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Abstract

We give a full classification of vertex-transitive zonotopes. We prove that a vertex-
transitive zonotope is a I'-permutahedron for some finite reflection group I' € O(R?).
The same holds true for zonotopes in which all vertices are on a common sphere, and
all edges are of the same length. The classification of these then follows from the
classification of finite reflection groups. We prove that root systems can be charac-
terized as those centrally symmetric sets of vectors, for which all intersections with
half-spaces, that contain exactly half the vectors, are congruent. We provide a further
sufficient condition for a centrally symmetric set to be a root system.

Keywords Convex polytopes - Zonotopes - Permutahedra - Symmetry -
Vertex-transitivity - Reflection groups - Root systems
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1 Introduction

A (convex) polytope is the convex hull of finitely many points. The zonotopes form a
special class of polytopes for which several equivalent definitions are known (see e.g.
[13, Sect. 7.3]):

Definition 1.1 A zonotope is a polytope Z C R? that satisfies any of the following
equivalent conditions:

(i) Z is a projection of a §-dimensional cube.
(i1) Z is a Minkowski sum of line segments.
(iii) Z has only centrally symmetric faces.
(iv) Z has only centrally symmetric 2-faces.
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A polytope P € R? is called vertex-transitive if its (Euclidean) symmetry group
Aut P € O(R?) acts transitively on its vertex set .Zo(P). While many classes of
symmetric polytopes have been classified in the past (e.g. regular polyopes, edge- and
vertex-transitive polyhedra), a classification of general vertex-transitive polytopes is
probably infeasible: almost every finite group is isomorphic to the symmetry group of
some vertex-transitive polytope [1,6] (the only exceptions are certain abelian groups
and dicyclic groups). This endeavor can therefore be compared with classifying all
finite groups (and their real representations).

We can now impose further restrictions on this class to obtain a new, still interest-
ing, but tractable classification problem. One well-studied sub-class is formed by the
uniform polytopes (see e.g. [3,8]). Another large class of polytopes are the zonotopes,
which have seemingly not been probed for their vertex-transitive members before. In
fact, we show that a full classification of vertex-transitive zonotopes can be achieved,
and is immediately linked to the classification of finite reflection groups and their root
systems.

The first examples of vertex-transitive zonotopes are usually the following: cubes,
prisms, and permutahedra. All these belong to the more general class of I'-permutahe-
dra (see Definition 3.1), which contains further examples of vertex-transitive zonopes.
We were able to show that these are all the vertex-transitive zonotopes that exist.
Surprisingly (but in fact easier to prove), the same holds for zonotopes for which all
vertices are on a common sphere and all edges are of the same length (no symmetry
requirements are necessary). We shall call them homogeneous zonotopes.

As aside product of this classification we obtain further interesting characterizations
of root systems. For example, for a finite centrally symmetric set R C R?\ {0} consider
the intersection of R with a half space that contains exactly half the elements of R
(these intersections will be called semi-stars, see Definition 2.2). For root systems,
such “half-sets” are known as positive roots, and it is well known that the Weyl group
acts transitively on these. We prove an inverse: if in a finite and centrally symmetric set
all semi-stars are congruent, then it is a root system. We also prove a further sufficient
condition using only the length of the sum of the vectors in the semi-stars.

1.1 Overview

Sections 2 and 3 recap the relevant definitions and preliminary results that are known
from the literature. In Sect. 2 we define the generators of a zonotope (i.e., a canonical
way to write the zonotope as a Minkowski sum of line segments) and recall how these
determine its faces. We also show that the generators determine the symmetries of
the zonotope. Section 3 recalls permutahedra, reflection groups, and root systems.
We included a proof for the following fact: permutahedra are exactly the zonotopes
generated by root systems. This is the core property exploited in the following sections.

In Sect. 4 we provide a proof of our main result (Theorem 4.11): the vertex-transitive
zonotopes are exactly the I'-permutahedra, where I' € O(R?) is some finite reflec-
tion group. We also show that a homogeneous zonotope (all vertices on a common
sphere, all edges of the same length) is necessarily a I'-permutahedron. These results
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enable a complete classification of vertex-transitive/homogeneous zonotopes, detailed
in Sect. 4.4.

In Sect. 5 we apply the classification of the previous sections to give alternative
characterizations of root systems (Corollary 5.1 and Theorem 5.2).

2 Generators, Faces, and Symmetries

Throughout this paper Z ¢ R? with d > 2 shall always denote a full-dimensional
zonotope. The cases d € {0, 1} are trivial and will not be considered here. Zonotopes
are centrally symmetric and we shall assume Z = —Z.

2.1 Generators

By Definition 1.1 (ii), Z is the Minkowski sum of line segments, and so there is a finite
centrally symmetric set R ¢ R? \ {0} with

Z=ZonR:=) conv{0,r}= {Za,r|ae[0, 1]R}. 2.1)

rer rer

We use the convention Zon & := {0}. Conversely,
GenZ :={r e RY | conv {—r, r} is the translate of an edge of Z}

is a finite, centrally symmetric set with Zon (Gen Z) = Z. The elements of Gen Z
will be called generators of Z.

For this section, let R C R? \ {0} be a finite centrally symmetric set.
Definition 2.1 R is called reduced if span {r} N R = {—r, r} forall r € R.

The set Gen Z is always reduced. If R is reduced, then it is centrally symmetric, and
R = Gen (Zon R), that is, R is the set of generators of some zonotope.

Definition 2.2 We consider the following two kinds of subsets of R (see Fig. 1):

(i) A subset S C R is a semi-star, if it contains exactly half the elements of R, and
can be written as the intersection of R with a half-space.

(i) A subset F' C R is aflat, if it can be written as the intersection of R with a linear
subspace of R?, or alternatively, if R Nspan F = F.

The name ‘“‘semi-star” is motivated by the occasional use of the term “star” for
centrally symmetric sets R C R? \ {0}. Note that a semi-star of R contains exactly
one element from {—r,r} C R foreachr € R.

2.2 Faces

We describe how to infer information about the faces of Z from its generators Gen Z.
The main features of this description (Propositions 2.3 and 2.4) are well known and
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Fig.1 Visualization of
semi-stars (left) and flats (right)

can be found e.g. in the introduction of [12]. As a general rule of thumb, the shapes
of the faces are determined by the flats of Gen Z, and the positions of the vertices are
determined by the semi-stars of Gen Z. It follows from (2.1) that a vertex v € .%((Z)
can be written as

v = Z r for some subset S C Gen Z.

rerR

However, not every subset S € Gen Z gives rise to a vertex in that way, but only if S
is a semi-star of Gen Z. This correspondence is one-to-one:

Proposition 2.3 The vertices %((Z) are in one-to-one correspondence with the semi-
stars S C Gen Z via the bijection S = vs 1= )  qT.

The faces o € .% (Z) are themselves zonotopes (though in contrast to Z itself, they
are not centered at the origin). Their shapes are determined by their generators which
are exactly the flats in Gen Z:

Proposition 2.4 The following holds:

(1) For each face o € #(Z), Geno C Gen Z is a flat.
(ii) For each flat F C Gen Z there is a face o € % (Z) with Geno = F.

2.3 Symmetries

Zon (-) and Gen ( - ) are compatible with invertible linear transformations in the sense
that for each T € GL(R?) holds

ZonTR=T7ZonR and GenTZ =T Gen Z.

In particular, this holds for orthogonal T € O(R?), and it follows immediately that
Proposition 2.5 Aut Z = Aut (Gen 2).

Proof If T € Aut Z is a symmetry of Z, then
TGenZ =GenTZ =Gen Z,

and thus, 7 € Aut (Gen Z). The proof of the other direction is analogous. O
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For later use we prove
Proposition 2.6 For T € O(R?) hold:

(1) If T € Aut R, then T maps semi-stars onto semi-stars.
(11) If TS C R for at least one semi-star S C R, then T € Aut R.

Proof The semi-stars S C R are exactly the subsets of R of the form
S={reR|(r,c)>0}
for which ¢ € R? \ {0} is non-orthogonal to all » € R. For (i) compute

TS={TreR|(r,c)>0}={reTR| (T_lr,c) > 0}
={reR|{(r,Tc) >0} CR.
which is a semi-star since (r, T'c) = (T ~'r, ¢) cannot be zero, as T~ 'r € R.
For (ii), assume T'S € R. For any vector r € R, either r € S, and then Tr € R by
assumption, or —r € S, then Tr = —T(—r) € —R = R by central symmetry. Thus
TR=Rand T € Aut R. O

3 Permutahedra and Root Systems

The standard (d — 1)-dimensional permutahedron is obtained as the convex hull of
all coordinate permutations of the vector (1,2,...,d) € R4, These polytopes, and
certain generalizations for the other finite reflection groups (the I'-permutahedra),
provide well-known examples of vertex-transitive zonotopes.

3.1 '-Permutahedra and Reflection Groups

In the following I' ¢ O(R?) shall denote a finite reflection group, that is, a matrix
group

2rr T

I =(T,|reR)CORY), generatedby T, := Id—W,
-

where R C R?\ {0} is some finite set of vectors and 7, € O(R?) denotes the reflection

on the hyperplanes 7. Let & denote the union of the reflection hyperplanes -, r € R.

The connected components of R? \ & are called Weyl chambers of T. It is well known

that I" acts regularly (i.e., transitively and freely) on these chambers [10, Sect. 4.6].

Definition 3.1 A T'-permutahedron is a polytope P C R? that satisfies any of the
following equivalent conditions:

(1) I' acts regularly on the vertices of P.
(ii) P is the orbit polytope Orb(I", v) := conv I'v of a point v € R? \ & in some
Weyl chamber of T".
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Fig.2 I'-permutahedron obtained for I € {A3, B3, H3}

Definition 3.1 describes a special case of Wythoff’s kaleidoscopic construction [2],
which can be used to construct a larger class of polytopes. Because of our special
choice to have v in R? \ &, we find that Orb (T, v) has exactly |I"| vertices. For later
use we note specifically the following:

Remark 3.2 A T'-permutahedron has exactly one vertex per Weyl chamber of I, and
no vertices in & (such a vertex would be fixed by a reflection).

A further remarkable property of I'-permutahedra is that their combinatorial type does
not depend on the exact choice of v € R \ & [4, Proposition 3], and so any choice of
I" provides us essentially with a single type of generalized permutahedron.

I'-permutahedra are not necessarily zonotopes (some faces might be not centrally
symmetric). However, there is always a point v € R? \ & such that Orb (T, v) is a
zonotope (see, e.g. the construction in Remark 3.5). Furthermore, among these points
there is always one for which the zonotope has all edges of the same length. The
resulting polytopes are classically known as the omnitruncated uniform polytopes [8].

The finite reflection groups are completely classified [10]. The irreducible ones are
denoted by Iy, I(p), A4, Ba, Dg, H3, Ha, F4, Eg, E7,and Eg (d, p > 3, the sub-index
always denotes the dimension). The reducible ones are obtained as direct sums of the
irreducible ones. See Fig. 2 for the I'-permutahedra generated from A3 (resp. D3), B3,
and Hs.

Clearly, if P is a I'-permutahedron then I' € Aut P. However, Aut P might be
strictly larger than I". This happens exactly for I € {I>(p), A4, F4, Ec} because these
reflection groups have additional symmetries that are not part of the group itself.
Adding these symmetries results in the so-called extended reflection groups (see [9,
Sect. 11.6]).

3.2 Root Systems

Root systems bridge between zonotopes and reflection groups. We shall work with a
minimalistic version of the definition (no crystallographic or reducedness restrictions):

Definition 3.3 A root system is a finite set R C R \ {0} for which 7, R = R, for all
vectors r € R.

We can give an alternative definition of I'-permutahedron using root systems: a zono-
tope is a I'-permutahedron if and only if Gen Z is a root system (we provide a proof
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for completeness in Lemmas 3.4 and 3.6). The Weyl group of a root system R is the
group

I:=(T,|r€R).

This is a finite reflection group. Note that I' € Aut R by definition of root system.

Lemma 3.4 If Gen Z is a root system, then Z is a I"-permutahedron, where T is the
Weyl group of Gen Z.

Proof It holds I' € Aut (Gen Z) by definition of root system, and therefore ' C
Aut Z by Proposition 2.5. The proof proceeds in two steps: first, we show that I" acts
transitively on .%((Z). This shows that .%y(Z) is an orbit of I". Second, we show that
no 7,, r € Gen Z, fixes a vertex of Z. The vertices must then lie in the interior of the
Weyl chambers of I', and I" must act regularly on them.

Step 1: The edge graph of Z is connected. So, for any two vertices v, w € .%y(Z)
the edge graph contains a path vgv...vr between v = vy and w = vi. That means,
e; :=conv {v;_1, v;}isanedge of Z foralli € {1, ..., k}. Choose r; € Gen Z parallel
to e;. The reflection 7}, fixes e; and exchanges its end vertices v;_j and v;. The map
T :=T,---T, €I now satisfies Tv = w. This proves vertex-transitivity.

Step 2: For v € .%((Z), there is a unique semi-star S C Gen Z whose elements sum
up to v (Proposition 2.3). For any generator r € Gen Z exactly one element of {—r, r}
is in S. Since T, (£r) = Fr, the reflection T, cannot fix S but maps it to a different
semi-star (by Proposition 2.6 (i)). Since the semi-star is unique for v, 7, cannot fix v
either. O

Remark 3.5 For any finite reflection group I, there exists a I'-permutahedron which
is a (vertex-transitive) zonotope. To see this, choose a reduced root system R that
generates I' (e.g. build R from the normals of the mirror hyperplanes of I'). Then,
Zon R is a zonotope and a I'-permutahedron by Gen (Zon R) = R and Lemma 3.4.

Lemma 3.6 If Z is a I"-permutahedron, then Gen Z is a root system.

Proof Choose a generator r € Gen Z and let e € .#(Z) be an r-parallel edge.
There is at most one vertex per Weyl chamber of I' (Remark 3.2), hence the end
vertices of e cannot be in the same chamber. Therefore, ¢ must cross one of the
reflection hyperplanes of I". These are symmetry hyperplanes of Z, and if e crosses
one, it must be perpendicular to it. Thus, this hyperplane is 7. We have shown that
T, € Aut Z = Aut (Gen Z) for all » € R, and therefore, Gen Z is a root system. O

4 Vertex-Transitive and Homogeneous Zonotopes

The goal of this section is to prove Theorem 4.11 that all vertex-transitive (and homo-
geneous, Definition 4.4) zonotopes are I"-permutahedra.
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Fig.3 Some 2-dimensional vertex-transitive zonotopes and their generators (not necessarily at scale)

4.1 Roadmap

We briefly describe the roadmap to the proof. The idea is to prove the statement for 2-
dimensional zonotopes (Sect. 4.2), and then, transfer this result to general dimensions
(Sect. 4.3). This is possible by the following result (Theorem 4.2): if all 2-faces of a
zonotope are vertex-transitive, then it is a I'-permutahedron.

We cannot immediately see that the 2-faces of our vertex-transitive zonotopes are
vertex-transitive (this is true, but not obvious, and it is false for general polytopes).
We therefore prove an auxiliary result (Proposition 4.3) which further weakens the
condition of vertex-transitivity of the 2-faces.

In Sect. 4.3 we define homogeneous zonotopes (all vertices on a sphere, all edges of
the same length), and prove that these are I'-permutahedra (Corollary 4.6). The proof
is surprisingly simple: their 2-faces are regular polygons, hence vertex-transitive. To
transfer the result to vertex-transitive zonotopes, we define the normalization of a
zonotope (Definition 4.7), which transforms any vertex-transitive zonotope into a
homogeneous one. This transformation preserves the edge-directions of the zonotope,
so that with the help of Proposition 4.3 we can show that all 2-faces of the initial
zonotope must have been vertex-transitive. Applying Theorem 4.2 then proves the
main result, Theorem 4.11.

4.2 2-Dimensional Zonotopes

A 2-dimensional zonotope is a centrally symmetric 2n-gon. Such one is vertex-
transitive, if either

(1) itis a regular 2n-gon, or
(i1) n is even, and it has alternating edge lengths, as seen in Fig. 3.

This list is complete: every vertex-transitive polygon is an orbit polytope of a cyclic
group or dihedral group. These orbit polytopes are contained in the list above.

If Z is a 2n-gon as listed in (i) or (ii), Gen Z consists of 2 vectors in R?, equally
spaced by an angle of 7 /n, and in the case (ii), these vectors alternate in length (see
Fig. 3). These are exactly the root systems that correspond to the reflection group I»(n)
(ifn > 3),or I} & I (if n = 2). Applying Lemma 3.4, we obtain the classification in
dimension two.

Corollary 4.1 A 2-dimensional vertex-transitive zonotope is a I -permutahedron.
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Fig.4 The exterior angles of a

(convex) polygon always add up a,
to 27 (used in the proof of

Proposition 4.3)

This already finishes the case of 2-dimensional vertex-transitive zonotopes. This case is
important for the following reason: investigating vertex-transitive zonotopes in general
dimensions boils down to the study of their 2-faces:

Theorem 4.2 If all 2-faces of Z are vertex-transitive, then Z is a I'-permutahedron.

Proof Choose generators r, s € Gen Z. We show T,s € Gen Z, establishing that
Gen Z is aroot system and Z is a I'-permutahedron by Lemma 3.4. The case r = +s
is trivial. We therefore assume that

R := Gen Z N span {r, s}

is 2-dimensional. In particular, R € Gen Z is a 2-dimensional flat of Gen Z. By
Proposition 2.4 there exists a 2-face 0 € %#,(Z) with Geno = R. By assumption,
o is vertex-transitive, and R therefore a root system (Corollary 4.1). Conclusively,
T,s € R C GenZ. O

In order to apply Theorem 4.2, we need that all 2-faces of Z are vertex-transitive. This
does not follow immediately (even though it is true) from the fact that we start from
a vertex-transitive zonotope. Instead, we use the following helper result:

Proposition 4.3 If Z C R? is a 2-dimensional zonotope that

(1) has all vertices on a common circle, and
(i1) has the same edge directions as a regular 2n-gon,

then Z is vertex-transitive.
This statement is elementary. We sketch its proof:

Proof of Proposition 4.3 A (convex) polygon has at most two edges of the same direc-
tion, and if it is centrally symmetric, it has exactly two of each. A regular 2n-gon has
n edge directions, and by (ii), so has Z. Since Z is centrally symmetric, it must be a
2n-gon as well.

Let a; € R be the exterior angle of the i-th vertex of Z (see Fig. 4). By (ii) we
have «; = k;m/n, where k; € N is an integer > 1. The exterior angles of a (convex)
polygon add up to 277, and so we estimate

2n 2n ki 1.7
2n=Zai=Zsz2n~ " =27,

i=1 i=1
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and conclude that k; = 1. That is, all exterior and inferior angles are equal.

For simplicity, assume that Z, and all polygons mentioned in the following para-
graph, are of circumradius one. Let £ be the length of the shortest edge of Z. Then,
£ is no longer than the edge length of a regular 2n-gon. This ensures that there exists
a vertex-transitive 2n-gon with an edge of length ¢ (consider an appropriately chosen
orbit polytope of I>(n), resp. I1 @ I1). But a polygon satisfying (i) and with prescribed
identical interior angles at every vertex is already uniquely determined by placing
a single edge (the placement of both incident edges follows uniquely from the set
restrictions, and this iteratively determines the whole polygon). Therefore, Z must be
this vertex-transitive polygon. O

4.3 The General Case

Definition 4.4 A zonotope is said to be homogeneous, if all its vertices are on acommon
sphere, and all its edges are of the same length.

Homogeneity is a hereditary property:

Observation 4.5 The faces of a homogeneous zonotope Z are homogeneous: all edges
of aface o € .7 (Z) are of the same length. All vertices of Z are on a sphere .7, and all
vertices of o are on an affine subspace of R. All vertices of o are on the intersection
of this subspace with .#, which is itself a sphere.

The 2-faces of homogeneous zonotopes are homogeneous, and homogeneous 2-faces
are regular, thus vertex-transitive. With Theorem 4.2 we conclude

Corollary 4.6 If Z is homogeneous, then Z is a I -permutahedron.
We apply this to vertex-transitive zonotopes via the following construction:
Definition 4.7 The normalization of Z is the zonotope

X r
Z* :=7Zon] —
71

re GenZ}.

The normalized zonotope has the same edge directions as Z, but all edges are of the
same length. We further need to understand how vertex-transitivity is determined by
Gen Z:

Proposition 4.8 Z is vertex-transitive if and only if all semi-stars of Gen Z are con-
gruent.

Proof Consider two vertices v, v’ € .#y(Z) determined by semi-stars S, S’ € Gen Z
(via Proposition 2.3).

A symmetry T € Aut Z that maps v onto v’, maps S onto a semi-star whose
elements add up to v’ (Proposition 2.6). But the semi-star with this property is unique
by Proposition 2.3, and therefore must equal S’. Thus, 7S = §’, and T is a congruence
between the semi-stars.

On the other hand, if T € O(R?) maps the semi-star S onto S’ C Gen Z, then it
also maps v onto v'. And T € Aut Z by Proposition 2.6 (ii). O
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Corollary 4.9 If Z is vertex-transitive, then so is its normalization Z*.

Proof If all semi-stars of Gen Z are congruent, then this certainly stays valid when
normalizing all vectors in Gen Z. O

Corollary 4.10 If Z is vertex-transitive, then Z* is a T -permutahedron.

Proof By Corollary 4.9, Z* is vertex-transitive, in particular, all vertices are on a
common sphere. Furthermore, all edges of Z* have the same length. Thus, Z* is
homogeneous, and a I'-permutahedron by Corollary 4.6. O

We can finally prove the main result:

Theorem 4.11 A vertex-transitive zonotope Z is a I'-permutahedron.

Proof In Corollary 4.10 we saw that Z* is a I"-permutahedron, and Gen Z* therefore
aroot system by Lemma 3.4. For each 2-face o € .%,(Z), the set

R* := {”r_” ‘ re Gena} = Gen Z* N span (Gen o)
r

is a 2-dimensional flat subset of the root system Gen Z*. As such, it is a root system
itself. A 2-dimensional root system consists of vectors that are equally spaced by an
angle it /n for some n € N, or in other words, the elements of R* are the edge directions
of a regular 2n-gon. The 2-face o has the edge direction (but not necessarily the edge
lengths) from R*, hence, the same edge direction as a regular 2n-gon.

Additionally, as a face of a vertex-transitive polytope, o has all vertices on acommon
sphere. By Proposition 4.3, o is vertex-transitive. We found that all 2-faces of Z are
vertex-transitive. Theorem 4.2 provides that Z is a I'-permutahedron. O

We summarize the results in the following theorem:
Theorem 4.12 If Z is a zonotope, then the following are equivalent:

(1) Z is vertex-transitive.

(i) All semi-stars of Gen Z are congruent.
(iii)) Gen Z is a root system.
(iv) Z is a I'-permutahedron.

Proof (i) <= (i) &' (iv) ¥’ (iii). O
We list some consequences of this classification, none of which holds for general
polytopes:

Corollary 4.13 The following holds:

(i) The faces of a vertex-transitive zonotope are vertex-transitive.
(i) A homogeneous zonotope (i.e., it has all vertices on a common sphere, and all
edges of the same length) is vertex-transitive.
(iii) A zonotope in which all faces (in fact, all 2-faces) are homogeneous (resp. vertex-
transitive) is itself homogeneous (resp. vertex-transitive).
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Proof If Z is vertex-transitive, then Gen Z is a root system (Theorem 4.11). By Propo-
sition 2.4, for every face o € .% (Z), its generators Gen o C Gen Z are a flat subset of
the root system Gen Z, hence, a root system as well. Hence, o is a I'-permutahedron
and vertex-transitive. This proves (i).

Part (ii) follows immediately from Corollary 4.6. Part (iii) follows from Theorem 4.2
(a homogeneous 2-face is regular, hence also vertex-transitive). O

4.4 The Classification of Vertex-Transitive/Homogeneous Zonotopes

We apply the results in Corollary 4.6 and Theorem 4.11 to compile a list of all vertex-
transitive/homogeneous zonotopes.

We restrict the enumeration to the irreducible cases, that is, to those which result
from irreducible reflection groups. The other vertex-transitive, resp. homogeneous,
zonotopes (the reducible ones) are obtained as cartesian products of the irreducible
ones. The most recognizable reducible vertex-transitive, resp. homogeneous, zono-
topes are the hypercubes and prisms.

We obtain the following list of irreducible homogeneous zonotopes:

e infinitely many 2-dimensional homogeneous zonotopes (the regular 2n-gons),

e for each d > 3, the d-dimensional zonotopes generated by reflection groups A,
By, and Dy (which are distinct if and only if d > 3), and

e six exceptional zonotopes to the reflection groups Hz, Ha, Fu, E¢, E7, and Eg in
their respective dimensions d € {3, 4, 6, 7, 8}.

Each of these is uniquely determined up to scale and orientation. The polytopes in that
list are also classically known as the omnitruncated uniform polytopes. This termi-
nology, and many related names were coined by Norman Johnson [8]. By definition,
the I"-permutahedron has |I"| vertices. Furthermore, each I'-permutahedron is simple
(i.e., its vertex degree matches its dimension), and it therefore has d|I"|/2 edges. See
Table 1 for the precise numbers.

The (irreducible) vertex-transitive zonotopes differ from the homogeneous ones in
three cases: the zonotopes that correspond to the root systems I>(2n) (the 4n-gons),
Bg and Fy are not uniquely determined up to scale and orientation, but each case forms
a continuous 1-dimensional family of combinatorially equivalent zonotopes (see e.g.
Fig. 5 for the case B3). Typically, the vectors of a root system form a single orbit under
the action of the associated Weyl group, except in the cases 1> (2n), By, and F4 in which
they form two orbits [7, Sect. 2.11]. The lengths of the vectors in these orbits can be
chosen independently from each other, giving these zonotopes one degree of freedom
that manifests in two (possibly) different edge lengths. Such degrees of freedom are
also present in all reducible vertex-transitive zonotopes. For example, the d-cubes (the
cartesian product of line segments) belong to the continuous family of d-orthotopes
with d degrees of freedom. We give some further information on some of the families:
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Table 1 To each finite reflection group I' the table lists the vertex and edge count of the correspond-
ing I'-permutahedra, as well as the name of the polytope of which the corresponding homogeneous
I"-permutahedron is the omnitruncation

Group Omnitruncation of # Vertices #Edges
I (n) n-gon 2n 2n
Agq d-simplex d+ D! dd+1)!/2
By d-cube dr-24 dl-d2d-1
Dy d-demicube d!-24-1 d!-d2¢?
Hj dodecahedron 120 180
Fy 24-cell 1,152 2,304
Hy 120-cell 14,400 28,800
Eg 291-polytope 25,920 77,7160
E7 351 -polytope 2,903,040 10,160,640
Eg 4,1 -polytope 696,729,600 2,786,918,400
e I o &) G
<> / | | |
o Y il
= - %

Fig.5 Sample from the 1-dimensional family of B3-zonotopes, except for the left one, which degenerated
to the A3/D3-zonotope. The middle one is the homogeneous representative (omnitruncated cube)

4.4.1 The Family A4

The generated zonotope is the standard permutahedron. For d = 3, this zonotope
is called truncated octahedron (Fig. 2), which coincides with the zonotope obtained
from Dj3 (this is the only pair of coinciding zonotopes). The classical name for this
family is omnitruncated d-simplices.

4.4.2 The Family B4

The vertices of a general B;-permutahedron are formed by the coordinate permutations
and sign selections of some vector

(£x1,...,+xg) € RY,  withxy,...,xg > 0. @.1)

If the x; form alinear sequence x; = xo-+¢€ (i —1) for some fixed xp, € > 0, then the cor-
responding polytope is a zonotope. The quotient € /xo parametrizes the 1-dimensional
family (see Fig. 5), and €/xg = +/2 corresponds to the homogeneous representa-
tive. Clasically, the homogeneous zonotopes of this family are called omnitruncated
d-cubes.
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4.4.3 The Family D4

The vertex-coordinates of the Dj-zonotope are as in (4.1) with setting xo = 0 in
the linear sequence (see Fig. 5). For d = 3, this zonotope coincides with the As-
permutahedron (the truncated octahedron). For d = 4, this zonotope is known as the
truncated 24-cell. Classically, the zonotopes of this family are called omnitruncated
d-demicubes.

4.4.4 Exceptional Zonotopes

Indimensionsd € {3, 4, 6, 7, 8} the following exceptional vertex-transitive zonotopes
exist:

e Ford = 3, there exists the omnitruncated icosahedron/dodecahedron to the reflec-
tion group Hz (see Fig. 2).

e For d = 4, there exists the continuous 1-dimensional family of F4-zonotopes (the
homogeneous member is called omnitruncated 24-cell), as well as the omnitrun-
cated 120-cell/600-cell to the reflection group Hj.

e Ford € {6, 7, 8}, there exist the omnitrucation of the uniform E;-polytope (also
known as 251, 321, and 471).

4.4.5 Summary

All in all, we obtain the following numbers of irreducible homogeneous zonotopes
(aka combinatorial types of irreducible vertex-transitive zonotopes) per dimension.

QU
H*

groups

L(n),n>2

A3z or D3, B3, Hy
Ay4, By, Dy, Fy, Hy
As, Bs, Ds

Ag, Bs, Dg, Eg
A7, B7, D7, Eq
Ag, Bg, Dg, Eg
Ag.Bg, Dy

IV 0 1 O kW N
w#b#wmwg

5 Characterizing Root Systems

Our results on vertex-transitive and homogeneous zonotopes enable us to give inter-
esting alternative characterizations for root systems:

Corollary 5.1 If R C R¢\ {0} is finite and reduced, then the following are equivalent:

(1) R is aroot system, and

@ Springer



1460 Discrete & Computational Geometry (2021) 66:1446-1462

Fig. 6 Three inscribed zonotopes obtained as projections of higher-dimensional I'-permutahedra. Left:
projection of the A4-zonotope, combinatorially equivalent to the A3-zonotope, but not vertex-transitive.
Middle: projection of the D4-zonotope. Right: projection of the homogeneous F4-zonotope. The latter two
are not combinatorially equivalent to a I'-permutahedron

(i) all semi-stars of R are congruent.

Proof R is reduced, hence the set of generators of Zon R. We can apply (ii) < (iii)
from Theorem 4.12. O

The statement of Corollary 5.1 still holds true, even if R is not reduced, but we
leave that to the reader. The norm of a semi-star shall be the norm of the sum of its
elements. It follows from Corollary 5.1 that a root system has all semi-stars of the
same norm. We prove a weaker form of a converse:

Theorem 5.2 Let R C S? be a finite centrally symmetric set of unit vectors. If all
semi-stars of R have the same norm, then R is a root system.

Proof Recall that each vertex of Zon R can be written as the sum of the vectors in
some semi-star of R (Proposition 2.3). The norm of that semi-star therefore equals the
distance of that vertex from the origin.

Since all semi-stars have the same norm, Zon R has all vertices on a common
sphere around the origin. Furthermore, R is centrally symmetric, and all vectors in R
are of the same length, i.e., all edges of Zon R are of the same length. Thus, Zon R is
homogeneous, and by Corollary 4.6 it is a I'-permutahedron.

Since R is centrally symmetric and consists of unit vectors, it is reduced. Conclu-
sively, R = Gen (Zon R) is a set of generators of a ['-permutahedron, and therefore a
root system. |

Itis unclear to the author whether dropping the assumption of central symmetry in The-
orem 5.2 allows other, essentially different vector configurations (see Question 6.4).
On the other hand, condition R C S¢ is certainly necessary, as there are inscribed
zonotopes with edges of distinct lengths and that are not permutahedra (see Fig. 6 and
Sect. 6).

6 Related Problems and Open Questions
The vertex-transitive zonotopes belong to the larger class of inscribed zonotopes (that

is, all vertices are on a common sphere). If we put no restrictions on the edges (as in
the homogeneous case), we obtain a class with much unclearer properties.
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It is clear that not all inscribed zonotopes can be I'-permutahedra: it is easy enough
to find an inscribed centrally symmetric 2r-gon that is not vertex-transitive. It is harder
to construct examples in three or more dimensions. One might be tempted to conjecture
that an inscribed zonotope is at least combinatorially equivalent to a I -permutahedron.
However, counterexamples were provided by Raman Sanyal and Sebastian Manecke
(personal communication): the orthogonal projection of a I'-permutahedron along one
of its edge directions is again inscribed, but not necessarily combinatorially equivalent
to a I'-permutahedron (see Fig. 6). In general, the projection of an inscribed zonotope
along an edge direction is again inscribed. There are further known examples which
cannot be obtained as such repeated projections of I'-permutahedra, but all those are
still combinatorially equivalent to one which was obtained as a projection.

Question 6.1 (Sanyal and Manecke) Are there inscribed zonotopes that are not com-
binatorially equivalent to a I'-permutahedron or the repeated projection of such one
along edge directions?

Zonotopes have a known relation to real hyperplane arrangement. The results of this
paper immediately yield the following: a hyperplane arrangement whose symmetry
group acts transitively on its chambers must be a reflection arrangement. A more
general question was asked by Caroline J. Klivans and Ed Swartz [11, Problem 13],
and we shall repeat it here:

Question 6.2 (Klivans and Swartz) If all chambers of a real hyperplane arrangement
are congruent, is it a reflection arrangement?

One finds that such an arrangement must be central and simplicial. The answer to
Question 6.2 is known to be affirmative in dimensions d € {2, 3} [5], but is open in
d > 4. Dualizing again, the analogous question for zonotopes is the following:

Question 6.3 If all vertex-figures of a zonotope are identical, is it combinatorially
equivalent to a I'-permutahedron, or more precisely, is its normalization (see Defini-
tion 4.7) a I'-permutahedron?

Another question, for which no immediate answer was found, is whether it is necessary
to assume central symmetry in Theorem 5.2, or whether the following stronger version
of the theorem holds:

Question 6.4 Let S C SY be a finite set of unit vectors, in which all semi-stars have
the same norm. Is § U —S necessarily a root system?

Note that S alone is not necessarily a root system: let S be the set of vertices of a
regular triangle centered at the origin, then all semi-stars have the same norm, but S
is not a root system. However, S U —S is the root system of 15(3).

Finally, zonotopes can also be thought of as spherical tilings with zonotopal tiles.
This can be generalized to plane (or even hyperbolic) tilings with zonotopal tiles. A
classification of such seems equally unfeasible as a classification of zonotopes, and so
asking for the vertex-transitive tilings might be interesting.

Question 6.5 Can we classify the vertex-transitive plane (resp. hyperbolic) tilings
with zonotopal tiles? Do these have similar relations to the affine (resp. hyperbolic)
reflection groups?
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