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Abstract
Let M be a connected, closed, oriented three-manifold and K , L two rationally null-
homologous oriented simple closed curves in M . We give an explicit algorithm for
computing the linking number between K and L in terms of a presentation of M as an
irregular dihedral three-fold cover of S3 branched along a knot α ⊂ S3. Since every
closed, oriented three-manifold admits such a presentation, our results apply to all
(well-defined) linking numbers in all three-manifolds. Furthermore, ribbon obstruc-
tions for a knot α can be derived from dihedral covers of α. The linking numbers we
compute are necessary for evaluating one such obstruction. This work is a step toward
testing potential counter-examples to the Slice-Ribbon Conjecture, among other appli-
cations.

Keywords Knots · 3-manifolds · Linking numbers

1 Introduction

The study of linking numbers between knots in S3 dates back at least as far as Gauss
[13]. More generally, given a closed, oriented three-manifold M and two rationally
null-homologous, oriented, simple closed curves K , L ⊂ M , the linking number
lk(K , L) is defined as well. It is given by
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where CL is a 2-chain in M with boundary nL , n ∈ N, and · denotes the signed
intersection number. This linking number is well-defined and symmetric [27].

Let the three-manifold M be presented as a three-fold irregular dihedral branched
cover of S3, branched along a knot. Every closed oriented three-manifold admits such
a presentation [16,17,20]. Consider a branched cover f : M → S3 of this type, and
let γ, δ ⊂ S3 be oriented, closed curves embedded disjointly from each other and
from the branching set α of f . In Theorem 1.2, we give a formula for the linking
number in M between any two connected components of the pre-images of γ and δ,
in the case where the pre-images of γ and δ have three connected components each.
The general case is given in Sect. 4.1. This linking number is computed in terms of a
diagram of the link α ∪γ ∪ δ. The geometric construction underlying the computation
is reviewed in Sect. 1.1 and serves to complement the theorem statement, which is
combinatorial in flavor. Linking numbers in dihedral branched covers of S3 are needed
for calculating several knot and three-manifold invariants [5,6,8,14,18,19]; some of
these applications are considered in Sect. 1.2.

Briefly, our technique is the following. The cone on the link α ∪ γ ∪ δ gives a
cell structure on S3 which lifts, via the map f , to a cell structure on M . Two-chains
bounding closed connected components of f −1(γ ) and f −1(δ) are found by solving
a system of linear equations. We obtain these equations by examining the diagram
of α ∪ γ ∪ δ used to construct the cell structure on M . Finally, intersection numbers
between lifts of δ and the 2-chains bounding lifts of γ are computed from local data
about the relevant 1- and 2-cells.

Classically, a knot invariant is derived from linking numbers in branched covers
as follows. Let α ⊂ S3 be a Fox 3-colorable knot. Any 3-coloring of α determines
an irregular dihedral three-fold covering map f : M → S3 with branching set α, as
reviewed in Sect. 2.1. Given such a three-fold cover f , the preimage of the branching
set, f −1(α), has two connected components whose linking number, in M , is either
a rational number or undefined. The set of these linking numbers over all distinct
3-colorings of α is called the linking number invariant of α. Analogous invariants can
be derived for more general knot group quotients and other types of branched covers.

Dihedral linking numbers have been instrumental in distinguishing and tabulating
knots, including in various situations where other invariants do not suffice. The linking
number invariant was introduced by Reidemeister in [25], where he applied it to
tell apart two knots with the same Alexander polynomial. In [26], Riley generalized
this idea and used linking numbers in five-fold (non-dihedral) branched covers to
distinguish a pair of mutants whose Alexander polynomials were trivial. Two 36-
crossing knots with the same Jones polynomial were distinguished by Birman using
linking numbers in four-fold simple branched covers [2].

Linking numbers in dihedral branched covers are also good for studying certain
properties of knots: they provide an obstruction to amphichirality [12,23] and invert-
ibility [15]. But the most well-known story is perhaps that of the Perko Pair, which
consists of “two” knots which dihedral linking numbers failed to distinguish. These
knots turned out to be isotopic, and constituted an accidental duplicate in Conway’s
table [10]. The mistake was corrected by Perko. His discovery also provided a coun-
terexample to a conjecture of Tait—stating that two reduced alternating diagrams of
a given knot have equal writhe—previously believed to be established as a theorem.
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Historically, efforts at knot classification have relied heavily on linking numbers in
branched covers. Bankwitz and Schumann [1] classified knots of up to nine crossings
using linking numbers in dihedral covers of 2-bridge knots as their primary tool. (Note
that the irregular dihedral branched cover of a 2-bridge knot is always S3; a proof of
this old observation is recalled in [18].) Perko extended these methods, which allowed
him to complete the classification to knots of ten and eleven crossings [23]. Burde
proved that dihedral linking numbers can tell apart all 2-bridge knots [3], without
regard to crossing number. The largest-scale computation of linking numbers was
done by Dowker and Thistlethwaite, who succeeded in tabulating millions of knots
[11]. Arguably, today’s knot tables would not be nearly as advanced in the absence
of Reidemeister’s extremely powerful idea to consider linking numbers between the
branch curves in non-cyclic branched covers of knots. For a more detailed account of
the role of linking numbers in knot theory, as well as several illuminating examples,
see [24].

Our results extend the classical linking number computation to include linking num-
bers of curves other than the branch curves, namely, closed connected components of
f −1(γ ) and f −1(δ), where γ, δ ⊂ S3 are curves in the complement of the branching
set. It is helpful to formally regard points on γ and δ as points on the branching set
of f , with the property that each of their pre-images has branching index 1. Accord-
ingly, we refer to γ and δ as pseudo-branch curves of f . We will call each closed
connected component of f −1(γ ) (resp. f −1(δ)) a lift of γ (resp. δ). Finally, despite
the apparent ambiguity, we will also use the phrase “pseudo-branch curves” to refer
to the lifts themselves. Since every closed, connected, oriented three-manifold admits
a presentation as a three-fold dihedral cover of S3 branched along a knot, our methods
compute all well-defined linking numbers in all three-manifolds; this is proven at the
end of Sect. 1.1.

1.1 AlgorithmOverview and theMain Theorem

We now summarize the geometric setup underlying our computation, and state our
main theorem. Let α ⊂ S3 be a 3-colored knot and f : M → S3 be the corresponding
dihedral cover of S3 branched along α. Let γ, δ ⊂ S3 − α be two disjoint, oriented
knots. We treat the homomorphism ρ : π1(S3 − α) � D3 from which the branched
cover f arises as a homomorphism of π1(S3 − α − γ − δ) in which meridians of γ

and δ all map to the trivial element; thus, we refer to γ, δ as pseudo-branch curves.
We compute linking numbers between connected components of f −1(γ ) and f −1(δ)

by the following procedure.

(i) Endow S3 with the cell structure by the cone on the link α ∪ γ ∪ δ; see Fig. 2
and Sect. 2.2.

(ii) Lift this cell structure to M by examining the lifts of the cells near each crossing
of the link diagram downstairs; see, for example, Fig. 7. This cell structure
contains the lifts of the pseudo-branch curves as 1-subcomplexes.

(iii) Solve a linear system to determine which of the lifts of the pseudo-branch curves
are rationally null-homologous. For each rationally null-homologous lift of a
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Table 1 Notation

1 k0, k1, . . . , km−1 Arcs of α in diagram α ∪ γ . See Sect. 2.2

2 g0, g1, . . . , gs−1 Arcs of γ in diagram α ∪ γ . See Sect. 2.2

3 h0, h1, . . . , ht−1 Arcs of δ in diagram α ∪ γ ∪ δ. See Sect. 2.2

4 ε(i) ∈ {−1, 1} Local writhe number at the head of arc ki
5 εγ (i) ∈ {−1, 1} Local writhe number at the head of arc gi
6 εδ(i) ∈ {−1, 1} Local writhe number at the head of arc hi
7 f (i) Subscript of overcrossing arc at head of arc ki
8 fγ (i) Subscript of overcrossing arc at head of arc gi
9 fδ(i) Subscript of overcrossing arc at head of arc hi

10 ε1(i) ∈ {−1, 1} Concerns 2-cells above inhomogeneous crossing of α. See (1)

11 ε2(i) ∈ {−1, 1} Concerns 2-cells above inhomogeneous crossing of α. See (2)

12 ε3(i) ∈ {−1, 1} Concerns 2-cells above a homogeneous crossing of α. See (3)

13 ε
j
4 (i) ∈ {−1, 0, 1} Concerns 2-cells above a crossing of α under γ . See (4)

14 εk5 (i) ∈ {−1, 0, 1} Concerns 2-cells above a crossing of δ under α. See (9)

15 ε
j,k
6 (i) ∈ {0, 1} Concerns 2-cells above a crossing of δ under γ . See (10)

pseudo-branch curve, a solution to the linear system determines an explicit 2-
chain it bounds.

(iv) For each pair of rationally null-homologous lifts of the pseudo-branch curves,
compute linking numbers by adding up the signed intersection numbers of the
relevant 1- and 2-cells.

Steps (i) and (ii) are discussed in Sect. 2. Step (iii) is carried out in Proposition 1.1,
which determines when a lift of a pseudo-branch curve bounds a 2-chain, and finds the
2-chain when it exists. Step (iv) is the content of Theorem 1.2, which gives a formula
for the linking number between lifts of pseudo-branch curves.

We now state our main results, Proposition 1.1 and Theorem 1.2. We assume for
the moment that each of the pseudo-branch curves has three (closed, connected) lifts,
and denote these by γ j and δk , j, k ∈ {1, 2, 3}. Both γ j and δk must be rationally
null-homologous for their linking number to be well-defined. We verify this condition
by reversing the roles of γ and δ in our computations and thus making sure that each of
the curves bounds a 2-chain. The lift γ j is rationally null-homologous if and only if a

solution (x j
0 , x j

1 , . . . , x j
m−1) ∈ Q

m to the system of equations in Proposition 1.1 exists.

The x j
i describe a rational 2-chain with boundary γ j , namely they are coefficients for

the 2-cells A2,i and−A3,i in the chain (these 2-cells are defined inSect. 2.3).Additional
notation is summarized in Table 1. The precise definitions of items 10 to 14 in the
table are technical and given in the equations listed, which can be found in Sects. 2.2
and 4.2.

Proposition 1.1 Let s denote the number of crossings of γ under α plus the number
of self-crossings of γ , let m denote the number of crossings of α under γ plus the
number n of self-crossings of α. Let f (i) denote the index of the overstrand k f (i) at
crossing i , and let the signs ε, and εk for k = 1, 2, 3, 4, be as in Table 1. If the following
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inhomogeneous system of linear equations

⎧
⎪⎨

⎪⎩

x j
i − x j

i+1 + ε1(i)ε2(i)x
j
f (i) = 0 if crossing i ofα is inhomogeneous,

x j
i − x j

i+1 + 2ε3(i)x
j
f (i) = 0 if crossing i of α is homogeneous,

x j
i − x j

i+1 = ε(i)ε j
4 (i) if strand i of α passes under γ,

has a solution (x j
0 , x j

1 , . . . , x j
m−1) over Q, then the lift γ j of γ is rationally null-

homologous and is bounded by the 2-chain

C j =
s−1∑

i=0

Bj,i +
m−1∑

i=0

x j
i (A2,i − A3,i ).

Let I j,k be the linking number of γ j and δk . Theorem 1.2 gives a formula for I j,k in
terms of the solution to the system of equations in Proposition 1.1.

Theorem 1.2 Let f : M → S3 be a three-fold irregular dihedral cover branched along
a knot α, and let δ, γ ⊂ S3 − α be embedded, disjoint, oriented curves. If the lifts γ j

and δk are rationally null-homologous closed loops in M for j, k ∈ {1, 2, 3}, then the
linking number I j,k of γ j with δk is the sum

I j,k =
t−1∑

i=0

ci ,

where ci is given by

ci =

⎧
⎪⎨

⎪⎩

εk5(i)x
j
f (i) if hi terminates at an arc k f (i) of α,

εδ(i)ε
j,k
6 (i) if hi terminates at an arc of γ,

0 if hi terminates at an arc of δ.

We have focused here on the case where each pseudo-branch curve lifts to three
closed loops because this case is the one we encounter exclusively in our main appli-
cation [6]. In general, the number of connected components of f −1(γ ) is determined
by the image of [γ ] ∈ π1(S3−α) under the homomorphism π1(S3−α) → D3 which
determines the branched cover f . Therefore, the number of components of f −1(γ )

can be calculated from the link diagram α ∪ γ where α is 3-colored. Computations
involving pseudo-branch curves whose pre-images under the branched covering map
consist of fewer than three connected components can be carried out using the same
techniques; see Sect. 4.1. Theorem 1.2 can also be used to compute linking numbers
between the branch curves themselves, as well as linking numbers between branch
and pseudo-branch curves, as discussed in Sects. 4.2 and 4.3.

Our methods compute all well-defined linking numbers in all closed, connected,
oriented three-manifolds.
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Lemma 1.3 Let M be a closed, connected, oriented three-manifold, and let K ∪ L
be a 2-component oriented link in M. Denote by f : M → S3 a three-fold irregular
dihedral cover whose branching set is the knot α ⊂ S3. Then K ∪ L is isotopic to a
link K ′ ∪ L ′ such that f (K ′ ∪ L ′) is a link disjoint from α.

This lemma follows from a standard general position argument. See, for example,
[21], in which the authors give a diagrammatic theory for links in three-manifolds
represented as three-fold covers of S3. In particular, their labeled Reidemeister moves
provide an alternative approach to computing linking numbers between lifts of pseudo-
branch curves.

Given rationally null-homologous K , L as in the above lemma, note that
lk(K , L) = lk(K ′, L ′), since the two links (K , L) and (K ′, L ′) are isotopic. Now
let γ = f (K ′) and δ = f (L ′). That is, K ′ and L ′ are closed connected components of
f −1(γ ) and f −1(δ), respectively. In the language of this paper, f −1(γ ) and f −1(δ)

are lifts of the pseudo-branch curves γ and δ. If γ and δ each have three lifts, the linking
number of K ′ and L ′ can be computed by the formula given in Theorem 1.2, yielding
the linking number of K and L . Otherwise the linking number can be computed as in
Sect. 4.1.

1.2 Applications to Branched Covers of Four-Manifolds and the Slice-Ribbon
Conjecture

In [8], Cappell and Shaneson gave a formula, in terms of linking numbers of lifts of
pseudo-branch curves, for the Rokhlin μ invariant of a dihedral cover of a knot α. As
noted earlier, every oriented three-manifold is a dihedral cover of someknot [16,17,20];
hence, thismethod is universal. Secondly, Litherland [19] showed that Casson–Gordon
invariants of a knot can also be computed using linking numbers of pseudo-branch
curves in a branched cover. The algorithm provided herein allows for the execution
of a key missing step in evaluating Casson–Gordon and Rokhlin μ invariants via the
above methods.

The application we focus on is the computation of a ribbon obstruction �p arising
in the study of singular dihedral branched covers of four-manifolds. In [18], the second
author gives a formula for the signature of a p-fold irregular dihedral branched cover
f : Y → X between closed oriented topological four-manifolds X and Y , in the case
where the branching set B of f is a closed oriented surface embedded in the base
X with a cone singularity described by a knot α ⊂ S3. This formula shows that the
signature of Y deviates from the locally flat case by a defect term, �p(α), which
is determined by the singularity α. The term �p(α) can be calculated in part via
linking numbers of pseudo-branch curves in a dihedral cover of α. If the base X of the
covering map f is in fact S4, the signature of the cover Y is exactly equal to�p(α). In
particular, our method for computing linking numbers between pseudo-branch curves
allows us to determine the signature of a dihedral branched cover of S4 in terms of
combinatorial data about the singularity on the branching set. We give an example
of such a computation, using the algorithm given in this paper, in [6]. Furthermore,
for a slice knot α, the integer �p(α) can be used to derive an obstruction to α being
homotopy ribbon [5,14]. Precisely, for a fixed p, �p(α) is constrained in a bounded
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range, determined by p, for all homotopy ribbon knots. This obstruction provides a
new method to test counter-examples to the Slice-Ribbon conjecture. The results of
this paper can be applied to search for a slice knot that is not ribbon; we use our
algorithm to compute �3 for concrete examples of slice knots in [6]. In [7] we give an
infinite family of knotswhose four-genus is computedwith the help of the�3 invariant.
An efficient method for evaluating linking numbers in three-manifolds is essential for
using the �p(α) invariant to study knot four-genus and knot concordance.

1.3 Overview of the Article

In Sect. 2, we recall the definition of an irregular dihedral cover, and we discuss the
relevant cell structure on S3, aswell its lift to the coverM . In Sect. 3we find the rational
2-chains bounding the pseudo-branch curves, proving Proposition 1.1. In Sect. 4,
we prove Theorem 1.2, which gives the formula for the linking numbers between
lifts of pseudo-branch curves, as well as Theorem 4.3, which gives an analogous
formula for the linking numbers between lifts of a pseudo-branch curve and a branch
curve. Section 5 illustrates our algorithm on an example of a three-fold dihedral cover
and several pseudo-branch curves therein. Due to the large number of cells used,
computations by hand quickly evolve into an unwieldy task, even for the most resolute
and concentrated persons. Our algorithm for calculating linking numbers in branched
covers has therefore been implemented in Python. The code can be found in [4].

2 A Combinatorial Method for Computing Linking Numbers

2.1 Irregular Dihedral Covers

Let α be a knot in S3 and f : M → S3 any covering map branched along α. Such a
branched cover f is determined by its unbranched counterpart, f | f −1(S3−α). Thus, we
can associate to f a group homomorphism ρ : π1(S3 − α) → G for some group G.
For us, G is always Dp, the dihedral group of order 2p, ρ is surjective, and p is odd.
The homomorphism ρ induces the regular 2p-fold dihedral cover of (S3, α); this cover
corresponds to the subgroup ker ρ ⊂ π1(S3 − α). The irregular p-fold dihedral cover
of (S3, α), also induced by ρ, corresponds to a subgroup ρ−1(Z2) ⊂ π1(S3 − α),
where Z2 can be any subgroup of Dp of order 2. The irregular dihedral cover is a Z2
quotient of the regular one, and different choices of subgroup Z2 ⊂ Dp correspond to
different choices of an involution. Recall also that ρ can be represented by a p-coloring
of the knot diagram, where the “color” of each arc indicates the reflection in Dp of
order 2 to which ρ maps the Wirtinger meridian of the colored arc. In this paper we
focus on three-fold irregular dihedral covers. The colors 1, 2, and 3 correspond to the
transpositions (23), (13), and (12) respectively. Given a three-fold dihedral cover, the
pre-image of the knot α has two connected components α1 and α2, with branching
indices 1 and 2 respectively.
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k0

k1 k2

k3

k6

k7

h0

h1

h2

g0

k4k5

g1g2

g3

Fig. 1 Diagram of the link α ∪ γ ∪ δ with labeled arcs

2.2 The Cell Structure on S3

This section serves primarily to describe the cell structure on S3 determined by the
cone on the link α ∪ γ ∪ δ, and to introduce some notation. The cell structure is a
subdivision of the one used by Perko [22] to compute the linking number of the branch
curves α1 and α2. The relevant notation is summarized in Table 1.

We now describe how to number the link diagram α ∪ γ ∪ δ; see Fig. 1. The arcs
of α in the link diagram of α ∪ γ are labeled k0, k1, . . . , km−1, proceeding along the
diagram in the direction of the orientation of α;m is the sum of the number of crossings
of α with itself and the number of crossings of α with γ where α passes under γ . For
the purposes of labeling the lifts of 2-cells in a systematic way, we require that the
diagram of α have an even number of crossings. We can arrange this to be the case by
performing a type 1 Reidemeister move on α, if necessary. From now on, we assume
without further comment that the diagram of α has this property. Similarly, the arcs
of γ are labeled g0, g1, . . . , gs−1, where s is the number of crossings of γ with itself
plus the number of crossings of α with γ where γ passes under α. We refer to the
crossing at the head of arc ki as the i th crossing of α, and the crossing at the head of
the arc gi as the i th crossing of γ ; in each case, the overarc could be an arc of α or γ .
After the arcs ki and gi have been labeled we introduce the third link component δ to
the diagram, and label its arcs h0, h1, . . . , ht−1. If several consecutive arcs of δ are
separated by overarcs of δ, we treat these arcs as a single long arc with one label hi ,
so t above is the number of crossings of δ under α plus the number of crossings of
δ under γ (this convention allows us to slightly simplify the input to the computer
program). We denote by ε(i), εγ (i), or εδ(i) the local writhe number at the head of ki ,
gi , or hi respectively.

The cell structure on S3, illustrated in Fig. 2, consists of:

(i) One 0-cell, which is the cone point of the cone on the link α ∪ γ ∪ δ.
(ii) One “horizontal”1-cell for each arc in the link diagram: these are the ki , gi ,

and hi .
(iii) One “vertical” 1-cell for each arc in the link diagram. The vertical 1-cell con-

necting the head of an arc of ki or gi to the 0-cell is denoted ai or bi , respectively.
We do not label the 2-cell below the arc hi .

(iv) One “vertical” 2-cell for each crossing in the link diagram. The vertical 2-cell
below an arc ki or gi is denoted Ai or Bi , respectively.
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k0

k1 k2

k3

k6

k7

h0

h1

h2

g0

k4k5

g1

g2

g3

B0

B2

A6

A3

A0

b2 b1

a6

a4

e3

Fig. 2 The cell structure on S3 determined by the cone on the link α ∪ γ ∪ δ, together with the notation for
the individual cells

(v) One 3-cell, e3, which is the complement of the cone on the link.

Note that ∂Ai = ki + ai − ai−1 and ∂Bi = gi + bi − bi−1.

Denote by c(i) the color, 1, 2, or 3, assigned to the arc ki . Let f (i) denote the
subscript j of the arc k j or g j which passes over crossing i of α, and let fγ (i) denote
the subscript j of the arc (k j or g j ) passing over crossing i of γ ; fδ(i) is defined
similarly. For example, in Fig. 2, f (3) = 7, fγ (0) = 5, fγ (1) = 6, and fδ(0) = 4.
We will sometimes write f (i) rather than fγ (i) or fδ(i) to simplify notation, when it
is clear that the under-arc is an arc of γ or δ rather than one of α.

The lists of overstrand subscripts ( f (0), . . . , f (m−1)) and ( fγ (0), . . . , fγ (s−1))
for α and γ , the list of colors (c(0), . . . , c(m − 1)) of the arcs of α, and two lists
containing the signs of crossings (local writhe numbers) for α and γ , serve as the
necessary input to the algorithm. At this point, the reader may also wish to glance at
Sect. 5.2 as well the Appendix of [4] for examples of this input. Examples are worked
out in detail in Sect. 5 (see also Figs. 16 and 17). In the figures, the arcs k0 of α and
g0 of γ are marked with a zero (as is the zeroth arc of δ). In order to avoid clutter in
the figures, we have labeled only the arcs k0, . . . , k13 of α. We write i instead of ki ,
and refer to this as a numbering of the diagram. The arcs of γ should be numbered
in an analogous fashion. Note that we ignore the second pseudo-branch curve δ when
numbering the arcs of α and γ in the diagram.

2.3 The Cell Structure onM

Now we describe how to lift the above cell structure to M and introduce notation for
the lifts of the cells. We examine the lift of the cell structure on S3 in a neighborhood
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ki
k1,i k2,i

e3
1

e3
3e3

2e3

c(i)=2

S 3 M

Fig. 3 Configuration of the cells e3j when the arc ki is colored 2

Ai

Ai+1 A2,i
A3,i

A3,i+1 A2,i+1

ai

a2,i
a3,i

Fig. 4 A lift of a framing of α along the degree two curve. This lift determines the labeling of the lifts of
the 2-cells Ai

of each crossing, and label the cells near the lift of each crossing in a systematic way.
For example, Fig. 5 shows the cells near a self-crossing of α in S3. Figure 7 shows
one way these cells lift if the crossing is inhomogenous, that is, the colors on the three
arcs are all different. In contrast, Fig. 9 shows one way these cells lift if the crossing
is homogeneous, that is, the three colors on the arcs are the same. Later in this section
we explain how these figures are constructed, what the possible configurations of cells
above a crossing are, and how to determine which configuration arises. We must also
analyze the lifts of cells near self-crossings of γ , and near crossings of α under γ .
We adopt some of the notation of [22] for the lifts of cells coming from the knot α.
We introduce a new way of visualizing the cell structure which simplifies the task of
computing linking numbers between pseudo-branch curves, and generalizes easily to
the case where α is Fox p-colored for p ≥ 5.

Let α1 and α2 denote the index-1 and index-2 branch curves in M of the three-fold
irregular branched covering map f : M → S3; note α1 ∪ α2 = f −1(α). Each arc ki
of α has two pre-images under the covering map. Let k1,i denote the index-1 lift of ki
and let k2,i denote the index-2 lift of ki . Let A1,i , A2,i , and A3,i denote the three lifts
of Ai ; shortly, we will explain which of these 2-cells is given which label.

First, we introduce notation for the lifts of e3. This 3-cell has three lifts, e31, e
3
2,

and e33. Recall that the color c(i) on the arc ki of α corresponds to a transposition
in S3, which we denote by τi . We label the cells e3j so that the lift of a meridian of ki
beginning in the cell e3j has its endpoint in e3τi ( j). Figure 3 shows how these cells are
configured along the lifts of an arc of α, away from any crossings in the link diagram.

Now we describe Perko’s notation for the lifts of the Ai and the ai , which we
also adopt. For each i , one lift of Ai has boundary meeting the index-1 branch curve.
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Ai
ai

Aki

kf(i)

f(i)

Ai+1ki+1

Fig. 5 Cells at crossing i of α

3 3

3

2 2

2

1
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e3
3 e3

1

e3
2

e3
3

e3
2

e3
1

A1,f(i)

A2,i

a2,i
A3,i

A1,i

a3,i

a1,i

A2,f(i)

A3,f(i)k2,i k2,i

k1,i

k1,f(i) k2,f(i)

k2,f(i)

A3,i A2,i

Fig. 6 One possible configuration of cells above an inhomogeneous crossing i of α

Call this lift A1,i . The other two lifts of Ai share a common boundary segment along
the index-2 curve. These lifts will be called A2,i and A3,i . One makes the choice as
follows. Let �A be a framing of α tangent to the vertical 2-cells Ai . Now lift �A to a
framing �A2 along the index-2 lift α2 of α. Such a lift exists because the number of
crossings in the diagram of α is even. There are two choices for such a lift. We make
a choice arbitrarily along k2,0 and this uniquely determines the lift along the entire
curve. Call A2,i the lift of Ai located in the positive direction of �A2. Last, we denote
by a j,i the lift of ai which is a subset of the boundary of A j,i for j = 1, 2, 3. See
Fig. 4.

The next step is to determine how the 2-cells inM are attached to the 1-skeleton; this
is essential for finding the required 2-chains for the linking number computation. There
are two cases to consider: self-crossings of α (either inhomogeneous or homogeneous)
and crossings involving γ (self-crossings of γ , and crossings of α under γ ).
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A1,i

A2,f(i)A1,i+1

a1,i

k1,i

k1,i+1

k2,f(i)

A3,f(i)

k1,f(i)

1,f(i)A

A2,iA3,i

A3,i+1 A2,i+1

k2,i

k2,i+1

a2,ia3,i

e3
1

e3
2

e3
3

Fig. 7 One possible configuration of the cells above an inhomogeneous crossing i of α. Here, ki is colored
2, ki+1 is colored 1, and k f (i) is colored 3. This picture is obtained by identifying duplicate cells in Fig. 6

Case 1: Self-crossings of α

The cells at a self-crossing of α are shown in Fig. 5. We analyze how the lifts of Ai ,
Ai+1, and A f (i) are assembled.Namely,we need to understand possible configurations
of A1,i , A2,i , A3,i , A1,i+1, A2,i+1, A3,i+1, A1, f (i), A2, f (i), and A3, f (i).

Case 1a: Inhomogeneous self-crossings of α. Figure 6 shows one way these cells
might lift at an inhomogenous crossing, if ki is colored 2, ki+1 is colored 1, and k f (i)

is colored 3. Note that in Fig. 6, some cells appear twice in the picture—for example,
k2,i , A2,i , and A3,i . We can alternatively visualize these cells as shown in Fig. 7; we
construct this picture by identifying all duplicate cells in Fig. 6. The positions of A1,i
and A1, f (i), relative to the positions of the 3-cells e3j , are completely determined by this
coloring information. The positions of A2,i and A3,i , on the other hand, are determined
by global information about the coloring of the knot, rather than just the coloring at
that crossing. One possibility is shown in Fig. 6, but the position of the 2-cells A2,i
and A3,i could be interchanged. This is also the case for A2, f (i) and A3, f (i).

Therefore, we need to keep track of the position of A2,i and A3,i relative to the
various 3-cells e3j . To do this, we introduce a function w(i) as follows. Informally,

w(i) = j , where j is the subscript of the 3-cell e3j such that, if one stands in that 3-cell
on the index-2 branch curve k2,i and facing in the direction of its orientation, then A2,i
is on the right. In Figs. 6 and 7, w(i) = 3 and w( f (i)) = 2. One can easily compute
w(i) from c(i) and f (i) as follows:

w(i + 1) =
{

w(i) if crossing i of α terminates at an arc of γ,

τ f (i)(w(i)) if crossing i of α terminates at an arc of α.
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=1 1= –1  2=1 =1 1= –1 2= –1

= –1 1=1  2=1 = –1 1=1  2= –1

(a) (b) (c)

(e) (f)

=1 1=1  2= –1

(d)
=1 1=1 2=1

= –1 1= –1  2=1 = –1 1= –1  2= –1

(g) (h)

Fig. 8 Configurations of cells above an inhomogeneous self-crossing of α. Dotted 2-cells indicate the
locations of the cells A2,i , A2,i+1, and A2, f (i)

Recall that τ f (i) denotes the transposition corresponding to the color c( f (i)) on the
overarc at crossing i ; τ f (i)(w(i)) denotes its action on w(i) ∈ {1, 2, 3}.

There are eight possible configurations of 2-cells above a given inhomogeneous
crossing of α with prescribed colors, shown in Fig. 8. In the case of an inhomoge-
neous crossing, w(i) equals either c( f (i)) or c(i + 1), and w( f (i)) equals either c(i)
or c(i + 1). We record this information with a pair of functions ε1(i) and ε2(i):

ε1(i) = 1 if c(i) 	= w( f (i)) and ε1(i) = −1 if c(i) = w( f (i)), (1)

ε2(i) = 1 if c( f (i)) = w(i) and ε2(i) = −1 if c( f (i)) 	= w(i). (2)

In addition, the crossing may have positive or negative local writhe number ε(i).

Case 1b: Homogeneous self-crossings of α. In the case of a homogenous crossing
of α, the colors c(i), c(i + 1), and c( f (i)) are all equal, and the 3-cell e3c(i) is adjacent
to the arcs k1,i , k1,i+1, and k1, f (i). See, for example, Fig. 9. There are four possible
configurations of 2-cells near the index-2 lift of α, shown in Fig. 10; in particular, the
value of w(i) either coincides with w( f (i)), or not. We record this information with
a function ε3(i):

ε3(i) = 1 if w(i) 	= w( f (i)) and ε3(i) = −1 if w(i) = w( f (i)). (3)
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A1,i

A2,f(i)

a1,i

k1,i

k1,i+1

k2,f(i)

A3,f(i)

k1,f(i)

A1,f(i)

A2,iA3,i

A3,i+1 A2,i+1

k2,i

k2,i+1

a2,ia3,i

e3
1

e3
2

e3
3

k2,f(i)

e3
2

e3
1

A1,i+1

Fig. 9 One possible configuration of the cells near the lift of a homogeneous positive crossing i , with all
arcs colored 3. The two copies of k2, f (i) are identified

=1 3= –1 =1 3=1

= –1  3=1 = –1 3= –1

(a) (b)

(c) (d)

Fig. 10 Configurations of cells above a homogeneous self-crossing ofα. Dotted 2-cells indicate the locations
of the cells A2,i , A2,i+1, and A2, f (i)

Case 2: Crossings involving γ

We have now discussed the lifts of all cells in the cone on α. At this stage, we
introduce notation for the cells in the cone on γ , which have not played a role so far.

Choose a basepoint x0 on the arc g0 of γ . The curve γ has three path-lifts under the
covering map, γ1, γ2, and γ3, beginning at each of the three preimages of x0. Assume
the γi are labeled so that the lift of g0 which lies in the 3-cell e3i is contained in γi . The
pre-image f −1(γ ) is the union of the lifts γ1, γ2, and γ3, and has one, two, or three
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B2,f(i)B1,i+1

b1,i

g1,i

g1,i+1g2,f(i)

B1,i

e3
2 B1,f(i)B2,i+1

b2,i

g2,i

g2,i+1g1,f(i)

B2,i

e3
3

B3,f(i)B3,i+1

b3,i

g3,i

g3,i+1g3,f(i)

B3,i

e3
1

Fig. 11 One possible configuration of cells lying near the lift of a crossing of γ with itself

connected components in M . Let g j,i , j = 1, 2, 3, denote the lift of gi that lies in the
lift γ j of γ . Denote by Bj,i the lift of Bi whose boundary contains g j,i .

First we consider self-crossings of γ . In this case, covering map is locally trivial
in a neighborhood of the crossing. As before, different configurations of 2-cells arise
above a self-crossing of γ ; see Fig. 11 for one example. We introduce an auxiliary
function lgj (i), whose value is the subscript s of the 3-cell e

3
s that contains the lift g j,i

of the arc gi . For example, in Fig. 11, lg1 (i) = 2, lg2 (i) = 3, and lg3 (i) = 1.
Next we consider crossings where α passes under the pseudo-branch curve γ . As

in the case of crossings of α with itself, the configuration of cells above that crossing
will depend on the value ofw(i). One such configuration is pictured in Fig. 12. All six
configurations are shown in Fig. 13. To capture the combinatorics at play, we associate
a function to crossings of α under γ as follows:

ε
j
4 (i) =

⎧
⎪⎨

⎪⎩

1 if lgj ( f (i)) = w(i),

0 if lgj ( f (i)) = c(i),

−1 otherwise.

(4)

For example, in Fig. 12, ε14(i) = 1, ε24(i) = 0, and ε34(i) = −1.

3 Constructing 2-Chains Bounding Pseudo-Branch Curves

Our task is to compute the linking numbers between any two lifts of pseudo-branch
curves, whenever these linking numbers are well-defined. In order to compute the
linking numbers of pseudo-branch curves, we must find 2-chains bounding them, or
determine that no such 2-chains exist.
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A1,i

B3, f(i)

a1,i

k1,i

k1,i+1

g1,f(i)

B1,f(i)

g2, f(i)

B2, f(i)

A2,iA3,i

A3,i+1 A2,i+1

k2,i

k2,i+1

a2,ia3,i

e3
1

e3
2

e3
3

g3, f(i)

e3
1

e3
2

A1,i+1

Fig. 12 One possible configuration of cells near the lift of a crossing where γ passes over α. Here, the arc
ki is colored 3, which determines the subscripts on the three-cells in the picture

=1 4
j =1

(a) (b) (c)

(d) (e) (f)

gj,f(i) gj,f(i) gj,f(i)

gj,f(i)
gj,f(i) gj,f(i)

=1 4
j = –1 =1 4

j =0

=  –1 4
j =1 =–1  = –1 =  –1 4

j =04
j

Fig. 13 Configurations of cells above a crossing of α under γ . Dotted 2-cells indicate the locations of the
cells A2,i and A2,i+1

For now we assume that the lift of γ has three connected components, γ1, γ2, and
γ3. We look for a 2-chain C j with ∂C j = γ j for fixed j . A priori we have

C j =
s−1∑

i=0

z ji B j,i +
m−1∑

i=0

(
x j
i A2,i + y j

i A3,i
)
.

123



Discrete & Computational Geometry (2021) 66:435–463 451

Since γ j = ∑s−1
i=0 g j,i , each 1-cell g j,i must appear exactly once in the boundary

of C j ; no other 1-cells appear. Hence z
j
i = 1 and y j

i = −x j
i . Now

C j =
s−1∑

i=0

Bj,i +
m−1∑

i=0

x j
i (A2,i − A3,i ). (5)

It remains to find the coefficients x j
i . To that end, we write down a system of linear

equations in the x j
i , one for each crossing. We obtain three systems of equations, one

for each C j with j ∈ {1, 2, 3}, given in Proposition 1.1.

Proposition 3.1 Let s denote the number of crossings of γ under α plus the number
of self-crossings of γ , let m denote the number of crossings of α under γ plus the
number n of self-crossings of α. Let f (i) denote the index of the overstrand k f (i) at
crossing i , and let the signs ε, and εk for k = 1, 2, 3, 4, be as in Table 1. If the following
inhomogeneous system of linear equations

⎧
⎪⎨

⎪⎩

x j
i − x j

i+1 + ε1(i)ε2(i)x
j
f (i) = 0 if crossing i of α is inhomogeneous,

x j
i − x j

i+1 + 2ε3(i)x
j
f (i) = 0 if crossing i of α is homogeneous,

x j
i − x j

i+1 = ε(i)ε j
4 (i) if strand i of α passes under γ,

has a solution (x j
0 , x j

1 , . . . , x j
m−1) over Q, then the lift γ j of γ is rationally null-

homologous and is bounded by the 2-chain

C j =
s−1∑

i=0

Bj,i +
m−1∑

i=0

x j
i (A2,i − A3,i ).

Proof Our goal is to find the coefficients x j
i in the 2-chain C j above. We take advan-

tage of the fact that the lifts of the 1-cell ai appear only above crossing i of α; this
may be a crossing of α under α, or a crossing of α under γ . We then compute the
contribution of lifts of ai to ∂C j at three types of crossings: inhomogeneous crossings
of α, homogeneous crossings of α, and crossings of α under γ . Our system of linear
equations is obtained by setting each of these contributions to zero.

Consider the eight possible configurations of 2-cells above an inhomogeneous
crossing of α, shown in Fig. 8. The “vertical” 1-cells a2,i and a3,i appear in ∂C j

in pairs with opposite sign. We compute the number of times the 1-chain a2,i − a3,i
appears in

∂

(
s−1∑

i=0

Bj,i +
m−1∑

i=0

x j
i (A2,i − A3,i )

)

for each configuration, and set this equal to zero.We get the following eight equations,
corresponding to each of the eight configurations:
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(a) x j
i −x j

i+1−x j
f (i) = 0,

(b) x j
i −x j

i+1+x j
f (i) = 0,

(c) x j
i −x j

i+1+x j
f (i) = 0,

(d) x j
i −x j

i+1−x j
f (i) = 0,

(e) x j
i −x j

i+1+x j
f (i) = 0,

(f) x j
i −x j

i+1−x j
f (i) = 0,

(g) x j
i −x j

i+1−x j
f (i) = 0,

(h) x j
i −x j

i+1+x j
f (i) = 0.

Following [22], we may rewrite the eight equations above in terms of ε1 and ε2 to
consolidate them into just one equation:

x j
i − x j

i+1 + ε1(i)ε2(i)x
j
f (i) = 0. (6)

Similarly, for homogeneous self-crossings of α we have the following equations,
corresponding to the four possible configurations in Fig. 10:

(a) x j
i − x j

i+1 − 2x j
f (i) = 0,

(b) x j
i − x j

i+1 + 2x j
f (i) = 0,

(c) x j
i − x j

i+1 + 2x j
f (i) = 0,

(d) x j
i − x j

i+1 − 2x j
f (i) = 0.

We can again consolidate them into one equation, this time using ε3:

x j
i − x j

i+1 + 2ε3(i)x
j
f (i) = 0. (7)

Now we consider crossings of α under γ , as in Fig. 12. There are six possible con-
figurations for the 2-cells above crossings of α under γ , shown in Fig. 13. We again
count the number of times the 1-chain a2,i − a3,i appears in each and set this equal to
zero. The corresponding equations are shown below:

(a) x j
i − x j

i+1 = 1,

(b) x j
i − x j

i+1 = −1,

(c) x j
i − x j

i+1 = 0,

(d) x j
i − x j

i+1 = −1,

(e) x j
i − x j

i+1 = 1,

(f) x j
i − x j

i+1 = 0.

Rewriting in terms of ε and ε
j
4 gives

x j
i − x j

i+1 = ε(i)ε j
4 (i). (8)

Unlike the previous two, this equation does depend on j ; the right hand side will be
1 for one lift, −1 for another, and 0 for the third one. The boundary of C j is then, by
construction,

∑s−1
i=0 g j,i = γ j . 
�

4 Computing Linking Numbers and Proof of Theorem 1.2

To complete the computation, we introduce the second pseudo-branch curve δ into
the diagram α ∪ γ without changing the subscripts on the arcs ki of α or the arcs
gi of γ . We label the arcs of δ by h0, . . . , ht−1, where t is the number of crossings
of δ under α plus the number of crossings of δ under γ . (Self-crossings of δ do not
contribute anything to the linking number.When numbering arcs of δ for the computer
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program, we will assign consecutive arcs of δ the same number if they are separated
by an overcrossing by another arc of δ, in order to slightly simplify the input.)

We again use the notation fδ(i), or just f (i), to denote the subscript of the overstrand
at the head of the arc hi . As was the case with γ , the preimage of the curve δ may have
one, two, or three connected components. We begin with the case where the preimages
of both γ and δ are three closed loops. Let δ1, δ2, and δ3 denote the three lifts of δ;
as before, we choose the subscripts on the δk so that the lift of h0 which is contained
in the 3-cell e3k is a subset of δk . Let hk,i denote the lift of hi which is a subset of δk .
Let lhk (i) denote the subscript s of the 3-cell e3s which contains the arc hk,i . We now
compute the linking number I j,k of γ j with δk , which amounts to proving our main
theorem.

Theorem 4.1 Let f : M → S3 be a three-fold irregular dihedral cover branched along
a knot α, and let δ, γ ⊂ S3 − α be embedded, disjoint, oriented curves. If the lifts γ j

and δk are rationally null-homologous closed loops in M for j, k ∈ {1, 2, 3}, then the
linking number I j,k of γ j with δk is the sum

I j,k =
t−1∑

i=0

ci ,

where ci is given by

ci =

⎧
⎪⎨

⎪⎩

εk5(i)x
j
f (i) if hi terminates at an arc k f (i) of α,

εδ(i)ε
j,k
6 (i) if hi terminates at an arc of γ,

0 if hi terminates at an arc of δ.

Proof of Theorem 1.2 Assume that we have found a solution (x j
0 , . . . , x j

m−1) ∈ Q
m to

the set of equations in Proposition 1.1. Then the 2-chain bounding γ j is

s−1∑

i=0

Bj,i +
m−1∑

i=0

x j
i (A2,i − A3,i ).

Crossings of δ under bothα and γ may contribute to the linking number. Self-crossings
of δ do not contribute to the linking number, which is why our numbering system
ignores these crossings. One possible configuration of cells above a crossing of δ

under α is shown in Fig. 14. A schematic showing all possible configurations is in
Fig. 15. The lift hk,i will intersect one of the cells A1, f (i), A2, f (i), or A3, f (i). If it
intersects A1, f (i), this crossing does not contribute to I j,k because A1, f (i) is never
contained in the 2-chain bounding γ j . If it intersects A2, f (i), the crossing contributes

εδ(i)x
j
f (i) to I j,k . If it intersects A3, f (i), the crossing contributes −εδ(i)x

j
f (i) to I j,k .

We now work out this contribution for each of the six configurations in Fig. 15.

(a) +x j
f (i), (b) −x j

f (i), (c) +0, (d) −x j
f (i), (e) +x j

f (i), (f) +0.
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e3
2

h2,i

h2,i+1

e3
1

e3
3k2,  f(i)

k1, f(i)

h1,i

h1,i+1

h3,i

h3,i+1

A2, f(i)

A3, f(i)

A1, f(i)

Fig. 14 One possible configuration of cells near the lift of a crossing where δ passes under α

(a) (b) (c)

(d) (e) (f)

hk,i

δ=1 5
k =0

hk,i

hk,i
hk,i

hk,i

hk,i

δ=1 5
k = –1 δ=1 5

k =1 

δ= –1 5
k =–1 δ= –1 5

k =1 δ= –1 5
k =0

Fig. 15 Configurations of cells above a crossing of δ under α. Dotted 2-cells indicate the locations of the
cells A2,i and A2,i+1

We define εk5 as follows:

εk5(i) =

⎧
⎪⎨

⎪⎩

1 if lhk (i) = w( f (i)),

0 if lhk (i) = c( f (i)), and

−1 otherwise.

(9)

The contribution to I j,k of a crossing of δ under α is then εk5(i)x
j
f (i).

Now consider crossings of δ under γ . The picture in the cover is similar to that of
Fig. 11, except that the under-crossing arcs are h·,i ’s rather than g·,i ’s. The cell Bj, f (i)

appears in the 2-chain bounding γ j exactly once, so the contribution of such a crossing
to I j,k is εδ(i) if the lifts of hk,i and g j, f (i) are in the same 3-cell, and 0 otherwise.
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Define ε6 as follows:

ε
j,k
6 (i) =

{
1 if lhk (i) = lgj ( f (i)), and

0 otherwise.
(10)

By construction, crossings of δ under γ contribute εδ(i)ε
j,k
6 (i) to I j,k . The theorem

follows. 
�

4.1 A Note on Pseudo-Branch CurvesWhich Lift to Fewer Than Three Loops

The pre-image of a pseudo-branch curve γ under the covering map may well have
fewer than three connected components. Precisely, the lifts of γ could include two
closed loops γ1 · γ2 and γ3, or one closed loop γ1 · γ2 · γ3, where each γ j covers γ and
· denotes concatenation of paths.

If some concatenation σ of the γi ’s forms a closed, rationally null-homologous
loop, we can still find a 2-chain Cσ with boundary σ using the methods given in
the previous Sect. 3. We do this by writing down the three systems of equations for
j = 1, 2, 3 listed in Proposition 1.1. The 2-chain Cσ bounding σ is then

Cσ =
∑

j∈S

(
s−1∑

i=0

Bj,i +
m−1∑

i=0

x j
i (A2,i − A3,i )

)

.

Now let us consider the linking number between two such pseudo-branch curves.
Suppose the closed loop σ is a concatenation of paths γi , where i ∈ S ⊂ {1, 2, 3}, and
the closed loop τ is a concatenation of paths δi , where i ∈ T ⊂ {1, 2, 3} and each δi
is a lift of a second pseudo-branch curve δ ⊂ S3 − α. It follows from Sect. 4.1 that,
in the notation of the same section, if σ and τ are rationally null-homologous, their
linking number is equal to

∑
j∈S,k∈T I j,k .

4.2 Linking Numbers Between Branch Curves

Proposition 1.1 and Theorem 1.2 also allow us to compute the linking number of the
branch curves α1 and α2, as follows. Let the pseudo-branch curve γ be a push-off of α
along the vector field �A from Sect. 2.3. Since the diagram of α has an even number
of crossings, γ has three lifts. Two are isotopic to the index-2 lift of α (these are
push-offs of α2 along ± �A2), and one is isotopic to the index-1 lift of α. Now take a
second push-off δ of α along �A, disjoint from γ . Theorem 1.2 applied to a diagram of
the link α ∪ γ ∪ δ gives the linking number of α1 and α2.

From this point of view, our results generalize the result of Perko [22], which gives
an algorithm for computing the linking number of α1 and α2 using a cell structure
determined by the cone on α. Recall the cell structure we introduce in Sect. 2.3 is a
subdivision of Perko’s cell structure.
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Proposition 4.2 (Perko [22]) If the following inhomogeneous system of linear equa-
tions,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1i − x1i+1 + ε1(i)ε2(i)x1f (i) = ε(i)ε2(i) if crossing i is an inhomogeneous

crossing of α,

x1i − x1i+1 + 2ε3(i)x1f (i) = 0 if crossing i is a homogeneous

crossing of α,

has a solution (x10 , x
1
1 , . . . , x

1
m−1) over Q, then the index-1 branch curve α1 is ratio-

nally null-homologous and is bounded by the 2-chain

m−1∑

i=0

(
A1,i + x1i (A2,i − A3,i )

)
.

Similarly, if the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x2i − x2i+1 + ε1(i)ε2(i)x2f (i) = ε2(i)

2
(ε1(i) − ε(i)) if crossing i of α is

inhomogeneous,

x2i − x2i+1 + 2ε3(i)x2f (i) = ε3(i) if crossing i of α is

homogeneous,

has a solution (x20 , x
2
1 , . . . , x

2
m−1) over Q, then the index-2 branch curve α2 is ratio-

nally null-homologous and is bounded by the 2-chain

m−1∑

i=0

(
x2i A2,i + (1 − x2i )A3,i

)
.

4.3 Linking Numbers Between Branch and Pseudo-Branch Curves

By again letting γ be a push-off of α, we can use Proposition 1.1 and Theorem 1.2 to
compute the linking number between the lifts of another pseudo-branch curve δ with
the two branch curves, where the branch curves are isotopic to lifts of γ . However,
this requires using a numbered diagram of the link α ∪ γ ∪ δ. Alternatively, one can
compute the linking numbers of the lifts δ1, δ2, and δ3 of a pseudo-branch curve δ with
the branch curves α1 and α2 using only the diagram α ∪ δ. We use Proposition 4.2
above, which gives 2-chains bounding α1 and α2 in terms of the cell structure derived
from the cone on α.

Arcs of the diagram of α are labeled k0, . . . , km−1, wherem is now simply the num-
ber of self-crossings of α; we continue to assumem is even. Adjacent arcs separated by
the overarc k f (i) are labeled ki and ki+1. As before, we introduce the pseudo-branch
curve δ to the diagram without changing the labeling on the arcs of α. The arcs of δ

are labeled h0, h1, . . . , ht−1, where t denotes the number of crossings of δ under α.
Adjacent arcs of δ separated by an overstrand of δ are given the same label hi and
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viewed as one arc, and adjacent arcs of δ separated by the overstrand k fδ(i) of α are
labeled hi and hi+1. Now, from this numbered diagram, we compute the linking num-
bers between branch and pseudo-branch curves by the formula given in Theorem 4.3
below.

Theorem 4.3 Suppose that the pseudo-branch curve δ lifts to three null-homologous
closed loops δk for k ∈ {1, 2, 3}. Let {x1i } and {x2i } be the solutions to the two systems
of equations in Proposition 4.2. The linking number I 1k of δk with the index-1 branch
curve α1 is

t∑

i=0

ci , (11)

where
ci = εk5(i)x

1
f (i) + εδ(i)

(
1 − |εk5(i)|

)
. (12)

The linking number I 2k of δk with the index-2 branch curve α2 is (11), where

ci = εk5(i)x
2
f (i) + εk5(i)

2

(
εδ(i)ε

k
5(i) − 1

)
. (13)

Proof The index-1 curve α1 is the boundary of the 2-chain

m−1∑

i=0

(
A1,i + x1i (A2,i − A3,i )

)
.

We compute the contribution to the linking number of δk with α1 for each crossing of
δ under α. Recall that the possible configurations of cells above a crossing of δ under
α are shown in Fig. 15. The contribution for each configuration is

(a) +x1f (i),

(b) −x1f (i),

(c) +1,
(d) −x1f (i),

(e) +x1f (i),
(f) −1.

We rewrite the contributions above in terms of εδ and εk5 to get (12). The index-2
curve α2 is the boundary of the 2-chain

m−1∑

i=0

(
x2i A2,i + (1 − x2i )A3,i

)
.

The contribution for each configuration is

(a) +x2f (i),

(b) +(1 − x2f (i)),

(c) 0,
(d) −x2f (i),

(e) −(1 − x2f (i)),
(f) 0.

We rewrite the contributions above in terms of εδ and εk5 to get (13). 
�
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5 Examples

We use our algorithm to compute the linking numbers of pseudo-branch curves. The
branch curve α is a knot of two 3-colored trefoil knots. Since the trefoil is a 2-bridge
knot, its irregular three-fold dihedral cover is again S3. From there, one can see that
the irregular three-fold dihedral cover of S3 branched along the knot α is S1 × S2.

Now we choose pseudo-branch curves on which we perform our computations. We
focus on curves which appear in our primary applications, see Sect. 1.2. We briefly
explain the context here, though it is not necessary for understanding the linking
number computation itself.

5.1 Characteristic Knots

Cappell and Shaneson proved in [9] that the regular and irregular p-fold dihedral
covers of (S3, α) can be constructed from the p-fold cyclic cover of S3 branched
along an associated knot β ⊂ S3 − α, which they called a mod p characteristic knot
for α. They also showed that, up to the appropriate equivalence relations, mod p
characteristic knots for α, are in one-to-one correspondence with p-fold irregular
dihedral covers of α. For a precise definition, let V be a Seifert surface for α and LV

the corresponding linking form. A knot β ⊂ V ◦ is a mod p characteristic knot for α

if [β] is primitive in H1(V ;Z) and (LV + LT
V )β ≡ 0 mod p.

Characteristic knots play an essential role in many of the potential applications of
this work, including the computation of Casson–Gordon invariants [19], the Rokhlin
μ invariant [9], and the computation of the invariant �p discussed earlier [6,18].
Specifically, these invariants are computed using linking numbers of lifts of curves
in V − β, where V is a Seifert surface for α, and β is a characteristic knot. For the
purposes of this paper, the essential property of a mod 3 characteristic knot β ⊂ V is
that every simple closed curve in V −β lifts to three closed curves in the dihedral cover
of α corresponding to β. As a result, we have focused on computations with curves
in S3 − α whose lifts to a three-fold dihedral cover of (S3, α) have three connected
components.

In the examples below, we let V be the connected sum of two copies of the familiar
Seifert surface for the minimal-crossing diagram of the trefoil in 2-bridge position,
namely a surface consisting of two disks joined by three twisted bands. The charac-
teristic knot β is then the connected sum of two copies of a characteristic knot for the
trefoil; it is shown in blue in Figs. 16 and 17.

5.2 Examples

We apply our algorithm to the following pseudo-branch curves: the characteristic knot
β, defined above; an essential curve ω1 (see Fig. 16) in V − β, which has one null-
homologous lift and two homologically nontrivial lifts; and a pseudo-branch curve ω2
(see Fig. 17) which is a push-off of a curve in V intersecting β once transversely, and
lifts to a single null-homologous closed curve.
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Fig. 16 The connected sum, α, of two trefoils. A characteristic knot, β, for α. A curve, ω1, on a Seifert
surface V for α, which is disjoint from β. The numbering on α corresponds to the case where β plays the
role of the first pseudo-branch curve γ

Our computer algorithm detects the number of lifts and whether each is rationally
null-homologous, and allows us to compute the linking numbers of all pairs of ratio-
nally null-homologous lifts. The results of this computation are discussed below. In
each part, we choose one of the curves above to play the role of the first pseudo-branch
curve, referred to as γ throughout the previous sections (this is the curve for which
we find bounding 2-chains), and then compute linking numbers by letting the other
curves play the role of the second pseudo-branch curve δ.

Part I. To start, the role of the first pseudo-branch curve, denoted by γ throughout
the previous sections, is played by the characteristic knot β. We include all the input
needed for the computer program for our first computation, which finds intersection
numbers of lifts of ω1 with 2-chains whose boundaries are lifts of β. The input for
other computations is similar.

First, we find the list of subscripts corresponding to the overarcs at the end of each
arc of α:

( f (0), f (1), . . . , f (13)) = (7, 0, 12, 7, 6, 10, 3, 5, 6, 3, 2, 0, 0, 3).

Next, we record the color of each arc of α,

(c(0), c(1), . . . , c(13)) = (1, 1, 1, 2, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3),
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Fig. 17 The connected sum, α, of two trefoils. A characteristic knot, β, for α. A push-off, ω2, of a curve
on a Seifert surface V for α, which intersects β once transversely. The numbering on α corresponds to the
case where β plays the role of the first pseudo-branch curve γ

and the signs of crossings where arcs of α terminate:

(ε(0), ε(1), . . . , ε(13)) = (−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1, 1).

We also record whether each arc ki of α terminates at some other arc of the knot α (in
which case we write t(i) = k), or at an arc of the first pseudo-branch curve (in which
case we write t(i) = p); we refer to this as a list of crossing types:

(t(0), t(1), . . . , t(13)) = (p, p, k, k, p, k, p, k, p, p, p, k, p, k).

Nowwe record information about the first pseudo-branch curve γ = β. The subscripts
on the overarcs at the end of each arc of β are:

( fγ (0), fγ (1), . . . , fγ (9)) = (12, 0, 10, 6, 5, 7, 5, 0, 12, 3).

The signs for β are

(εγ (0), εγ (1), . . . , εγ (9)) = (1,−1, 1,−1,−1, 1,−1,−1, 1,−1).
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Table 2 The coefficients x j
i of A2,i in the 2-chain bounding the j th lift of β

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

x1i −1 −2 −2 −1 −1 0 1 0 0 0 1 0 −1 0

x2i 1 1 2 1 1 1 0 0 −1 0 −1 0 1 0

x3i 0 1 0 0 0 −1 −1 0 1 0 0 0 0 0

The list of crossing types for β are

(tγ (0), tγ (1), . . . , tγ (9)) = (k, k, k, p, k, k, k, p, k, k).

The algorithm finds a 2-chain bounding each lift of β. The 2-chain bounding the j th

lift of β can be described by a list of coefficients x j
i of 2-cells A2,i , as defined in

Sect. 3. The coefficients for the three lifts of β are given in Table 2.

To compute the intersection numbers, we need to supply the overarc numbers fδ(i),
signs of crossings εδ(i), and crossing types tδ(i) for the second pseudo-branch curve δ.

First, we let δ = ω1. Its overarc numbers are (0, 12, 0, 5, 6, 7). Its signs are
(−1, 1,−1, 1, 1,−1). Its crossing types are (p, k, k, k, p, k). The matrix of inter-
section numbers I j,k of a 2-chain bounding the j th lift of β with the kth lift of ω1
is

(I j,k) =
⎛

⎝
0 −1 1

−1 1 0
1 0 −1

⎞

⎠ .

However, we will see in Part II of this example that only the first lift of ω1 is null-
homologous. Thus, the first column of the matrix (in bold) gives the linking numbers
of the null-homologous lift of ω1 with each lift of β. The intersection numbers in the
second and third columns turn out not to be well-defined linking numbers.

Next we let ω2 play the role of the second pseudo-branch curve δ. Accordingly, we
input the overarc numbers (10, 3, 6, 5), signs of crossings (1,−1,−1,−1), and cross-
ing types (k, p, p, k). The matrix of intersection numbers I j,k of a 2-chain bounding
the j th lift of β with the kth (path) lift of ω2 is

(I j,k) =
⎛

⎝
−1 −1 0
−1 1 −2
0 −2 0

⎞

⎠ .

In this case the three path-lifts of ω2 fit together to form one closed curve in S1 × S2.
The linking numbers of the single (closed) lift ofω2 with each of the three lifts of β are
obtained by summing the rows of the matrix. Hence, all the linking numbers are −2.

Part II. To complete the example, we let the role of the first pseudo-branch curve be
played by ω1. The list of coefficients x

j
i of the 2-cells A2,i in the 2-chain bounding
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Table 3 The coefficients x j
i of A2,i in the 2-chain bounding the j th lift of the curve ω1 in V − β

i 0 1 2 3 4 5 6 7 8 9

x1i 0 0 0 0 −1 0 1 1 0 0

x2i . . . . . . . . . .

x3i . . . . . . . . . .

Note that the x2i and x3i are undefined because the corresponding lifts are not rationally null-homologous

lift j ofω1 is given in Table 3.When j = 2, 3 these coefficients are not defined because
the corresponding lifts of ω1 are not null-homologous, and the algorithm detects this,
failing to produce a solution for the x j

i . The matrix of intersection numbers of the
2-chain bounding the j th lift of ω1 with the kth lift of β is

(I j,k) =
⎛

⎝
0 −1 1
. . .

. . .

⎞

⎠ .

The empty positions in the matrix above indicate that the corresponding rational 2-
chain does not exist; i.e., the given lift is not rationally null-homologous. The first
row of the matrix gives the linking numbers of the null-homologous lift of ω1 with
each lift of β, and we see these numbers agree with the first column of the matrix of
intersection numbers of 2-chains bounding lifts of β with lifts of ω1, confirming our
first computation.

The algorithm also allows us to compute the linking numbers of each of the
null-homologous pseudo-branch curves above (the three lifts of β; the only null-
homologous lift of ω1; the lift of ω2) with each of the branch curves as well. These
linking numbers are all zero, as one can also deduce from a geometric argument, using
the construction in Cappell–Shaneson [9] together with the fact that the curves β, ω1,
and ω2 lie on a Seifert surface for α.
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