
Discrete & Computational Geometry (2022) 67:380–402
https://doi.org/10.1007/s00454-021-00361-w

Arrangements of Approaching Pseudo-Lines

Stefan Felsner1 · Alexander Pilz2 · Patrick Schnider3

Received: 22 January 2020 / Revised: 6 September 2021 / Accepted: 20 September 2022 /
Published online: 22 January 2022
© The Author(s) 2022

Abstract
Weconsider arrangements ofn pseudo-lines in theEuclideanplanewhere eachpseudo-
line �i is represented by a bi-infinite connected x-monotone curve fi (x), x ∈ R, such
that for any two pseudo-lines �i and � j with i < j , the function x �→ f j (x)− fi (x)
is monotonically decreasing and surjective (i.e., the pseudo-lines approach each
other until they cross, and then move away from each other). We show that such
arrangements of approaching pseudo-lines, under some aspects, behave similar to
arrangements of lines, while for other aspects, they share the freedom of general
pseudo-line arrangements. For the former, we prove:

• There are arrangements of pseudo-lines that are not realizable with approaching
pseudo-lines.

• Every arrangement of approaching pseudo-lines has a dual generalized configura-
tion of points with an underlying arrangement of approaching pseudo-lines.

For the latter, we show:

• There are 2�(n2) isomorphism classes of arrangements of approaching pseudo-
lines (while there are only 2�(n log n) isomorphism classes of line arrangements).
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• It can be decided in polynomial time whether an allowable sequence is realizable
by an arrangement of approaching pseudo-lines.

Furthermore, arrangements of approaching pseudo-lines can be transformed into each
other by flipping triangular cells, i.e., they have a connected flip graph, and every
bichromatic arrangement of this type contains a bichromatic triangular cell.

Keywords Pseudo-line arrangements · Order types · Discrete geometry

Mathematics Subject Classification 52C30

1 Introduction

Arrangements of lines and, in general, arrangements of hyperplanes are paramount
data structures in computational geometry whose combinatorial properties have been
extensively studied, partially motivated by the point-hyperplane duality. Pseudo-line
arrangements are a combinatorial generalization of line arrangements. Defined by
Levi in 1926 the full potential of working with these structures was first exploited by
Goodman and Pollack.

While pseudo-lines can be considered either as combinatorial or geometric objects,
they also lack certain geometric properties thatmay be needed in proofs. The following
example motivated the research presented in this paper.

Consider a finite set of lines that are either red or blue, no two of them parallel and
no three of them passing through the same point. Every such arrangement has a bichro-
matic triangle, i.e., an empty triangular cell bounded by red and blue lines. This can
be shown using a distance argument similar to Kelly’s proof of the Sylvester–Gallai
theorem (see, e.g., [2, p. 73]). We sketch another nice proof. Think of the arrangement
as a union of two monochromatic arrangements in colors blue and red. Continuously
translate the red arrangement in positive y-direction while keeping the blue arrange-
ment in place. Eventually the combinatorics of the union arrangement will changewith
a triangle flip, i.e., with a crossing passing a line. The area of monochromatic triangles
is not affected by the motion. Therefore, the first triangle that flips is a bichromatic
triangle in the original arrangement. See Fig. 1 (left).

This argument does not generalize to pseudo-line arrangements. See Fig. 1 (right).
Actually the question whether all simple bichromatic pseudo-line arrangements have
bichromatic triangles is by now open for several years. The crucial property of lines
used in the above argument is that shifting a subset of the lines vertically again yields an
arrangement, i.e., the shift does not introduce multiple crossings. We were wondering
whether any pseudo-line arrangement can be drawn such that this property holds. In
this paper, we show that this is not true and that arrangements where this is possible
constitute an interesting class of pseudo-line arrangements.

Define an arrangement of pseudo-lines as a finite family of x-monotone bi-infinite
connected curves (called pseudo-lines) in the Euclidean plane such that each pair of
pseudo-lines intersects in exactly one point, at which they cross. For simplicity, we
consider the n pseudo-lines {�1, . . . , �n} to be indexed from 1 to n in top-bottom order
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Fig. 1 Vertical translation of the red lines shows that there is always a bichromatic triangle in a bichromatic
line arrangement (left). For pseudo-line arrangements, a vertical translation may result in a structure that is
no longer a valid pseudo-line arrangement (right)

at left infinity.1 A pseudo-line arrangement is simple if no three pseudo-lines meet in
one point; if in addition no two pairs of pseudo-lines cross at the same x-coordinate
we call it x-simple.

An arrangement of approaching pseudo-lines is an arrangement of pseudo-lines
where each pseudo-line �i is represented by function-graph fi (x), defined for all
x ∈ R, such that for any two pseudo-lines �i and � j with i < j , the function
x �→ fi (x) − f j (x) is monotonically decreasing and surjective. This implies that
the pseudo-lines approach each other until they cross, and then they move away from
each other, and exactly captures our objective to vertically translate pseudo-lines in
an arbitrary way while maintaining the invariant that the collection of curves is a valid
pseudo-line arrangement (if fi − f j is not surjective the crossing of pseudo-lines i
and j may disappear upon vertical translations). For most of our results, we consider
the pseudo-lines to be strictly approaching, i.e., the function is strictly decreasing. For
simplicity, we may sloppily call arrangements of approaching pseudo-lines approach-
ing arrangements.

In this paper,we identify various notable properties of approaching arrangements. In
Sect. 2, we show how to modify approaching arrangements and how to decide whether
an arrangement is x-isomorphic2 to an approaching arrangement in polynomial time.
Then, we show a specialization of Levi’s enlargement lemma for approaching pseudo-

1 Pseudo-line arrangements are often studied in the real projective plane, with pseudo-lines being simple
closed curves that do not separate the projective plane. All arrangements can be represented by x-monotone
arrangements [10]. As x-monotonicity is crucial for our setting and the line at infinity plays a special role,
we use the above definition.
2 This term will be defined in Sect. 2.
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lines and use it to show that arrangements of approaching pseudo-lines are dual to
generalized configurations of points with an underlying arrangement of approach-
ing pseudo-lines. In Sect. 5, we describe arrangements which have no realization
as approaching arrangement. We also show that asymptotically there are as many
approaching arrangements as pseudo-line arrangements. We conclude in Sect. 6 with
a generalization of the notion of being approaching to three dimensions; it turns out
that arrangements of approaching pseudo-planes are characterized by the combinato-
rial structure of the family of their normal vectors at all points.

Related workRestricted representations of Euclidean pseudo-line arrangements have
been considered already in early work about pseudo-line arrangements. Goodman [8]
shows that every arrangement has a representation as awiring diagram. More recently
there have been results on drawing arrangements as convex polygonal chains with few
bends [6] and on small grids [5]. Goodman and Pollack [11] consider arrangements
whose pseudo-lines are the function-graphs of polynomial functions with bounded
degree. In particular, they give bounds on the degree necessary to represent all iso-
morphism classes of pseudo-line arrangements. Generalizing the setting to higher
dimensions (by requiring that any pseudo-hyperplane can be translated verticallywhile
maintaining that the family of hyperplanes is an arrangement) we found that such
approaching arrangements are representations of Euclidean oriented matroids, which
are studied in the context of pivot rules for oriented matroid programming (see [4,
Chap. 10]).

2 Manipulating Approaching Arrangements

Lemma 2.1 shows that we can make the pseudo-lines of approaching arrangements
piecewise linear. This is similar to the transformation of Euclidean pseudo-line
arrangements to equivalent wiring diagrams. Before stating the lemma it is appro-
priate to briefly discuss notions of isomorphism for arrangements of pseudo-lines.

Since we have defined pseudo-lines as x-monotone curves there are two faces
of the arrangement containing the points at ± infinity of vertical lines. These two
faces are the north-face and the south-face. A marked arrangement is an arrangement
together with a distinguished unbounded face, the north-face. Pseudo-lines of marked
arrangements are oriented such that the north-face is to the left of the pseudo-line. We
think of pseudo-line arrangements and in particular of approaching arrangements as
being marked arrangements.

Two pseudo-line arrangements are isomorphic if there is an isomorphism of the
induced cell complexes which maps north-face to north-face and respects the induced
orientation of the pseudo-lines. Two pseudo-line arrangements are x-isomorphic if a
sweep with a vertical line meets the crossings in the same order.

Both notions can be described in terms of allowable sequences. An allowable
sequence is a sequence of permutations starting with the identity permutation id =
(1, . . . , n) in which (i) a permutation is obtained from the previous one by the reversal
of one or more non-overlapping substrings, and (ii) each pair is reversed exactly once.
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An allowable sequence is simple if two adjacent permutations differ by the reversal of
exactly two adjacent elements.

Note that the permutations in which a vertical sweep line intersects the pseudo-
lines of an arrangement gives an allowable sequence. We refer to this as the allowable
sequence of the arrangement and say that the arrangement realizes the allowable
sequence. Clearly two arrangements are x-isomorphic if they realize the same allow-
able sequence.

Replacing the vertical line for the sweep by a moving curve (vertical pseudo-line)
which joins north-face and south-face and intersects each pseudo-line of the arrange-
ment exactly once we get a notion of pseudo-sweep. A pseudo-sweep typically has
various options for making progress, i.e., for passing a crossing of the arrangement.
Each pseudo-sweep also produces an allowable sequence. Two arrangements are iso-
morphic if their pseudo-sweeps yield the same collection of allowable sequences or
equivalently if there are pseudo-sweeps on the two arrangements which produce the
same allowable sequence.

Lemma 2.1 For any arrangement of approaching pseudo-lines, there is an x-
isomorphic arrangement of approaching polygonal curves (starting and ending with
a ray). If the allowable sequence of the arrangement is simple, then there exists such
an arrangement without crossings at the bends of the polygonal curves.

Proof Consider the approaching pseudo-lines and add a vertical ‘helper-line’ at every
crossing. Connect the intersection points of each pseudo-line with adjacent helper-
lines by segments. This results in an arrangement of polygonal curves between the
leftmost and the rightmost helper-line. See Fig. 2. Since the original pseudo-lines were
approaching, these curves are approaching as well; the signed distance between the
intersection points with the vertical lines is decreasing, and this property is maintained
by the linear interpolations between the points. To complete the construction, we add
rays in negative x-direction starting at the intersection points at the first-helper line; the
slopes of the rays are to be chosen such that their order reflects the order of the original
pseudo-lines at left infinity. After applying the analogous construction at the rightmost
helper-line, we obtain the x-isomorphic arrangement. If the allowable sequence of the
arrangement is simple, we may choose the helper-lines between the crossings and use
a corresponding construction. This avoids an incidence of a bend with a crossing. ��

The construction used in the proof yields pseudo-lines being represented by polyg-
onal curves with a quadratic number of bends. It might be interesting to consider
the problem of minimizing bends in such polygonal representations of arrangements.
Two simple operations which can help to reduce the number of bends are horizontal
stretching, i.e., a change of the x-coordinates of the helper-lines which preserves their
left-to-right order, and vertical shifts which can be applied a helper-line and all the
points on it. Both operations preserve the x-isomorphism class.

The two operations are crucial for our next result, where we show that the intersec-
tion points with the helper-lines can be obtained by a linear program. Asinowski [3]
defines a suballowable sequence as a sequence obtained from an allowable sequence
by removing an arbitrary number of permutations from it. An arrangement thus real-
izes a suballowable sequence if we can obtain this suballowable sequence from its
allowable sequence.
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Fig. 2 Transforming an arrangement of approaching pseudo-lines into an isomorphic one of approaching
polygonal pseudo-lines

Theorem 2.2 Given a suballowable sequence, we can decide in polynomial time
whether there is an arrangement of approaching pseudo-lines with such a sequence.

Proof We attempt to construct a polygonal pseudo-line arrangement for the given
suballowable sequence.As discussed in the proof ofLemma2.1,we only need to obtain
the points in which the pseudo-lines intersect vertical helper-lines through crossings.
The allowable sequence of the arrangement is exactly the description of the relative
positions of these points. We can consider the y-coordinates of pseudo-line �i at a
vertical helper-line vc as a variable yi,c and by this encode the suballowable sequence
as a set of linear inequalities on those variables, e.g., to express that �i is above � j at vc
we use the inequality yi,c ≥ y j,c + 1. Further, the curves are approaching if and only
if yi,c − y j,c ≥ yi,c+1 − y j,c+1 for all 1 ≤ i < j ≤ n and c. These constraints yield a
polyhedron (linear program) that is non-empty (feasible) if and only if there exists such
an arrangement. Since the allowable sequence of an arrangement of n pseudo-lines
consists of

(n
2

) + 1 permutations the linear program has O(n4) inequalities in O(n3)
variables. Note that it is actually sufficient to have constraints only for neighboring
points along the helper lines, this shows that O(n3) inequalities are sufficient. ��

Let us emphasize that deciding whether an allowable sequence is realizable by a
line arrangement is an ∃R-hard problem [15], and thus not even known to be in
NP. While we do not have a polynomial-time algorithm for deciding whether there
is an isomorphic approaching arrangement for a given pseudo-line arrangement3,
Theorem 2.2 tells us that the problem is in NP, as we can give the order of the crossings
encountered by a sweep as a certificate for a realization. The corresponding problem
for lines is also ∃R-hard [18].

The following observation is the main property that makes approaching pseudo-
lines interesting.

3 We do not get a polynomial algorithm by reading off the allowable sequence of the pseudo-line arrange-
ment and then applying Theorem 2.2 as there are families of isomorphic pseudo-line arrangements with
exponentially many different allowable sequences.
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Observation 2.3 Given an arrangement A of strictly approaching pseudo-lines and a
pseudo-line � ∈ A, any vertical translation of � in A results again in an arrangement
of strictly approaching pseudo-lines.

Doing an arbitrary translation, we may run into trouble when the pseudo-lines are not
strictly approaching. In this case it can happen that two pseudo-lines share an infinite
number of points. The following lemma allows us replace non-strictly approaching
arrangements by x-isomorphic strictly approaching arrangements.

Lemma 2.4 Any simple arrangement of approaching pseudo-lines is homeomorphic
to a polygonal x-isomorphic arrangement of strictly approaching pseudo-lines.

Proof Given an arrangement A, construct a polygonal arrangement A′ as described
for Lemma 2.1. If the resulting pseudo-lines are strictly approaching, we are done.
Otherwise, consider the rays that emanate to the left. We may change their slopes such
that all the slopes are different and their relative order remains the same. Consider the
first vertical slab defined by two neighboring vertical lines v and w that contains two
segments that are parallel (if there are none, the arrangement is strictly approaching).
Choose a vertical line v′ slightly to the left of the slab and use v′ and w as helper-lines
to redraw the pseudo-lines in the slab. Since the arrangement is simple the resulting
arrangement is x-isomorphic and it has fewer parallel segments. Iterating this process
yields the desired result. ��
Lemma 2.5 If A is an approaching arrangement with a non-simple allowable
sequence, then there exists an approaching arrangement A′ whose allowable sequence
is a refinement of the allowable sequence of A, i.e., the sequence of A′ may have addi-
tional permutations between consecutive pairs π, π ′ in the sequence of A.

Proof Since its allowable sequence is non-simple, arrangement A has a crossing point
where more than two pseudo-lines cross or A has several crossings with the same
x-coordinate. Let � be a pseudo-line participating in such a degeneracy. Translating �

slightly in vertical direction a degeneracy is removed and the allowable sequence is
refined. ��
Ringel’s homotopy theorem [4, Thm. 6.4.1] tells us that given a pair A, B of pseudo-
line arrangements, A can be transformed to B by homeomorphisms of the plane and
so-called triangle flips, where a pseudo-line is moved over a crossing. Within the
subset of arrangements of approaching pseudo-lines, the result still holds. We first
show a specialization of Ringel’s isotopy result [4, Prop. 6.4.2]:

Lemma 2.6 Two x-isomorphic arrangements of approaching pseudo-lines can be
transformed into each other by a homeomorphism of the plane such that all inter-
mediate arrangements are x-isomorphic and approaching.

Proof Given an arrangement A of approaching pseudo-lines, we construct a cor-
responding polygonal arrangement A′. Linearly transforming a point fi (x) on a
pseudo-line �i in A to the point f ′

i (x) on the corresponding line �′
i in A′ gives a

homeomorphism from A to A′ which can be extended to the plane. Given two x-
isomorphic arrangements A′ and B of polygonal approaching pseudo-lines, we may
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Fig. 3 A line arrangement A0 (left) and the arrangements A′ and A′′ used for the transformation from A
to A0

shift helper-lines horizontally, so that the
(n
2

)+1 helper-lines of the two arrangements
become adjusted, i.e., are at the same x-coordinates; again there is a corresponding
homeomorphismof the plane.Now recall that these arrangements can be obtained from
solutions of linear programs. Since A′ and B have the same combinatorial structure,
their defining inequalities are the same. Thus, a convex combination of the variables
defining the two arrangements is also in the solution space, which continuously takes
us from A′ to B and thus completes the proof. ��
Theorem 2.7 Given two simple arrangements of approaching pseudo-lines, one can
be transformed to the other by homeomorphisms of the plane and triangle flips such
that all intermediate arrangement are approaching.

Proof Let A0 be a fixed simple arrangement of n lines. We show that any approach-
ing arrangement A can be transformed into A0 with the given operations. Since the
operations are invertible this is enough to prove that if (A, B) is a pair of approaching
arrangements, then A can be transformed into B with the given operations.

Consider a vertical line � in A such that all the crossings of A are to the right
of � and replace the part of the pseudo-lines of A left of � by rays with the slopes
of the lines of A0. This yields an arrangement A′ isomorphic to A, see Fig. 3. This
replacement is covered by Lemma 2.6. Let �0 be a vertical line in A0 which has all
the crossings of A0 to the left. Now we vertically shift the pseudo-lines of A′ to make
their intersections with � an identical copy of their intersections with �0. This yields an
arrangement A′′ isomorphic to A0, see Fig. 3. During the shiftingwe have a continuous
family of approaching arrangements which can be described by homeomorphisms of
the plane and triangle flips. To get from A′′ to A0 we only have to replace the part of
the pseudo-lines of A to the right of �, where no crossings remain, by rays which have
the same slopes of the lines of A0. This makes all the pseudo-lines actual lines and
the arrangement is identical to A0. ��

Note that the proof requires the arrangement to be simple. Vertical translations of
pseudo-lines now allows us to prove a restriction of our motivating question.

Theorem 2.8 An arrangement of approaching red and blue pseudo-lines contains a
triangular cell that is bounded by both a red and a blue pseudo-line unless it is a
pencil, i.e., all the pseudo-lines cross in a single point.
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Proof By symmetry in color and direction we may assume that there is a crossing
of two blue pseudo-lines above a red pseudo-line. Translate all the red pseudo-lines
upwards with the same speed. Consider the first moment t > 0 when the isomorphism
class changes. This happens when a red pseudo-line moves over a blue crossing, or
a red crossing is moved over a blue pseudo-line. In both cases the three pseudo-lines
have determined a bichromatic triangular cell of the original arrangement.

Now consider the case that at time t parallel segments of different color are concur-
rent. In this case we argue as follows. Consider the situation at time ε > 0 right after
the start of the motion. Now every multiple crossing is monochromatic and we can use
an argument as in the proof of Lemma 2.4 to get rid of parallel segments of different
colors. Continuing the translation after the modification reveals a bichromatic triangle
as before. ��

3 Levi’s Lemma for Approaching Arrangements

Proofs for showing that well-known properties of line arrangements generalize to
pseudo-line arrangements often use Levi’s enlargement lemma. (For example, Good-
man and Pollack [9] give generalizations of Radon’s theorem, Helly’s theorem, etc.)
Levi’s lemma states that a pseudo-line arrangement can be augmented by a pseudo-line
through any pair of points. In this section, we show that we can add a pseudo-line while
maintaining the property that all pseudo-lines of the arrangement are approaching.

Lemma 3.1 Given an arrangement of approaching pseudo-lines containing two
pseudo-lines li and li+1 (each a function R → R), consider l ′ = l ′(x) = λli (x) +
(1 − λ)li+1(x), for some 0 ≤ λ ≤ 1. The arrangement augmented by l ′ is still an
arrangement of approaching pseudo-lines.

Proof Consider any pseudo-line l j of the arrangement, j≤ i .We know that for x1< x2,
l j (x1) − li (x1) ≥ l j (x2) − li (x2), whence λl j (x1) − λli (x1) ≥ λl j (x2) − λli (x2).
Similarly, we have (1−λ)l j (x1)− (1−λ)li+1(x1) ≥ (1−λ)l j (x2)− (1−λ)li+1(x2).
Adding these two inequalities, we get

l j (x1) − l ′(x1) ≥ l j (x2) − l ′(x2).

The analogous holds for any j ≥ i + 1. ��
The lemma gives us a means of producing a convex combination of two approaching
pseudo-lines with adjacent slopes. Note that the adjacency of the slopes was necessary
in the above proof.

Lemma 3.2 Given an arrangement of n approaching pseudo-lines, we can add a
pseudo-line ln+1 = ln+1(x) = ln(x) + δ(ln(x) − ln−1(x)) for any δ > 0 and still
have an approaching arrangement.

Proof Assuming x2 > x1 implies

ln(x1) − ln+1(x1) = ln(x1) − ln(x) − δ(ln(x1) − ln−1(x1)) = δ(ln−1(x1) − ln(x1))
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≥ δ(ln−1(x2) − ln(x2)) = ln(x2) − ln+1(x2).

With l j (x1)−ln(x1) ≥ l j (x2)−ln(x2)wealso get l j (x1)−ln+1(x1) ≥ l j (x2)−ln+1(x2)
for all 1 ≤ j < n. ��
Theorem 3.3 Given an arrangement of strictly approaching pseudo-lines and two
points p and q with different x-coordinates, the arrangement can be augmented by
a pseudo-line l ′ containing p and q to an arrangement of approaching pseudo-lines.
Further, if p and q do not have the same vertical distance to a pseudo-line of the initial
arrangement, then the resulting arrangement is strictly approaching.

Proof Let p have smaller x-coordinate than q. Vertically translate all pseudo-lines
such that they pass through p (the pseudo-lines remain strictly approaching, forming
a pencil through p). If there is a pseudo-line that also passes through q, we add a
copy l ′ of it. If q is between li and li+1, then we find some 0 < λ < 1 such that
l ′(x) = λli (x) + (1 − λ)li+1(x) contains p and q. By Lemma 3.1 we can add l ′ to
the arrangement. If q is above or below all pseudo-lines in the arrangement, we can
use Lemma 3.2 to add a pseudo-line; we choose δ large enough such that the new
pseudo-line contains q. Finally translate all pseudo-lines back to their initial position.
This yields an approaching extension of the original arrangement with a pseudo-line
containing p and q. Observe that the arrangement is strictly approaching unless the
new pseudo-line was chosen as a copy of l ′. ��
Following Goodman et al. [14], a spread of pseudo-lines in the Euclidean plane is an
infinite family of simple curves such that

(i) each curve is asymptotic to some line at both ends,
(ii) every two curves intersect at one point, at which they cross, and
(iii) there is a bijection L from the unit circleC to the family of curves such that L(p)

is a continuous function (under the Hausdorff metric) of p ∈ C .

It is known that every projective arrangement of pseudo-lines can be extended to
a spread [14] (see also [13]). For Euclidean arrangements this is not true because
condition (i) may fail (for an example take the parabolas (x − i)2 as pseudo-lines).
However, given an Euclidean arrangement A we can choose two vertical lines v−
and v+ such that all the crossings are between v− and v+ and replace the extensions
beyond the vertical lines by appropriate rays. The result of this procedure is called
the truncation of A. Note that the truncation of A and A are x-isomorphic and if A is
approaching then so is the truncation. We use Lemma 3.1 to show the following.

Theorem 3.4 The truncation of every approaching arrangement of pseudo-lines can
be extended to a spread of pseudo-lines and a single vertical line such that the non-
vertical pseudo-lines of that spread are approaching.

Proof Let l1, . . . , ln be the pseudo-lines of the truncation of an approaching arrange-
ment. Add two almost vertical straight lines l0 and ln+1 such that the slope of the
line connecting two points on a pseudo-line li is between the slopes of l0 and ln+1.
The arrangement with pseudo-lines l0, l1, . . . , ln, ln+1 is still approaching. Initialize
S with these n + 2 pseudo-lines. For each 0 ≤ i ≤ n and each λ ∈ (0, 1) add the
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pseudo-line λli (x) + (1 − λ)li+1(x) to S. The proof of Lemma 3.1 implies that any
two pseudo-lines in S are approaching. Finally, let p be the intersection point of l0
and ln+1, and add all the lines containing p and some point above these two lines to S.
This completes the construction of the spread S. ��

4 Approaching Generalized Configurations

Levi’s lemma is theworkhorse in the proofs ofmany properties of pseudo-line arrange-
ments.Among these, there is the so-calleddouble dualization byGoodman andPollack
[10] that creates, for any arrangement of pseudo-lines, a corresponding primal gener-
alized configuration of points.

Let us briefly recall their terminology. A generalized configuration of points is an
arrangement of pseudo-lines with a specified set of n vertices, called points, such that
any pseudo-line passes through two points, and, at each point, n − 1 pseudo-lines
cross. We assume for simplicity that there are no other vertices in which more than
two pseudo-lines of the arrangement cross.

Let C = (A, P) be a generalized configuration of points consisting of an approach-
ing arrangement A, and a set of points P = {p1, . . . , pn}, which are labeled by
increasing x-coordinate.We denote the pseudo-line ofA connecting points pi , p j ∈ P
by pi j .

Consider a point moving from top to bottom at left infinity. This point traverses all
the pseudo-lines ofA in some order.We claim that if we start at the topwith the identity
permutation π = (1, . . . , n), then, when passing pi j we can apply the (adjacent)
transposition (i, j) toπ . Moreover, by recording all the permutations generated during
the move of the point we obtain an allowable sequence �C .

Consider the complete graph KP on the set P . Let c be an unbounded cell of the
arrangementA, when choosing c as the north-face ofAwe get a left to right orientation
on each pi j . Let this induce the orientation of the edge {i, j} of KP . These orientations
constitute a tournament on P . It is easy to verify that this tournament is acyclic, i.e., it
induces a permutation πc on P . The following can be derived from these definitions,
see [10] for more details.

• The order π0 corresponding to the top cell equals the left-to-right order on P .
Since we have labeled the points by increasing x-coordinate this is the identity.

• When traversing pi j to get from a cell c to an adjacent cell c′ the two orientations
of the complete graph only differ in the orientation of the edge {i, j}. Hence, πc

and πc′ are related by the adjacent transposition (i, j).

Note that the allowable sequence �C and the allowable sequence of A are different
objects, they differ even in the length of the permutations.

We say that an arrangement of pseudo-lines is dual to a (primal) generalized config-
uration of points if they have the same allowable sequence. Goodman and Pollack [10]
showed that for every pseudo-line arrangement there is a primal generalized configu-
ration of points, and vice versa. We prove the same for the sub-class of approaching
arrangements.
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Fig. 4 An approaching generalized configuration (left) and its dual approaching arrangement (right)

Lemma 4.1 For every generalized configuration C = (A, P) of points on an appro-
aching arrangement A, there is an approaching arrangement A∗ with allowable
sequence �C .

For an illustration of the construction, see Fig. 4.

Proof Let �C = π0, π1, . . . , πh . We call (i, j) the adjacent transposition at g when
πg = (i, j)◦πg−1. To produce a polygonal approaching arrangement A∗ we define the
y-coordinates of the pseudo-lines �1, . . . , �n at x-coordinates i ∈ [h]. Let (i, j) be the
transposition at g. Consider the pseudo-line pi j of C. Since pi j is x-monotone we can
evaluate pi j (x). The y-coordinate of the pseudo-line �k dual to the point pk = (xk, yk)
at x = g is obtained as yk(g) = pi j (xk) − pk(xk), i.e., the vertical distance between
the pseudo-line pi j and the point pk . We then extend �k linearly between the defined
points.

We argue that the resulting pseudo-line arrangement is approaching. Let (i, j) and
(s, t) be transpositions at g and g′, respectively, and assume g < g′. We have to show
that ya(g) − yb(g) ≥ ya(g′) − yb(g′), for all 1 ≤ a < b ≤ n. From a < b it follows
that pa is left of pb, i.e., xa < xb. The pseudo-lines pi j and pst are approaching, hence
pi j (xa) − pst (xa) ≥ pi j (xb) − pst (xb), i.e., pi j (xa) − pi j (xb) ≥ pst (xa) − pst (xb),
which translates to ya(g) − yb(g) ≥ ya(g′) − yb(g′).

Further, it follows from the construction that for for the transposition (i, j) at g,
the constructed dual pseudo-lines intersect at xg . In particular, this implies that the
allowable sequence of A∗ equals �C . This completes the proof. ��

Goodman and Pollack use the so-called double dualization to show how to obtain a
primal generalized configuration of points for a given arrangement A of pseudo-lines.
In this process, they add a pseudo-line through each pair of crossings in A, using
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Levi’s enlargement lemma. This results in a generalized configuration C′ of points,
where the points are the crossings of A. From this, they produce the dual pseudo-
line arrangement A′. Then, they repeat the previous process for A′ (that is, adding
a line through all pairs of crossings of A′). The result is a generalized configuration
C of points, which they show being the primal generalized configuration of A. With
Theorem 3.3 and Lemma 4.1, we know that both the augmentation through pairs of
crossings and the dualization process can be done such that we again have approaching
arrangements, yielding the following result.

Lemma 4.2 For every arrangement of approaching pseudo-lines, there is a primal
generalized configuration of points whose arrangement is also approaching.

Combining Lemmas 4.1 and 4.2, we obtain the main result of this section.

Theorem 4.3 An allowable sequence is the allowable sequence of an approaching
generalized configuration of points if and only if it is the allowable sequence of an
approaching arrangement.

5 Realizability and Counting

Considering the freedom one has in constructing approaching arrangements, one may
wonder whether actually all pseudo-line arrangements are x-isomorphic to approach-
ing arrangements. As we will see in this section, this is not the case. We use the
following lemma, that can easily be shown using the construction from the proof of
Lemma 2.1.

Lemma 5.1 Givena simple suballowable sequenceof permutations (id, π1, π2), where
id is the identity permutation, the suballowable sequence is realizablewith an arrange-
ment of approaching pseudo-lines if and only if it is realizable as a line arrangement.

Proof Consider any realization A of the simple suballowable sequencewith an arrange-
ment of approaching pseudo-lines. Since the arrangement is simple, we can consider
the pseudo-lines as being strictly approaching, due to Lemma 2.4. There exist two
vertical lines v1 and v2 such that the order of intersections of the pseudo-lines with
them corresponds to π1 and π2, respectively. We claim that replacing pseudo-line
pi ∈ A by the line �i connecting the points (v1, pi (v1)) and (v2, pi (v2)) we obtain a
line arrangement representing the suballowable sequence (id, π1, π2).

To prove the claim we verify that for i < j the slope of �i is less than the slope
of � j . Since A is approaching we have pi (v1) − p j (v1) ≥ pi (v2) − p j (v2), i.e.,
pi (v1) − pi (v2) ≥ p j (v1) − p j (v2). The slopes of �i and � j are obtained by dividing
both sides of this inequality by v1 − v2, which is negative. ��

Asinowski [3] identified a suballowable sequence (id, π1, π2), with permutations
of six elements which is not realizable with an arrangement of lines.

Corollary 5.2 There exist simple suballowable sequences that are not realizable by
arrangements of approaching pseudo-lines.
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Fig. 5 A part of a six-element pseudo-line arrangement (bold) whose suballowable sequence (indicated by
the vertical lines) is non-realizable (adapted from [3, Fig. 4]). Adding the two thin pseudo-lines crossing
in the vicinity of the vertical line crossed by the pseudo-lines in the order of π1 and doing the same for π2
enforces that the allowable sequence of any isomorphic arrangement contains the subsequence (id, π1, π2)

With the modification of Asinowski’s example shown in Fig. 5, we obtain an arrange-
ment not having an isomorphic approaching arrangement. The modification adds two
almost-vertical lines crossing in the north-cell such that they form a wedge crossed
by the lines of Asinowski’s example in the order of π1. We do the same for π2. The
resulting object is a simple pseudo-line arrangement, and each isomorphic arrange-
ment contains Asinowski’s sequence.

Corollary 5.3 There are pseudo-line arrangements for which there exists no isomor-
phic arrangement of approaching pseudo-lines.

Aichholzer et al. [1] construct a suballowable sequence (id, π1, π2) on n lines such
that all line arrangements realizing them require slope values that are exponential in
the number of lines. Thus, also vertex coordinates in a polygonal representation as an
approaching arrangement are exponential in n.

Ringel’s Non-Pappus arrangement [20] shows that there are allowable sequences
that are not realizable by straight lines. It is not hard to show that the Non-Pappus
arrangement has a realization with approaching pseudo-lines. We will show that in
fact the number of approaching arrangements, is asymptotically larger than the number
of arrangements of lines.

Theorem 5.4 There exist 2�(n2) isomorphism classes of simple arrangements of n
approaching pseudo-lines.

Proof The upper bound follows from the number of non-isomorphic arrangements
of pseudo-lines. Our lower-bound construction is an adaptation of the construction
presented by Matoušek [17, p. 134] for general pseudo-line arrangements. See the left
part of Fig. 6 for a sketch of the construction. We start with a construction containing
parallel lines that we will later perturb. Consider a set V of vertical lines vi : x = i , for
i ∈ [n]. Add horizontal pseudo-lines hi : y = i2, for i ∈ [n]. Finally, add parabolic
curves pi : y = (x + i)2 − ε, defined for x ≥ 0, some 0 < ε  1, and i ∈ [n] (we
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Fig. 6 A construction for an 2	(n2) lower bound on the isomorphism classes of approaching arrangements

will add the missing part towards left infinity later). Now, pi passes slightly below the
crossing of hi+ j and v j at ( j, (i + j)2). See the left part of Fig. 6 for a sketch of the
construction.Wemaymodify pi to pass above the crossing at ( j, (i+ j)2) by replacing
a piece of the curve near this point by a line segment with slope 2(i + j); see the right
part of Fig. 6. Since the derivatives of the parabolas are increasing and the derivatives
of pi+1 at j − 1 and of pi−1 at j + 1 are both 2( j + i) the vertical distances from
the modified pi to pi+1 and pi−1 remain increasing, i.e., the arrangement remains
approaching.

For each crossing ( j, (i+ j)2), wemay now independently decide whether wewant
pi to pass above or below the crossing. The resulting arrangement contains parallel
and vertical lines, but no three points pass through a crossing. This means that we can
slightly perturb the horizontal and vertical lines such that the crossings of a horizontal
and a vertical remain in the vicinity of the original crossings, but no two lines are
parallel, and no line is vertical. To finish the construction, we add rays from the points
on pi with x = 0, each having the slope of pi at x = 0. Each arrangement of the
resulting class of arrangements is approaching.We have�(n2) crossings for whichwe
make independent binary decisions. Hence the class consists of 2�(n2) approaching
arrangements of 3n pseudo-lines. ��

As there are only 2�(n log n) isomorphism classes of simple line arrangements [12],
we see that we have way more arrangements of approaching pseudo-lines.

The number of allowable sequences is 2�(n2 log n) [21].We show next that despite of
the existence of nonrealizable suballowable sequences (Corollary 5.2), the number of
allowable sequences for approaching arrangements, i.e., the number of x-isomorphism
classes of these arrangements, is asymptotically the same as the number of all allowable
sequences.
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Theorem 5.5 There are 2�(n2 log n) allowable sequences realizable as arrangements
of approaching pseudo-lines.

Proof The upper bound follows from the number of allowable sequences. For the lower
bound, we use the construction in the proof of Theorem 5.4, but omit the vertical lines.
Hence, we have the horizontal pseudo-lines hi : y = i2 and the paraboloid curves
pi : y = (x + i)2 − ε, defined for x ≥ 0 and 0 < ε  1. For a parabolic curve pi and
a horizontal line hi+ j , consider the neighborhood of the point ( j, (i + j)2). Given a
small value α we can replace a piece of pi by the appropriate line segment of slope
2(i + j) such that the crossing of hi+ j and the modified pi has x-coordinate j − α.

For fixed j and any permutation π of [n − j] we can define values αi for i ∈
[n − j] such that απ(1) < απ(2) < . . . < απ(n− j). Choosing the offset values αi

according to different permutations π yields different vertical permutations in the
neighborhood of x = j , i.e., the allowable sequences of the arrangements differ.
Hence, the number allowable sequences of approaching arrangements is at least the
superfactorial

∏n
j=1 j !, which is in 2	(n2 log n). ��

We have seen that some properties of arrangements of lines are inherited by approach-
ing arrangements. It is known that every simple arrangement of pseudo-lines has n−2
triangles, the same is true for non-simple non-trivial arrangements of lines, however,
there are non-simple non-trivial arrangements of pseudo-lines with fewer triangles,
see [7]. We conjecture that in this context approaching arrangements behave like line
arrangements.

Conjecture 5.6 Every non-trivial arrangement of n approaching pseudo-lines has at
least n − 2 triangles.

6 Approaching Arrangements in 3D

We have seen that approaching arrangements of pseudo-lines form an interesting
class of arrangements of pseudo-lines. In this section we study the 3-dimensional
version, this requires quite some technicalities. Therefore, before entering the detailed
treatment of the subject we give an informal description of the results.

We consider pseudo-planes as functions f : R2 → R. An arrangement of pseudo-
planes is approaching if we can shift the pseudo-planes up and down independently
and maintain the property that they form an arrangement.

Consider an arrangement of approaching pseudo-lines f1, f2, . . . , fn with the prop-
erty that for all x ∈ R the slopes of all fi at x are uniquely defined. Considering the
slopes of the pseudo-lines over any point x we have s1 ≤ s2 ≤ . . . ≤ sn , i.e., the point
(s1, . . . , sn) is in the closure of the set of points with s1 < s2 < . . . < sn . A vector
of reals can be interpreted as a labeled Euclidean order type in one dimension. Slope
vectors of approaching arrangements are in the closure of all vectors whose order type
is the same as the order type of (1, 2, . . . , n). We can sloppily state this as: The order
of slopes is in the closure of the order type of the identity permutation.

In the case of arrangements of pseudo-planes we can talk about the gradients over a
point (x, y). A set p1, p2, . . . , pk of gradients can equivalently be viewed as a labeled
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set of points in the plane. This set of points defines an order type. It turns out that an
approaching arrangement of pseudo-planes can be characterized by a non-degenerate
order type χ in the sense that for every point (x, y) in the plane the order type of the
gradients over this point is in the closure of χ . This ends the informal part.

An arrangement of pseudo-planes in R
3 is a finite set A of graphs of functions

fi : R2 → R such that the projection of all points of R3 that belong to at least two
of the function graphs to the plane R

2 × {0} is an arrangement of pseudo-lines. In
particular the intersection of any two of the functions projects to a pseudo-line and the
intersection of any three of them is a point.

We define arrangements of approaching pseudo-planes via one of the key properties
observed for arrangements of approaching pseudo-lines (Observation 2.3).

An arrangement of approaching pseudo-planes inR3 is an arrangement of pseudo-
planes h1, . . . , hn where each pseudo-plane hi is the graph of a smooth function
fi : R2 → R such that for any c1, . . . , cn ∈ R, the graphs of f1 + c1, . . . , fn +
cn form a valid arrangement of pseudo-planes. This means that we can move the
pseudo-planes up and down along the z-axis while maintaining the properties of a
pseudo-plane arrangement. Clearly, arrangements of planes (no two of them parallel)
are approaching.

In the following, we will assume that all functions fi are Morse functions, that is,
they have no degenerate critical points.4 This is not a strong assumption as Morse
functions are an open and dense subset of all smooth functions.

Let G be a collection of graphs of Morse functions fi : R2 → R. For any point
(x, y) in R

2, which we call the underlying plane, let pi (x, y) be the gradient of fi
above (x, y). We may consider the gradients as points pi (x, y) in a plane, called the
plane attached at (x, y). We call pi (x, y) a characteristic point and let PG(x, y) be
the set of characteristic points in the plane attached at (x, y). The Euclidean order type
of the point set PG(x, y) is the characteristic order type of G at (x, y), it is denoted
χG(x, y).

We denote by pi the set of characteristic points pi (x, y), taken over the entire
underlying plane. Note that for every graph in an arrangement of approaching pseudo-
planes, the characteristic points define a continuous vector field pi : R2 → R

2, namely
its gradient vector field. We call pi a characteristic field. We denote by PG the set
of characteristic fields pi . Similarly, we denote by χG the set of characteristic order
types of G on the whole underlying plane, that is, χG = {χG(x, y) | (x, y) ∈ R

2}.
We say that χG is admissible if the following conditions hold:

(a) for any pair p1, p2 of characteristic fields, the vector field p2 − p1 has no critical
points;

(b) for any two points (x1, y1) and (x2, y2) in the underlying plane, we have that if an
ordered triple of characteristic points in PG(x1, y1) is positively oriented, then the
corresponding triple in PG(x2, y2) is either positively oriented or collinear;

(c) for any triple p1, p2, p3 of characteristic fields, the set of points in the underlying
plane for which p1, p2, p3 are collinear is either the whole plane or has no 2-

4 Recall that a critical point of a function f : R2 → R is a point where the gradient vanishes. A critical
point is degenerate if the Hessian matrix (the matrix of second partial derivatives) is singular.
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dimensional components (i.e., for each (x, y) in this set and for every neighborhood
N of (x, y), we have that N contains points which are not in the set).

The main result of this section is that a collection of graphs of functions is an
approaching arrangement of pseudo-planes if and only if its characteristic order type
is admissible. Before we prove this, let us analyze the situation for for two functions
respectively pseudo-planes f1, f2 : R2 → R.

Lemma 6.1 Let f1 and f2 be two Morse functions. Then the the graphs of f1 + c1 and
f2 + c2 intersect in a pseudo-line for all c1, c2 ∈ R if and only if the function f2 − f1
is surjective and has no critical points.

In particular, condition (a) on admissible order types ensures that any two pseudo-
planes are approaching.

Proof Note that being surjective is a necessary condition for the difference f2 − f1,
as otherwise we can translate them until they do not intersect. Thus, in the following,
we will assume that f2 is surjective.

First note that f1 + c1 and f2 + c2 intersect in a pseudo-line for all c1, c2 ∈ R if
and only if g := f2 − f1 intersects every plane z = c, for c ∈ R in a pseudo-line.
In other words, we want that all the contour lines of the surjective function g are
homeomorphic to lines. This holds if and only if g has no minima, maxima or saddles.
On one hand, each minimum, maximum or saddle corresponds to a critical point. On
the other hand, as there are no degenerate critical points by assumption, each critical
point corresponds to a maximum, minimum or saddle. Thus, all contour lines of g are
homeomorphic to lines if and only if g has no critical points. ��
We will also need the following technical lemma, which will help us finding contra-
dictions to condition (c):

Lemma 6.2 Let p = (px , py) be a gradient field defined in some neighborhood N of
(0, 0) and let β be an x-monotone curve containing (0, 0) in its interior. Assume that
px (a, b) = 0 for every (a, b) ∈ N on β. Then px (a, b) = 0 for every (a, b) ∈ N.

Proof As p = (px , 0) + (0, py) is a gradient field if and only if both summands are
gradient fields, it is enough to show the statement for the vector field p′ := (px , 0).
Assume for the sake of contradiction that p′ does not vanish everywhere in N . As it
vanishes everywhere on the x-monotone curve β, the function px depends on y, and
in particular we have that dpx/dy is not the zero function on N . But then the curl
of p′, which is computed as d0/dx − dpx/dy is not zero everywhere, implying that
the vector field p′ has curl. The result now follows from a classic result from vector
analysis: a vector field is a gradient vector field if and only if it has no curl (see, e.g.,
[16, Thm. 8.7]). In particular, p′ and thus also p cannot be gradient fields, which is a
contradiction to our assumptions. ��
We are now ready to prove the main result of this section.

Theorem 6.3 Let G be a collection of graphs of Morse functions fi : R2 → R. Then
G is an arrangement of approaching pseudo-planes if and only if χG is admissible
and all the differences between two functions are surjective.
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Proof Again, being surjective is a necessary condition for the difference of two func-
tions. Thus, in the following, we will assume that all the differences between two
functions are surjective.

Admissible ⇒ approaching We first show that if χG is admissible then G is
an arrangement of approaching pseudo-planes. Suppose G is not an arrangement
of approaching pseudo-planes. From Lemma 6.1, we may assume that for any two
functions fi and f j and any offsets ci , c j , the intersection of the graphs graphs of
fi + ci and f j + c j projects to a pseudo-line. If f1 + c1, . . . , fn + cn violates being
an arrangement, then there are three functions f ′

i = fi + ci , f ′
j = f j + c j , and

f ′
k = fk + ck such that on f ′

i , the two curves defined by the intersections with f ′
j

and f ′
k do not project to an arrangement of two pseudo-lines. Hence, the two curves

have multiple intersections, they touch at a point, or they intersect in an interval. The
projections of intersections stay the same if we subtract f ′

i from all of them, i.e., we
now consider f ′′

i = 0, f ′′
j = f ′

j − f ′
i , and f ′′

k = f ′
k − f ′

i . Note that the gradient of

f ′′
i is 0 everywhere. If the union of the two curves γ j = f ′′

j
−1

(0) and γk = f ′′
k

−1
(0)

encloses a bounded region, then the intersection of f ′′
j and f ′′

k attains an extremum in
this region. With a translation of the original functions we can get this extremum as a
touching point of the curves.

For an illustration of the following arguments, see Fig. 7.Without loss of generality,
we make the following assumptions:

• The touching point of γ j and γk is (0, 0);
• the x-axis is tangent to γ j at this point, and as the two curves touch, the x-axis is
also tangent to γk ;

• γ j lies above the x-axis and γk lies below;
• the gradients of f ′′

j and f ′′
k at (0, 0) point upwards and downwards, respectively.

In other words, as at any point on one of the curves the gradient is orthogonal to
the tangent to the curve, we have p′′

j (0, 0) = (0, b j ) and p′′
k (0, 0) = (0,−bk), for

b j , bk > 0. Now, in any small enough neighborhood we have that the y-coordinates of
p′′
j and p′′

k are positive and negative, respectively. Further, we have that for every (a, b)
on γ j , the x-coordinates of the gradient p′′

j are positive for a < 0 and negative for
a > 0, and analogously for γk . Assume without loss of generality that the orientation
of the gradients is always positive or 0, but never negative, as otherwise we get a
contradiction to condition (b). Thus, at (a, b) ∈ γk , the x-coordinates of the gradient
p′′
j are negative for a < 0 and positive for a > 0. By the mean value theorem there

is thus an x-monotone curve β j on which the x-component of p′′
j vanishes. Hence,

by Lemma 6.2, there is a neighborhood N j of (0, 0) in which the x-component of p′′
j

vanishes. Analogously, there is a neighborhood Nk of (0, 0) in which the x-component
of p′′

k vanishes. But now the intersection of N j and Nk is a neighborhood in which
p′′
j , p

′′
k , and 0 are collinear, which is a contradiction to condition (c).

It remains to show that γ j and γk cannot intersect in an interval. For this, assume
without loss of generality that the interval lies on the x-axis and contains (0, 0) in
its interior. At any point on the interval, both gradients have x-coordinate 0, thus by
Lemma 6.2, for both of them there is a neighborhood of (0, 0), in which their x-
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γj

γk

βj

p′′
j

p′′
k

Fig. 7 An illustration of a neighborhood of a touching point

coordinate vanishes. In the intersection of these two neighborhoods, the two gradients
are thus collinear with 0, which is again a contradiction to condition (c).

Approaching ⇒ admissible For the other direction consider an approaching
arrangement of pseudo-planes and assume that χG is not admissible. We have already
shown in Lemma 6.1 that if condition (a) is violated, then the two corresponding
pseudo-planes are not approaching. So, assume now that condition (b) is violated,
that is, there are three pseudo-planes f1, f2, f3 whose characteristic fields p1, p2, p3
change their orientation from positive to negative. In particular, they are collinear at
some point. Assume without loss of generality that f2 and f3 are planes containing the
origin whose characteristic fields are thus constant, and assume without loss of gener-
ality that they are p2 = (0, 1) and p3 = (0,−1). In particular, the intersection of f2
and f3 is the x-axis inR3. Consider now a ε-disc B around the origin inR2 and let B<,
B0, and B> be the subsets of B with x < 0, x = 0, and x > 0, respectively. Assume
without loss of generality that for (x, y) ∈ B the characteristic point p1(x, y) is to the
left of the y-axis in B<, to the right in B>, and on the y-axis in B0. Also, assume that
f1 contains the origin in R

3. But then, f1 is below the (x, y)-plane everywhere in B.
In particular, f1 touches f2 ∩ f3 in a single point, namely the origin. Hence, f1 ∩ f3
and f2 ∩ f3 is not an arrangement of two pseudo-lines in f3. Similar arguments show
that if condition (c) is violated, then after some translation the intersection of some
two pseudo-planes in a third one is an interval. ��
From the proof it is not evident to what extent an arrangement of approaching pseudo-
planes is determined by its admissible family of characteristic order types. In particular,
we would like to understand which admissible families of order types correspond to
families of characteristic order types. A necessary condition follows again from the
fact that a vector field is a gradient vector field of a scalar function if and only if it has
no curl. This implies the following:
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Fig. 8 Two different arrangements induced by the same order type

Corollary 6.4 Let (p1, . . . , pn) be a family of vector fields and for (x, y) ∈ R
2 let

P(x, y) be the order type of the points p1(x, y), . . . , pn(x, y). Then (p1, . . . , pn) is
the characteristic field of an arrangement of approaching pseudo-planes if and only if

• pi is curl-free for each i = 1, . . . , n and
• {P(x, y) | (x, y) ∈ R

2} is an admissible collection of order types.

Let G = (g1, . . . , gn) be an arrangement of approaching pseudo-planes. A natural
question is, whether G can be extended, that is, whether we can find a pseudo-plane
gn+1 such that (g1, . . . , gn, gn+1) is again an arrangement of approaching pseudo-
planes. Consider the realization of χG(x, y) for some (x, y) ∈ R

2. Any two points
in this realization span a line. Let A(x, y) be the line arrangement defined by all of
these lines. Note that even if χG(x, y) is the same order type for every (x, y) ∈ R

2,
the realization might be different, i.e.,A(x ′, y′) andA(x, y) need not be isomorphic.
For an illustration see Fig. 8. (This issue also comes up in the problem of extension
of order types, e.g. in [19], where the authors count the number of order types with
exactly one point in the interior of the convex hull.)

A cell ofA(x, y) is defined by its sidedness with respect each line ofA(x, y), i.e.,
to each pair (pi (x, y), p j (x, y)). A cell c of A(x, y) is representable in A(x ′, y′) if
there is a point p in A(x ′, y′) which belongs to the same closed halfspaces as c in
A(x, y). A c cell of A(x, y) is admissible, if it is representable in A(x ′, y′) for every
(x ′, y′) ∈ R

2. Clearly, if we can extend G with a pseudo-plane gn+1, then its gradient,
interpreted as a point p in the plane, must lie in an admissible cell c. On the other hand,
as c is admissible, it is possible tomove p continuously in c, and if all the characteristic
fields (p1, . . . , pn) are curl-free, then so is the vector field pn+1 obtained this way.
Thus, pn+1 is the vector field of a function fn+1 and by Corollary 6.4, its graph
gn+1 extends G. In particular, G can be extended if and only if A(x, y) contains an
admissible cell. As the unbounded cells incident to an extremal characteristic point are
always admissible, we get that every arrangement of approaching pseudo-planes can
be extended. Furthermore, by the properties of approaching pseudo-planes, gn+1 can
be chosen to go through any given point p inR3. In conclusion, we get the following:
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Theorem 6.5 Let G = (g1, . . . , gn) be an arrangement of approaching pseudo-
planes and let p be a point in R

3. Then there exists a pseudo-plane gn+1 such
that (g1, . . . , gn, gn+1) is an arrangement of approaching pseudo-planes and p lies
on gn+1.

It is possible that only cells incident to a characteristic point are admissible. In such
cases, every pseudo-plane gn+1 that extends G is essentially a copy of one of the
pseudo-planes of G. For some order types, there are cells that are not incident to
a characteristic point but still appear in every possible realization, e.g. the unique
pentagon defined by five points in convex position. It is an interesting open problem
to characterize the cells which appear in every realization of an order type.

7 Conclusion

In this paper, we introduced a class of pseudo-line arrangements that generalizes line
arrangements, but still retains certain geometric properties. A major algorithmic open
problems is to decide for a given pseudo-line arrangements whether it has a realization
as an approaching arrangement. We also do not know how projective transformations
influence this realizability. We hope that approaching arrangements continue to help
bridge the gap between line arrangements and pseudo-line arrangements.We also have
introduced approaching arrangements in three dimensions and expect that via the order
type defined by normal vectors the concept can be lifted to higher dimensions.
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