (2) for KCi and expression (1) for w(γi ), we see that
w(γi ) − KCi is a positive number. We write w(γi ) − KCi = F(1/ sinh(�(γi )/2)),
where

F(x) = arcsinh x − arccosh(x sinh ε).

It can be easily seen that the derivative of F is negative, so its infimum is obtained in
the limit x → ∞, i.e., when �(γi ) → 0. Straightforward computations show that this
limit is equal to − log(sinh ε) and that − log(sinh ε) ≥ ε/3 for ε = (3 logφ)/2. Since
w(γi ) − KCi is decreasing as a function of ε, it follows that w(γi ) − KCi ≥ ε/3 for
all ε ≤ (3 logφ)/2. 
�
Corollary 3.5 Let X be a closed hyperbolic surface and let ε ≤ (3 logφ)/2, where φ

is the golden ratio. All edges in a standard triangulation of an ε′-thin cylinder in Xε
thin

are distance paths.
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Fig. 6 Illustration of the collars Cγi (KCi ) ⊂ Cγi (KCi + ε/3) ⊆ Cγi (w(γi ))

Proof Because the convex hull of each boundary geodesic γ + and γ − is contained
in C [14, pp. 1407–1408], edges of the form (x−

i , x−
i+1), (xi , xi+1), (x+

i , x+
i+1) for

i = 1, 2, 3 are distance paths. Now, consider the edge of length KC between xi

and x+
i . Because we know the metric of the cylinder, it can be shown explicitly that

there are no shorter paths completely contained in the cylinder. Furthermore, because
the collar Cγ (KC + ε/3) is embedded by Lemma 3.4, any path that leaves the top half
of the cylinder and returns through the bottom half has length at least KC + 2ε/3. It
follows that the edges of the form (xi , x+

i ) are distance paths. By symmetry, the edges
of the form (x−

i , xi ) are distance paths as well.
Finally, consider the edge between xi and x+

i+1. Because d(xi , xi+1) = �(γ )/3 <

2ε/3 and d(xi+1, x+
i+1) = KC , we see from the triangle inequality that d(xi , x+

i+1) <

KC + 2ε/3. Because any path that leaves the top half of the cylinder and returns
through the bottom part of the cylinder has length at least KC + 2ε/3 by the same
reasoning as above, it follows that edges of the form (xi , x+

i+1) are distance paths. By
symmetry, edges of the form (x−

i , xi+1) are distance paths as well. 
�
For ε′-thick cylinders, we see from (2) for KC that the width KC is close to zero. It
turns out that we do not need to place three points on its waist and on each of its two
boundary curves. Instead, three vertices on its waist suffice.

Definition 3.6 Let X be a closed hyperbolic surface. Let C be an ε′-thick hyperbolic
cylinder in Xε

thin with waist γ . Place three equally-spaced points xi , i = 1, 2, 3, on γ .
Let V = {xi | i = 1, 2, 3} and E = {(x1, x2), (x2, x3), (x3, x1)}. We call (V , E) a
standard cycle of C .

123



Discrete & Computational Geometry (2023) 69:568–592 579

3.2 Constructing a Distance Delaunay Triangulation of Xwith FewVertices

After constructing sets of vertices in the cylinders in the ε-thin part Xε
thin, we construct

a sufficiently dense and well-distributed set of vertices in the remainder of the surface.
The following definition shows more precisely how we construct a set of vertices in
Xε
thick and a corresponding Delaunay triangulation.

Definition 3.7 Set ε = (3 logφ)/2, where φ is the golden ratio, and ε′ = 0.99ε. Let X
be a closed hyperbolic surface. LetP1 be the set consisting of the vertices of a standard
triangulation of every ε′-thin cylinder in Xε

thin together with the vertices of a standard
cycle for every ε′-thick cylinder in Xε

thin. Let Tj be the union of triangles in a standard
triangulation (Vj , E j ) of an ε′-thin cylinder C j . For every ε′-thick cylinder C j , set
Tj = ∅. Define P2 to be a maximal set in X \ ⋃

j Tj such that d(p, q) ≥ ε/2 for all
distinct p ∈ P1∪P2, q ∈ P2. Denote the unionP1∪P2 byP and let T be theDelaunay
triangulation of P on X obtained after projecting a Delaunay triangulation of π−1(P)

in D to X . We call T a thick-thin Delaunay triangulation of X . The vertices in P1 and
P2 are called the cylinder vertices and non-cylinder vertices of T , respectively.

Remark 3.8 Because by Corollary 3.5 all edges in a standard triangulation of any
ε′-thin cylinder are distance paths if we choose ε ≤ (3 logφ)/2, we have chosen
ε = (3 logφ)/2 in Definition 3.7. Namely, we will see in the proof of Theorem 3.1
that the larger we choose ε, the smaller the constant (in our case 150) in the upper
bound for the number of vertices. As in Sect. 3.1 we will fix ε = (3 logφ)/2 and
ε′ = 0.99ε throughout this subsection.

The edges between vertices on the same boundary curve of C j are not equal to the
boundary curves ofC j (because the latter are not geodesics), so Tj is strictly contained
in C j . We define P2 as a point set in X \ ⋃

j Tj instead of in X \ ⋃
j C j to simplify

our proof of Lemma 3.13, where we show that a thick-thin Delaunay triangulation of
X is a simplicial complex.

The definition of P does not explicitly forbid placing vertices of P2 in ε′-thick
cylinders. However, we will see in the next lemma that there are no vertices of P2 in
ε′-thick cylinders, because then they would be too close to the vertices of a standard
cycle.

Lemma 3.9 Let X be a closed hyperbolic surface and let T be a thick-thin Delaunay
triangulation of X. Every vertex of T contained in an ε′-thick cylinder in Xε

thin is a
cylinder vertex.

Proof Let P1 be the set of cylinder vertices and P2 the set of non-cylinder vertices.
Let C be an arbitrary ε′-thick cylinder with waist γ and standard cycle (V , E). We
will show that the union U of the disks of radius ε/2 centered at the vertices of V
covers C completely. Namely, this implies that every point of C has distance at most
ε/2 to a vertex of V . Because d(p, q) ≥ ε/2 for all p ∈ P1 and q ∈ P2, it follows
that there are no vertices of P2 contained in C .

To prove that U covers C completely, first observe that d(xi , xi+1) = �(γ )/3 <

2ε/3 for all i = 1, 2, 3 (counting modulo 3). Therefore, the circles of radius ε/2
centered at xi and xi+1 intersect in two points, of which we call one p. Since the collar
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xi xi+1

p

1
6 �(γ ) 1

6 �(γ )

1
2 ε 1

2 ε

Fig. 7 Computing d(γ, p)

Cγ (d(γ, p)) is contained in U , it suffices to show that KC < d(γ, p), because then
C = Cγ (KC ) ⊂ Cγ (d(γ, p)) ⊂ U . From (2) for KC we know that

cosh KC = sinh ε

sinh(�(γ )/2)
≤ sinh ε

sinh ε′ ≤ 1.02,

where we substituted ε′ = 0.99ε and ε = (3 logφ)/2 in the last step. On the other
hand, the hyperbolic Pythagorean theorem yields

cosh(d(γ, p)) = cosh(ε/2)

cosh(�(γ )/6)
≥ cosh(ε/2)

cosh(ε/3)
≥ 1.03

(see Fig. 7) where again we substituted ε = (3 logφ)/2 in the last step. We conclude
that KC < d(γ, p), which finishes the proof. 
�

Even though the set of vertices of a thick-thin Delaunay triangulation of X contains
the vertices of a standard triangulation (Vj , E j ) for every ε′-thin cylinderC j , a priori it
is not clear that the edges in E j are edges in T as well. In the next lemma, wewill show
that for every ε′-thin cylinder the triangles in a standard triangulation are Delaunay
triangles with respect to the set of vertices of any thick-thin Delaunay triangulation
of X . Namely, if this holds, then there exists a Delaunay triangulation of P on X
containing a standard triangulation of every ε′-thin cylinder in Xε

thin.

Lemma 3.10 Let X be a closed hyperbolic surface. Let T be a thick-thin Delaunay
triangulation of X with vertex set P and let C be an ε′-thin cylinder in Xε

thin with
waist γ . Let (V , E) be a standard triangulation of C such that V ⊂ P . Then all
triangles of (V , E) are Delaunay triangles with respect to the point set P .

Remark 3.11 The proof of Lemma 3.10 is given in Appendix A. Even though we do
not give the proof here, we note that in the proof it is shown as an intermediate step
that d(x±

i , x±
i+1) < ε for all i = 1, 2, 3. This inequality is used once more in the proof

of Lemma 3.12.

Henceforth, we will assume that for each ε′-thin cylinder the vertices and edges of a
standard triangulation are contained in a thick-thin Delaunay triangulation of X . To
show that T ∈ D(X), we must show that T is a simplicial complex, i.e., it does not
contain any 1- or 2-cycles, and that its edges are distance paths.

In the next lemma, we show that any edge that intersects Xε
thick has length smaller

than ε.Moreover, we show that it follows that all edges that intersect Xε
thick are distance

paths and that there are no 1- and 2-cycles consisting of edges intersecting Xε
thick.
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x+
i x +

i+1

c

u

x̃ +
i x̃ +

i+1

Fig. 8 Circumscribed disk of a triangle (u, v, w) of which the center is contained in Tj for some j

Lemma 3.12 Let X be a closed hyperbolic surface and let T be a thick-thin Delaunay
triangulation of X. Any edge of T that intersects Xε

thick has length smaller than ε

and is a distance path. Moreover, there are no 1- or 2-cycles that intersect Xε
thick and

consist of edges of length smaller than ε.

Proof Let (u, v) be an edge of T with non-empty intersection with Xε
thick. Assume that

(u, v) is contained in a triangle (u, v, w) in T with circumradius r and circumcenter c.
We will first show that �(u, v) < ε. We consider two cases, depending on which
set c is contained in. First, assume that c ∈ Tj for some ε′-thin cylinder C j . It is
not possible that both u and v are vertices of a standard triangulation of C j , because
this would contradict (u, v) having non-empty intersection with Xε

thick. Therefore,
we can assume without loss of generality that the circumcircle of (u, v, w) intersects
some edge [x+

i , x+
i+1] (Fig. 8). Denote the intersection points of this circumcircle with

[x+
i , x+

i+1] by x̃+
i and x̃+

i+1. Note that in general x+
i (resp. x+

i+1) may coincide with x̃+
i

(resp. x̃+
i+1), and one of u, v, and w may also coincide with one of x+

i and x+
i+1, but

this does not affect the argument.
The distance between two points on the shortest arc of the circumscribed circle

between x̃+
i and x̃+

i+1 is smaller than the distance between x̃+
i and x̃+

i+1, which is
smaller than the distance between x+

i and x+
i+1. Therefore, �(u, v) < d(x+

i , x+
i+1).

Because d(x+
i , x+

i+1) < ε by Remark 3.11, it follows that �(u, v) < ε. Second,
if c ∈ X \ ⋃

j∈I Tj , then we can deduce that r < ε/2. Namely, if we suppose for a
contradiction that r ≥ ε/2, then d(c, p) ≥ ε/2 for all p ∈ P , because the circumcircle
of (u, v, w) is empty. Then we could add c to P2, which contradicts its maximality.
We conclude that r < ε/2. Because (u, v) is contained in a circle of radius r < ε/2,
it follows that �(u, v) < ε. Because �(u, v) < ε in both cases, the first claim of the
lemma follows.

To show that (u, v) is a shortest distant path between its endpoints, suppose for
a contradiction that it is not. Then there exists a geodesic γ from u to v, such that
�(γ ) < �(u, v). This means that (u, v) ∪ γ is a homotopically non-trivial closed
curve of length smaller than 2�(u, v) < 2ε. However, because injrad(x) > ε for all
x ∈ Xε

thick, every homotopically non-trivial closed curve γ intersecting Xε
thick has

length at least 2ε, which contradicts �((u, v) ∪ γ ) < 2ε. We conclude that (u, v) is a
distance path between its endpoints.

A 1- or 2-cycle in T corresponds to a homotopically non-trivial closed curve on X
[4]. By the same argument as before, the length of a 1- or 2-cycle σ intersecting Xε

thick
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is at least 2ε. Therefore, there are no 1- or 2-cycles that intersect Xε
thick and consist of

edges of length smaller than ε. 
�
Using the previous lemma, we show that a thick-thin Delaunay triangulation of X is
a distance Delaunay triangulation.

Lemma 3.13 Every thick-thin Delaunay triangulation of a closed hyperbolic surface
is a distance Delaunay triangulation.

Proof Let X be a closed hyperbolic surface and let T be a thick-thin Delaunay tri-
angulation of X . By definition, T is a Delaunay triangulation. We will show that T
does not contain any 1- or 2-cycles to prove that it is a simplicial complex. We know
from Lemma 3.12 that any edge (u, v) such that (u, v) ∩ Xε

thick �= ∅ is not a 1-cycle.
Because by construction there are no 1-cycles in a standard triangulation or standard
cycle in Xε

thin as well, we conclude that T contains no 1-cycles.
To prove that T does not contain any 2-cycles, consider two distinct edges (u, v)

and (v,w) of T with at least one shared endpoint. There are three cases, depending
on whether two, one or zero of the edges (u, v) and (v,w) intersect Xε

thick.
First, if (u, v) and (v,w) both intersect Xε

thick, then they do not form a 2-cycle by
Lemma 3.12.

Second, if precisely one of (u, v) and (v,w), say (u, v), intersects Xε
thick, then

�(u, v) < ε and (v,w) is an edge contained in a hyperbolic cylinder of Xε
thin. If

(v,w) is an edge contained in an ε′-thick cylinder C with waist γ , then (v,w) is one
of the edges of the standard cycle of C , because there are no other vertices in C by
Lemma 3.9. Then �(v,w) = �(γ )/3 < 2ε/3, so (u, v) and (v,w) do not form a
2-cycle by Lemma 3.12. Next, assume that (v,w) is an edge in an ε′-thin cylinder
with waist γ . Then either w lies on γ and v lies on one of the boundary curves of C or
v and w both lie on the same boundary curve of C . If w lies on γ and v on a boundary
curve of C , then (u, v) and (v,w) do not form a 2-cycle, because u does not lie on γ .
If v and w both lie on the same boundary geodesic, then �(v,w) < ε by Remark 3.11,
so (u, v) and (v,w) do not form a 2-cycle by Lemma 3.12.

Third, if neither (u, v) nor (v,w) intersects Xε
thick, then (u, v) and (v,w) are both

contained in a hyperbolic cylinder in Xε
thin. They are contained in the same cylinder,

because different cylinders are separated by Xε
thick. Because by construction standard

triangulations and standard cycles do not contain any 2-cycle, (u, v) and (v,w) do not
form a 2-cycle. This finishes the case analysis and we conclude that T is a simplicial
complex.

To prove that all edges of T are distance paths, we know from Lemma 3.12 that
any edge that intersects Xε

thick is a distance path. Because all edges in a standard
triangulation are distance paths by Corollary 3.5 and because all edges in a standard
cycle are distance paths by construction, we conclude that all edges in T are distance
paths. 
�
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3.3 Proof of Theorem 3.1

Proof of Theorem 3.1 Let X be an arbitrary hyperbolic surface of genus g and let T be
a thick-thin Delaunay triangulation of X . By definition, T is a Delaunay triangulation.
By Lemma 3.13, T is a simplicial complex and all edges of T are distance paths.
Hence, T ∈ D(X).

We will show here that the number of vertices of T is smaller than 150g. By
Lemma 3.2, Xε

thin consists of at most 3g − 3 cylinders and each of these cylinders
contains either nine vertices (if it is ε′-thin) or three vertices (if it is ε′-thick). Therefore,
|P1| ≤ 27g − 27.

To find an upper bound for the cardinality ofP2, observe that for distinct p, q ∈ P2
the disks Bp(ε/4) and Bq(ε/4) of radius ε/4 centered at p and q, respectively, are
embedded and disjoint. Therefore, the cardinality of P2 is bounded above by the
number of disjoint, embedded disks of radius ε/4 that we can fit in X . Because the
area of a hyperbolic disk of radius ε/4 is 2π(cosh(ε/4) − 1) [1] and because the area
of X is 4π(g − 1) [16], we obtain

|P2| ≤ 2(g − 1)

cosh(ε/4) − 1
.

Therefore, substituting ε = (3 logφ)/2, we obtain

|P| ≤ 27g − 27 + 2(g − 1)

cosh(ε/4) − 1
≤ 150g.

This finishes the proof. 
�
Remark 3.14 The constant 150 is not optimal. We can obtain the stronger upper bound
|P| ≤ 123g by looking more precisely at the upper bounds of |P1| and |P2| but
because we are mainly interested in the the order of growth, we will not provide any
details.

4 A Class of Hyperbolic Surfaces Attaining the Order of the Upper
Bound

As our second result, we show that there exists a class of hyperbolic surfaces which
attains the order of the upper bound presented in Theorem 3.1. We will first introduce
this class of hyperbolic surfaces and then state the precise result in Theorem 4.1.

Recall from the preliminaries that cutting a hyperbolic surface along 3g−3 disjoint
simple closed geodesics decomposes the surface into 2g−2 pairs of pants and that each
pair of pants decomposition has an associated 3-regular graph. Conversely, define Lg

as the trivalent graph depicted in Fig. 9with corresponding pair of pants decomposition
depicted in Fig. 10. Here, every vertex vi corresponds to a pair of pants Yi . There is one
edge from v1 to itself and similarly from v2g−2 to itself. Moreover, for 1 ≤ i ≤ 2g −3
there is one edge between vi and vi+1 if i is odd and there are two edges if i is even.
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1

2

3 2g−2

2g−3

2g−4

Fig. 9 Trivalent graph Lg

Y1 Y2 Y3 Y2g−4 Y2g−3 Y2g−2

Fig. 10 Pair of pants decomposition corresponding to Lg

Now, fix some positive real number M . Let Tg(M) be the subset of Tg with under-
lying graph Lg such that for all odd i = 1, 3, . . . , 2g − 3 the length of the boundary
geodesic Yi ∩ Yi+1 is at most M . In particular, Tg(M) contains an open subset of Tg ,
showing that having a linear number of vertices in terms of genus is relatively stable
in this part of Teichmüller space. We will now state the result of this section.

Theorem 4.1 A distance triangulation of any hyperbolic surface in Tg(M) where

M = 4 arccosh

(
1

6
3
√

54 − 6
√
33 + 1

6
3
√

54 + 6
√
33

)

≈ 2.4375 . . .

has at least g vertices.

We emphasize that the property that all edges are distance paths is sufficient; we do
not require the triangulation to be a Delaunay triangulation.

The idea of the proof is to show that, given any distance triangulation of a hyperbolic
surface X ∈ Tg(M), the union Yi ∪ Yi+1 contains at least one vertex for each even
i = 2, 4, . . . , 2g − 4. To show this, we need the following lemma.

Lemma 4.2 Let X be a closed hyperbolic surface. Let γ be a simple closed geodesic
on X with length at most M, where M is as defined in Theorem 4.1. Any shortest path
between two points on X that is not a proper subset of γ intersects γ in at most one
point.

Proof Suppose, for a contradiction, that there exists a shortest path β between two
points p and s on X that intersects γ in at least two points, say q and r . We subdivide
β into the shortest paths [p, q], [q, r ], and [r , s] and will show that �([q, r ]) is larger
than �(γ )/2 (Fig. 11). Since the length of one of the two segments of γ between q
and r is at most �(γ )/2, this contradicts the fact that [q, r ] is a distance path.

Consider the collar Cγ (w(γ )) around γ of width

w(γ ) = arcsinh
1

sinh(�(γ )/2)
.
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s

p

r

q∗ q

Cγ ( (γ ))

β

γ

Fig. 11 Construction used in the proof of Lemma 4.2

If [q, r ] is contained in Cγ (w(γ )), then it has the same homotopy class of paths as one
of the two segments of γ between q and r . Because there are no hyperbolic bigons, it
follows that [q, r ] is contained in γ , which, by assumption, is not possible.

Therefore, [q, r ] is not contained in Cγ (w(γ )). Then we can subdivide [q, r ] into
a path from q to a point q∗ /∈ Cγ (w(γ )) and a path from q∗ to r , the length of
each of which is larger than w(γ ). Therefore, �([q, r ]) > 2w(γ ). A straightforward
computation shows that if �(γ ) ≤ M , then

sinh
�(γ )

4
sinh

�(γ )

2
≤ 1,

i.e.,

w(γ ) = arcsinh
1

sinh(�(γ )/2)
≥ �(γ )

4
.

Hence, �([q, r ]) > 2w(γ ) ≥ �(γ )/2. This finishes the proof. 
�
We proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1 Let X be a hyperbolic surface in Tg(M) and let T be a distance
triangulation of X . We first show that the union Yi ∪ Yi+1 contains at least one vertex
for each even i = 2, 4, . . . , 2g − 4 and then that Y1 and Y2g−2 also contain at least
one vertex each, leading to a total of at least g vertices.

Take an arbitrary even i = 2, 4, . . . , 2g − 4. Suppose, for a contradiction, that
Yi ∪ Yi+1 does not contain any vertices of T . Consider a triangle � that intersects
Yi ∪ Yi+1. An edge of � with one of its endpoints in

⋃i−1
j=1 Y j (resp.

⋃2g−2
j=i+1 Y j ) that

intersects Yi ∪ Yi+1 has its other endpoint in
⋃2g−2

j=i+1 Y j (resp.
⋃i−1

j=1 Y j ), since the
edge intersects each of the boundary geodesics Yi−1∩Yi and Yi+1∩Yi+2 at most once
by Lemma 4.2. In particular, two of the vertices of � are contained in

⋃i−1
j=1 Y j and

the other in
⋃2g−2

j=i+1 Y j (or reversely), and precisely two of the edges of � intersect
Yi ∪ Yi+1.

Intuitively, the situation is as follows. If a triangle � of T intersects Yi ∪ Yi+1,
then the intersection is a quadrilateral. In this quadrilateral, two of the sides are given
by the intersections of two of the edges of � with Yi ∪ Yi+1 and the other two are
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given by the segments of the boundary geodesics Yi−1 ∩Yi and Yi+1 ∩Yi+2 contained
in �. Every edge of T that intersects Yi ∪ Yi+1 is contained in two triangles of T ,
so the intersections of triangles of T with Yi ∪ Yi+1 glue together to form a cylinder.
The boundary geodesics of this cylinder are the boundary geodesics Yi−1 ∩ Yi and
Yi+1 ∩ Yi+2, formed by gluing together the segments of these boundary geodesics
contained in the triangles of T . However, this contradicts the fact that Yi ∪ Yi+1 is a
torus.

To make this argument more precise, we will look at the embedding of a graph
into Yi ∪ Yi+1 and apply Euler’s formula v − e + f = 2 − 2g. We place a vertex on
each of the intersection points of an edge of T with the boundary geodesics Yi−1 ∩ Yi

and Yi+1 ∩ Yi+2 and shorten the corresponding edges so that their endpoints are now
the added vertices. For each boundary geodesic we add edges between consecutive
vertices, where the cyclic order on the vertices is naturally induced from the boundary
geodesic, and we add a face that is incident to all vertices on the boundary geodesic.
In this way, we obtain an embedding of a graph G into a closed topological surface of
genus 1. Let k be the number of triangles of T that intersect Yi ∪ Yi+1. Precisely two
edges of each triangle intersect Yi ∪ Yi+1 and each edge is contained in two triangles,
so k edges of T intersect Yi ∪ Yi+1. By Lemma 4.2, each of these edges intersects
each of the boundary geodesics Yi−1 ∩ Yi and Yi+1 ∩ Yi+2 precisely once, so G has
2k vertices. We shortened the k edges of T that intersect Yi ∪ Yi+1 and we added
edges between consecutive vertices on the boundary geodesics, so G has 3k edges in
total. We added two faces to the k faces obtained from the triangles of T intersecting
Yi ∪ Yi+1, so G has k + 2 faces. Now, substituting v, e and f into Euler’s formula
yields g = 0, which is a contradiction. We conclude that Yi ∪ Yi+1 contains at least
one vertex for each even i = 2, 4, . . . , 2g − 4.

To show that Y1 contains at least one vertex, suppose, for a contradiction, that it
does not. There exists a triangle � of T that intersects Y1 and, by assumption, � has
its vertices in

⋃2g−2
j=2 Y j . However, edges of� intersect the boundary geodesic Y1∩Y2

at most once, which leads to a contradiction. Hence, Y1 contains at least one vertex.
It can be shown in a similar way that Y2g−2 contains at least one vertex. This finishes
the proof. 
�

5 Lower Bound

In this section, we will look at a general lower bound for the minimal number of
vertices of a distance Delaunay triangulation of a hyperbolic surface of genus g. In the
more general situation of a simplicial triangulation of a topological surface of genus g,
one has an immediate lower bound on the minimal number of vertices. The fact that
this lower bound is sharp is the following classical theorem of Jungerman and Ringel:
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Theorem 5.1 ([12, Thm. 1.1]) The minimal number of vertices of a simplicial trian-
gulation of a topological surface of genus g is

⌈
7 + √

1 + 48g

2

⌉

.

We show that the same result holds for the minimal number of vertices of a distance
Delaunay triangulation of a hyperbolic surface of genus g for infinitely many values
of g.

Theorem 5.2 For any g ≥ 2 of the form

g = (n − 3)(n − 4)

12

for some n ≡ 0 mod 12, the minimal number of vertices of a distance Delaunay
triangulation of a hyperbolic surface of genus g is

n = 7 + √
1 + 48g

2
.

Proof Because every distance Delaunay triangulation of a hyperbolic surface is a
simplicial triangulation of the corresponding topological surface, it follows from The-
orem 5.1 that the minimal number of vertices is at least

⌈
7 + √

1 + 48g

2

⌉

.

In the remainder of the proof, we will construct for a given hyperbolic surface a
distance Delaunay triangulation with the required number of vertices, inspired by a
similar construction in the context of the chromatic number of hyperbolic surfaces
[14].

Let n ≡ 0 mod 12 and assume that n �= 0. The complete graph Kn on n vertices
can be embedded in a topological surface Sg of genus

g = (n − 3)(n − 4)

12
,

which is the smallest possible genus [15]. Because we have assumed that n ≡ 0
mod 12, we know that the embedding of Kn into Sg is a triangulation T [18]. To
turn T into a distance Delaunay triangulation, we will add a hyperbolic metric to the
topological surface as follows. Every triangle in T is replaced by the unique equilateral
hyperbolic triangle with all three angles equal to 2π/(n − 1). In the complete graph
Kn every vertex has n − 1 neighboring vertices. This means that in every vertex
n − 1 equilateral triangles meet, so the total angle at each vertex is 2π . Therefore, the
result after replacing all triangles in T by hyperbolic triangles is a smooth hyperbolic
surface Zg .
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u

pc
� x

Δ

γ

Fig. 12 Schematic overview of the proof of T being a Delaunay triangulation

It remains to be shown that T ∈ D(Z). By construction, T is a simplicial complex.
It has also been shown that all edges are distance paths [14]. We will show here that T
is a Delaunay triangulation of Zg . Consider an arbitrary triangle (u, v, w) in T with
circumcenter c and let p /∈ {u, v, w} be an arbitrary vertex of T (Fig. 12). Consider a
distance path γ from c to p. We can regard γ as the concatenation of simple segments
that each pass through an individual triangle.

The first of these simple segments starts from c and leaves the triangle (u, v, w), so
its length is at least the distance between c and a side of (u, v, w). Therefore, denoting
by x the projection of c on one of the edges as shown in Fig. 12, the length of the first
segment is at least d(c, x). The last of the simple segments passes through a triangle,
say �, before arriving at p, so it has to pass through the side of � opposite to p.
Therefore, its length is at least the distance between p and the opposite side of �. It
is known that the distance between a vertex and the opposite side of an equilateral
triangle is at least �/2, where � denotes the length of the sides of the equilateral
triangle [14]. Hence, d(c, p) = �(γ ) ≥ d(c, x) + �/2. By the triangle inequality in
triangle (c, w, x) we see that d(c, w) ≤ d(c, x) + d(x, w) = d(c, x) + �/2, so we
conclude that d(c, p) ≥ d(c, w). This means that p is not contained in the interior of
the circumcircle of (u, v, w), which shows that (u, v, w) is a Delaunay triangle. By
symmetry, it follows that all triangles are Delaunay triangles, which finishes the proof.
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Appendix A: Proof of Lemma 3.10

To prove that the triangles of (V , E) are Delaunay triangles, we will show that every
circumscribed disk does not contain any point of P in its interior. By symmetry, it
is sufficient to consider the top half of the cylinder. Let i = 1, 2, 3 be arbitrary and
denote the disk passing through x+

i , x+
i+1, xi , xi+1 by Di . That Di does not contain

any p ∈ V in its interior is clear. The remainder of the proof consists of showing that p
is not contained in the interior of Di for all p ∈ P \ V . Take p ∈ P \ V arbitrarily. Let
ci be the center of Di . If d(ci , p) > d(ci , xi ), then p is not contained in the interior
of Di .

Observe that d(p, x±
j ) ≥ ε/2 for j = 1, 2, 3. Namely, if p ∈ P2, where P2 is the

subset of P constructed in Xε
thick, then by definition d(p, x±

j ) ≥ ε/2 for j = 1, 2, 3.
On the other hand, if p ∈ P1, then p is a vertex in some hyperbolic cylinder C ′ �= C
with waist γ ′ in Xε

thin. By Lemma 3.4, the collars Cγ (KC + ε/3) and Cγ ′(KC ′ + ε/3)
are disjoint, so the distance between C and C ′ is at least 2ε/3. Hence, d(p, x j ) ≥ ε/2
for j = 1, 2, 3.

We now prove that we can assume without loss of generality that d(x+
i , p) =

d(x+
i+1, p) = ε/2. Let us first show that there actually exist points that satisfy this

condition, i.e., that the circles of radius ε/2 centered at x+
i and x+

i+1 intersect. Let mi

be themidpoint of xi and xi+1 and letm+
i be themidpoint of x+

i and x+
i+1, as in Fig. 13.
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A standard result from hyperbolic trigonometry in the quadrilateral (xi , x+
i , m+

i , mi )

with three right angles [6, Formula Glossary 2.3.1(v)] states that

sinh
d(x+

i , x+
i+1)

2
= sinh

�(γ )

6
cosh KC = sinh(�(γ )/6) sinh ε

sinh(�(γ )/2)
,

where the last equality follows from expression (2) for KC . Interpreting the right-hand
side as a function of �(γ ) we see that it attains its supremum for �(γ ) → 0, for which

sinh(�(γ )/6) sinh ε

sinh(�(γ )/2)
→ sinh ε

3
.

Because (sinh ε)/3 < sinh(ε/2) for ε = (3 logφ)/2, it follows sinh(d(x+
i , x+

i+1)/2)
< sinh(ε/2), so d(x+

i , x+
i+1) < ε. Because d(x+

i , x+
i+1) < ε, the circles of radius ε/2

centered at x+
i and x+

i+1 intersect in two points.
Now, to show that we can assume without loss of generality that d(x+

i , p) =
d(x+

i+1, p) = ε/2, we show that d(p, ci ) is minimal when these equations hold, i.e.,
when p is one of the intersection points of the circles of radius ε/2 centered at x+

i
and x+

i+1. Consider the curve γc consisting of points of distance d(ci , γ ) from γ and
let pc be the point of γc closest to p (see Fig. 13). Because all points on γc have the
same distance to γ , the distance d(p, pc) is minimal for some p if and only if the
distance d(p, γ ) is minimal for this p. Since d(p, x+

j ) ≥ ε/2 for all j = 1, 2, 3 and

since the three circles of radius ε/2 centered at x+
j for j = 1, 2, 3 intersect pairwise,

d(p, γ ) (and hence d(p, pc)) is minimal if p is an intersection point of a pair of these
circles, say, of the circles centered at x+

k and x+
k+1 for some k ∈ {1, 2, 3}. Note that

d(p, ci ) ≥ d(p, pc) by definition of pc, with equality if and only if p lies on the
geodesic passing through mi and m+

i . A point p such that d(p, pc) is minimal lies on
this geodesic if and only if k = i , i.e., if and only if d(x+

i , p) = d(x+
i+1, p) = ε/2.

Therefore, d(p, ci ) is minimal when d(x+
i , p) = d(x+

i+1, p) = ε/2.We conclude that
we can assume without loss of generality that d(x+

i , p) = d(x+
i+1, p) = ε/2.

Let c′
i be the projection of ci on (xi , x+

i ), as in Fig. 14. To prove that d(ci , p) >

d(ci , xi ), observe that d(ci , p) = d(mi , m+
i ) − d(mi , ci ) + d(m+

i , p), where
d(mi , m+

i ), d(mi , ci ) and d(m+
i , p) satisfy the equations

coth(d(mi , m+
i )) = cosh(�(γ )/6)

tanh KC
, (3)

tanh(d(mi , ci )) = cosh(�(γ )/6)

coth(KC/2)
, (4)

cosh(d(m+
i , p)) = cosh(ε/2)

cosh(d(x+
i , x+

i+1)/2)
. (5)

Here, (3) follows from applying a standard formula in hyperbolic trigonometry [6,
Formula Glossary 2.3.1(iv)] in quadrilateral (xi , x+

i , m+
i , mi ). Equation (4) follows
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x i

ci

x i+1

x+
i x+

i+1
m +

i

p
1
2ε

1
2ε

1
2KC

KC

1
2KC

c′
i

1
6�(γ )

1
6�(γ )m i

Fig. 14 Schematic overview of the trigonometry in Lemma 3.10

from applying the same formula in quadrilateral (xi , c′
i , ci , mi ). Equation (5) follows

from the hyperbolic Pythagorean theorem in triangle (x+
i , p, m+

i ).Moreover, applying
the hyperbolic Pythagorean theorem in triangle (xi , ci , mi ) yields

cosh(d(ci , xi )) = cosh
�(γ )

6
cosh(d(ci , mi )),

= cosh
�(γ )

6
cosh

(

arctanh
cosh(�(γ )/6)

coth(KC/2)

)

,

(6)

where we used equation (4) in the second line.
When we substitute the expressions for KC and d(x+

i , x+
i+1) into (3), (4), (5),

and (6), we find expressions for d(mi , m+
i ), d(mi , ci ), d(m+

i , p), and d(ci , xi ) in
terms of ε and �(γ ). As ε = (3 logφ)/2 is fixed, we can treat these as func-
tions of �(γ ). By a straightforward (but tedious) computation, it can be shown that
d(mi , m+

i ) − d(mi , ci ) − d(ci , xi ) is strictly decreasing as a function of �(γ ) with
minimum −0.180. . . for �(γ ) = 2ε′. By a similar computation, d(m+

i , p) is strictly
increasing as a function of �(γ ) with minimum 0.247. . . for �(γ ) → 0. We conclude
that

d(mi , m+
i ) − d(mi , ci ) − d(ci , xi ) + d(m+

i , p) ≥ −0.180. . . + 0.247. . . > 0,

fromwhich it follows that d(ci , p) = d(mi , m+
i )−d(mi , ci )+d(m+

i , p) > d(ci , xi ).
Hence, p is not contained in Di . This finishes the proof.
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