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Abstract
We consider the problem of digitalizing Euclidean segments. Specifically, we look
for a constructive method to connect any two points in Z

d . The construction must
be consistent (that is, satisfy the natural extension of the Euclidean axioms) while
resembling them as much as possible. Previous work has shown asymptotically tight
results in two dimensions with Θ(log N ) error, where resemblance between segments
is measured with the Hausdorff distance, and N is the L1 distance between the two
points. This constructionwas considered tight because of aΩ(log N ) lower bound that
applies to any consistent construction in Z

2. In this paper we observe that the lower
bound does not directly extend to higher dimensions. We give an alternative argument
showing that any consistent construction in d dimensions must have Ω(log1/(d−1)N )

error. We tie the error of a consistent construction in high dimensions to the error of
similar weak constructions in two dimensions (constructions for which some points
need not satisfy all the axioms). This not only opens the possibility for having con-
structions with o(log N ) error in high dimensions, but also opens up an interesting line

Editor in Charge: Kenneth Clarkson

Man-Kwun Chiu
chiumk@zedat.fu-berlin.de

Matias Korman
matias_korman@mentor.com

Martin Suderland
martin.suderland@usi.ch

Takeshi Tokuyama
tokuyama@kwansei.ac.jp

1 Institut für Informatik, Freie Universität Berlin, Berlin, Germany

2 Siemens Electronic Design Automation, Wilsonville, OR, USA

3 Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland

4 Kwansei Gakuin University, Sanda, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-021-00349-6&domain=pdf
http://orcid.org/0000-0001-7435-1020
http://orcid.org/0000-0002-6604-6381


Discrete & Computational Geometry (2022) 68:902–944 903

of research in the tradeoff between the number of axiom violations and the error of
the construction. A side result, that we find of independent interest, is the introduction
of the bichromatic discrepancy: a natural extension of the concept of discrepancy of
a set of points. In this paper, we define this concept and extend known results to the
chromatic setting.

Keywords Consistent digital line segments · Digital geometry · Discrepancy ·
Computer vision

Mathematics Subject Classification 52C99

1 Introduction

Euclidean line segments are one of the most fundamental objects of geometry.
Although often loosely referred to as the shortest path connecting the endpoints,
segments have a clear and unique axiomatic definition out of which many interesting
properties follow. For example, it is well known that the intersection of two segments
is always a segment (that could possibly degenerate to a point or even become empty).
The definition of other mathematical concepts heavily depends on the definition of
segments (e.g., we say that a certain region P of the space is convex if for any two
points p, q ∈ P , the line segment defined by p and q is in P).

The definition of segment works very well in a Euclidean or similar spaces with
infinite precision.Digital representation (such as pixels in a screen) introduces impreci-
sion. The most common approach used in practice is to somehow round the Euclidean
segment into the digital space. The digital segments will look very similar to the
Euclidean counterparts (that is, the error is very small). However, we cannot guar-
antee the useful properties and concepts that follow from the axiomatic definition of
Euclidean segment (see Fig. 1).

In the aspect of the consistency of digital segments, we look for a deterministic
method to construct digital segments in a way that (i) the analogous of Euclidean
axioms are satisfied and (ii) the digital segments resemble the Euclidean ones as much
as possible.

Fig. 1 (Left) Two Euclidean line segments that intersect in a point. (Right) Rounding produces polylines
that intersect in three disconnected components
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1.1 Preliminaries

Our aim is to construct a digital path dig(p, q) for any two points p, q ∈ Z
d . Ideally,

we want dig to be defined for any pairs of points in Z
d (full list of requirements is

described below), but sometimes we consider the case in which dig is only defined for
a subset of Zd × Z

d .

Definition 1.1 For any S ⊆ Z
d × Z

d , let DS(S) be a set of digital segments such
that dig(p, q) ∈ DS(S) for all (p, q) ∈ S. We say that DS(S) forms a partial set of
consistent digital segments on S (partial CDS for short) if for every pair (p, q) ∈ S it
satisfies the following five axioms:

(S1) Grid path property: dig(p, q) is a path between p and q under the 2d-neighbor
topology.1

(S2) Symmetry property: if (q, p) ∈ S, dig(p, q) = dig(q, p).
(S3) Subsegment property: for any r ∈ dig(p, q), dig(p, r) ∈ DS(S) and dig(p, r) ⊆

dig(p, q).
(S4) Prolongation property: ∃ r ∈ Z

d such that dig(p, r) ∈ DS(S) and dig(p, q) ⊂
dig(p, r).

(S5) Monotonicity property: for all i ≤ d such that pi = qi , it holds that every point
r ∈ dig(p, q) satisfies ri = pi = qi .

These axioms give nice properties of digital segments analogous to Euclidean line
segments. For example, (S1) and (S3) imply that the intersection of two digital seg-
ments is another segment (that could degenerate to a single point or an empty set). (S5)
implies that the intersection of a segment with an axis-aligned halfspace is a segment
[and connected by (S1)], and so on.

A partial CDS for S = Z
d ×Z

d is called a set of consistent digital segments (CDS
for short). Although our final goal is to have such a construction that works for the case
in which S = Z

d × Z
d , in this paper we consider subsets of the form S = {o} × Z

d

(where o is the origin or any fixed point inZd ). We say that a partial CDS on such a set
is a consistent digital ray system (CDR for short), as it contains all segments (or rays)
from o to Z

d . Note that the five axioms would imply that CDR is a tree connecting a
fixed point o to any other point of Zd (see Fig. 2). If we have a consistent construction
for such a tree rooted at every grid point, then we have a CDS (see Fig. 2).

Another property that we want from partial CDS is that they visually resemble
the Euclidean segments. The resemblance between the digital segment dig(p, q)

and the Euclidean counterpart pq is measured using the Hausdorff distance. The
Hausdorff distance H(A, B) of two objects A and B is defined by H(A, B) =
max {h(A, B), h(B, A)}, where h(A, B) = maxa∈A minb∈B δ(a, b), and δ(a, b) is
the ‖ · ‖∞ L-infinity norm.2

1 The 2d-neighbor topology is the natural one that connects to your predecessor and successor in each
dimension. Formally speaking, two points are connected if and only if their ‖ · ‖1 distance is exactly one.
2 Wechoose this normbecause it simplifies calculations, butwenote that theHausdorff distance traditionally
uses the Euclidean norm instead. Since we are interested in asymptotic behavior, the exact of metric is
irrelevant (as long as themetrics are equivalent for any fixed dimension d, i.e., ‖ · ‖∞ ≤ ‖ · ‖2 ≤ √

d ‖ ·‖∞).
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o o

p

Fig. 2 Left: An example of a CDR at o in one quadrant. Right: An example of putting two CDRs (only
show in one quadrant) together such that they satisfy the five axioms

The resemblance of a partial CDS on S is defined as

max
(p,q)∈S

H(dig(p, q), pq)

(that is, the largest error created between a digital segment and its Euclidean counter-
part). This value is simply referred to as the error of the partial CDS construction. We
are interested to see how the error grows as we enlarge our focus of interest. Thus, we
limit the domain to the case in which both points are in the L1 ball of radius N centered
at the origin [i.e., GN = Z

d ∩ B1(o, N )]. Rather than looking for the exact function,
we are interested in the asymptotic behavior of the error as a function of N . For sim-
plicity, we will actually restrict ourselves to the positive orthant G+

N = GN ∩i Hi ,
where Hi = {p ∈ Z

d : pi ≥ 0} and pi is the i th coordinate of p (the results extend to
other orthants by symmetry).

1.2 PreviousWork

Research on the digital representation of line segments has been an active area of
research for over half a century [13]. Many different approaches have been consid-
ered. Most common techniques look for methods that implicitly encode the properties
we desire. For example, a popular approach is to consider a dynamic method to dig-
itize line segments. In this setting, the way we transform a Euclidean segment into a
digital one will depend on which other segments are present (and their specific coor-
dinates). It is known that a grid of exponential size is needed if we want to preserve
the combinatorial types [12]. Another workaround is known as snap rounding that
represents line segments by polygonal chains: each segment is carefully rounded to
avoid inconsistencies. Note that both of these ideas implicitly keep the error small
while making sure that the intersection of two digital segments is a connected com-
ponent. Although they work well in practice, they have the drawback that they cannot
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be used to define objects that are based on digital segments (such as digital starshapes
or convex regions).

The first paper to explicitly look for an axiomatic approach was in 1987 by Luby
[14]: in his work he introduced the concept of CDS (under the name of smooth geome-
tries) and gave a method to construct CDSs inZ2 based on a characterization of CDRs
in Z

2: any CDR can be uniquely identified by four total orders of the integers (and
vice versa). By choosing a proper total order and using it for all points of Z2 we
obtain a CDSwith O(log N ) error. Håstad3 gave a matching lower bound for any such
construction.

These resultswere rediscovered byChun et al. [9] andChrist et al. [7]. They renewed
interest in the topic and sparked other related research: Chowdhury and Gibson [5]
gave necessary and sufficient conditions for a collection of CDRs to form a CDS. In
a companion paper, the same authors [6] afterwards provided an alternative charac-
terization together with a constructive algorithm; specifically, they gave an algorithm
that, given a collection of segments in an N × N grid that satisfies the five axioms,
computes a CDS that contains those segments. The algorithm runs in polynomial time
of N .

Unfortunately, most of these results only work on the digital plane. Out of the
previously mentioned results, only the CDR construction of Chun et al. [9] extends
to three and higher dimensions. The construction has O(log N ) error regardless of
the dimension. Chun et al. [9] also considered the case in which the monotonicity
property (S5) is not preserved. They showed that if we remove (S5), we can obtain
a CDR with O(1) error in any dimension. Although the error is small, the resulting
segments are far from what we would consider similar to the Euclidean segments
(because they loop around many times). Recently, Chiu and Korman [4] showed that
the problem in higher dimensions behaves very differently from the two dimensional
case. Specifically, they studied how to extend the CDS construction of Christ et al.
[7] and showed that it is very limiting in three (and higher) dimensions. Their method
can construct arbitrarily many CDRs [with Ω(log N ) error] and some of them could
admit a CDS. However, whenever the construction yields a CDS, it will have Ω(N )

error.
Our interest in higher dimensions comes motivated by an application in image seg-

mentation. Image segmentation is the act of separating an object from its background
in an image (that is, determining which pixels are part of the background and which
ones not). Chun et al. [9] showed how to combine their CDR construction with the
framework of Asano et al. [1] to segment two dimensional images. This idea has been
extended to consider other shapes (see [8] for a detailed list), but always two dimen-
sional. The hope is that a high dimensional CDR with low error will produce more
accurate segmentation algorithms. Although traditional images taken with a camera
are two dimensional, images from a medical equipment such as those taken with an
MRI machine can have three or even higher dimensions (say, when we want to track
changes of a particular object along time).

The concept of consistency has also been investigated in more general graphs than
Z

d . A systemof paths in a real-weighted graphs is a collection of paths defined between

3 The lower bound was published by Luby, but credit given to Håstad (see [14, Thm. 19]).

123



Discrete & Computational Geometry (2022) 68:902–944 907

A B

0 0.2 5 0.5 0.7 5 1
0

0.25

0.5

0.75

1

Fig. 3 (Left) A drawing of a CDR in G+
N ⊂ Z

3 for N = 4. Notice that the CDR is a tree whose leaves are at
the plane x + y + z = N . (Middle) A cross section on the xy-plane of the same CDR. Observe that vertices
A and B do not extend within the xy-plane. Thus, the subspace is a weak CDR (rather than a proper CDR).
(Right) A map of the weak CDR into a two-colored pointset. Regions with many blue points and few red
correspond to portions of the CDR with high error

any two vertices in the graph. Similar to our setting, a system of paths is said to be
consistent when the intersection of any two paths in the system is also a connected
path in the system. The characterization of such system has been studied, see [3,10]
for more details.

1.3 Differences Between Two and Higher Dimensions

When approximating some geometric object, it often happens that higher dimensions
create a larger error than in a lower dimension setting. Since the high dimensional
setting contains a two dimensional subspace, it is common for lower bounds to extend
to higher dimensions. However, this is not true for the case of CDRs: although a
three dimensional CDR contains two dimensional subspaces, those subspaces need
not exactly be CDRs [and thus the Ω(log N ) lower bound does not directly hold]. In
this paper, we further explain the reason and investigate the lower bound for the higher
dimensional case.

The main reason why a subspace is not a CDR is because of the prolongation
property (S4): we require that every segment is extendable, but has no constraints on
the dimension in which it does so. In particular, a subspace of a high dimensional
CDR need not be a CDR (see an example in Fig. 3). Subspaces of CDRs are what we
call weak CDR: it is a construction that almost always behaves like a CDR but some
vertices may not satisfy the prolongation property (S4). Each vertex that does not
extend is called an inner leaf. In this paper we study weak CDRs in two dimensions
and the implications that they have for (proper) CDRs in higher dimensions.

The lower bound argument forZ2 is heavily based on discrepancy theory [15]. Any
split vertex (branch point) of the CDR tree is mapped to an x-coordinate in [0, 1) ⊂ R

(see Fig. 4). Then, a CDR contains many split vertices, and thus it is mapped to a
sequence of real numbers in [0, 1). Håstad showed that the discrepancy of the sequence
gives a lower bound for the Hausdorff error of the CDR in Z

2. Afterwards, Christ et
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al. showed that there is a bijection between the two objects showing that sequences in
[0, 1) with discrepancy d can be transformed into CDRs whose error is Θ(d).

1.4 Need of Bichromatic Discrepancy

A key property for Håstad’s lower bound argument is that the intersection of a CDR
in two dimensions with line x + y = c (for any c ∈ Z) contains a single split vertex.4

Then, he maps the relative position of the split vertex into the [0, 1) interval and links
the error of the CDR to the discrepancy of the transformed pointset. Unfortunately,
the key property does not hold when we look at two dimensional subspaces of a CDR
in three or more dimensions. Since subspaces can be weak, we can have inner leaves
that in turn allow for more than one split vertex to exist in the same diagonal. Thus,
we need to map both split and inner leaves into a two dimensional unit square. Similar
to Håstad’s argument, we can link the error of the CDR with the discrepancy of the
generated pointset. However, because we have two types of points we must instead
look at a two colored pointset and study the difference in size of the two groups.

This naturally brings the idea of bichromatic discrepancy: let R and B be a set of red
and blue points in the unit square, respectively. Let m = |B|− |R| and assume m > 0.
For any set P of points in the unit square and x, y ∈ [0, 1] let P[x, y] be the number
of points in P ∩ [0, x] × [0, y]. For any two real numbers 0 ≤ x, y ≤ 1 we define the
discrepancy of R and B at (x, y) as DR,B(x, y) = mxy − (B[x, y] − R[x, y]). The
discrepancy of R and B is simply defined as D∗

R,B = max(x,y)∈[0,1]2 |DR,B(x, y)|
(i.e., the highest discrepancy we can achieve among all possible rectangles). The
discrepancy D∗

R,B of a two-colored pointset is high if and only if there is an axis-
aligned rectangle with the origin as corner in which the difference of the cardinalities
is far from the expected difference.

This is a natural extension of the concept of discrepancy. Indeed, the classic def-
inition of (monochromatic) discrepancy is the particular case in which R = ∅ (see
[15] for a detailed survey of this concept and its many applications). To the best of
our knowledge, the extension of discrepancy to chromatic settings is largely unex-
plored. Beck [2] considered coloring an uncolored pointset so as to minimize the
chromatic discrepancy [obtaining O(log4n) upper and Ω(log4n) lower bounds for
the definition given above, or O(n1/2+ε) upper and Ω(n1/4−ε) lower when rectangles
can have arbitrary orientation]. Dobkin et al. [11] introduce algorithms to find the
maximum discrepancy for a given pointset (under different definitions of bichromatic
discrepancy).

1.5 Results and Paper Organization

As mentioned above, the lower bound argument for two dimensions maps CDR into
a pointset and studied the dependency between the two objects. Our lower bound
arguments need to use an additional intermediate space: from (a) any CDR in Z

d we
consider (b) the weak CDR it generates in the x1x2-plane, and (c) map the weak CDR

4 Technically speaking the intersection could contain more than one split vertex, but only one will lie in
the x, y ≥ 0 quadrant.
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Fig. 4 (Left) Each split vertex is mapped to a leaf (small letter to capital letter). Their x-coordinate values
give a sequence: 0, 4, 2, 7, 1, 6, 3, 5. (Right) This sequence is visualized in a unit square. The red rectangle
is corresponding to vertex v on the left hand side. The discrepancy of the red rectangle is roughly |8 ×
0.752 − 4| = 0.5, which is related to the distance from v to the red Euclidean segment

into a set of points in the unit square. Along the paper we will analyze properties of
each of the spaces, and see what implications it has for the other two. Specifically, we
show the following:

(i) First, in Sect. 2, we detail how to map weak CDRs into a two-colored pointset
in [0, 1) × [0, 1).

(ii) As mentioned above, we must also extend the discrepancy results [15] to a
(bi)chromatic setting. For the purposes of this paper, the main result we need is the
following one:

Theorem 1.2 (bichromatic discrepancy) For any set R and B of points such that |B| >

|R|, there exists a constant c > 0 such that

D∗
R,B ≥ c · (|B| − |R|) log (|B| + |R|)

|B| + |R| .

Proof of the chromatic extension can be done by making minor changes to Schmidt’s
original proof [16] for monochromatic discrepancy. As such, we defer the additional
details needed to the appendix.

(iii) With this new discrepancy result we obtain a tradeoff between the error of any
weak CDR and the number of inner leaves [i.e., vertices that do not satisfy (S4)].When
the weak CDR has zero inner leaves (and thus is a proper CDR) our bound matches
the lower bound of Håstad. As the number of inner leaves increases, the lower bound
decreases. In Sect. 3 we prove the following relationship.

Theorem 1.3 For any N ∈ N, any weak CDR defined on G+
N ⊂ Z

2 with κ2 inner
leaves between lines x1 + x2 = �N/2� and x1 + x2 = N has Ω(N log N/(N + κ2))

error.
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This shows an important relationship between (b) and (c) spaces mentioned above.
In short, the CDR will have Ω(log N ) error unless there are ω(N ) many inner leaves.

(iv) Intuitively speaking Theorem 1.3 says that a CDR with few inner leaves [say,
o(N log N )] in the x1x2-plane induces ω(1) error in that plane. On the other hand, we
also prove that many inner leaves [say, ω(N )] in that plane cause too many points to
extend to one of the remaining dimensions, and create ω(1) error as well.

Lemma 1.4 Any CDR defined on G+
N ⊂ Z

d with κ2 inner leaves in x1x2-plane between
lines x1 + x2 = �N/2� and x1 + x2 = N has Ω((κ2/N )1/(d−2)) error.

Balancing these two error sources leads to our main result, i.e., a lower bound of
Ω(log1/(d−1)N ) for any CDR construction in d dimensions (see Sect. 4):

Theorem 1.5 Any CDR in Z
d has Ω(log1/(d−1)N ) error.

Recall that Luby [14]’s CDRworks in any dimension and has O(log N ) error, so the
gap between upper and lower bounds grows with d. Although we believe our analysis
to be loose (especially in Theorem 1.5), we have no reason to believe that O(log N )

is the correct bound either.
In Sects. 5 and 6, we explore the possibility of having a CDR in high dimensions

with o(log N ) error (rather than directly looking at CDRs in high dimensions, we
see what properties it would imply in the other two subspaces). Although we cannot
explicitly find a construction with o(log N ) error, we provide interesting insight on
how further research can solve this question.

(v) Our lower bound argument shows that for a CDR in Z
3 with o(log N ) error to

exist we must be able to construct a weak CDR in Z
2 with O(N log N ) inner leaves

and o(log N ) error. We show how to create a weak CDR with at most 5/2 error and
Θ(N 2) inner leaves. Although the construction follows the spirit of the method of
Chun et al. [9] (for the case in which the monotonicity property is not preserved), we
believe our resulting CDR to be much more aesthetically pleasing and it resembles
more the Euclidean segments.

Theorem 1.6 For any N > 0 we can create a weak CDR in Z
2 with at most 5/2 error

and at most N 2/12 inner leaves.

Although the number of inner leaves is large (roughly speaking, one in six vertices will
be an inner leaf), this construction has other interesting properties that would make it
suit for practical purposes. Moreover, we extend this construction to have a tradeoff
construction with O(c) error and O(N 2/c) inner leaves for any c ≥ 1.

Theorem 1.7 For any N > 0 and 1 ≤ c ≤ N we can create a weak CDR in Z
2 with

O(c) error and O(N 2/c) inner leaves.

Discussion of this construction and other variations is given in Sect. 5.
(vi) In order to reduce the number of inner leaveswe instead look at how themapping

of any weak CDR with constant error to points would look. Discrepancy results give
us a condition on any such CDRwith o(N 2)many inner leaves. Specifically, in Sect. 6
we show the following result.
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Theorem 1.8 Let B and R be two sets of points whose discrepancy satisfies D∗
R,B < 1.

Then |B| = Ω(m2), where m = |B| − |R|.

Note that the constant 1 is crucial for our proof: althoughwewould like the statement
to hold when D∗

R,B = O(1), it is unlikely that our approach can be extended. We
believe that this result could be the first step towards proving that the construction in
(v) is asymptotically tight. Further discussion of this result is given in Sect. 5 (after
the statement’s proof).

Further discussion on the implication of these results is given in Sect. 7.

2 Mapping aWeak CDR into a Pointset

We start by showing how to transform a weak CDR in two dimensions into a two-
colored pointset in [0, 1)2. Given anyweakCDR, its restriction toG+

N forms a spanning
tree T of G+

N because of axioms (S1) and (S3). Although the tree is undirected, we
see it as a directed graph (rooted tree) whose edges are oriented away from the origin
(root). Then, (S5) implies that the parent of each vertex (x, y) (except the root) is
either (x − 1, y) or (x, y − 1). For any edge e = uv of T , where u is the parent of v,
we define T (e) as the subtree of T that is rooted at the child node v of e. We slightly
abuse the notation and use T (v) to denote the subtree that is emanating from v towards
the leaves [that is, T (v) = T (e)].

For any n ≤ N let Ln be the points of G+
N whose sum of coordinates is n [i.e.,

Ln = {(x, y) ∈ G+
N : x + y = n}]. We follow the usual terminology that we call a

vertex of degree one a leaf. We further consider two subcategories: we say that a leaf
v of T is an inner leaf if it is not in L N . All the vertices in L N are called boundary
leaves. Note that, by properties of CDR, all vertices of L N are proper leaves (since
any children should be in L N+1, which is outside G+

N ). Further note that in a proper
CDR there will be no inner leaves. A vertex v of T is a split vertex if it has degree
three or it is the origin. Let S be the set of split vertices and D the set of inner leaves.

2.1 Auxiliary Function

Before giving the transformation from a tree to a point set we first define an auxiliary
function M : G+

N → [0, 1]. For any p ∈ L N we set M(p) = px/(px + py). For any
subtree T ′(v) of T we define two more functions inductively for v ∈ Ln from n = N
to 0 as follows:

max T ′(v) = max
p∈T ′(v)∩(D∪L N )

M(p), min T ′(v) = min
p∈T ′(v)∩(D∪L N )

M(p),

where M(p) for p ∈ D is defined in the next paragraph.
For any inner leaf � ∈ D, we know that the edges e1 = (�x −1, �y +1)(�x , �y +1)

and e2 = (�x + 1, �y − 1)(�x + 1, �y) must be present in T . Thus, we define M(�)

as M(�) = (max T (e1) + min T (e2))/2. Intuitively speaking, we look at the leaves
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above and to the right of �, and assign a value that is in between the two of them (see
Fig. 5, left). The following statement shows that these values are sorted along Ln .

Lemma 2.1 Let T (u), T (v) ⊂ T be two subtrees of T rooted at the vertices u, v ∈ Ln

(respectively) for some n ≤ N such that ux < vx . Then, it holds that max T (u) <

min T (v).

Proof We prove this statement by induction on n from N to 1. If both u, v ∈ L N then
both T (u) and T (v) consist of a single vertex and the proof trivially follows. Now,
assume that the statement is true for any two vertices u′, v′ ∈ Li for i > n. We need
to show that the statement holds for any two vertices u, v ∈ Ln such that ux < vx .

First observe that if we have two descendants u′ and v′ from u and v respectively
such that u′, v′ ∈ Ln′ for some n′ > n, then it holds that u′

x < v′
x . Indeed, this follows

from the fact that when we embed T in the natural way with edges drawn as straight
segments, the result is a tree with no crossings. Thus, if v′

x < u′
x happened for some

descendants, then the two paths in T from u to u′ and from v to v′ would either cross
or form a cycle. Any of those two situations would contradict with the fact that T is a
weak CDR.

Back to our original proof, consider the case in which neither u nor v are inner
leaves. By the above argument we have that the x-coordinate of any child u′ ∈ Ln+1
of u must be smaller than any child v′ ∈ Ln+1 of v. By induction, this implies that
max T (u′) < min T (v′) and thus max T (u) < min T (v).

The cases in which u or v are inner leaves are similar: if u is an inner leaf, we have
max T (u) = M(u) = (max T (u1) + min T (u2))/2, where u1 = (ux , uy +1) ∈ Ln+1
and u2 = (ux + 1, uy) ∈ Ln+1. By induction on u1 and u2 we have max T (u1) <

min T (u2) and max T (u) < min T (u2), thus we need to compare min T (u2) with any
children of v. If v is also an inner leaf, we can do a similar argument and have that
max T (v1) < min T (v) where v1 = (vx , vy + 1).

In general, given u, let u′ ∈ Ln+1 be the child of u with the largest x-coordinate
(or u′ = u2 if u is an inner leaf). Similarly, we define v′ as the child of v with the
smallest x-coordinate (or v′ = v1 if v is an inner leaf). Again, by planarity of the
natural embedding, we have that u′

x ≤ v′
x if at least one of u, v is an inner leaf.

In either case, we can use induction and get that max T (u′) ≤ min T (v′) which
implies max T (u) < max T (u′) ≤ min T (v′) ≤ min T (v) (if u is an inner leaf) or
max T (u) ≤ max T (u′) ≤ min T (v′) < min T (v) (if v is an inner leaf) completing
the proof.

For any subtree T ′ of T , its depth is the longest possible length of a path from its
root to any of its leaves. Any split vertex s ∈ S has two branching edges e1 and e2,
each defining a subtree. The subtree of higher depth is the preferred subtree of s [in
case of tie, we choose the tree emanating from (sx +1, sy)]. For any point p ∈ G+

N we
define a walk from p to some leaf of T . If p ∈ Ln has degree two, we follow the single
edge to Ln+1. If p ∈ S, we follow the edge to the preferred subtree. This process is
continued until we reach a leaf γ (p).

With this virtual walk we can define the function M to all points p ∈ G+
N (not only

leaves) of the domain as follows. If p is neither a split nor a leaf, we define M(p)

as M(p) = M(γ (p)). For a split vertex s, let s′ be the child of s that is not on the
preferred subtree of s. Then, we define M(s) as M(s) = M(γ (s′)).
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Fig. 5 (Left) A tree of a weak CDR and the value of the auxiliary function M applied to all leaves of the
tree. (Right) The tree transformed into blue and red point sets. Two vertices of the same layer are mapped to
points with the same y-coordinate and an inner leaf and its corresponding split vertex are mapped to points
with the same x-coordinate (see the highlighted orange circles) (for Theorem 2.4). The x-coordinate of
v = (6, 2) (green circle) can be bounded in terms of the difference between blue and red point in the axis-
aligned rectangle with corners (0, 0) and π(v) = (M(v), (vx + vy)/N ) = (10/12, 8/12). The rectangle
contains eleven blue points and three red ones

Intuitively speaking, from any vertex we always follow its only edge away from
the root (if it has degree 2) or the preferred edge (if it has degree 3) until we reach a
leaf. The only exception is if we start on a split vertex, in which case we do not follow
the preferred edge at the first step. This exception is needed to make sure that the end
points of the walk starting from split vertices are distinct.

Lemma 2.2 For any split vertex s ∈ S, there exists a unique leaf � ∈ D ∪ L N such
that M(s) = M(�). And for any leaf � ∈ D ∪ L N \ {(N , 0)}, there exists a unique
split vertex s ∈ S such that M(s) = M(�).

Proof Bydefinition of the auxiliary function, two leaves do not have the samemapping.
Thus, it remains to show that the walk of two different split vertices cannot end at the
same leaf. Imagine doing the walk backwards: start at any leaf, walk towards the
origin and stop as soon as you reach a split vertex by traversing its non-preferred edge.
Since each split vertex has exactly two children, it follows that exactly one leaf will
stop at each split vertex. The exceptional case is the leaf (N , 0), from which walking
backwards to the origin is a horizontal path and the path does not contain any non-
preferred edge. That is, in the inverse walk we follow preferred edges until we reach
a non-preferred edge. This is equivalent to starting at a split vertex and follow the
non-preferred edge once and continue with the preferred edges, which is the exact
definition of our auxiliary function.
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2.2 Transforming the Tree into a Pointset

With the auxiliary function M we can define the mapping between a weak CDR into
a bicolored pointset in the unit square. For any vertex v = (vx , vy) ∈ G+

N we define
its transformation as π(v) = (M(v), (vx + vy)/N ). Given any weak CDR, we look
at the tree T it defines in G+

N . Each vertex v ∈ D creates a red point π(v) and each
split vertex w ∈ S creates a blue point π(w) (note that we do not transform the
boundary leaves in L N into points). We define the mapping of T as the union of the
sets R = {π(v) : v ∈ D} and B = {π(v) : v ∈ S} (see Fig. 5, right). Note that the
two sets depend on the tree T [and thus R = R(T ) and B = B(T )]. From now on we
assume that T is fixed, and thus we simplify the notation for ease of reading. For any
set P of points in the unit square and x, y ∈ [0, 1] let P[x, y] be the number of points
in P ∩ [0, x] × [0, y].
Lemma 2.3 For any weak CDR T in G+

N ⊂ Z
2 and n < N , the red and blue points

on the line y = n/N alternate in color starting and ending with a blue point. In
particular, we have B[1, n/N ] − R[1, n/N ] = n + 1.

Proof For the first statement we observe that only points that lie in Ln will have y-
coordinates equal to n/N . Moreover, since Ln+1 has one more vertex than Ln , each
diagonal must have exactly one more split vertex than inner leaves. Indeed, Chun et al.
showed that in proper CDRs each diagonal has exactly one split vertex (and of course,
zero inner leaves).

Nowwe need to show that split vertices and inner leaves appear alternatingly on the
diagonal line. Consider two consecutive split vertices u, v ∈ Ln such that ux < vx . By
definition of split, the edges eu = (ux , uy)(ux + 1, uy) and ev = (vx , vy)(vx , vy + 1)
are all in T . Observe that there are vx − ux −1 vertices in Ln and vx − ux −2 vertices
in Ln+1 between eu and ev . Since two different vertices of Ln cannot connect to the
same vertex of Ln+1, one of them will not reach Ln+1. That vertex will be an inner
leaf and will be between u and v as claimed.

That is, the blue pointset has one more point than the red pointset in each horizontal
line y = i/N . Summing up the differences from i = 0 to n, we get that in total there
are n + 1 additional blue points p = (x, y) with y ≤ n/N .

With the above observations we can now state the main relationship between the
weak CDR and its mapped pointset. For any vertex v ∈ Ln , its path to the origin
splits the tree into two portions. Consider the portion of the tree up to Ln that is above
the path from v to the origin. In L0, the subtree contains a single vertex (the root)
whereas at the diagonal Ln contains vx +1 vertices. Since the number of leaves grows
with split vertices and shrinks with inner leaves, this means that in the portion of
the tree that we are looking at, the difference between split vertices and inner leaves
must be vx , see Fig. 5. Note that if the two children of a split vertex [e.g., (5, 0) in
Fig. 5] are not in the same portion, the number of leaves does not grow with that split
vertex. However, these split vertices may be still contained in the rectangle that we
consider in the mapped pointset. This is the reason why we do not have an equality in
Theorem 2.4.
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Theorem 2.4 For any vertex v ∈ G+
N it holds that

B

[
M(v),

vx + vy

N

]
− R

[
M(v),

vx + vy

N

]
− 2

≤ vx ≤ B

[
M(v),

vx + vy

N

]
− R

[
M(v),

vx + vy

N

]
.

Proof We split the proof into two auxiliary lemmas.

Lemma 2.5 Let v ∈ Ln be a split vertex such that vx < n. If M(v) < M(γ (v)) the rect-
angle [M(v), M(γ (v))]×[0, (n − 1)/N ] contains exactly one point, which is blue and
has M(γ (v)) as x-coordinate. If M(γ (v)) < M(v) the rectangle [M(γ (v)), M(v)]×
[0, (n − 1)/N ] contains exactly one point, which is blue and has M(γ (v)) as x-
coordinate. When v = (n, 0) ∈ Ln the rectangle [M(v), M(γ (v))] × [0, (n − 1)/N ]
is empty.

Proof We first consider the case of M(v) < M(γ (v)). When we keep following
from v to the preferred subtree, we end up in a leaf, called �. By definition of M
we have M(�) = M(γ (v)). Since vx < n we have M(γ (v)) �= 1. By Lemma 2.2
there is a unique split vertex s ∈ S such that M(s) = M(�). This split vertex is
below layer Ln (indeed, we reach Ln from � by following only preferred edges and
the inverse walk has to stop when we traverse a non-preferred edge of s) and therefore
s is transformed to a blue point in the rectangle. Now let s′ be a split vertex which
is mapped to a blue point in the rectangle. We will show that s′ = s. Let �′ be the
unique leaf such that M(�′) = M(s′). Consider first the case in which �′ is below
layer Ln (that is, �′

x + �′
y < n). Then let v′ be the vertex on dig(o, v) and L�′

x +�′
y
. If

�′
x < v′

x (resp. v
′
x < �′

x ) then Lemma 2.1 implies that M(�′) < min Tv′ ≤ M(v) [resp.
M(γ (v)) ≤ max Tv′ < M(�′)]. This would be a contradiction to s′ being mapped to
a blue point in the rectangle.

It remains to consider the case in which �′ is above layer Ln . Define �′′ to be the
vertex on dig(o, �′) and Ln . Lemma 2.1 implies that �′′ = v [otherwise we have
either M(�′) < M(v) or M(γ (v)) < M(�′) which would again be a contradiction].
Recall that there is only one split vertex whose walk to its corresponding leaf through
preferred subtrees passes through v. Hence s′ = s and there is exactly one blue point
in the rectangle.

We now show that there cannot be any red point either. Indeed, recall that for every
red point there is a blue point with the same x-coordinate and smaller y-coordinate
because for each inner leaf � there is a unique split vertex s defined by the walk
from s to � such that M(�) = M(s). From the previous argument, we know that s
with M(s) = M(γ (v)) is mapped to the only one blue point in the rectangle and its
corresponding leaf � defined by the walk is above Ln . Hence, even if � is an inner leaf,
the mapped red point is not in the rectangle. Moreover, there cannot be any other red
point in the rectangle (since it would imply that the corresponding blue point would
also be in and we already ruled out this case).

In the same way we can also prove that if M(γ (v)) < M(v) the rectangle
[M(γ (v)), M(v)] × [0, (n − 1)/N ] contains exactly one point, which is blue and
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has M(γ (v)) as x-coordinate. If vx = n then � as defined above is the leaf (N , 0) and
M(�) = 1. Lemma 2.2 implies that there is no split vertex s with M(s) = 1.

Lemma 2.6 For any vertex v ∈ G+
N it holds that

vx − B

[
M(v),

vx + vy − 1

N

]
+ R

[
M(v),

vx + vy − 1

N

]
+ 1 ∈ {0, 1}. (1)

Proof. We first prove by induction over n that for all n ∈ {0, 1, . . . , N } the following
statement holds:

{M(γ (p)) : p ∈ Ln}
=

{
x ∈ [0, 1] :

∣∣∣∣B ∩ {x} ×
[
0,

n − 1

N

]∣∣∣∣ −
∣∣∣∣R ∩ {x} ×

[
0,

n − 1

N

]
= 1

}
∪ {1}.

(2)

The quantity |B ∩ {x} × [0, (n − 1)/N ]| − |R ∩ {x} × [0, (n − 1)/N ]| counts the
difference between the number of blue points and red points on the vertical segment
with x-coordinate x and length (n − 1)/N . Because of Lemma 2.2 we know that each
split vertex shares the same value with a leaf in the auxiliary function M . If the leaf
is an inner leaf, both blue (split) and red (inner) points lie on the same unit segment
{x} × [0, 1]. Otherwise, there is only one blue point on {x} × [0, 1] because M(p) for
p ∈ L N are all different. Hence the quantity |B ∩ {x} × [0, (n − 1)/N ]| − |R ∩ {x} ×
[0, (n − 1)/N ]| can either be 0 or 1.

The base case n = 0 trivially holds. We have {M(γ (p)) : p ∈ L0} = {1} and

B ∩ {x} ×
[
0,

n − 1

N

]
= R ∩ {x} ×

[
0,

n − 1

N

]
= ∅.

We assume that (2) holds for layer Ln and we prove that it also holds for Ln+1. We
distinguish three cases for any vertex q in layer Ln .

– If q has degree 2 then q and its child r ∈ Ln+1 are mapped by M ◦ γ to the same
value. Moreover q does not create any vertex in the set B nor R.

– If q is an inner leaf, then the value M(γ (q)) will not appear in {M(γ (p)) : p ∈
Ln+1} any more. The value M(γ (q)) also disappears in

{
x ∈ [0, 1] :

∣∣∣∣B ∩ {x} ×
[
0,

n

N

]∣∣∣∣ −
∣∣∣∣R ∩ {x} ×

[
0,

n

N

]∣∣∣∣ = 1

}
∪ {1},

because q created a red point in R with the coordinates (M(γ (q)), n/N ) =
(M(q), n/N ).

– If q is a split vertex, then the value M(γ (q)) will stay in {M(γ (p)) : p ∈ Ln+1}.
Moreover, {M(γ (p)) : p ∈ Ln+1} contains the additional value M(q). The value
M(q) also appears in

{
x ∈ [0, 1] :

∣∣∣∣B ∩ {x} ×
[
0,

n

N

]∣∣∣∣ −
∣∣∣∣R ∩ {x} ×

[
0,

n

N

]∣∣∣∣ = 1

}
∪ {1},
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because q creates a blue point in B with the coordinates (M(q), n/N ).

Hence (2) holds.
Let v be a vertex in layer Ln , i.e., n = vx + vy . By Lemma 2.1 we know that a

vertex u ∈ Ln with ux < vx satisfies M(γ (u)) < M(γ (v)). By Lemma 2.1 we also
know that a vertex w ∈ Ln with vx < wx satisfies M(γ (v)) < M(γ (w)). Hence the
number of vertices in layer Ln with smaller x-coordinate than that of v is exactly the
number of vertices which are mapped by M ◦ γ to a smaller value than that of v. If
vx < n:

vx = |{u ∈ Ln : ux < vx }| Lemma 2.1= |{u ∈ Ln : M(γ (u)) < M(γ (v))}|
= |{u ∈ Ln : M(γ (u)) ≤ M(γ (v))}| − 1

(2)= B

[
M(γ (v)),

n − 1

N

]
− R

[
M(γ (v)),

n − 1

N

]
− 1

Lemma 2.5=

⎧⎪⎪⎨
⎪⎪⎩

B

[
M(v),

n − 1

N

]
− R

[
M(v),

n − 1

N

]
− 1 if M(γ (v)) ≤ M(v),

B

[
M(v),

n − 1

N

]
− R

[
M(v),

n − 1

N

]
if M(v) < M(γ (v)).

If vx = n then

vx = |{u ∈ Ln : M(γ (u)) ≤ M(γ (v))}| − 1

(2)= B

[
M(γ (v)),

n − 1

N

]
− R

[
M(γ (v)),

n − 1

N

]

Lemma 2.5= B

[
M(v),

n − 1

N

]
− R

[
M(v),

n − 1

N

]
.

By Lemma 2.3, the red and blue points on the line y = vx + vy alternate in color
starting and endingwith a blue point. Hence, any interval [0, x] on the line y = vx +vy

contains at most one more blue points. Therefore,

B

[
M(v),

vx + vy

N

]
− R

[
M(v),

vx + vy

N

]

−
(

B

[
M(v),

vx + vy − 1

N

]
− R

[
M(v),

vx + vy − 1

N

])

is at most one. Lemmas 2.6 and 2.3 directly imply Theorem 2.4.

3 Lower Bound for Two Dimensional Weak CDRs

Before giving the proof of Theorem 1.3, we recall that a proof for a proper CDR (i.e.,
one without inner leaves) was given in [9]. Our proof follows the same spirit, so we
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Fig. 6 Illustration of why the two sets I (purple disks) and L(I ) (green squares) should have proportional
sizes. If the size of L(I ) grows drastically (as shown in the figure), the point of the highest x-coordinate in
L(I ) must make a significant detour to pass through I , causing a large error. A similar effect happens if the
size of L(I ) is comparatively small

first give an overview of their proof and describe what changes when we introduce
inner leaves.

Lemma 3.1 Given a CDR, a point p = (x, y) ∈ L N , and an integer n < N , let
p′ = (x ′, y′) ∈ Ln be the unique point of Ln that is in dig(o, p). The Hausdorff error
of the CDR is at least |x ′ − xn/N |.
Proof This result was shown by Chun et al. [9, Lemma 3.5, in Cases 1 and 2]. We
give the proof for completeness. Consider the L-infinity ball of radius |x ′ − xn/N |
centered at pn/N . By construction, this ball contains p′ in its boundary. Because of
the monotonicity axiom, no vertex of dig(o, p) can be in the interior of the ball. In
particular, when measuring the Hausdorff distance of point pn/N ∈ op we get an
error of at least |x ′ − xn/N |.

Consider any point p ∈ L N and virtually sweep a line of slope −1 from the origin
all the way to L N . During the sweep, the intersection between the diagonal line and
either the Euclidean segment op or the digital one dig(o, p) will be a point. Lemma
3.1 says that if we can find an instant of time for which two intersection points are at
distance ∂ from each other, then the Hausdorff error of the whole CDR must be Ω(∂)

(see Fig. 6).
In order to find this instant of time we see how much the subtrees grow. Consider a

consecutive set of I vertices in some intermediate layer Ln . Let L(I ) be the vertices
of L N whose digital path to the origin passes through some vertex of I . If the CDR
has small error, we need L(I ) to have roughly N |I |/n many points. The difference
between the expected number of vertices and |L(I )| combined with Lemma 3.1 will
give a lower bound on the Hausdorff error.

Our proof follows the same spirit (transform the tree into a pointset, use discrepancy
to find a subset with too many/too few children and use Lemma 3.1 to find a large
error). Although all three steps follow the same spirit, they need major changes to
account for the possibility of inner leaves.
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The biggest change is how we map the tree. In proper CDRs each line has a unique
split vertex and always extends to L N . Thus, a region with a large number of split
vertices directly implies a large error. In our setting, we could potentially have a
region with many split vertices followed by a large number of inner leaves to cancel
out the growth. This is why we need two major changes: first we now color the
points red and blue depending on whether they are split vertices or inner leaves. We
also introduce a second dimension to track when the children of a split vertex stop
extending. Intuitively speaking, the x-coordinate of our mapping will be similar to
the mapping done by Chun et al. [9] whereas the y-coordinate represents time. Thus,
the difference in y-coordinates between red and blue points can be used to determine
for how long are the two children of a split vertex alive (the longer the difference in
y-coordinates, the further away that the two children extend).

We now use the mapping of Sect. 2 together with the two colors discrepancy (Theo-
rems 1.2 and A.4) to show a lower bound on the error of weak CDRs. The discrepancy
result in Theorem 1.2 considers the points in the whole unit square. Due to some
technical reasons, in Sect. 4 we will need a discrepancy result for the points in the
upper half of the unit square instead (Theorem A.4). The difference between the two
theorems is just a constant factor and thus would have little implication. Here we use
Theorem A.4 and prove the result in terms of the number of inner leaves in the upper
half. Specifically, we show the following result.

Theorem 1.3 For any N ∈ N, any weak CDR defined on G+
N ⊂ Z

2 with κ2 inner
leaves between lines x1 + x2 = �N/2� and x1 + x2 = N has Ω(N log N/(N + κ2))

error.

Proof. Given a weak CDR and its associated tree T , consider its transformation into
the sets R and B of red and blue points defined by π . Let b2 and r2 be the numbers
of blue and red points in the rectangle [0, 1] × [1/2, 1] respectively. By Lemma 2.3,
we have b2 − r2 = �N/2�. We apply the discrepancy result (Theorem A.4) with
b2 − r2 = �N/2� and r2 = κ2, and obtain that there exist α, β ∈ [0, 1] and c′ > 0
such that |B[α, β] − R[α, β] − Nαβ| > c′ · N · log N/(N + κ2).

We want to use Theorem 2.4 on the vertex of T whose image is (α, β). Naturally,
such a vertex need not exist, but we will find one nearby whose associated discrepancy
is also high. Let n = �Nβ� and observe that B[α, β] = B[α, n/N ]; indeed, by
the way we transform points, their y-coordinates are of the form i/N . However, by
definition of n we know that β is between n/N and (n + 1)/N and thus no point
can lie in the horizontal strip y ∈ (n/N , β] (by the same argument we also have
R[α, β] = R[α, n/N ]).

If we substitute β in the previous equation we get

∣∣∣∣B

[
α,

n

N

]
− R

[
α,

n

N

]
− αn

∣∣∣∣ > c′ · N log N

N + κ2
− 1 ≥ c′′ · N log N

N + κ2

for a large enough N , κ2 ∈ O(N log N ) and for some c′′ > 0. We get the additional
1 term because of the rounding in the definition of n.

Now we need to do a similar operation for α. Let qi = (i, n − i) be a vertex of Ln .
By Lemma 2.1 the image of the auxiliary function M(qi )monotonically increases as i
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grows. Let Q = {qi : M(qi ) ≤ α} and α′ = maxqi ∈Q M(qi ). Note that, by definition
of the set Q, it trivially holds that α′ ≤ α.

Lemma 3.2

B

[
α,

n

N

]
− R

[
α,

n

N

]
= B

[
α′, n

N

]
− R

[
α′, n

N

]
.

Proof The difference between the two rectangles is the rectangle Δ whose opposite
corners are (α′, 0) and (α, n/N ), and one of the boundary (α′, 0)(α′, n/N ) is open.
We claim that red and blue points are paired (sharing the same x-coordinate) in Δ

(and thus, for each red point that we remove we are also removing a blue one). By
Lemma 2.2, we know that all the blue points have different x-coordinates, so do red
points. Hence, if there are red and blue points on the same vertical line, they must be
the only pair in that vertical line. First notice that if there is a red point in Δ, there
also exists a blue point in Δ with the same x-coordinate and below the red point. By
the virtual walk that we define the auxiliary function, every split vertex is closer to the
origin than the corresponding leaf. Hence, after the transformation π , if there is a red
point, then there must exist a blue point with the same x-coordinate (by Lemma 2.2)
and smaller y-coordinate. Then, we will show that if there is a blue point in Δ, there
also exists a red point in Δ with the same x-coordinate.

Assume, for the sake of contradiction that there exists a blue point p in Δ such that
there does not exist a red point q with the same x-coordinate as p inΔ. Let s be the split
vertex whose image is p. By definition of the transformation π , the x-coordinate of p
is M(s), which is between α′ and α. We apply Lemma 2.2 to find the unique leaf � such
that M(s) = M(�). Since π(�) /∈ Δ, we have that �x + �y > n. Let m be the unique
vertex of Ln that is in the path from s to �. It follows that π(m) = (M(�), n/N ) ∈ Δ.
This gives a contradiction with the definition of α′, and thus implies that if there exists
a blue point in Δ, then there also exists a red point in Δ with the same x-coordinate.

Thus, given a pair (α, β)whose associated rectangle has high discrepancy, we have
snapped it to the pair (α′, n/N ) that defines another rectangle with high discrepancy.
More importantly, by definition of Q, we know that π(q|Q|−1) = (α′, n/N ). Note that
q|Q|−1 need not be a split vertex or an inner leaf (and thus, (α′, n/N ) may not be a
point of R ∪ B).

Let b′ = B[α′, n/N ] and r ′ = R[α′, n/N ]. If we apply Theorem 2.4 to point q|Q|−1
we get that b′ − r ′ − 2 ≤ |Q| − 1 ≤ b′ − r ′. This set Q is the one that makes the
role of I in the proof overview: we know that vertices of Q are the ones that extend to
cover all the vertices of L N whose image is α′ or less. As such, we would expect |Q|
to contain roughly nα′ elements. However, the discrepancy result tells us that the size
of Q is c′′N log N/(N + κ2) units away from that value. We say that p is productive
if some point of T (p) is in L N (this is equivalent to the fact that p can be extended
to reach the boundary). Let k ≤ b′ − r ′ − 2 be the biggest integer such that qk is
productive. Note that k is well defined because q0 is always productive [(0, n) always
extends to (0, N )]. The proof now considers a few cases depending on whether k is
small or large (specifically, we say that k is small if
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n N

p

qm

γ
γ

dig(o,p)

n N

αN

qk

p

dig(o,p)

Fig. 7 (Left) When k is small we have Ω((N logN )/(N + κ2)) consecutive vertices in Ln that are not
productive (shown as squares). In particular, the ray γ through the middle point must make a large detour.
(Right) When k is large, there is a digital path through qk with a big detour

|Q| − 1 − k ≥ (b′ − r ′ − 2) − k >
c′′

2
· N log N

N + κ2
,

large otherwise) and if Q contains too few or too many points.

k is small Recall that we looked for the largest possible k (such that qk is produc-
tive). Thus, if k is small, we have many points in layer Ln that are consecutive and not
productive. In particular, none of the vertices in

q
b′−r ′−

⌊
c′′
2 · N log N

N+κ2

⌋, . . . , qb′−r ′−2

are productive. Let

qm = q
b′−r ′−

⌊
c′′
4 · N log N

N+κ2

⌋

(note that this point is surrounded by non-productive points in both sides along Ln).
Shoot a ray γ from o towards qm . Let p be the vertex on L N that is closest to γ .
Observe that the ‖ · ‖∞ distance between γ and p is at most 1/2. Let γ ′ be the ray
shooting from o towards p. Similarly, the ‖ · ‖∞ distance between γ ′ and qm is at
most 1/2 (see Fig. 7, left). We now apply Lemma 3.1 to dig(o, p). We know that the
Euclidean segment op is close to qm . The digital segment must cross Ln and is far
from qm ; the closest it can pass is either

q
b′−r ′−

⌊
c′′
2 · N log N

N+κ2

⌋
−1

or qb′−r ′−1.
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That is, we know that the intersection of op with the line x + y = n is at most half a
unit away from qm . Similarly, the intersection with dig(o, p) is at least

⌊
c′′

4
· N log N

N + κ2

⌋

from qm . Thus, by triangle inequality the ‖ · ‖∞ distance between dig(o, p) and op is
at least

⌊
c′′

4
· N log N

N + κ2

⌋
− 3/2 ∈ Ω

(
N log N

N + κ2

)
.

k is large and b′ − r ′ ≥ nα + c′′ · (N log N )/(N + κ2) Look at the x-coordinate
of qk . We know that Q has at least

b′ − r ′ − 1 ≥ nα + c′′ · N log N

N + κ2
− 1

many elements, and k is among the productive vertices with the largest x-coordinate.
In particular, the x-coordinate of qk is at least

b′ − r ′ − 2 ≥ nα + c′′

2
· N log N

N + κ2
− 2.

Let p be the unique leaf of L N such that M(p) = M(qk). We now apply Lemma 3.1
to dig(o, p) at the line x + y = n. By definition of p, we have that dig(o, p) passes
through qk . Now, by definition of Q, we know that M(qk) ≤ α and in particular the
x-coordinate of p is at most αN (see Fig. 7, right). Thus, the Euclidean segment op
must intersect at a point whose x-coordinate is at most αn. That is, when we look at
the Euclidean and the digital segments along line x + y = n, the Euclidean crossing
happens at x-coordinate at most αn. However, the x-coordinate of the digital crossing
is at least

αn + c′′

2
· N log N

N + κ2
− 1.

By Lemma 3.1 we conclude that the error must be Ω(N log N/(N + κ2)) as claimed.

b′ − r ′ < nα − c′′ · (N log N )/(N + κ2) This proof is very similar to the previous
case. Consider the vertex p = (�αN�, N − �αN�) ∈ L N and apply Lemma 3.1 to
dig(o, p) and op. At line x + y = n the Euclidean segment op passes through a point
whose x-coordinate is �αN� · n/N ≥ �αn� − 1. By definition, M(p) ≤ α and thus
dig(o, p) must pass through some vertex q of Q. In particular, the x-coordinate of q
is at most b′ − r ′ < nα − c′′ · N log N/(N + κ2), giving the Ω(N log N/(N + κ2))

error and completing the proof of Theorem 1.3.

Note that if we use Theorem 1.2 instead, the same argument follows and we would
get the following result.
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Theorem 3.3 For any N ∈ N, any weak CDR defined on G+
N ⊂ Z

2 with κ1 inner
leaves has Ω((N log N )/(N + κ1)) error.

4 Lower Bound for CDRs in High Dimensions

We now use the lower bound of weak CDRs to obtain a lower bound for CDRs in three
or higher dimensions. Consider the restriction of any d-dimensional CDR T to the
x1x2-plane (we call this restriction the x1x2-restriction of T and denote it by Tx1x2 ).
Recall that the key observation is that Tx1x2 is a (possibly weak) CDR and that any
inner leaf in Tx1x2 must extend in some xi -direction in T for some i ∈ [3..d]. We have
seen that Tx1x2 needs to have a large number of inner leaves to have o(log N ) error. In
the following, we will show that a large number of inner leaves will cause constraints
for Zd and have an impact in the overall error of T .

We do a slight abuse of notation and use the same terms as in two dimensions.
For simplicity of the notation, we assume that N is a positive even number. For any
n ≤ N , let Ln = {

(x1, x2, . . . , xd) ∈ G+
N : ∑d

i=1 xi = n
}
. Given any CDR in G+

N , we
consider the CDR as a tree rooted at the origin. Let T (v) be the subtree rooted at v.

From Theorem 1.3, we already know that in order for Tx1x2 to have sublogarithmic
errorwemust have κ2 ∈ ω(N ) inner leaves.However, each inner leaf ties to a boundary
leaf in L N in d dimensions. In other words, the subtrees rooted at the vertices in
L N/2−1 ∩ Tx1x2 must cover all these boundary vertices. We now observe that a weak
CDR with inner leaves in the x1x2-plane induces subtrees which are too big for the
high dimensional proper CDR (see Fig. 8).

Lemma 4.1 Given any CDR in G+
N , let κ2 be the number of inner leaves in Tx1x2

between lines x1 + x2 = N/2 and x1 + x2 = N. There exists a vertex v ∈ L N/2−1
such that vi = 0 for i = 3, . . . , d and some boundary leaf u ∈ T (v) ∩ L N has
u j ≥ (κ2/N )1/(d−2) − 1 for some j ∈ [3..d].

Proof The proof follows from a packing argument. Consider the set V = {(0, N/2−
1, 0, . . . , 0), (1, N/2−2, 0, . . . , 0), . . . , (N/2−1, 0, 0, . . . , 0)}. Note that these ver-
tices lie in the x1x2-plane and thus are in Tx1x2 . Because they are the two dimensional
equivalent of L N/2−1, the union of their subtrees covers Tx1x2 between L N/2 and L N .
In this region we know that we have κ2 many inner leaves, which will extend to L N

with the first step in the xi -direction for some i ∈ [3..d]. Let YN be the extended
vertices on L N from these κ2 inner leaves, i.e., |YN | ≥ κ2.

Let BN = {
(x1, x2, . . . , xd) ∈ G+

N : ∑d
i=1 xi = N , x1 + x2 < N , ∀ i ∈ [3..d] xi

< (κ2/N )1/(d−2) − 1
}
, see Fig. 8. Since we have less than (κ2/N )1/(d−2) choices

for x3, . . . , xd , at most N choices for x1 and the value of x2 is adjusted to satisfy the
constraint

∑d
i=1 xi = N , the size of BN is less than κ2. Hence, BN cannot contain all

vertices of YN . Moreover, no vertices of YN lie on x1x2-plane, so there exists some
vertex u ∈ YN such that u j ≥ (κ2/N )1/(d−2) − 1 for some j ∈ [3..d], which is in
T (v) ∩ L N for some v ∈ V .

The existence of this vertex v is the root of the problem. We conclude with the
following statement.

123



924 Discrete & Computational Geometry (2022) 68:902–944

v

L N

z

y

xo

vv

u

u

error

L N/2 1

B N

Fig. 8 Illustration of Lemmas 4.1 and 1.4: the red region represents the region of BN . If we have lots of
inner leaves in Txy , it will have many descendants in the three dimensional CDR at layer L N so that the
height of the red region attempting to contain them is large. In particular, we can find a vertex v on the
xy-plane such that v is on the dig(o, u) and u is far away from the xy-plane. For simplicity, we show the
Euclidean error between v and u′, but we note that the proof argues under the ‖ · ‖∞ metric

Lemma 1.4 Any CDR defined on G+
N ⊂ Z

d with κ2 inner leaves in x1x2-plane between
lines x1 + x2 = �N/2� and x1 + x2 = N has Ω((κ2/N )1/(d−2)) error.

Proof Apply Lemma 4.1 to obtain a vertex v ∈ L N/2−1 ∩ Tx1x2 that satisfies some
u ∈ T (v) ∩ L N with u j ≥ (κ2/N )1/(d−2) − 1 for some j ∈ [3..d]. Let u′ be the
intersection of ou and the affine plane containing L N/2−1, see Fig. 8. As L N and
L N/2−1 are parallel, (u′

j − o j )/(u j − o j ) ≥ 1/3 for N ≥ 6, this implies that u′
j =

Ω((κ2/N )1/(d−2)). By construction, we have that v is on the dig(o, u) and v j = 0,
hence ‖ · ‖∞ distance between dig(o, u) and ou is Ω((κ2/N )1/(d−2)).

Combining with Theorem 1.3 gives us a lower bound for CDRs in d dimensions.

Theorem 1.5 Any CDR in Z
d has Ω(log1/(d−1)N ) error.

Proof By Theorem 1.3 and Lemma 1.4, the error is Ω((N log N )/(N + κ2)) and
Ω((κ2/N )1/(d−2)), where κ2 is the number of inner leaves in Tx1x2 between
L N/2 and L N . The balance between the two is obtained by choosing κ2 =
Θ(N log(d−2)/(d−1)N ), giving the Ω(log1/(d−1)N ) lower bound.

123



Discrete & Computational Geometry (2022) 68:902–944 925

5 A Construction of aWeak CDRwith Constant Error

In this section we describe how to construct a weak CDR in two dimensions with
constant error. Specifically, we show that the weak CDR has at most 5/2 error and at
most N 2/12 inner leaves, which is about 1/6 of the total number of grid points in G+

N .
Assume that N is a power of 2. We partition G+

N into log2 N diagonal slices by a set
of lines x + y = 2i for i = 1, . . . , log2 N −1.We use Si to denote the i th slice between
x + y = 2i−1 and x + y = 2i for i = 2, . . . , log2 N . The first slice S1 is G+

2 , which
only has six points. There are two proper CDRs for this small set and both have the
same error. So we can use either of the two. For each other slice Si , we draw a greedy
digital path from each point p = (px , py) ∈ L2i−1 to 2p = (2px , 2py). The greedy
digital path simply tries to approximate the Euclidean segment as much as possible.
More formally, the path between p and 2p is defined by picking a point in each L j

that has the smallest ‖ · ‖∞ distance to the line segment p, 2p for j = 2i−1, . . . , 2i

(in case of tie, we pick the point with smaller y-coordinate). Lemma 5.1 shows that
the way we picked the points would give a digital path following the 4-neighbor grid
topology.

The last step of the construction is as follows: for those points (px , py) ∈
G+

N /{(0, 0)} not having an edge to (px − 1, py) or (px , py − 1), we connect (px , py)

to (px − 1, py) if px ≥ py , otherwise to (px , py − 1). We call this construction
GREEDY, see Fig. 9.

The following lemma shows that every two consecutive points we picked in L j and
L j+1 to form the greedy digital path is connected under the 4-neighbor topology.

Lemma 5.1 For i = 2, . . . , log2 N , any greedy digital path from p ∈ L2i−1 to 2p ∈
L2i is connected under the 4-neighbor topology and it is xy-monotone.

Proof It is trivial for p = (0, 2i−1) and p = (2i−1, 0), so we ignore these two cases
in the following. Suppose that there exists two consecutive points we picked in the
greedy path u ∈ L j and v ∈ L j+1 for some 2i−1 ≤ j ≤ 2i − 1 such that u and v

are not connected in the 4-neighbor topology, i.e., ux �= vx and uy �= vy . Since u and
v are grid points, this implies that ‖u − v‖∞ ≥ 2. Let u′ and v′ be the points on the
line segment p, 2p with the smallest ‖ · ‖∞ distance to u and v respectively, i.e., u′
(resp. v′) is the intersection of p, 2p and x + y = j (resp. x + y = j + 1). Since
the slope of p, 2p is between 0 and ∞ exclusively, ‖u′ − v′‖∞ < 1. Furthermore,
we know that the ‖ · ‖∞ distance between any two consecutive points on L j is 1, so
‖u − u′‖∞ ≤ 0.5 and the same holds for ‖v − v′‖∞. By triangle inequality, we have
‖u − v‖∞ ≤ ‖u − u′‖∞ +‖u′ − v′‖∞ +‖v′ − v‖∞ < 2, which gives a contradiction.
It is easy to see that the greedy digital path is xy-monotone because we only pick one
grid point per each L j .

Next, we show that any two greedy digital paths in the same slice Si are disjoint so
that when we concatenate all the greedy digital paths slice by slice, it is easy to see
that they form a tree rooted at the origin in Lemma 5.5.

Lemma 5.2 For i = 2, . . . , log2 N , any two greedy digital paths in Si are disjoint.
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oS1 = g +
2 S2 S3 S4 S5
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2

= 4
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q

q

3

2

Fig. 9 Outline of GREEDY. In the example, N = 32. G+
N is partitioned into five slices by the red dash

lines. The green solid lines indicate where the greedy paths are constructed between (x, y) and (2x, 2y). A
digital path dig(o, v) is shown through the concatenation of some greedy paths as well as the notation used
in the proof of the Hausdorff error for dig(o, v)

Proof By the way we picked the grid points on the greedy digital paths, we can see
that any grid point on the greedy digital path has at most 0.5 L-infinity distance to
the corresponding line segment. Given any two consecutive line segments p, 2p and
q, 2q in Si where qx = px + 1, for any point v ∈ p, 2p/{p}, the ‖ · ‖∞ distance from
v to q, 2q is larger than 1. Hence, one grid point cannot be assigned to more than one
greedy digital path.

Then, we show how the greedy digital paths in Si connect to the greedy digital
paths in Si−1, which gives us the structure of dig(o, p) how it passes through some
intermediate points.

Lemma 5.3 For i = 3, . . . , log2 N and any p = (px , py) ∈ L2i−1 , dig(p, 2p) ⊂
dig(q, 2p), where q = (�px/2�, �py/2�) if px ≥ py, (�px/2�, �py/2�) otherwise.
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Proof When px is even, q = (px/2, py/2) ∈ L2i−2 , so dig(q, p) is a greedy digital
path. dig(q, 2p) is the concatenationof dig(q, p) anddig(p, 2p).Hence, dig(p, 2p) ⊂
dig(q, 2p).

When px is odd, let px = 2k + 1 for some k = 0, 1, . . . , 2i−2 − 1. Then, py =
(2i−1 − 2k − 1). Assume that px ≥ py (another case can be proved by the same
approach). By the last step of GREEDY construction, p will connect horizontally to
(px − 1, py) and so on, so we follow the digital path from p horizontally until we hit
some greedy path. Since p is between p′ = (2k, 2i−1−2k) and (2k+2, 2i−1−2k−2)
on L2i−1 , the greedy path we hit is dig(p′/2, p′) and then we follow dig(p′/2, p′) and
reach p′/2 = (k, 2i−2−k) = (�px/2�, �py/2�). Therefore, dig(p, 2p) ⊂ dig(q, 2p),
where q = p′/2.

By repeatedly applying Lemma 5.3 for all i = 3, . . . , log2 N , we have the following
corollary.

Corollary 5.4 For i = 3, . . . , log2 N and any p = (px , py) ∈ L2i−1 , dig(o, p) passes
through all the points (�px/2 j�, �py/2 j�) if px ≥ py, otherwise (�px/2 j�, �py/2 j�)
for j = 1, . . . , i − 2.

Now we have all the tools to show that GREEDY is a rooted tree at the origin so
that GREEDY is a weak CDR.

Lemma 5.5 GREEDY is a rooted tree at the origin with xy-monotone paths to all the
vertices.

Proof If we can show that every grid point v ∈ G+
N except the origin has exactly one

edge to either (vx − 1, vy) or (vx , vy − 1), then GREEDY is a tree with xy-monotone
paths connecting to all the grid points from the origin because the graph is connected
in G+

N and there are |G+
N | − 1 edges. The xy-monotonicity comes from the fact that all

the grid points are connected towards the origin. Clearly, this holds in S1 because this
part is a CDR with N = 2. Hence, we consider Si for i = 2, . . . , log2 N .

By Lemmas 5.1 and 5.2, we know that all the greedy digital paths in Si are xy-
monotone and disjoint. Hence, for any point v ∈ dig(p, 2p)/{p} with p ∈ L2i−1 ,
there is only one edge to either (vx − 1, vy) or (vx , vy − 1).

Furthermore, the last step of GREEDY only applies to the grid points p ∈
G+

N /{(0, 0)} not having an edge to (px − 1, py) or (px , py − 1). Hence, there is
only one edge to (px − 1, py) or (px , py − 1) assigned to those points.

Then, we can talk about the quality of GREEDY in term of the number of inner
leaves and the Hausdorff error in the next two lemmas.

Lemma 5.6 There are at most N 2/12 inner leaves in GREEDY.

Proof By Corollary 5.4, every grid point on the greedy digital paths can be extended
to L N . Thus, in each Si , the inner leaves are created between two greedy digital paths
dig(p, 2p) and dig(q, 2q) exclusively, where px + py = 2i−1, qx = px + 1 and
qy = py − 1. We only consider the grid points below the line x = y. The other case
is symmetric. By GREEDY construction, all the grid points between dig(p, 2p) and
dig(q, 2q) exclusively are connected to their left hand side neighbors. Hence, there
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is at most one inner leaf per each horizontal line between dig(p, 2p) and dig(q, 2q),
except the line y = 2py − 1 because (2px + 1, 2py − 1) can be extended to Si+1.

Therefore, there are at most
∑2py−2

y=py 1 = py − 1 inner leaves between dig(p, 2p) and
dig(q, 2q). By considering all dig(p, 2p) for py = 1, . . . , 2i−2 and the symmetric

case, we have 2
(∑2i−2

py=1 py − 1
) = 2i−2(2i−2 − 1) inner leaves in Si . We sum up for

all the slices, we get

log2 N∑
i=2

2i−2(2i−2 − 1) = 4log2 N−1 − 1

4 − 1
− 2log2 N−1 − 1

2 − 1
= N 2

12
− 1

3
− N

2
+ 1 <

N 2

12

inner leaves.

Lemma 5.7 The Hausdorff error in GREEDY is at most 5/2.

Proof Given any point v ∈ G+
N , there exists some n ≤ N such that 2n−1 < vx + vy ≤

2n . Based on our slice partition, we partition o, v into n line segments such that each
line segment lies in some slice Si . Then, we bound the Hausdorff error between each
line segment and the corresponding piece of digital segment within each slice, which
implies the overall Hausdorff error. Recall that H(A, B) is the Hausdorff distance
between A and B under ‖ · ‖∞ metric.

We first show how to partition o, v and dig(o, v). For the sake of simplicity,
we assume that vx ≥ vy . Let k = vx + vy and let vi be the intersection of o, v

and x + y = 2i for i ≤ n − 1, i.e., vi,x = 2ivx/k and vi,y = 2ivy/k. Let
v′ = (�2n−1vx/k�, �2n−1vy/k�) and v′′ = (�2n−1vx/k� + 1, �2n−1vy/k� − 1) so
that vn−1 is between v′ and v′′ on line x + y = 2n−1. Therefore, v is between v′, 2v′
and v′′, 2v′′. Based on the GREEDY construction, v is also between dig(v′, 2v′) and
dig(v′′, 2v′′). Suppose that v is not in dig(v′′, 2v′′), then dig(o, v) is constructed by
a horizontal path from v to dig(v′, 2v′) and then following dig(o, 2v′) to the origin.
Let v′

i = (�2ivx/k�, �2ivy/k�) for i = 2, . . . , n − 1. Since dig(o, v) passes through
v′ = v′

n−1, by Corollary 5.4, dig(o, v) also passes through all v′
i . Then, we need

to consider H(vn−1, v, dig(v′, v)) and H(vi−1, vi , dig(v′
i−1, v

′
i )), whose maximum

gives the bound on H(o, v, dig(o, v)).
Now we are going to bound H(vn−1, v, dig(v′, v)). Let p (resp. p′) be the inter-

section of v′, 2v′ [resp. dig(v′, 2v′)] and x + y = k and q (resp. q ′) be the intersection
of v′′, 2v′′ [resp. dig(v′′, 2v′′)] and x + y = k so that dig(v′, v) is between dig(v′, p′)
and dig(v′′, q ′) (see Fig. 9). Then, H(vn−1, v, dig(v′, v)) is bounded by the maximum
of H(vn−1, v, dig(v′, p′)) and H(vn−1, v, dig(v′′, q ′)). Furthermore,

H(vn−1, v, dig(v′, p′)) ≤ H(vn−1, v, v′, p) + H(v′, p, dig(v′, p′)) and

H(vn−1, v, dig(v′′, q ′)) ≤ H(vn−1, v, v′′, q) + H(v′′, q, dig(v′′, q ′)).

Because of the GREEDY construction, both H(v′, p, dig(v′, p′)) and H(v′′, q,

dig(v′′, q ′)) are atmost 0.5. Since H(v′, p, v′′, q) < 2,wehave H(vn−1, v, dig(v′, v)) <

5/2.
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For the second part, H(vi−1, vi , dig(v′
i−1, v

′
i )) is bounded by H(vi−1, vi , v

′
i−1, v

′
i )

+ H(v′
i−1, v

′
i , dig(v

′
i−1, v

′
i )). Since ‖vi−1 − v′

i−1‖∞ and ‖vi − v′
i‖∞ are at most 1,

H(vi−1, vi , v
′
i−1, v

′
i ) is also at most 1. Based on the GREEDY construction, we know

that H(p, 2p, dig(p, 2p)) ≤ 0.5 for any p ∈ L2i . If v′
i = 2v′

i−1, we are done.
Otherwise, v′

i = (2v′
i−1,x + 1, 2v′

i−1,y − 1), then dig(v′
i−1, v

′
i ) is constructed by a

horizontal path from v′
i to dig(v′

i−1, 2v
′
i−1), and then following dig(v′

i−1, 2v
′
i−1) to

v′
i−1. Using the similar argument, we can show that H(v′

i−1, v
′
i , dig(v

′
i−1, v

′
i )) ≤ 1.5.

Overall, it gives H(o, v, dig(o, v)) ≤ 5/2 when dig(o, v) passes through v′.
We go back to another case when v ∈ dig(v′′, 2v′′). Let v′′

i = (�2ivx/k +
1/2n−1−i�, �2ivy/k−1/2n−1−i�) for i = 2, . . . , n−1. Since dig(o, v) passes through
v′′ = v′′

n−1, by Corollary 5.4, dig(o, v) also passes through all v′′
i . Since ‖vi − v′′

i ‖∞
is at most 1 for i = 2, . . . , n − 1, we can apply the same argument as above to show
that H(o, v, dig(o, v)) ≤ 5/2 when dig(o, v) passes through v′′.

Combining all these lemmas, we have our main theorem.

Theorem 1.6 For any N > 0 we can create a weak CDR in Z
2 with at most 5/2 error

and at most N 2/12 inner leaves.

Proof Lemma 5.5 guarantees that GREEDY satisfies axioms 1, 2, 3, and 5. Lemmas
5.6 and 5.7 give the two qualities of the weak CDR.

From the above theorem, we can also extend it to have a tradeoff construction with
O(c) error and O(N 2/c) inner leaves by scaling the tree.

Theorem 1.7 For any N > 0 and 1 ≤ c ≤ N we can create a weak CDR in Z
2 with

O(c) error and O(N 2/c) inner leaves.

Proof We first apply the GREEDY construction in G+
�N/c�, in which we have O(1)

error and O(N 2/c2) inner leaves. Then, we scale up the tree by a factor of c so that the
original grid edges have length c. Therefore, the error of the tree in G+

�N/c�·c becomes
O(c), but the tree does not cover all the refined grid vertices. Then, we draw some
vertical or horizontal line segments that branch from the tree as shown in Fig. 10. This
will increase the number of inner leaves by a factor of c, i.e., O(N 2/c). Each new
branch is a copy of some sub-path of the original GREEDY tree and is shifted by at
most c steps. Hence, their errors are still O(c).

In addition to theGREEDYconstruction for aweakCDR,we can also observe some
nice properties in GREEDY. If we remove all the branches which end up at some inner
leaves, we have an infinite tree which covers 2/3 of the grid points of G+

N . In particular,
for each grid point not in the tree, there must exist a vertex in the tree within one unit
distance. Hence, given any point p in G+

N , we can snap p to some vertex q in the tree
with distance at most 1. Then, dig(o, p) can be approximated by dig(o, q) with a very
small distortion at the end point, but the Hausdorff error H(o, p, dig(o, q)) is O(1).
Let TG be the tree created by GREEDY after removing all the inner branches. We give
a formal statement as follows:
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Fig. 10 Example of a weak CDR with O(c) error and Θ(N2/c) inner leaves for N = 24 and c = 3. The
thick black line segments represent the GREEDY construction for N/c = 8. The blue segments cover the
remaining refined grid vertices

Theorem 5.8 Let V be the vertices in TG. Then, DS({o} × V ) realized by TG is a
partial CDS with O(1) error. Moreover, for any vertex p ∈ Z

2, there exists a vertex
q ∈ V such that ‖p − q‖∞ ≤ 1.

Proof By Lemma 5.5, we know that every path from any vertex in TG to the origin is
xy-monotone. And by Corollary 5.4, we know that all the greedy digital paths can be
extended to infinity. Hence, DS({o} × V ) realized by TG satisfies all the five axioms.
Lemma 5.7 gives the O(1) error.

By definition of greedy digital path, in each L j between two consecutive greedy
digital paths there is at most one point not on these two paths. Hence, the distance
between those points and greedy paths is at most one.

6 Point Sets with Constant Discrepancy

In this section we construct red R and blue B point sets such that the absolute value of
their discrepancy is 1. Let m > 0 be the difference between the number of blue and red
points as defined in Appendix. Our construction has Θ(m2) many points. Afterwards
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B[x,y]-R[x,y] = 0

Fig. 11 A staircase

we also prove that a discrepancy of 1 cannot be achieved with o(m2) many points. We
first describe a specific configuration of points, called staircase.

Definition 6.1 Astaircase is a sequence of alternating blue and red points (p1, . . . , pn)

in the unit square. It starts and ends with a blue point. Moreover for every red point
pi , the blue point pi−1 has smaller x-coordinate and the same y-coordinate. The blue
point pi+1 has the same x-coordinate and smaller y-coordinate.

Given a staircase, we can define a curve by connecting consecutive points on the
staircase. Additionally we add a vertical segment at the beginning and a horizontal
segment at the end, in order to connect the curve to the boundary of the unit square,
see Fig. 11. We will also use the term “staircase” for this curve.

Observation 6.2 The transformation in Sect. 2 maps a CDR to blue and red points in
the unit square, which can be decomposed into a set of staircases.

Proof Below every red point there is a corresponding blue point.Moreover, by Lemma
2.3, in each row the set of blue and red points is alternating, i.e., to the left of every
red point there is a corresponding blue point.

Assume that a set of blue and red points forms one staircase. Then the curve induced
by the staircase splits the unit square into two parts. The set of points (x, y) to the
bottom-left of the staircase satisfies B[x, y] − R[x, y] = 0 whereas the set of points
to the top-right of the staircase satisfies B[x, y] − R[x, y] = 1, see Fig. 11. When
the set of blue and red points can be decomposed into many staircases, then we can
easily compute the value B[x, y] − R[x, y] by counting how many staircases are to
the bottom-left of point (x, y).

Recall the definition of discrepancy of R and B at point (x, y):

DR,B(x, y) = mxy − (B[x, y] − R[x, y]).

The first termmxy represents the expected difference between the numbers of blue and
red points in the axis-aligned rectanglewith corner points (0, 0) and (x, y). Every point
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(x, y) along the curves Ci := {(x, y) ∈ [0, 1]2 : x · y = i/m}, where i ∈ {0, . . . , m},
describes a rectangle [0, x] × [0, y] in which we expect i many blue points more than
red points. Figure 12 illustrates the curves Ci in black for m = 7.

The idea of our construction is to approximate the level curves Ci−0.5 by staircases,
where i ∈ {1, . . . , m}. We will construct m staircases such that the staircase approxi-
mating Ci−0.5 is between Ci−1 and Ci . This guarantees that the discrepancy D∗

R,B is
at most 1.

We describe how we construct the staircase which approximates Ci−0.5. We start
with a blue point at the intersection of the two curves Ci−1 and x = y. This is the blue
point

(√
i − 1√

m
,

√
i − 1√

m

)
.

Starting from there we move horizontally to the right until we hit the curve Ci at the
point

(
i√

i − 1
√

m
,

√
i − 1√

m

)
.

We add a red point here. Then we move vertically down until we hit Ci−1 and put
a blue point. We continue in this fashion, i.e., from a blue point on Ci−1 we move
horizontally to the right and put a red point on Ci . From a red point on Ci we move
vertically down and put a blue point onCi−1. The blue points will have the coordinates

(
i k

(i − 1)k−0.5 · √
m

,
(i − 1)k+0.5

i k · √
m

)
(3)

and the red points have the coordinates

(
i k+1

(i − 1)k+0.5 · √
m

,
(i − 1)k+0.5

i k · √
m

)
,

where k ∈ {0, 1, 2, . . .}. We stop this construction when we leave the unit square, i.e.,
we look for the largest k such that the blue point (3) is still contained in [0, 1]2. The
maximum value for k is

k =
⌊ log (

√
m/

√
i − 1)

log (i/(i − 1))

⌋

for i ≥ 2 and k = 0 for i = 1. So far we described how we construct the staircases on
the side y ≤ x . We add red and blue points on the side y > x to make the construction
symmetric to the line y = x . Figure 12 illustrates our construction, which we call the
symmetric greedy staircase construction.
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Fig. 12 Staircase approximation for m = 7. The curves Ci are drawn in black. The brightness of the green
color encodes the value of the discrepancy DR,B (x, y) at each point (x, y). The discrepancy values range
between −1 and 1 as shown on the right hand side. The staircases can be seen at the discontinuity of the
discrepancy function. At each staircase the discrepancy function changes its value by 1

Observation 6.3 The points of the symmetric greedy staircase construction with m
stairs are

B =
{(

i k

(i − 1)k−0.5 · √
m

,
(i − 1)k+0.5

i k · √
m

)
: i ∈ [1, m], −k∗(i) ≤ k ≤ k∗(i)

}
,

R =
{(

i k+1

(i − 1)k+0.5 · √
m

,
(i − 1)k+0.5

i k · √
m

)
: i ∈ [1, m], −k∗(i) ≤ k ≤ k∗(i) − 1

}
,

where [1, m] = {1, 2, . . . , m} and

k∗(i) =
⎧⎨
⎩
0 if i = 1,⌊
log (

√
m/

√
i − 1)

log (i/(i − 1))

⌋
if i �= 1.

There are 2k∗(i) + 1 [resp. 2k∗(i)] many blue (resp. red) points in the i th staircase.

Theorem 6.4 The symmetric greedy staircase construction has discrepancy 1.

Proof Consider any point (x, y) between the i th and (i + 1)th staircase. It holds that
B[x, y]− R[x, y] = i . Moreover both staircases are bounded from below by the level
curveCi−1 and from above byCi+1, whichmeans that (i − 1)/m ≤ x ·y ≤ (i + 1)/m.
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Summarizing, we can bound the discrepancy

−1 ≤ mxy − (B[x, y] − R[x, y])︸ ︷︷ ︸
=DR,B (x,y)

≤ 1.

Theorem 6.5 The symmetric greedy staircase construction with m staircases has
O(m2) many points.

Proof. The number of blue points, which are used in our construction, is

|B| =
m∑

i=1

1 + 2 · k∗(i) = m +
m∑

i=2

2 ·
⌊ log (

√
m/

√
i − 1)

log (i/(i − 1))

⌋

≤ O(m) +
m−1∑
i=2

log (m/i)

log ((i + 1)/i)
.

We now bound the denominator from below by

log
i + 1

i
= log

(
1 + 1

i

)
≥ 1

i
− 1

i2
= i − 1

i2
.

Putting the inequalities together, we get

|B| ≤ O(m) +
m−1∑
i=2

i2

i − 1
log

m

i
≤ O(m) + 2

m−1∑
i=2

i log
m

i
.

The continuous function f (i) = i log (m/i) has exactly one maximum in the interval
[2, m]with a value bounded by m logm and is monotone on both sides of it. Therefore
we can replace the sum by an integral.

|B| ≤ O(m logm) + 2
∫ m−1

2
i log

m

i
di

= O(m logm) + 2

[
i2

4
·
(
1 + 2 log

m

i

)]i=m−1

i=2
= O(m2).

Note that point sets R, B with constant discrepancy and O(m2) many points can
also be constructed by applying the transformation of Sect. 2 on the weak CDR,
constructed in Sect. 5. We now show that our construction is tight.

Theorem 6.6 Let B and R be point sets, which can be decomposed into m non-
intersecting staircases, and have a discrepancy bounded by a constant ξ . Then
|B| = Ω(m2).
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Proof The i th staircase is bounded from below by the level curve Ci−ξ and from
above byCi+ξ−1 because of the discrepancy constraint.We count howmany points are
necessary to create the i th stair. The minimum number can be realized by constructing
a stair in a greedy manner between Ci−ξ and Ci+ξ−1 because both curves are convex.

B =
{(

(i + ξ − 1)k

m(i − ξ)k−1 ,
(i − ξ)k

(i + ξ − 1)k

)
: i ∈ {1, 2, . . . , m}, 1 ≤ k ≤ k∗(i)

}
,

R =
{(

(i + ξ − 1)k+1

m(i − ξ)k
,

(i − ξ)k

(i + ξ − 1)k

)
: i ∈ {1, 2, . . . , m}, 1 ≤ k ≤ k∗(i) − 1

}
,

where

k∗(i) =
⎧⎨
⎩
0 if i ≤ ξ,⌊

log (m/(i − ξ))

log ((i + ξ − 1)/(i − ξ))

⌋
if i > ξ.

The number of blue points can therefore be bounded by

|B| ≥
m∑

i=1

k∗(i) ≥ ξ +
m∑

i=ξ+1

⌊
log (m/(i − ξ))

log ((i + ξ − 1)/(i − 1))

⌋

≥ −O(m) +
m−ξ∑
i=1

log (m/i)

log ((i + 2ξ − 1)/i)
.

Using the inequality

log
i + 2ξ − 1

i
= log

(
1 + 2ξ − 1

i

)
≤ 2ξ − 1

i
,

and comparing the sum with an integral, as done in the proof of Theorem 6.5,

1

2ξ − 1

m−ξ∑
i=1

i log
m

i
≥ 1

2ξ − 1

(
− O(m logm) +

∫ m−ξ

1
i log

m

i
di

)

we can conclude |B| ≥ Ω(m2).

Theorem 1.8 Let B and R be two sets of points whose discrepancy satisfies D∗
R,B < 1.

Then |B| = Ω(m2), where m = |B| − |R|.
Proof Consider the sets Si := {(x, y) ∈ [0, 1]2 : B[x, y] − R[x, y] = i} for i ∈
{0, 1, . . . , m}. Because the discrepancy of the point set B and R is less than 1 we can
conclude that

(1) the curves Ci are contained in Si , and
(2) the points between Ci and Ci+1 are either contained in Si or Si+1.
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Therefore there exists a curve between Ci and Ci+1 which is only neighboring Si to its
bottom-left and Si+1 to its top-right for each i ∈ {0, 1, . . . , m−1}. This curve is a stair-
case.Hence there exists a staircase betweenCi andCi+1 for each i ∈ {0, 1, . . . , m−1}.
Those staircases are non-intersecting because D∗

R,B < 1. Therefore they consist of at

least Ω(m2) many points, as shown in Theorem 6.6.

Theorem 1.8 is open if the upper bound D∗
R,B < 1 is replaced by O(1).

Discussion. As mentioned in the introduction, this result could be the first step towards
showing that GREEDY construction is tight (in the sense that the number of inner
leaves cannot be drastically decreased without increasing the error): we want to create
a weak CDRwith O(1) error and few inner leaves. Theorem 1.3 states thatΩ(n log n)

many inner leaves will be necessary. Theorem 1.8 strengthens the result by saying
Ω(n2) many inner leaves are necessary. However, this claim only holds if we are
going to use a CDR whose mapping decomposes into staircases that do not cross.

This non-crossing requirement is key and follows from the fact that we require
D∗

R,B < 1. In particular, it is unlikely that our proof extends for any larger constant
D∗

R,B = O(1). Doing so would most likely bring an improvement on the bichromatic
discrepancy bound (and thus the non-chromatic as well). However, we could go a
different route to improve the result: in general, weakCDRs couldmap to points whose
staircases intersect (and then Theorem 1.8 does not apply). Intersecting staircases can
again be decomposed into non-intersecting (only touching) staircases, where there
does not need to be a blue or red point at every turn. Thus, rather than looking at
higher discrepancy, it would make sense to study if we can extend the quadratic lower
bound to colored pointsets that form such touching staircases.

7 Final Remarks

Common intuition would say that the Ω(log N ) lower bound for the error of
two-dimensional CDR and CDS automatically extends to higher dimensions. The
observation that this is not true opens up new ways in which research can continue.
By the time of writing this, we know several ways to construct CDRs with O(log n)

Hausdorff error in any dimension, but only know of Ω(log1/(d−1)N ) lower bound.
If we had to guess, the upper bound seems closer to the truth, but this is a hunch
based on the fact that our analysis is a bit loose. Regardless of which bound is tight,
further study in the relationship between the three spaces (CDR in high dimensions,
2-D weak CDR and the two-colored pointset) could lead to either designing tighter
lower bounds or possibly lead to better CDR constructions [or even better, obtain a
CDS construction with o(N ) error in arbitrary dimensions].

We also find that weak CDRs are an interesting research topic on their own. In
particular, we would like to find the relationship between the number of inner leaves
and the error of the construction. That is, say that we want a CDR with O(e) error
(for some e ≤ log n). What is the minimum number of leaves � = �(e) that such a
CDR must have? Can we find such a construction? Theorem 1.3 seems to indicate a
linear relationship between the two, and it is not hard to obtain one (see, for example,
Theorem 1.7 and Fig. 10). However, this construction is most likely not the best
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possible one. Indeed, even if we are interested in O(log N ) error, this construction
creates a large number of inner leaves, but we know of CDRs with the same error and
no inner leaves. Thus, the question becomes, can we significantly improve upon the
greedy construction in Sect. 5? Or is there some exponential dependency between the
number of inner leaves and the error of the weak CDR?
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Appendix A: Bichromatic Discrepancy

Let R and B be a set of red and blue points in the unit square, respectively. Let r = |R|
and b = |B|, and further assume that b > r . For any set P of points in the unit square
and x, y ∈ [0, 1] let P[x, y] be the number of points in P ∩ [0, x] × [0, y]. For any
two sets R and B and real numbers x, y ≤ 1 we define the discrepancy of R and B at
(x, y) as

DR,B(x, y) = (b − r)xy − (B[x, y] − R[x, y]). (4)

The discrepancy of R and B is defined as D∗
R,B = max(x,y)∈[0,1]2 |DR,B(x, y)| (i.e.,

the highest discrepancy we can achieve among all possible rectangles).

Theorem 1.2 (bichromatic discrepancy) For any set R and B of points such that
|B| > |R|, there exists a constant c > 0 such that

D∗
R,B ≥ c · (|B| − |R|) log (|B| + |R|)

|B| + |R| .

Note that if we set R = ∅ we get the classic two dimensional discrepancy result
for which there are several proofs (see [15] for a detailed survey). In order to extend
the bound for the case of R �= ∅, we make minor changes to Schmidt’s proof [16].
We start by using an auxiliary function G (defined below) and combining it with the
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trivial inequality

∫
(x,y)∈[0,1]2

DR,B(x, y)G(x, y) dx dy

≤ max
(x,y)∈[0,1]2

|DR,B(x, y)|
∫

(x,y)∈[0,1]2
|G(x, y)| dx dy

to obtain

D∗
R,B = max

(x,y)∈[0,1]2
|DR,B(x, y)| ≥

∫
DR,B G∫ |G| .

Note that for simplicity in the notationwe removed the integration limits.Our definition
of G is identical to the one used by Schmidt: let m = �log2(b + r)� + 1 and observe
that, by definition of m we have 2(b + r) ≤ 2m ≤ 4(b + r). Only in this section we
use the variable name “m” in a different sense in order to keep the notation similar to
[15]. For any j ∈ {0, . . . , m} we define function f j : [0, 1]2 → {−1, 0, 1} as follows:
subdivide the unit square with 2 j equally spaced vertical lines and 2m− j horizontal
lines.

For any value of j we subdivide the unit square into rectangles of area 2−m (larger
values of j will result in thinner but wider rectangles). Let A be a rectangle of sub-
division associated to f j . We define f j within the rectangle to be 0 if A contains any
point of R ∪ B. If A does not have neither red nor blue points, we further subdivide
it into four congruent quadrants. The function value of f j is equal to 1 in the upper
right and lower left quadrants, and −1 in upper left and lower right quadrants (see a
visual representation of f j in [15, p. 173]).

Then, we define G as G = (1 + c f0)(1 + c f1) · · · (1 + c fm) − 1, where c ∈ (0, 1)
is a small constant (whose value will be chosen afterwards). Note that G can also be
expressed as G = G1 + · · · + Gm , where

Gk = ck
∑

0≤ j1≤...≤ jk≤m

f j1 f j2 · · · f jk .

Schmidt showed that
∫ |G| ≤ 2 (regardless of the value of m). Thus, we now focus in

giving a lower bound for
∫

DR,B G.

Lemma A.1 There exists a constant c1 such that

∫
DR,B G1 ≥ cc1

b − r

b + r
log (b + r).

Proof By definition of G1 we have
∫

DR,B G1 = c
∑m

j=0

∫
DR,B f j . Thus, it suffices

to show that for any value of j it holds that
∫

DR,B f j ≥ c′(b − r)/(b + r) (for some
other constant c′ > 0).

Recall that, when defining f j , we subdivided the unit square into at least 2(b + r)

rectangles. For the rectangles that contain at least one point of R ∪ B, f j is set to zero,
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and thus they do not contribute to the integral. Since we have b + r many points, we
know that there must exist at least b+r rectangles that do not contain any point of R or
B. Let A be any such rectangle, and let ASW, ANW, ASE, ANE be the four subquadrants
of A (where the subindex refers to the cardinal position of the quadrant). Recall that
f j is equal to 1 for any point of ASW ∪ ANE and −1 for points of ASE ∪ ANW.
Letw and h be vectors defined by the horizontal and vertical sides of ASW, respec-

tively. Observe that their lengths are 2− j−1 and 2 j−m−1, respectively. Then, we have

∫
A

f j DR,B =
∫

ASW

DR,B −
∫

ANW

DR,B +
∫

ANE

DR,B −
∫

ASE

DR,B

=
∫

ASW

[DR,B(x, y) + DR,B(x + w, y + h)

− DR,B(x, y + h) − DR,B(x + w, y)] dx dy.

If we apply the definition of DR,B [cf. (4)] to the four terms inside the integral, we get

∫
A

f j DR,B =
∫

ASW

((b − r)[xy + (x + w)(y + h) − x(y + h) − (x + w)y]) dx dy

−
∫

ASW

(B[x, y] + B[x + w, y + h]B[x, y + h] − B[x + w, y]) dx dy

+
∫

ASW

(R[x, y] + R[x + w, y + h] − R[x, y + h] − R[x + w, y]) dx dy.

Observe that we are integrating twice positively and twice negatively over almost
identical functions. In fact, the terms of the first integral all cancel out except along
the rectangle [x, x + w) × [y, y + h). Similarly, when we look at the second and
third terms, the contribution of any point in R ∪ B is cancelled out unless it is in the
rectangle [x, x +w)×[y, y +h). However, by definition of A there are no such points.
Thus, we obtain

∫
A

f j DR,B =
∫

ASW

(b − r)w · h dx dy =
∫

ASW

(b − r)2−m−2dx dy = (b − r)2−2m−4.

That is, whenwe integrate f j DR,B over a rectangle A containing no point of R∪B, the
result is (b−r)2−2m−4. We know that there are at least b+r rectangles not containing
points of R ∪ B, thus their contribution is at least

(b + r)(b − r)

22m+4 = b + r

2m
· b − r

16 · 2m
≥ 1

4
· b − r

16 · 4(b + r)
= Ω

(
b − r

b + r

)
.

123



940 Discrete & Computational Geometry (2022) 68:902–944

Lemma A.2 There exists a constant c2 such that

m∑
k=2

∫
DR,B Gk ≤ c2c2

b − r

b + r
log (b + r).

Proof Recall that Gk = ck ∑
0≤ j1< j2<...< jk≤m f j1 · · · f jk . Fix any valid set of indices

and consider the value of
∫

f j1 · · · f jk DR,B .
As shown in [15], function f j1 · · · f jk is largely defined by f j1 and f jk . Indeed, if

we overlay the rectangular partition defined by functions f j1 , . . . , f jk we obtain a grid
of rectangles whose width is 2− jk and height 2−(m− j1). In each of these rectangles,
the function is zero (if any of the rectangles associated to the f ji functions contains a
point of R ∪ B), or is further subdivided into four equal sized quadrants and in each
one it is +1 or −1 alternatively.

Let A be one of the rectangles of the refined grid. As shown in Lemma A.1, we
have that

∫
A

f j1 · · · f jk DR,B = τ(b − r)2−2(m+ jk− j1)−4,

where τ ∈ {−1, 1}. This extra term appears because the product of the different
functions involved can change the sign of each of the four quadrants. In any case, we
have

∫
A f j1 · · · f jk DR,B ≤ (b − r)2−2(m+g)−4 where g = jk − j1.

By the way the grid is constructed, there are 2m− j1 ×2 jk = 2m+g many rectangles,
and thus we conclude that

∫
f j1 · · · f jk DR,B ≤ (b − r)2−m−g−4. In order to obtain a

bound
∫

DR,B Gk we sum over all possible indices.

∫
DR,B Gk = ck

∑
0≤ j1< j2≤...< jk≤m

∫
f j1 · · · f jk DR,B

≤ ck(b − r)

2m+4

∑
0≤ j1< j2<...< jk≤m

2−( jk− j1).

Note that in the sum, the indices j2, . . . , jk−1 do not matter. Thus, we group the terms
by the gap between the indices j1 and jk (say, if j1 = 3 and jk = 7 the gap is 4). Note
that the minimum gap is at least k − 1 (since otherwise we do not have enough space
to choose the k − 2 indices in between) and at most m. Once we have a gap of g there
are m − g options for index j1.

∫
DR,B Gk ≤ ck(b − r)

2m+4

m∑
g=k−1

m−g∑
j1=0

∑
j1< j2<...< jk−1< j1+g

2−g

= ck(b − r)

2m+4

m∑
g=k−1

m−g∑
j1=0

(
g − 1

k − 2

)
2−g ≤ ck(b − r)m

2m+4

m∑
g=k−1

(
g − 1

k − 2

)
2−g.
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In order to bound the sum over all Gk from above, we first reorder the summation
order.

m∑
k=2

∫
DR,B Gk ≤

m∑
k=2

ck(b − r)m

2m+4

m∑
g=k−1

(
g − 1

k − 2

)
2−g

= (b − r)m

2m+4

m∑
g=1

2−g
g+1∑
k=2

ck
(

g − 1

k − 2

)

= (b − r)m

2m+4

m∑
g=1

2−gc2
g−1∑
i=0

(
g − 1

i

)
ci

= (b − r)m

2m+4

m∑
g=1

2−gc2(1 + c)g−1

= (b − r)mc2

2m+5

m∑
g=1

(
1 + c

2

)g−1

.

The sum contains the first terms of the geometric sum
∑∞

g=1((1 + c)/2)g−1 ≤
2/(1 − c) (for any c < 1). In particular, if we set c ≤ 1/2 we can bound the par-
tial sum by 4 from above. Recall that m = Θ(log(b + r)) and 2m = Θ(b + r). Thus,
the lemma is proven.

Corollary A.3 There exists a constant κ > 0 such that

∫
DR,B G ≥ κ · (b − r) log (b + r)

b + r
.

Proof Apply the inequality
∫
(A + B) ≥ ∫

A − ∫ |B| and Lemmas A.1 and A.2 to
obtain:

∫
DR,B G =

∫
DR,B G1 +

m∑
k=2

∫
DR,B Gk ≥ c(c1 − cc2) · (b − r) log (b + r)

b + r
.

Note that Lemmas A.1 and A.2 holds for any value of c such that c ∈ (0, 1/2]. By
choosing a sufficiently small value of c [say, c = min {1/2, c1/(2c2)}] we obtain

∫
DR,B G ≥ cc1

2
· (b − r) log (b + r)

b + r
.

This completes the proof of Theorem 1.2.
When R = ∅, it would be expected that we need to distribute the blue points

uniformly in the unit square to have a low discrepancy. Indeed, it is also held for the
red points. The following theorem implies that even though there are many red points,
if the red points are concentrated in the lower half of the unit square, the discrepancy
cannot be reduced. For simplicity, we only show a special case of how the discrepancy
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depends on the points in [0, 1] × [1/2, 1], which is good enough for our purpose in
Sect. 4. Notice that the same argument can be applied in a more general case.

Theorem A.4 Let R and B be two sets of points in the unit square such that |B| > |R|.
Let r2 and b2 be the number of red and blue points in [0, 1] × [1/2, 1] respectively. If
b2 > r2, there exists a constant c > 0 such that

D∗
R,B ≥ c · (b2 − r2) log (b2 + r2)

b2 + r2
.

Proof Let R2 and B2 be the set of red and blue points in [0, 1]× [1/2, 1] respectively.
We denote the size of R, B, R2, and B2 by r , b, r2, and b2, respectively. Consider the
upper half of the unit square [0, 1] × [1/2, 1] and rescale the vertical length to be 1.
By Theorem 1.2, there exists a point (x, 2y) such that

|DR2,B2(x, 2y)| = |2xy(b2 − r2) − (B2[x, 2y] − R2[x, 2y])|
≥ 2c′ · (b2 − r2) log (b2 + r2)

b2 + r2

for some constant c′ > 0.
Then, we map the point (x, 2y) back to a point (x, 1/2 + y) in the original unit

square. We will show that either DR,B(x, 1/2+ y) or DR,B(x, 1/2−ε)would give us
the desired lower bound, where ε is an arbitrarily small constant such that rectangle
[0, 1] × [0, 1/2 − ε] only contains B \ B2 and R \ R2. If

∣∣∣∣DR,B

(
x,

1

2
+ y

)∣∣∣∣ ≥ c′ · (b2 − r2) log (b2 + r2)

b2 + r2
,

we are done. If

∣∣∣∣b − r

2
− (b2 − r2)

∣∣∣∣ ≥ c′

4
· (b2 − r2) log (b2 + r2)

b2 + r2
,

the proof is also done. Because

∣∣∣∣DR,B

(
1,

1

2
− ε

)∣∣∣∣ (4)=
∣∣∣∣(b − r)

(
1

2
− ε

)
−

(
B

[
1,

1

2
− ε

]
− R

[
1,

1

2
− ε

])∣∣∣∣
=

∣∣∣∣(b − r)

(
1

2
− ε

)
− (b − r − (b2 − r2))

∣∣∣∣ =
∣∣∣∣b − r

2
− (b2 − r2) + (b − r)ε

∣∣∣∣
>

c′

8
· (b2 − r2) log (b2 + r2)

b2 + r2
.
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Suppose that the above two cases do not hold, we have

∣∣∣∣DR,B

(
x,

1

2
+ y

)∣∣∣∣ < c′ · (b2 − r2) log (b2 + r2)

b2 + r2
and

∣∣∣∣b − r

2
− (b2 − r2)

∣∣∣∣ <
c′

4
· (b2 − r2) log (b2 + r2)

b2 + r2
.

Let R1 = R \ R2 and B1 = B \ B2, which are inside the rectangle [0, 1]×[0, 1/2−ε].
Consider

DR,B

(
x,

1

2
+ y

)
= (b − r)x

(
1

2
+ y

)
−

(
B

[
x,

1

2
+ y

]
− R

[
x,

1

2
+ y

])

= (b − r)x

(
1

2
+ y

)

−
(

B2

[
x,

1

2
+ y

]
− R2

[
x,

1

2
+ y

]
+ B1

[
x,

1

2
− ε

]
− R1

[
x,

1

2
− ε

])

= (b − r)x

(
1

2
− ε

)
−

(
B1

[
x,

1

2
− ε

]
− R1

[
x,

1

2
− ε

])
+ (b − r)xε

+ (b − r)xy −
(

B2

[
x,

1

2
+ y

]
− R2

[
x,

1

2
+ y

])

= DR,B

(
x,

1

2
− ε

)
+ (b − r)xy

−
(

B2

[
x,

1

2
+ y

]
− R2

[
x,

1

2
+ y

])
+ (b − r)xε

> DR,B

(
x,

1

2
− ε

)
+ 2(b2 − r2)xy −

(
B2

[
x,

1

2
+ y

]
− R2

[
x,

1

2
+ y

])

− c′

2
· (b2 − r2) log (b2 + r2)

b2 + r2
+ (b − r)xε

= DR,B

(
x,

1

2
− ε

)
+ DR2,B2(x, 2y)

− c′

2
· (b2 − r2) log (b2 + r2)

b2 + r2
+ (b − r)xε.

The first inequality is given by

b − r > 2(b2 − r2) − c′

2
· (b2 − r2) log (b2 + r2)

b2 + r2
.

123



944 Discrete & Computational Geometry (2022) 68:902–944

Since
∣∣∣∣DR,B

(
x,

1

2
+ y

)∣∣∣∣ < c′ · (b2 − r2) log (b2 + r2)

b2 + r2
and

|DR2,B2(x, 2y)| ≥ 2c′ · (b2 − r2) log (b2 + r2)

b2 + r2
,

we can conclude that
∣∣∣∣DR,B

(
x,

1

2
− ε

)∣∣∣∣ >
c′

4
· (b2 − r2) log (b2 + r2)

b2 + r2
.
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