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Abstract
Line systems passing through the origin of the d-dimensional Euclidean space admit-
ting exactly two distinct angles are called biangular. It is shown that the maximum
cardinality of biangular lines is at least 2(d − 1)(d − 2), and this result is sharp for
d ∈ {4, 5, 6}. Connections to binary codes, few-distance sets, and association schemes
are explored, along with their multiangular generalization.

Keywords Biangular lines · Few-distance sets · t-Designs

1 Introduction

This paper is concerned with optimal arrangements of unit vectors in Euclidean space.
Let d,m, s ≥ 1 be integers, let Rd denote the d-dimensional Euclidean space with
standard inner product 〈 · , · 〉, and let X ⊂ R

d be a set of unit vectors with the
associated set of inner products A(X ) := {〈x, x ′〉 : x �= x ′, x, x ′ ∈ X }. The
following two concepts are central to this paper:X forms a spherical s-distance set [5,
34,37,40] if |A(X )| ≤ s; andX spans a system of m-angular lines (passing through
the origin in the direction of x ∈ X ), if −1 /∈ A(X ) and |{γ 2 : γ ∈ A(X )}| ≤ m.
With this terminology a system of m-angular lines can be considered as the switching
class of certain spherical 2m-distance set without antipodal vectors. If the parameters s
andm are not specified, thenwe talk about few-distance sets [9], andmultiangular lines,
respectively. The fundamental question of interest concerns the maximum cardinality
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Table 1 Lower bounds on the maximum number of biangular lines in R
d

d 2 3 4 5 6 7 8 9 10 11

# 5∗ 10∗ 12∗ 24∗ 40∗ 72 126 240 256 276

d 12 13 14 15 16 17–20 21 22 23–35 36–

# 296 336 392 456 576 816 896 1408 2300 2(d − 1)(d − 2)

and structure of the largest sets X and their corresponding A(X ). In particular, one
is interested in finding the correct asymptotic growth rate.

Equiangular lines (i.e., the case m = 1) are well-known combinatorial objects
[19,32,33], receiving considerable recent attention, see e.g., [3,24]. Biangular lines
correspond to the case m = 2, which have also been the subject of both classical
[15,43], as well as more recent studies [7,8,14,28,41]. In addition, they have been
investigated from the viewpoint of tight frames [23,45]. Our motivation for studying
these objects is fueled by their intrinsic connection to kissing arrangements [16,18,36].
In particular, we hope that the techniques and results described in this paper will
eventually contribute to a deeper understanding of low-dimensional sphere packings.
The goal of this paper, which heavily builds on the theory set forth earlier in [44],
is to describe a systematic approach to the study of multiangular lines, focusing in
particular on the biangular case.

The outline of this paper is as follows: in Sect. 2 we give various constructions
of biangular lines, showing that their maximum number is at least 2(d − 1)(d − 2)
in R

d for every d ≥ 3. In Sect. 3 we set up a general computational framework for
exhaustively generating all (sufficiently large) biangular line systems, and in Sect. 4we
leverage on these ideas to classify the largest sets in Rd for every d ≤ 6. In Sect. 5 we
present our results on multiangular lines. In Sect. 6 we conclude our manuscript with
a selection of open problems. To improve the readability, a technical part on graph
representation was moved to Appendix A, along with a few rather large matrices
displayed in Appendix B.

For a convenient reference, we display here in Table 1 the best known lower bounds
on themaximumnumber of biangular lines inRd (where entriesmarkedby∗ are exact).
All these numbers are new, except for the well-known cases in dimensions 2, 3, 22,
and 23.

2 Constructions of Biangular Lines

The goal of this section is to give various explicit constructions of large biangular line
systems in low dimensional spaces.

Let X ⊂ R
d be a set of unit vectors, spanning biangular lines, and let O be an

orthogonal matrix representing an isometry of Rd . Since for every x ∈ X the sets
X ′ := (X \ {x}) ∪ {−x} and X ′′ := {Ox : x ∈ X } span the same system of
biangular lines as X , we may replace any x ∈ X with its negative or apply O

123



Discrete & Computational Geometry (2021) 66:1113–1142 1115

whenever it is necessary. Throughout this section we represent biangular line systems
with a (conveniently chosen) corresponding set of unit vectors, and uniqueness is
understood up to these operations. First, we give an elementary proof to the following
trivial warm-up result.

Lemma 2.1 The five lines passing through the antipodal vertices of the convex regular
decagon form the unique maximum biangular line system in R2.

Proof Let n ≥ 1, let α, β ∈ R be such that 0 ≤ α < β < 1, and assume that
X := {xi : i ∈ {1, . . . , n}} spans a maximum biangular line system in R

2 with
corresponding set of inner products A(X ) ⊆ {±α,±β}. We may assume without
loss of generality that x1 = [1, 0]. Since for i ∈ {2, . . . , n} we have 〈x1, xi 〉 ∈ A(X ),
it immediately follows that

xi ∈ {[
α,

√
1 − α2

]
,
[
α,−

√
1 − α2

]
,
[
β,

√
1 − β2

]
,
[
β,−

√
1 − β2

]}
,

after replacing xi by −xi if it is necessary. Therefore n ≤ 5, and the claimed configu-
ration is indeed a largest possible example.

To see uniqueness, let us use the notation x2 = [α,
√
1 − α2], x3 = [α,−√

1 − α2],
x4 = [β,

√
1 − β2], and x5 = [β,−√

1 − β2]. Since 〈x2, x3〉 = 2α2 − 1, 〈x4, x5〉 =
2β2−1, and 〈x2, x4〉+〈x2, x5〉 = 2αβ, the following system of polynomial equations
in the variables α and β must hold:

⎧
⎪⎨

⎪⎩

((2α2 − 1)2 − α2)((2α2 − 1)2 − β2) = 0,

((2β2 − 1)2 − α2)((2β2 − 1)2 − β2) = 0,

αβ((αβ)2 − α2)((αβ)2 − β2)((2αβ)2 − (α + β)2)((2αβ)2 − (α − β)2) = 0.

This admits the unique feasible solution α = (−1 + √
5)/4 and β = (1 + √

5)/4. ��
An alternate proof can be given to Lemma 2.1 by using more sophisticated tools, such
as Theorem 3.1 and [19, Remark 6.2]. We will show yet another proof later in Sect. 4.

Recall that a binary code of length d with minimum distance Δ is a set B ⊆ F
d
2

such that dist(b, b′) ≥ Δ for every distinct b, b′ ∈ B where dist( · , · ) denotes the
Hamming distance [21]. Let us define the following function:

Σ : F2 → R, Σ(0) = 1√
d

, Σ(1) = − 1√
d

,

and extend it coordinate-wise to a function from F
d
2 by writing Σ(b) := [Σ(b1), . . . ,

Σ(bd)] ∈ R
d . This yields a spherical embedding of the codewords.

Lemma 2.2 Let d ≥ 2, and let Δ1,Δ2 ∈ {1, . . . , d − 1}. Let B be a binary code
of length d, such that dist(b, b′) ∈ {Δ1,Δ2, d − Δ1, d − Δ2} for every distinct
b, b′ ∈ B. Then X := {Σ(b) : b ∈ B} spans a system of biangular lines with
A(X ) ⊆ {±(1 − 2Δ1/d),±(1 − 2Δ2/d)}.
Proof For every b, b′ ∈ B we have 〈Σ(b),Σ(b′)〉 = 1 − 2 dist(b, b′)/d > −1. ��
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For terminology and basic facts on lattices we refer the reader to the textbook [18]. It
is well known (see [15], [18, p. 117]) that the shortest vectors of the Dd lattices give
rise to biangular line systems.

Lemma 2.3 Let d ≥ 2, and let X ⊂ R
d be the subset of all permutations of the unit

vectors [±1,±1, 0, . . . , 0]/√2 whose first nonzero coordinate is positive. Then X
spans |X | = d(d − 1) biangular lines with A(X ) ⊆ {0,±1/2}.
Proof For distinct x, x ′ ∈ X the inner product 〈x, x ′〉 depends on the number of
positions where the nonzero coordinates of x and x ′ overlap. If there is no overlap, or
there are exactly two overlaps, then 〈x, x ′〉 = 0. Otherwise, if there is a single overlap,
then 〈x, x ′〉 = ±1/2. ��
Remark 2.4 We remark that for d ∈ {6, 7, 8} the sets of (nonantipodal) shortest vectors
of the exceptional lattices Ed give rise to biangular line systems in R

d with inner
product set {0,±1/2} formed by 36, 63, and 120 lines, respectively [18, p. 120].

Let 0 < h < 1. Starting from a spherical 2-distance set X ⊂ R
d , one may obtain a

family of biangular line systems in R
d+1, where the vectors x ∈ X are rescaled by

a factor of
√
1 − h2 and translated along the (d + 1)st coordinate to height h. In a

similar spirit, the six diagonals of the icosahedron can be continuously twisted in R3,
yielding a family of biangular lines [14].

Proposition 2.5 (infinite families) Let X ⊂ R
d be a spherical 2-distance set with

A(X ) ⊆ {α, β}, with α, β ≥ −1 and α, β < 1. Let 0 < h < 1. Then

Y (h) := {[
h, x

√
1 − h2

] : x ∈ X
}

spans a system of biangular lines in R
d+1 with A(Y (h)) ⊆ {h2 + (1 − h2)α, h2 +

(1 − h2)β}.
Proof For every y, y′ ∈ Y (h) we have 〈y, y′〉 = h2 + (1 − h2)〈x, x ′〉 for some
x, x ′ ∈ X . Furthermore, −1 /∈ A(Y (h)) by our assumptions on h. ��
Since the midpoints of the edges of the regular simplex in R

d form a spherical 2-
distance set of size d (d+1)/2, biangular lines of this cardinality are abundant inRd+1.
Translation to a well-chosen height yields the following.

Proposition 2.6 (lifting) Let X ⊂ R
d be a spherical 4-distance set with A(X ) ⊆

{α, β, γ , α +β −γ }, with α, β, γ ≥ −1 and α, β, γ < 1, and assume that α +β < 0.
Then Y := {[√−α − β, x

√
2]/√2 − α − β : x ∈ X } spans a system of biangular

lines in R
d+1 with

A(Y ) ⊆
{
± α − β

2 − α − β
,±2γ − α − β

2 − α − β

}
.

Proof For every y, y′ ∈ Y we have 〈y, y′〉 = (−(α + β) + 2〈x, x ′〉)/(2− α − β) for
some x, x ′ ∈ X . Furthermore, −1 /∈ A(Y ) by our assumptions on α, β, γ . ��
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Remark 2.7 Given a spherical 3-distance set X with A(X ) ⊆ {α, β, γ }, it might
happen that α + β < 0, α + γ < 0, and β �= γ . When this occurs, lifting via
Proposition 2.6 could result in nonisometric biangular line systems.

The main utility of Proposition 2.6 is that antipodal vectors (which span exactly the
same line) can be split into two nonantipodal vectors in the space one dimension
higher. It immediately follows that any equiangular line system leads to twice as many
biangular lines in the space one dimension higher.

Theorem 2.8 (cf. Theorem 3.1) For every d ≥ 3, there exists a set X ⊂ R
d span-

ning |X | = 2(d − 1)(d − 2) biangular lines with A(X ) ⊆ {±1/5,±3/5}.
Proof Take all 2(d − 1)(d − 2) vectors in Rd−1 forming a spherical 4-distance setX
with A(X ) ⊆ {−1,−1/2, 0, 1/2} in Lemma 2.3, and then use Proposition 2.6 to get
the claimed biangular line systems. ��
A further application of Proposition 2.6 is the following.

Corollary 2.9 For d ∈ {4, . . . , 16} there exists a set X ⊂ R
d spanning |X | = (d

3

)

biangular lines. There exists a set X ⊂ R
17 spanning |X | = (18

3

)
biangular lines.

Proof Consider the ‘canonical’ spherical 3-distance set X of cardinality
(d
3

)
which

can be obtained from
√
d − 3

3d

[
1, 1, 1,− 3

d − 3
, . . . ,− 3

d − 3

]
∈ R

d

by permuting the coordinates. It is easily seen that

A(X ) ⊆
{
− 3

d − 3
,

d − 9

3(d − 3)
,
2d − 9

3(d − 3)

}
.

Since for every x ∈ X , 〈x, [1, 1, . . . , 1]〉 = 0, X is embedded into R
d−1. Conse-

quently, if d = 18 thenX spans a biangular line system in R17. If d ≤ 16, then since
(d − 9)/(3(d − 3)) − 3/(d − 3) < 0, Proposition 2.6 yields the claimed configura-
tions in R

d . ��
Finally, a rather surprising consequence of Proposition 2.6 is the following: the bian-
gular line systemsmentioned in Remark 2.4 are not the best possible in their respective
dimension.

Corollary 2.10 There exists a set X ⊂ R
d spanning biangular lines with A(X ) ⊆

{±1/5,±3/5} for

(d, |X |) ∈ {(3, 4), (4, 12), (5, 24), (6, 40), (7, 72), (8, 126), (9, 240)}.

Proof The cases d ∈ {3, 4, 5, 6} follow fromTheorem 2.8. To see the remaining cases,
combine Proposition 2.6with the exceptional configurationsmentioned inRemark 2.4.

��
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Later (see Sect. 4) we will show that Theorem 2.8 gives rise to a largest possible line
system for d ∈ {4, 5, 6}, and we tend to believe that Corollary 2.10 gives the best
configurations for d ∈ {7, 8, 9} as well.

Next we prove a preliminary technical result. Following the terminology of [32],
we denote by N1/3(d) the maximum number of equiangular lines in Rd where the set
of inner products is a subset of {±1/3}. Recall that N1/3(0) = 0.

Proposition 2.11 For m ≥ 1 and d ≥ m, there exists a set X ⊂ R
d spanning

|X | = 2m · N1/3(d − m) biangular lines with A(X ) ⊆ {±1/5,±3/5}.
Proof Let E denote the set of canonical basis vectors ofRm , and consider a maximum
set Y ⊂ R

d−m spanning N1/3(d − m) equiangular lines with A(Y ) ⊆ {±1/3}. We
claim that the following setX ⊂ R

d spans a biangular line system:

X :=
{ [y√6, 2e]√

10
: y ∈ Y , e ∈ E

}
∪

{ [y√6,−2e]√
10

: y ∈ Y , e ∈ E

}
.

Indeed, as for x, x ′ ∈ X , we have 〈x, x ′〉 = 3〈y, y′〉/5 ± 2〈e, e′〉/5 for some (not
necessarily distinct) e, e′ ∈ E and y, y′ ∈ Y . Since 〈e, e′〉 ∈ {0, 1} and 〈y, y′〉 ∈
{±1/3, 1}, the claim follows. ��
We note the following.

Corollary 2.12 There exists a setX ⊂ R
14 spanning |X | = 392 biangular lines with

A(X ) ⊆ {±1/5,±3/5}.
Proof It follows from Proposition 2.11 by setting m = 7 and d = 7, and by recalling
from [32] that N1/3(7) = 28. ��
It turns out that one may combine certain line systems described in Proposition 2.11
with the 256 lines spanned by the ‘even half’ of the 10-dimensional hypercube. This
yields improved results for d ∈ {10, 11, 12, 13, 15, 16} and gives the same number of
biangular lines for d = 17 as Corollary 2.9.

Theorem 2.13 For d ≥ 10, there exists a set X ⊂ R
d spanning |X | = 256 +

20N1/3(d − 10) biangular lines with A(X ) ⊆ {±1/5,±3/5}.
Proof Let B ⊂ F

10
2 be the binary code of length 10 formed by codewords of even

weight, such that the first coordinate of every b ∈ B is 0. By Lemma 2.2 the set
Z := {Σ(b) : b ∈ B} ⊂ R

10 spans a system of 256 biangular lines with A(Z ) ⊆
{±1/5,±3/5}. Next, we consider a maximum setY ⊂ R

d−10 spanning N1/3(d−10)
equiangular lines with A(Y ) ⊆ {±1/3}. Let E denote the set of canonical basis
vectors of R10, and let o ∈ R

d−10 denote the zero vector. We claim that the following
setX ⊂ R

d spans a biangular line system:

X := {[√
6y, 2e

]
/
√
10 : y ∈ Y , e ∈ E

}

∪ {[√
6y,−2e

]
/
√
10 : y ∈ Y , e ∈ E

} ∪ {[o, z] : z ∈ Z }.
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Indeed, for x, x ′ ∈ X , we have

〈x, x ′〉 ∈ {
3〈y, y′〉/5 ± 2〈e, e′〉/5, ±2〈e, z〉/√10, 〈z, z′〉}

for some (not necessarily distinct) e, e′ ∈ E , y, y′ ∈ Y , and z, z′ ∈ Z . Since 〈e, e′〉 ∈
{0, 1}, 〈e, z〉 ∈ {±1/

√
10}, 〈y, y′〉 ∈ {±1/3, 1}, and 〈z, z′〉 ∈ {±1/5,±3/5, 1}, the

claim follows. ��
Corollary 2.14 There exists a set X ⊂ R

d spanning biangular lines with A(X ) ⊆
{±1/5,±3/5} for

(d, |X |) ∈ {(10, 256), (11, 276), (12, 296), (13, 336),
(15, 456), (16, 576), (17, 816)}.

Proof Combine Theorem 2.13 with [32, Thm. 4.5]. ��
Finally, we note that various cross-sections of the Leech lattice Λ24 (see [18, p. 133]
for how to construct its shortest vectors from the extended binary Golay code [12]
in explicit form) give rise to biangular line systems with inner product set {0,±1/3}.
Such line systems were investigated in [43].

Theorem 2.15 There exists a set X ⊂ R
d spanning biangular lines with A(X ) ⊆

{0,±1/3} for (d, |X |) ∈ {(21, 896), (22, 1408), (23, 2300)}.
Proof Let L ⊂ R

24, |L | = 196560, be the set of shortest vectors of Λ24, where
the vectors are normalized so that 〈�, �〉 = 1 for every � ∈ L . With this convention,
〈�, �′〉 ∈ {0,±1/4,±1/2,±1} for every �, �′ ∈ L . Now let � ∈ L be fixed. It is
well known (see [18, p. 264]) that the subset Y = {y : 〈�, y〉 = 1/2, y ∈ L }
contains 4600 vectors, independently of the choice of �. Note that for y ∈ Y we
have � − y ∈ Y and therefore the set Z := {(2y − �)/

√
3 : y ∈ Y } is antipodal,

and 〈�, z〉 = 0 for every z ∈ Z . Finally, let X ⊂ Z with |X | = 2300 so that
Z = {x : x ∈ X } ∪ {−x : x ∈ X }. Now X spans the claimed biangular line
system in R

23, since 〈y, y′〉 /∈ {−1/4,−1} and therefore for x, x ′ ∈ X we have
〈x, x ′〉 = (4〈y, y′〉 − 1)/3 ∈ {0,±1/3, 1}. Let x, x ′ ∈ X be such that 〈x, x ′〉 = 0.
Then U := {u : 〈u, x〉 = 0, u ∈ X }, V := {v : 〈v, x〉 = 〈v, x ′〉 = 0, v ∈ X } span
the claimed biangular line systems in dimension 22 and 21, respectively. ��
Another way to get biangular lines with the set of inner products {0,±1/3} is the
following.

Lemma 2.16 Let w ≡ 3 (mod 4) and d ≥ 2w +1 be positive integers. LetB ⊂ F
d
2 be

a binary constant weight code of length d, weight w, and minimum distance 2w − 2,
and assume that there exists a Hadamard matrix of order w + 1. Then there exists
a set X ⊂ R

d with |X | = (w + 1)|B| spanning a biangular line system with
A(X ) ⊆ {0,±1/w}.
Proof Recall that a Hadamard matrix H of order w + 1 is a (w + 1) × (w + 1)
orthogonal matrix with entries ±1/

√
w + 1. Let H ′ be the matrix obtained from H
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after removing its first column and renormalizing its rows. LetH ⊂ R
w be the set of

rows of H ′. Clearly, 〈h, h′〉 ∈ {±1/w, 1} for h, h′ ∈ H . NowX can be obtained by
replacing each codeword b ∈ B with a set ofw+1 real vectors where the support of b
(i.e., coordinates with binary 1) are replaced by the entries of h ∈ H , and coordinates
with binary 0 are replaced by 0 ∈ R. Since d ≥ 2w + 1, there are no two codewords
at Hamming distance d, and therefore the claim follows. ��
Corollary 2.17 For d ≥ 7 there exists a set X ⊂ R

d spanning |X |=4�(d − 1)
(d − 2)/6� biangular lines with A(X ) ⊆ {0,±1/3}. Furthermore, there exists a set
Y ⊂ R

d+1 spanning |X | biangular lines with A(Y ) ⊆ {±1/7,±3/7}.
Proof Indeed, this is a specialization of Lemma 2.16 for w = 3 and using constant
weight codes coming from the averaging argument in [13, Thm. 14]. The second part
of the claim is an immediate consequence of Proposition 2.6. ��
While Corollary 2.17 is weaker than Theorem2.8, it can be used in twoways. First, one
may embed the 2300 biangular lines from Theorem 2.15 into R

23+d , and extend this
configuration with an additional 4�(d−1)(d−2)/6� vectors (for d ≥ 7). Secondly, it
may happen that these configurations can be further extended to a spherical 4-distance
set with inner products {−2/3,−1/3, 0, 1/3}, and then an application of Proposi-
tion 2.6 would immediately yield biangular lines with inner products {±1/7,±3/7}
in R

24+d . The following result shows that the two largest sets mentioned in Theo-
rem 2.15 are inextendible.

Theorem 2.18 (the relative bound, [10,19]) Let d ≥ 3 and assume that X ⊂ R
d

spans a biangular line system with A(X ) ⊆ {±α,±β}, 0 ≤ α, β < 1. Assume
that α2 + β2 ≤ 6/(d + 4) and 3 − (d + 2)(α2 + β2) + d(d + 2)α2β2 > 0. Let
nα := |{[x, x ′] : 〈x, x ′〉2 = α2, x, x ′ ∈ X }|. Then

|X | ≤ d(d + 2)(1 − α2)(1 − β2)

3 − (d + 2)(α2 + β2) + d(d + 2)α2β2 . (1)

Equality holds if and only if

(
6

d + 4
− α2 − β2

)(
(α2 − β2)nα + |X |(|X | − 1)β2 + |X | − |X |2

d

)
= 0 and

(
6

d + 4
− α2 − β2

)
(α2 − β2)nα

= |X |(d2 + 3|X | − 4)

(d + 2)(d + 4)
− |X |(|X | − 1)β2

(
6

d + 4
− β2

)
.

Remark 2.19 For d ≥ 3 and i ∈ {2, 4} let C ((d−2)/2)
i (z) denote the Gegenbauer poly-

nomials in the sense of [20]. In Theorem 2.18 the equality holds if and only if

(
6

d + 4
− α2 − β2

) ∑

x,x ′∈X
C ((d−2)/2)
2 (〈x, x ′〉) =

∑

x,x ′∈X
C ((d−2)/2)
4 (〈x, x ′〉) = 0.
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In particular, ifX ⊂ R
d forms a spherical 4-design [4] such that A(X ) ⊆ {±α,±β},

then the equality holds in (1).

Remark 2.20 If there is equality in (1), then the quantity nα as defined in Theorem 2.18
is a nonnegative integer. The failure of this condition could be used to show the
nonexistence of various hypothetical configurations, e.g., in R

8 there does not exist
50 biangular lines with the set of inner products {±1/4,±1/2}.
In Table 2 we display data on the known biangular line systems meeting the relative
bound, and later in Corollary 4.12 we prove that this list is (essentially) complete for
d ≤ 6. The canonical examples are mutually unbiased bases (MUBs) [29], spanning
24i−1 +22i biangular lines in dimension d = 4i with inner products {0,±2−i }, i ≥ 1.
We note the following two examples.

Example 2.21 (36 biangular lines in R
7, see [17,22]) Let U be the 7 × 7 circulant

matrix with first row [0, 1, 0, 0, 0, 0, 0]. Let

Y := {[−7, 1, 1, 1, 1, 1, 1], [−1, 3, 3,−3, 3,−3,−3]} and

Z := {[1,−1,−3, 3, 3,−3,−3], [1, 3,−1,−3,−3,−3, 3],
[−1, 3,−3, 1,−3, 3,−3]}.

Then, the set

X = {[−7, 1, 1, 1, 1, 1, 1, 1]/√56
} ∪ {[1, yUi ]/√56 : i ∈ {0, 1, . . . , 6}, y ∈ Y

}

∪ {[3, zUi ]/√56 : i ∈ {0, 1, . . . , 6}, z ∈ Z
}

spans 36 biangular lines in R
7 with A(X ) ⊆ {±1/7,±3/7}. Indeed, all vectors are

orthogonal to [1, . . . , 1] ∈ R
8. The parameters of this line system meet the relative

bound.

Example 2.22 (256 biangular lines in R
16, see [21, p. 486], [38], [43]) Consider

a biplane [31] of order 4, that is, a 16 × 16 square {0, 1}-matrix H with constant
row and column sum 6, such that HHT = 4I16 + 2J16. We may simply take H :=
(J4− I4)⊗ I4+ I4⊗ (J4− I4), and letH ⊂ R

16 be the set of rows of H . LetB ⊂ F
6
2

be a binary code of length 6 formed by codewords of even weight, such that the first
coordinate of every b ∈ B is 0. By Lemma 2.2 the set Z := {Σ(b) : b ∈ B} ⊂ R

6

spans a system of 16 biangular lines with A(Z ) ⊆ {±1/3}. Replacing each codeword
b ∈ B with a set of 16 real vectors where the support of b (i.e., coordinates with
binary 1) are replaced by the entries of h ∈ H , and coordinates with binary 0 are
replaced by 0 ∈ R, spans the claimed 256 biangular lines in R

16 with the set of
inner products {0,±1/3}. Further nonisometric examples can be constructed by, e.g.,
choosing H in a different way. The parameters of these line systems meet the relative
bound.1

1 We are indebted to the reviewers for pointing out references. Apparently, Example 2.22 is related to the
minimal vectors of an overlattice of the Barnes–Wall lattice BW16, as described on the webpage http://
www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/obw16.html.
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Table 2 Biangular line systems meeting the relative bound

d n {α, β} Remark

3 6 {±1/
√
5} Icosahedron

10 {±1/3,±√
5/3} Dodecahedron

4 12 {0,±1/2} D4 lattice (MUBs)

6 27 {±1/4,±1/2} Schläfli graph, Example B.3

36 {0,±1/2} E6 lattice

7 28 {±1/3} Equiangular lines

36 {±1/7,±3/7} Example 2.21

63 {0,±1/2} E7 lattice

8 120 {0,±1/2} E8 lattice

16 144 {0,±1/4} MUBs

256 {0,±1/3} Example 2.22

22 275 {±1/6,±1/4} McLaughlin graph

1408 {0,±1/3} From Λ24

23 276 {±1/5} Equiangular lines

2300 {0,±1/3} From Λ24

4i 24i−1 + 22i {0,±2−i } MUBs, i ≥ 3

Finally, we note the following (almost immediate) consequence of [39, Theorem5.2
and 5.3].

Theorem 2.23 (see [39]) Let d ≥ 5 and let X ⊂ R
d span a maximum biangular

line system with A(X ) ⊆ {±α,±β}, 0 ≤ α < β < 1. Then z := (1−α2)/(β2 −α2)

is an integer. Furthermore,

z ≤
⌊
1

2
+

√
(d2 + d + 2)(d2 + d − 1)

4d2 + 4d − 8

⌋
.

Proof The statement is a reformulation of [39,Thms. 5.2 and5.3] and it holdswhenever
|X | ≥ d (d + 1). This in turn holds by Theorem 2.8 for maximum biangular line
systems whenever d ≥ 7. For d ∈ {5, 6} the set of inner products of (the unique)
maximum biangular line systems is {±1/5,±3/5} (see Theorems 4.7 and 4.9), and
therefore in these cases z = 3 is indeed an integer below the claimed bound. ��

3 Computational Framework

In this section, following ideas developed in [44], we set up a framework for system-
atically generating biangular lines. We will leverage on this newly established theory
in Sect. 4 where we demonstrate how to use this approach in practice. In particular,
we will determine the size of the largest biangular line systems in dimension d ≤ 6 by
using supercomputational resources, and classify the maximum cases. We remark that
this framework carries over to the multiangular setting after minor technical changes
(see Sect. 5 and Appendix A).
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3.1 A High Level Overview

Let d, n ≥ 1, and let X = {x1, . . . , xn} ⊂ R
d be a set of unit vectors, spanning a

system of n biangular lines. From here on, we will represent X by its Gram matrix
G := [〈xi , x j 〉]ni, j=1. Conveniently, the matrix G is invariant up to change of basis,

and has the following combinatorial properties: G is n × n, G = GT , Gii = 1 for
every i ∈ {1, . . . , n}, and Gi j ∈ A(X ) for distinct i, j ∈ {1, . . . , n}. Furthermore,
it has the following algebraic properties: G is positive-semidefinite and rank G ≤ d.
Conversely, given any matrix G with these properties, one may reconstruct (uniquely,
up to change of basis), via the Cholesky decomposition, an n × rank G matrix F such
that FFT = G holds [27].

Our aim is to find a way for generating all (sufficiently large) n × n Gram matrices
of biangular line systems in a fixed dimension d. It follows from Ramsey theory that
n is bounded in terms of d, and we recall here the following explicit upper bound.

Theorem 3.1 (absolute bound, [19], cf. Theorem 2.8) Let X ⊂ R
d span a bian-

gular line system. Then |X | ≤ (d+3
4

)
.

We say that a permutation σ of the set Γ = {α, β,−α,−β} is a relabeling if σ(γ ) =
−σ(−γ ) for every γ ∈ Γ . The following is central to this paper.

Definition 3.2 LetC(α, β) be an n×n symmetricmatrix with constant diagonal 1 over
the polynomial ring Q[α, β] whose off-diagonal entries are {0,±α,±β}. Two such
matrices, C1 and C2, are called equivalent, if C1(α, β) = PC2(σ (α), σ (β))PT for
some signed permutation matrix P and relabeling σ . A representative of this matrix
equivalence class is called a candidate Gram matrix.

Candidate Grammatrices capture the combinatorial structure of Grammatrices. Since
our focus is on the biangular case, we will assume in the following that

αβ(α2 − β2)(α2 − 1)(β2 − 1) �= 0. (2)

Furthermore, at most two out of the three symbols 0,±α,±β can appear as a matrix
entry in C(α, β). Clearly, if G is a Gram matrix of a biangular line system, then
there exists a candidate Gram matrix C(α, β) such that G = C(α∗, β∗) for some
α∗, β∗ ∈ R, subject to (2). In particular, rankC(α∗, β∗) ≤ d should hold.

Example 3.3 (candidate Gram matrices of order 3)

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

⎡

⎣
1 0 0
0 1 α

0 α 1

⎤

⎦ ,

⎡

⎣
1 0 α

0 1 α

α α 1

⎤

⎦ ,

⎡

⎣
1 α α

α 1 α

α α 1

⎤

⎦ ,

⎡

⎣
1 α α

α 1 β

α β 1

⎤

⎦

Note that at most two symbols appear (whose values are unspecified) within the off-
diagonal positions, signifying distinct inner products.

The main advantage of using candidate Gram matrices is that in this way we are
transforming the problem of ‘infinitely many n×n Grammatrices’ to the conceptually
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simpler ‘finite list of n × n candidate Gram matrices’ (where n itself is bounded by
Theorem 3.1). Then, one should decide whether a candidate Gram matrix actually
represents a Gram matrix via a spectral analysis, as illustrated below.

Example 3.4 (Petersen graph, cf. Proposition 2.5) Consider the following example
of a candidate Gram matrix of order 10:

C(α, β) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 α α α α α α β β β

α 1 α α α β β α α β

α α 1 α β α β α β α

α α α 1 β β α β α α

α α β β 1 α α α α β

α β α β α 1 α α β α

α β β α α α 1 β α α

β α α β α α β 1 α α

β α β α α β α α 1 α

β β α α β α α α α 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Here C(0, 1) − I10 is the adjacency matrix of the Petersen graph. Using stan-
dard spectral graph theory, one may find that for every α∗, β∗ ∈ R we have
Λ(C(α∗, β∗)) = {[1 + 6α∗ + 3β∗]1, [1 + α∗ − 2β∗]4, [1 − 2α∗ + β∗]5}. There-
fore rankC(α∗, 2α∗ − 1) ≤ 5. Furthermore, for α∗ ≥ 1/6, α∗ < 1 the matrix
C(α∗, 2α∗ − 1) is positive semidefinite. The matrix C(1/6,−2/3) on the boundary
describes the Petersen code [2], which corresponds to themidpoints of the regular sim-
plex in R4. We remark that since the Petersen code is a 2-distance set, Proposition 2.5
can be applied which gives rise to the family of biangular lines C(α∗, 2α∗ − 1) in R5.

However, computing the spectrum of a candidate Gram matrix without any apparent
structure is a delicate task, and instead we will rely on the following key technical
result.

Proposition 3.5 (strong Gröbner test, cf. Corollary 3.8) Let d ≥ 2 be fixed and
let C(α, β) be a candidate Gram matrix of order n ≥ d + 1. LetM denote the set of
all (d +1)× (d +1) submatrices of C. Let ω be an auxiliary variable. If the following
system of polynomial equations,

{
det M(α, β) = 0 for all M ∈ M ,

ωαβ(α2 − β2)(α2 − 1)(β2 − 1) + 1 = 0,
(3)

has no solutions in C
3, then rankC(α∗, β∗) ≤ d cannot hold for any α∗, β∗ ∈ R

subject to (2).

Proof Indeed, if rankC(α∗, β∗) ≤ d for some α∗, β∗ ∈ C subject to (2), then neces-
sarily all (d+1)×(d+1)minors ofC(α∗, β∗) are vanishing. In particular, there exists
an ω∗ ∈ C such that (α∗, β∗, ω∗) ∈ C

3 is a solution of the system of equations (3). ��
We remark that one can decide whether a system of polynomial equations with rational
coefficients has any complex solutions by computing a Gröbner basis [6].
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Based on these concepts, we nowmay classify biangular line systems in the follow-
ing way. First, we fix d ≥ 2 and n = (d+3

4

)
. Secondly, we generate (by computers, say)

all n × n candidate Gram matrices. Thirdly, for each candidate Gram matrix C(α, β)

generated, we attempt to determine, via solving the system of equations (3) the (not
necessarily finite) set of all real matrices {C(α∗

i , β
∗
i ) : rankC(α∗

i , β
∗
i ) ≤ d, i ∈ I }.

Finally, we keep only those which are positive semidefinite. When no such matrices
are found, then we decrease n by one and repeat the same procedure.

There are severalweak points of this naivemethod restricting heavily its utility. First
of all, the bound on n, stipulated by Theorem 3.1, is rather crude, and there is no way
to generate all candidate Gram matrices of that size. Secondly, when the solution set
of (3) is infinite, then it is a very delicate task to parametrize the matrices C(α∗

i , β
∗
i ),

i ∈ I , and to describe which of these are positive semidefinite. We overcome these
difficulties by sophisticated matrix generation techniques, and using Proposition 3.5
for discarding a large fraction of small candidate Gram matrices. We discuss these
efforts in the next subsection.

3.2 The Framework in Detail

In this subsection we describe in more detail how to generate candidate Grammatrices
in an equivalence-free exhaustive manner. The main technical tool is canonization, see
[30, Section 4.2.2] and [42]. The vectorization of a candidate GrammatrixC of order n
is the vector vecC := [C21,C31,C32, . . . ,Cn1, . . . , Cn,n−1]. We say that a candidate
Gram matrix C(α, β) is in canonical form, if it holds that

vecC(α, β) := min {vec(PC(σ (α), σ (β))PT ) : P is a signed

permutation matrix, σ is a relabeling}, (4)

where comparison of vectors is done lexicographically (one may assume, e.g., that the
entries are ordered as 0 ≺ α ≺ −α ≺ β ≺ −β). One particularly attractive feature
of the above canonical form is that the leading principal submatrices of canonical
matrices are themselves canonical. Therefore canonical matrices can be generated
inductively, using smaller canonical matrices as ‘seeds’. This method is usually called
‘orderly generation’.

Lemma 3.6 The number of n × n canonical candidate Gram matrices with entries
{0,±α,±β} (in which all three symbols do not appear simultaneously) is given in
Table 3 for n ∈ {1, . . . , 8}.

Proof Case n = 1 is [1], case n = 2 are

[
1 0
0 1

]
and

[
1 α

α 1

]
.

Table 3 The number of candidate Gram matrices up to equivalence

n 1 2 3 4 5 6 7 8

# 1 2 5 25 194 7958 1818859 1773789830
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Case n = 3 is shown in Example 3.3. The remaining cases follow by computation. ��
As seen from Table 3, the number of n × n candidate Gram matrices grows very
rapidly. However, when d ≥ 2 is fixed and n = d + 2, then we may filter out a very
large fraction of candidate Grammatrices with the aid of Proposition 3.5. Indeed, for a
given candidate Gram matrix we can check whether (3) has any complex solutions by
computing a degree reverse lexicographic reduced Gröbner basis [6], and keep only
those candidate Gram matrices in a set Cd(n) for which some solutions are found. We
performed this step with the aid of the C++ library ‘CoCoA’ [1].

We proceed by augmenting each candidate Gram matrix C ∈ Cd(n) with a new
row (and column) whose prefix [Cn+1,1,Cn+1,2, . . . ,Cn+1,n−1] is lexicographically
larger than the respective prefix of the last row of C (cf. (4)), keeping only those
canonical matrices which in addition survive the next computationally cheap test.

Lemma 3.7 (combinatorial test) Let d ≥ 2 be fixed and let Cd(n) be a set containing
all pairwise inequivalent candidate Gram matrices of order n for which the system of
equations (3) has a solution. Let C be a candidate Gram matrix of order n + 1. If C
corresponds to a Grammatrix inRd , then necessarily all its n+1 principal submatrix
of order n belong to the set Cd(n), up to equivalence.

Proof Indeed, if C corresponds to some Gram matrix, then there exist real numbers
α∗, β∗ (subject to (2)) such that rankC(α∗, β∗) ≤ d. Since the rank of submatrices
cannot increase, thismust be true for every principal submatrix ofC(α∗, β∗). Therefore
they must be in the set Cd(n), up to equivalence. ��
Since the n × n principal submatrix of a candidate Gram matrix of order n + 1 must
be compatible, we test them further with the following.

Corollary 3.8 (weak Gröbner test, cf. Proposition 3.5) Let d ≥ 2 be fixed, and
let C(α, β) be a candidate Gram matrix of order n ≥ d + 1. Let M denote the
set of all (d +1)× (d +1) principal submatrices of C. Let ω be an auxiliary variable.
If the following system of polynomial equations,

{
det M(α, β) = 0, for all M ∈ M ,

ωαβ(α2 − β2)(α2 − 1)(β2 − 1) + 1 = 0,

has no solutions in C
3, then rankC(α∗, β∗) ≤ d cannot hold for any α∗, β∗ ∈ R

subject to (2).

Proof This is a variant of Proposition 3.5. ��
Finally, we store all surviving matrices in a set Cd(n + 1), and repeat this procedure
as long as new matrices are discovered (but until n reaches the absolute bound from
Theorem 3.1). Once the largest candidate Gram matrices are found, we use Proposi-
tion 3.5 to determine explicitly thematriceswith rank atmost d, and then by computing
their characteristic polynomial (or eigenvalues, if it is possible) we determine the pos-
itive semidefinite matrices. We remark that the set of inner products of the maximum
Gram matrices is a by-product of this procedure. We summarize our approach in the
following ‘roadmap’ which we will frequently use as a convenient reference.
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Roadmap 3.9 The following is our approach for generating and classifying biangular
lines in R

d :

– Fix the dimension d ≥ 2.
– Generate all {0,±α,±β} canonical candidate Gram matrices (with at most two
symbols) of size d + 1, and store them in a set Cd(d + 1).

– Augment every C ∈ Cd(d + 1) with a new row and column in every possible
way, and then test the canonical matrices by Proposition 3.5. Store the surviving
matrices of size d + 2 in a set Cd(d + 2).

– For every i ∈ {
d + 2, . . . ,

(d+3
4

)}
augment every C ∈ Cd(i) with a new row and

column in every possible way, and then test the canonical matrices by Lemma 3.7
and Corollary 3.8. Store the surviving matrices of size i + 1 in a set Cd(i + 1),
and repeat this step.

– For the largest candidate Gram matrices use Proposition 3.5 and in particular the
solutions of the system of equations (3) to determine the real matrices of rank at
most d.

– Select from these the positive semidefinite matrices.

Remark 3.10 We observed that once the size n of candidate Gram matrices is large
enough, say n ≥ d + 5, then essentially all matrices survive Corollary 3.8. In these
cases we solely rely on Lemma 3.7 for pruning. We believe that the reason for this
phenomenon is related to the fact that the congruence order of Rd is d + 3, see [34,
Thm. 7.2].

Remark 3.11 Let d ≥ 3, n ≥ d + 1, α∗, β∗ ∈ R fixed, and let C(α∗, β∗) be an n × n
Gram matrix with rankC(α∗, β∗) ≤ d − 2. Then for every v ∈ R

n ,

rank

[
C(α∗, β∗) vT

v 1

]
≤ d

by subadditivity. In particular, the tests described in Proposition 3.5 and Corollary 3.8
have no effect.

Remark 3.12 There are two major techniques for matrix canonization: one relies on
formula (4) which nicely fits into the framework of ‘orderly generation’. The other
possibility is to transform the problem of matrix canonization to graph canonization
for which there are readily available efficient implementations, such as the ‘nauty’
software [35]. In Appendix A we describe a graph representation of candidate Gram
matrices, which can be used in the framework of ‘canonical augmentation’. These two
techniques are of similar efficiency, and we have used both of them to cross-check our
results. We refer the reader to [11] and references therein.

4 Classification of Maximum Biangular Lines

We implemented the framework developed in Sect. 3 in C++ and used a computer
cluster with 500CPU cores for several weeks to obtain the following new classification

123



1128 Discrete & Computational Geometry (2021) 66:1113–1142

Table 4 {0,±α, ±β} candidate Gram matrices in R
2

n 2 3 4 5 6

|C2(n)| 2 3 2 1 0

results inRd for d ≤ 6. For completeness, we begin our discussionwith the case d = 2
by giving an independent, computational proof to Lemma 2.1.

Lemma 4.1 (equivalent restatement of Lemma 2.1) The maximum cardinality of
a biangular line system in R

2 is 5. The unique configuration has candidate Gram
matrix

C(α, β) =

⎡

⎢⎢⎢⎢
⎣

1 α α β β

α 1 β α β

α β 1 β α

β α β 1 α

β β α α 1

⎤

⎥⎥⎥⎥
⎦

(5)

and Gram matrix C ((
√
5 − 1)/4, (−√

5 − 1)/4), describing the main diagonals of
the convex regular decagon.

Proof The proof follows Roadmap 3.9 with d = 2. In Table 4 we display the number
of surviving candidate Grammatrices, that is, the numbers |C2(n)| for n ∈ {2, . . . , 6}.
Since |C2(6)| = 0, it follows that |C2(n)| = 0 for every n ≥ 6. The unique maximum
candidate Gram matrix of size 5 is shown in (5) from which the Gram matrices can
be recovered by solving the system of equations (3). It follows that 4α2 + 2α − 1 = 0
and β = −α − 1/2. This yields two permutation equivalent, positive semidefinite
solutions: C ((

√
5 − 1)/4, (−√

5 − 1)/4) and C ((−√
5 − 1)/4, (

√
5 − 1)/4), both

corresponding to the main diagonals of the convex regular decagon. ��
Remark 4.2 The four lines, passing through the antipodal vertices of the convex regular
octagon form the second largest, inextendible configuration of biangular lines in R

2

with the set of inner products {0,±1/
√
2}.

Theorem 4.3 The maximum cardinality of a biangular line system in R
3 is 10. The

unique configuration has candidate Gram matrix

C(α, β) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 α α α α α α β β β

α 1 α −α −α β −β α −α β

α α 1 β −β −α −α −α α β

α −α β 1 −α −β α −α β α

α −α −β −α 1 α β β α −α

α β −α −β α 1 −α β −α α

α −β −α α β −α 1 α β −α

β α −α −α β β α 1 α α

β −α α β α −α β α 1 α

β β β α −α α −α α α 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(6)

and Gram matrix C (1/3,
√
5/3), corresponding to the main diagonals of the platonic

dodecahedron.
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Table 5 {0,±α, ±β} candidate Gram matrices in R
3

n 2 3 4 5 6 7 8 9 10 11

|C3(n)| 2 5 22 23 12 5 2 1 1 0

Table 6 {0,±α, ±β} candidate Gram matrices in R
4

n 2 3 4 5 6 7 8 9 10 11 12 13

|C4(n)| 2 5 25 191 701 184 69 27 14 3 3 0

Proof The proof followsRoadmap 3.9with d = 3. In Table 5we display the number of
surviving candidate Gram matrices, that is, the numbers |C3(n)| for n ∈ {2, . . . , 11}.
Since |C3(11)| = 0, it follows that |C3(n)| = 0 for every n ≥ 11. The unique max-
imum candidate Gram matrix of size 10 is shown in (6). Equations (3) imply that
α = 1/3 and β2 = 5/9. This yields two permutation equivalent, positive semidef-
inite solutions: C (1/3,

√
5/3) and C (1/3,−√

5/3), both corresponding to the main
diagonals of the platonic dodecahedron. ��
Remark 4.4 The second largest among inextendible examples in R

3 can be obtained
by lifting the convex regular heptagon by Proposition 2.6 to two carefully chosen
heights.

Theorem 4.5 The maximum cardinality of a biangular line system in R
4 is 12. There

are four pairwise nonisometricmaximumconfigurations: the shortest vectors of the D4
lattice; the shortest vectors of the D3 lattice after lifting; and two spherical 3-distance
sets with the common candidate Gram matrix

C(α, β) =
[
B(α, β) + I6 B(β, α) − β I6
B(β, α) − β I6 B(α, β) + I6

]
, B(α, β) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 α α α α α

α 0 α β β α

α α 0 α β β

α β α 0 α β

α β β α 0 α

α α β β α 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (7)

yielding nonisometric Gram matrices C ((3 − 2
√
5)/11, (4 + √

5)/11) and C ((3 +
2
√
5)/11, (4 − √

5)/11).

Proof The proof followsRoadmap 3.9with d = 4. In Table 6we display the number of
surviving candidate Gram matrices, that is, the numbers |C4(n)| for n ∈ {2, . . . , 13}.
Since |C4(13)| = 0, it follows that |C4(n)| = 0 for every n ≥ 13. The candidate
Grammatrices corresponding to the D4 and the lifted D3 lattice vectors are not shown
here, as they can be easily recovered from Lemma 2.3 and Proposition 2.6, and one
may check by solving (3) that these are the only solutions. Interestingly, the third
candidate GrammatrixC(α, β) shown in (7) yields two nonisometric solutions, as the
equations (3) imply that 11α2 − 6α − 1 = 0 and β = α/2 − 1/2. ��
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Table 7 {0,±α, ±β} candidate Gram matrices in R
5

n |C5(n)| n |C5(n)| n |C5(n)| n |C5(n)| n |C5(n)|
6 7954 10 48448 14 38826 18 984 22 4

7 47418 11 54750 15 22887 19 201 23 1

8 27905 12 56548 16 10533 20 45 24 1

9 37381 13 52246 17 3701 21 10 25 0

Table 8 {0,±α, ±β} candidate Gram matrices in R
6

n |C6(n)| n |C6(n)| n |C6(n)| n |C6(n)| n |C6(n)|
14 8000713 21 34995847 28 1535902 35 363

8 6883459 15 11810513 22 30226589 29 646252 36 85

9 3170550 16 17409677 23 23679948 30 243144 37 18

10 4107292 17 24048177 24 16808810 31 81562 38 5

11 5260036 18 30449143 25 10794327 32 24461 39 1

12 5781148 19 35103515 26 6260018 33 6554 40 1

13 6239734 20 36779026 27 3270750 34 1610 41 0

We note that since the candidate Gram matrix (7) describes a spherical 3-distance set,
it has already been generated earlier in [44].

Remark 4.6 The Gram matrices obtained from (7) are contained in the Bose–Mesner
algebra of a 3-class association scheme [25].

Theorem 4.7 The maximum cardinality of a biangular line system in R
5 is 24. The

unique configuration can be obtained by lifting the shortest vectors of the D4 lattice.

Proof The proof followsRoadmap 3.9with d = 5. In Table 7we display the number of
surviving candidate Gram matrices, that is, the numbers |C5(n)| for n ∈ {6, . . . , 25}.
Since |C5(25)| = 0, it follows that |C5(n)| = 0 for every n ≥ 25. The candidate
Gram matrix corresponding to the lifted D4 lattice vectors is not shown here, as it
can be easily recovered from Lemma 2.3 and Proposition 2.6, and one may check by
solving (3) that it is the only maximum solution. ��
Remark 4.8 Weremark that theBose–Mesner algebra (see [25]) of a particular example
of 4-class association schemes on 24 vertices contains the maximum Gram matrix G
of biangular lines in R

5, up to equivalence. Furthermore, since G2 = (24/5)G, G is
a sporadic example of biangular tight frames [14].

The main computational result of this paper is the following.

Theorem 4.9 The maximum cardinality of a biangular line system in R
6 is 40. The

unique configuration can be obtained by lifting the shortest vectors of the D5 lattice.
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Proof The proof followsRoadmap 3.9with d = 6. In Table 8we display the number of
surviving candidate Gram matrices, that is, the numbers |C6(n)| for n ∈ {8, . . . , 41}.
Since |C6(41)| = 0, it follows that |C6(n)| = 0 for every n ≥ 41. The candidate
Gram matrix corresponding to the lifted D5 lattice vectors is not shown here, as it
can be easily recovered from Lemma 2.3 and Proposition 2.6, and one may check by
solving (3) that it is the only maximum solution. ��
In dimension 5 and 6 the largest biangular line systems with irrational angles consist
of 20 and 24 lines respectively, each having exactly the same inner product set {±(3−
2
√
5)/11,±(4+√

5)/11} as one of the largest configurations inR4 (cf. Theorem 4.5).
Examples of these are shown in Appendix B.

Remark 4.10 In R
6 two 27 × 27 candidate Gram matrices were found corresponding

to Gram matrices with angle set {±1/4,±1/2}. It turns out, one of these is the largest
spherical 2-distance set [34,37], and the other one belongs to the Bose–Mesner algebra
of a 4-class association scheme [25]. See Appendix B.

We note the following by-products of our classification.

Corollary 4.11 The largest infinite family of biangular lines in R
d for d ∈ {3, 4, 5, 6}

is formed by 6, 6, 10, and 16 lines, respectively.

Proof For d = 3 we have the twisted icosahedron [14]. For d ≥ 4, we can use
Proposition 2.5 and well-known spherical 2-distance sets (see [34,37], Examples 3.4
and B.3) in R

d−1 to establish the claimed lower bounds. To see that these are indeed
the largest, one should inspect the candidate Gram matrices we generated. It is easy to
see that if C(α, β) is a parametric family of biangular line systems, then the values of
α and β are not uniquely determined by any of its subsystems. Therefore it is enough
to augment those (rather few) candidate Gram matrices for which the dimension of
the ideal generated by (3) is positive (see [6]). ��
Corollary 4.12 The biangular line systems meeting the relative bound in dimension
d ∈ {3, 4, 5, 6} for α2 + β2 < 6/(d + 4) are exactly those listed in Table 2.

Proof LetX ⊂ R
d span a biangular line systemmeeting the relative bound (1). Since

α2 + β2 < 6/(d + 4), we have

∑

x,x ′∈X
C ((d−2)/2)
2 (〈x, x ′〉) = 0 and

∑

x,x ′∈X
C ((d−2)/2)
4 (〈x, x ′〉) = 0.

In particular, the antipodal double Y := {x : x ∈ X } ∪ {−x : x ∈ X } is a spherical
5-design [4,10], and hence |X | = |Y |/2 ≥ d (d + 1)/2. For d = 3 the only tight
spherical 5-design is the icosahedron [4], [20, Exam. 5.16]. For d ≥ 4 it follows from
Corollary 4.11 that the number of Gram matrices of size |X | is finite, therefore one
may plug in the (finitely many) inner products α∗ and β∗ into (1) to test equality. This
yields Table 2 for d ≤ 6. ��
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Remark 4.13 If α2 + β2 = 6/(d + 4) and there is equality in the relative bound (1),
then necessarily

d2 + 3|X | − 4

(d + 2)(d + 4)
= (|X | − 1)β2

(
6

d + 4
− β2

)
.

For fixed d and |X | this in turn determines the possible inner products in A(X ).
Then one may go through all candidate Grammatrices and check which of these inner
products are compatible with the solutions of (3). Since we tend to believe that for
d ≤ 6 there are no biangular lines of this type, we have not gone through the details
of this lengthy and seemingly very tedious task.

5 Results onMultiangular Lines

The theory developed in Sect. 3 can be generalized to multiangular lines in a straight-
forwardmanner. Themain challenge in our study is solving (themultiangular analogue
of) the system of equations (3). Indeed, the efficiency of computing a Gröbner basis
very much depends on the number of variables [6], and 4-angular line systems are the
largest ones our methods can currently handle. In this section we briefly report on our
computational results on multiangular lines.

5.1 Multiangular Lines inR3

It is well known that in R
3 the main diagonals of the platonic icosahedron form the

largest equiangular line system, andwe showed in Theorem4.3 that themain diagonals
of the platonic dodecahedron form the largest biangular line system. It is natural to
ask what are the multiangular analogues of these objects. On the plane the maximum
cardinality of m-angular lines is 2m + 1, and an example is coming from the main
diagonals of the convex regular (4m + 2)-gon [37].

Theorem 5.1 The maximum cardinality of a triangular line system in R3 is 12. There
are exactly two such configurations coming from the following candidateGrammatrix:

C(α, β, γ ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 α α α α β β β β γ γ γ

α 1 β γ γ α β β γ α α β

α β 1 γ −α γ −β −γ α β −β α

α γ γ 1 β β α γ β α β α

α γ −α β 1 −β γ α −γ β α −β

β α γ β −β 1 −γ −β α γ −α α

β β −β α γ −γ 1 α −β γ α −α

β β −γ γ α −β α 1 −α α γ −β

β γ α β −γ α −β −α 1 α −β γ

γ α β α β γ γ α α 1 β β

γ α −β β α −α α γ −β β 1 −γ

γ β α α −β α −α −β γ β −γ 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (8)
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Table 9 {0,±α, ±β, ±γ } candidate Gram matrices in R3

n 2 3 4 5 6 7 8 9 10 11 12 13

|C3(n)| 2 7 62 610 271 104 46 19 6 1 1 0

Table 10 {0, ±α,±β, ±γ,±δ} candidate Gram matrices in R3

n |C3(n)| n |C3(n)| n |C3(n)| n |C3(n)| n |C3(n)|
2 2 5 7014 8 632 11 32 14 1

3 7 6 7744 9 276 12 14 15 1

4 97 7 1655 10 104 13 3 16 0

namely C ((−7+4
√
2)/17, (5+2

√
2)/17, (−3−8

√
2)/17) is the truncated cube and

C ((−7−4
√
2)/17, (5−2

√
2)/17, (−3+8

√
2)/17) is the small rhombicuboctahedron.

Proof Theproof follows analogously toRoadmap3.9withd = 3. InTable 9wedisplay
the number of surviving candidate Gram matrices with symbols {0,±α,±β,±γ }
(where at most three out of these four symbols appear), that is, the numbers |C3(n)|
for n ∈ {2, . . . , 13}. Since |C3(13)| = 0, it follows that |C3(n)| = 0 for every n ≥ 13.
In addition, there is a unique maximum candidate Gram matrix of size 12, as shown
in (8). Equations analogous to (3) imply the claimed solutions. ��
Theorem 5.2 The maximum cardinality of a 4-angular line system in R

3 is 15. There
is a unique configuration coming from the following candidate Gram matrix:

C(α, β, γ ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 α β γ α β γ α β γ α β γ

0 1 0 β γ α β γ α −β −γ −α −β −γ −α

0 0 1 γ α β −γ −α −β γ α β −γ −α −β

α β γ 1 0 0 γ −α −β α −β γ −β −γ α

β γ α 0 1 0 −α β γ −β γ −α −γ −α β

γ α β 0 0 1 −β γ α γ −α β α β −γ

α β −γ γ −α −β 1 0 0 −β −γ α α −β γ

β γ −α −α β γ 0 1 0 −γ −α β −β γ −α

γ α −β −β γ α 0 0 1 α β −γ γ −α β

α −β γ α −β γ −β −γ α 1 0 0 γ −α −β

β −γ α −β γ −α −γ −α β 0 1 0 −α β γ

γ −α β γ −α β α β −γ 0 0 1 −β γ α

α −β −γ −β −γ α α −β γ γ −α −β 1 0 0
β −γ −α −γ −α β −β γ −α −α β γ 0 1 0
γ −α −β α β −γ γ −α β −β γ α 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(9)
namely C ((1 + √

5)/4, (1 − √
5)/4, 1/2) is the icosidodecahedron.

Proof The proof follows analogously to Roadmap 3.9 with d = 3, with the following
noted difference: first we generated all 5 × 5 candidate Gram matrices, and used
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Table 11 {0, ±α,±β} candidate Gram matrices in R
4

n |C4(n)| n |C4(n)| n |C4(n)| n |C4(n)| n |C4(n)|
1 1 6 8353 11 2694 16 892 21 10

2 2 7 2746 12 2919 17 447 22 4

3 6 8 1725 13 2638 18 214 23 1

4 51 9 1776 14 2147 19 80 24 1

5 1152 10 2314 15 1453 20 34 25 0

Proposition 3.5 for filtering the 6 × 6 (and larger) matrices. In Table 10 we display
the number of surviving candidate Grammatrices with symbols {0,±α,±β,±γ,±δ}
(where at most four out of these five symbols appear), that is, the numbers |C3(n)| for
n ∈ {2, . . . , 16}. Since |C3(16)| = 0, it follows that |C3(n)| = 0 for every n ≥ 16.
In addition, there is a unique maximum candidate Gram matrix of size 15, as shown
in (9). Equations analogous to (3) imply that 4α2−2α−1 = 0, β = 1/2−α, γ = 1/2.
This yields two equivalent, positive semidefinite solutions, both corresponding to the
main diagonals of the icosidodecahedron. ��
Remark 5.3 It turns out that the icosidodecahedron is the largest 5-angular configura-
tion in R3 containing orthogonal lines. The search is completely analogous to what is
described in Theorem 5.2 and its proof.

We refer the reader to [26] for further interesting arrangements in R3.

5.2 Higher Dimensional Examples

In this sectionwe report on our computational results on triangular line systems, where
one of the three possible inner products is 0. On the plane, the unique maximum
configuration is formed by the main diagonals of the convex regular 12-gon, and in
dimension 3 these are once again the main diagonals of the dodecahedron. Both of
these results can be concluded from inspecting the matrices we generated for the proof
of Theorem 5.1 (see Table 9).

Theorem 5.4 The maximum cardinality of a triangular line system containing orthog-
onal lines in R4 is 24. There is a unique configuration spanned by

X = {[1,±1,±1,±1]/2} ∪ {[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]}
∪ {

x : x is a permutation of [±1,±1, 0, 0]/√2, 〈x, [4, 3, 2, 1]〉 > 0
}
,

which describes the main diagonals of the 24-cell and its dual.

Proof The proof follows analogously to Roadmap 3.9 with d = 4. In Table 11 we
display the number of surviving candidate Gram matrices with symbols {0,±α,±β},
that is, the numbers |C4(n)| for n ∈ {2, . . . , 25}. Since |C4(25)| = 0, it follows that
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Table 12 {0, ±α,±β} candidate Gram matrices in R
5

n |C5(n)| n |C5(n)| n |C5(n)| n |C5(n)| n |C5(n)|
7 1045395 14 12214161 21 68512201 28 2932142 35 471

8 370512 15 21063583 22 59177264 29 1217479 36 94

9 441556 16 32845898 23 46323247 30 449091 37 18

10 724198 17 46331977 24 32824635 31 146385 38 4

11 1422041 18 59180410 25 21019703 32 41984 39 1

12 3076847 19 68513149 26 12137301 33 10565 40 1

13 6412829 20 71935169 27 6301866 34 2357 41 0

|C4(n)| = 0 for every n ≥ 25. The unique largest candidate Gram matrix correspond-
ing to this case can be easily recovered from X , and then solving (3) yields two
equivalent solutions with the set of inner products {0,±1/2,±1/

√
2}. ��

Remark 5.5 In R
4, the second largest inextendible configuration has cardinality 16,

spanned by all permutations of [±1,±1,±1, 0]/√3 where the first nonzero entry is
positive. The set of inner products of this configuration is {0,±1/3,±2/3}.
Theorem 5.6 The maximum cardinality of a triangular line system containing orthog-
onal lines in R

5 is 40. This unique configuration is spanned by the set X of all
permutations of [±1,±1,±1, 0, 0]/√3, where the first nonzero entry is positive.

Proof The proof follows analogously to Roadmap 3.9 with d = 5. In Table 12 we
display the number of surviving candidate Gram matrices with symbols {0,±α,±β},
that is, the numbers |C5(n)| for n ∈ {7, . . . , 41}. Since |C5(41)| = 0, it follows that
|C5(n)| = 0 for every n ≥ 41. The unique largest candidate Gram matrix correspond-
ing to this case can be easily recovered fromX , and then solving (3) yields a unique
solution with the set of inner products {0,±1/3,±2/3}. ��

6 Open Problems

We conclude this paper with the following set of problems.

Problem 6.1 (superquadratic lines, see [3]) Let c, ε > 0 be fixed. Find a construc-
tion of a series of biangular lines Xd ⊂ R

d such that |Xd | ≥ c · d2+ε holds for
infinitely many d ≥ 1.

In particular, investigate if Proposition 2.6 can be applied to a suitable series of spher-
ical 3-distance sets.

Problem 6.2 Find a series of spherical 3-distance sets Xd ⊂ R
d with A(Xd) ⊆

{αd , βd , γd} such that αd + βd < 0 and |Xd | is superquadratic (in the sense of
Problem 6.1).

Problem 6.3 (see [14]) Find a series of biangular tight frames Xd ⊂ R
d such

that |Xd | > d2 for infinitely many d ≥ 1.
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It is known that the twisted icosahedron [14] forms an infinite family of six biangular
lines in R

3, which is one line larger compared to what Proposition 2.5 guarantees.

Problem 6.4 (cf. Corollary 4.11) Determine if there exists an infinite family of
biangular lines X (h) ⊂ R

d such that |X (h)| is larger than the one described in
Proposition 2.5 for some d ≥ 7.

Problem 6.5 (see [32], cf. Example B.3) Determine if there exists an infinite family
of 28 biangular lines X (h) ⊂ R

7 such that X (0) spans equiangular lines.

Itwould be also very interesting to seewhether binary codeswith four distinct distances
lead to improved constructions in R

d for some d ≤ 23 or possibly beyond.

Problem 6.6 (see Lemma 2.2) For d ≥ 2 determine the maximum cardinality of
binary codes of length d admitting at most four distinct Hamming distances
{Δ1,Δ2, d − Δ1, d − Δ2}, Δ1,Δ2 ∈ {1, . . . , d − 1}.
Problem 6.7 (cf. Theorem2.18, Remark 4.13) Determine if there exists a setX ⊂ R

d

spanning biangular lines with A(X ) ⊆ {±α,±β}, such that α2 + β2 = 6/(d + 4),
and there is equality in (1) for some d ≥ 3.

Problem 6.8 (see [2]) Complement Table 1 by using the semidefinite program-
ming technique to establish (sharp) upper bounds for the maximum cardinality of
biangular linesX ⊂ R

d with A(X ) ⊆ {±1/5,±3/5} for d ≤ 23.
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Appendix A: Graph Representation of Candidate GramMatrices

Letm ≥ 1, n ≥ 2 be integers, and consider an n×n symmetric matrixC(α1, . . . , αm)

with constant diagonal entries 1 over the ringQ[α1, . . . , αm] and off-diagonal entries
{0,±α1, . . . ,±αm}. Analogously to Definition 3.2, two such matrices C1 and C2 are
called equivalent, if

C1(α1, . . . , αm) = PC2(σ (α1), . . . , σ (αm))PT

for some signed permutationmatrix P and relabeling σ . A representative of thismatrix
equivalence class is called a candidate Gram matrix.
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The goal of this section is to construct for every matrix C(α1, . . . , αm) of order n a
(colored) graph X(C(α1, . . . , αm)) capturing its underlying symmetries and in partic-
ular its equivalence class. With this representation, equivalence of matrices C1 and C2
(over the same symbol set) simply boils down to the isomorphism of the correspond-
ing colored graphs X(C1) and X(C2). This latter task can be readily decided by the
‘nauty’ software [35] in practice. Our graph X(C) has 2n2 + n + 2m vertices, and its
vertex set V (X(C)) is partitioned into the following four distinct (nonempty) color
classes:

V (X(C)) := U ∪ V ∪ W ∪ Z .

Here U := {ui : i ∈ {1, . . . , n}} conceptually represents the n lines (in other words,
the n rows/columns of the matrix C). The set V := {vik : i ∈ {1, . . . , n}, k ∈
{1, 2}} represents the set of antipodal unit vectors (say ±x) spanning the lines. The set
W := {wi jk : i < j ∈ {1, . . . , n}, k ∈ {1, . . . , 4}} represents the four possible inner
products 〈±x,±x ′〉 (where±x and±x ′ are the spanning unit vectors of distinct lines),
and finally Z = {zik : i ∈ {1, . . . ,m}, k ∈ {1, 2}} represents the 2m off-diagonal
entries (where for every i ∈ {1, . . . ,m}, the vertices zi1 and zi2 correspond to the
same symbol αi and its negative, in some order).

The edge set E(X(C)) is given by E(X(C)) := E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5, where
E1 := {{ui , vik} : i ∈ {1, . . . , n}, k ∈ {1, 2}} and E2 := {{zi1, zi2} : i ∈ {1, . . . ,m}}
describe the edges connecting the elements of U and V , and the edges within Z ,
respectively. Furthermore,

E3 := {{vi1, wi j1}, {vi2, wi j1}, {wi j1, wi j2}, {wi j2, wi j3}, {wi j3, wi j4},
{v j1, wi j4}, {v j2, wi j4} : i < j ∈ {1, . . . , n}, Gi j = 0

}

and

E4 := {{vik, wi jk}, {v jk, wi jk}, {vik, wi j(k+2)},
{v j(3−k), wi j(k+2)} : i < j ∈ {1, . . . , n}, k ∈ {1, 2}, Gi j �= 0

}

describe the graph structure between (vertices representing) orthogonal and non-
orthogonal lines, respectively. Finally,

E5 := {{wi jk, z�1}, {wi j(k+2), z�2} : i < j ∈ {1, . . . , n}, k ∈ {1, 2}, Gi j = α�

}

∪ {{wi jk, z�2}, {wi j(k+2), z�1} : i < j ∈ {1, . . . , n}, k ∈ {1, 2}, Gi j = −α�

}

describes the edges connecting the vertices between W andZ , thus providing a cor-
respondence between lines with certain inner products, and the symbols representing
these inner products.

This graph representation is very powerful, as we have the following.
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Fig. 1 Graph representation of a candidate Gram matrix

Proposition A.1 The matrices C1 and C2 (over the same symbol set) are equivalent, if
and only if X(C1) and X(C2) are isomorphic as graphs. Furthermore, the automor-
phism groups of C1 and X(C1) are isomorphic as groups.

We omit the proof and refer the reader to [35]. Instead, we show how to represent

⎡

⎣
1 0 α

0 1 α

α α 1

⎤

⎦

over the symbol set {±α,±β} in Fig. 1.

Appendix B: MiscellaneousMatrices

We note the largest biangular line systems in R
5 and R

6 containing a pair of lines
with irrational inner product between them. It turns out that all of these examples
have inner product set {±α∗,±β∗}, where α∗ := (3− 2

√
5)/11, β∗ := (4+ √

5)/11
are exactly the same values as stated in Theorem 4.5. Furthermore, the two examples
shown below are extensions of one of the 12-dimensional maximum cases. Indeed,
their upper left 12 × 12 submatrix agrees with the matrix shown in (7).

Example B.1 The largest cardinality of a biangular line system inR5 with an irrational
inner product is 20. There are 12 candidate Gram matrices, each corresponding to a
single line system. The following candidateGrammatrix (with γ := −α and δ := −β)
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C(α, β, γ, δ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 α α α α α δ β β β β β α α α α β β β β

α 1 α β β α β δ β α α β α α β β α α γ δ

α α 1 α β β β β δ β α α α α α δ α δ δ γ

α β α 1 α β β α β δ β α α β α β δ γ α δ

α β β α 1 α β α α β δ β α δ β α γ δ α α

α α β β α 1 β β α α β δ α β δ α δ α δ α

δ β β β β β 1 α α α α α α γ γ γ δ δ δ δ

β δ β α α β α 1 α β β α α γ δ δ γ γ α β

β β δ β α α α α 1 α β β α γ γ β γ β β α

β α β δ β α α β α 1 α β α δ γ δ β α γ β

β α α β δ β α β β α 1 α α β δ γ α β γ γ

β β α α β δ α α β β α 1 α δ β γ β γ β γ

α α α α α α α α α α α α 1 δ δ β δ δ β β

α α α β δ β γ γ γ δ β δ δ 1 α α α β δ δ

α β α α β δ γ δ γ γ δ β δ α 1 α β γ α δ

α β δ β α α γ δ β δ γ γ β α α 1 δ α β α

β α α δ γ δ δ γ γ β α β δ α β δ 1 β γ γ

β α δ γ δ α δ γ β α β γ δ β γ α β 1 γ α

β γ δ α α δ δ α β γ γ β β δ α β γ γ 1 β

β δ γ δ α α δ β α β γ γ β δ δ α γ α β 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

yields a Gram matrix C(α∗, β∗,−α∗,−β∗).

Example B.2 The largest biangular line system in R
6 with irrational inner products

is a unique configuration of 24 lines, corresponding to the candidate Gram matrix
(10) (where γ := −α and δ := −β). The matrix C(α∗, β∗,−α∗,−β∗) is positive
semidefinite of rank 6.

Example B.3 (Schläfli graph) In R
6, there is a well-known spherical 2-distance set

of cardinality 27 with the set of inner products {−1/2, 1/4}, related to the adja-
cency matrix of the Schläfli graph [34,37]. Let C(α, β, γ, δ) be as in (11). Then
C(1, 0, 0, 1) − I27 is the graph adjacency matrix of the Schläfli graph, and
C (1/4,−1/2, −1/2, 1/4) is a spherical two-distance set spanning biangular lines.
Application of Proposition 2.5 yields an infinite family of 27 biangular lines in R7. It
turns out thatC (1/4,−1/2, 1/2,−1/4) is an additional, nonisometric example inR6,
coming from a 4-class association scheme [25]. The antipodal double of this set is a
new example of spherical 5-designs [4].
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C(α, β, γ, δ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 α α α α α δ β β β β β α α α α α α α α α α α α

α 1 α β β α β δ β α α β α α α α α α β β β β δ δ

α α 1 α β β β β δ β α α α α α α β β α α δ δ β β

α β α 1 α β β α β δ β α α α β β δ δ α α β β α α

α β β α 1 α β α α β δ β α α δ δ β β β β α α α α

α α β β α 1 β β α α β δ α α β β α α δ δ α α β β

δ β β β β β 1 α α α α α α α γ γ γ γ γ γ γ γ γ γ

β δ β α α β α 1 α β β α α α γ γ γ γ δ δ δ δ β β

β β δ β α α α α 1 α β β α α γ γ δ δ γ γ β β δ δ

β α β δ β α α β α 1 α β α α δ δ β β γ γ δ δ γ γ

β α α β δ β α β β α 1 α α α β β δ δ δ δ γ γ γ γ

β β α α β δ α α β β α 1 α α δ δ γ γ β β γ γ δ δ

α α α α α α α α α α α α 1 α α β α β α β α β α β

α α α α α α α α α α α α α 1 β α β α β α β α β α

α α α β δ β γ γ γ δ β δ α β 1 β α δ α δ β γ β γ

α α α β δ β γ γ γ δ β δ β α β 1 δ α δ α γ β γ β

α α β δ β α γ γ δ β δ γ α β α δ 1 β β γ α δ β γ

α α β δ β α γ γ δ β δ γ β α δ α β 1 γ β δ α γ β

α β α α β δ γ δ γ γ δ β α β α δ β γ 1 β β γ α δ

α β α α β δ γ δ γ γ δ β β α δ α γ β β 1 γ β δ α

α β δ β α α γ δ β δ γ γ α β β γ α δ β γ 1 β α δ

α β δ β α α γ δ β δ γ γ β α γ β δ α γ β β 1 δ α

α δ β α α β γ β δ γ γ δ α β β γ β γ α δ α δ 1 β

α δ β α α β γ β δ γ γ δ β α γ β γ β δ α δ α β 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (10)

C(α, β, γ, δ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 α α α α β β β β γ γ γ γ γ γ δ δ δ δ δ δ δ δ δ δ δ δ

α 1 α β β α α β β γ γ γ δ δ δ γ γ γ δ δ δ δ δ δ δ δ δ

α α 1 β β β β α α γ γ γ δ δ δ δ δ δ γ γ γ δ δ δ δ δ δ

α β β 1 α α β α β δ δ δ γ γ γ δ δ δ δ δ δ γ γ γ δ δ δ

α β β α 1 β α β α δ δ δ γ γ γ δ δ δ δ δ δ δ δ δ γ γ γ

β α β α β 1 α α β δ δ δ δ δ δ γ γ γ δ δ δ γ γ γ δ δ δ

β α β β α α 1 β α δ δ δ δ δ δ γ γ γ δ δ δ δ δ δ γ γ γ

β β α α β α β 1 α δ δ δ δ δ δ δ δ δ γ γ γ γ γ γ δ δ δ

β β α β α β α α 1 δ δ δ δ δ δ δ δ δ γ γ γ δ δ δ γ γ γ

γ γ γ δ δ δ δ δ δ 1 α α γ δ δ γ δ δ γ δ δ α β β α β β

γ γ γ δ δ δ δ δ δ α 1 α δ γ δ δ γ δ δ γ δ β α β β α β

γ γ γ δ δ δ δ δ δ α α 1 δ δ γ δ δ γ δ δ γ β β α β β α

γ δ δ γ γ δ δ δ δ γ δ δ 1 α α α β β α β β γ δ δ γ δ δ

γ δ δ γ γ δ δ δ δ δ γ δ α 1 α β α β β α β δ γ δ δ γ δ

γ δ δ γ γ δ δ δ δ δ δ γ α α 1 β β α β β α δ δ γ δ δ γ

δ γ δ δ δ γ γ δ δ γ δ δ α β β 1 α α α β β γ δ δ γ δ δ

δ γ δ δ δ γ γ δ δ δ γ δ β α β α 1 α β α β δ γ δ δ γ δ

δ γ δ δ δ γ γ δ δ δ δ γ β β α α α 1 β β α δ δ γ δ δ γ

δ δ γ δ δ δ δ γ γ γ δ δ α β β α β β 1 α α γ δ δ γ δ δ

δ δ γ δ δ δ δ γ γ δ γ δ β α β β α β α 1 α δ γ δ δ γ δ

δ δ γ δ δ δ δ γ γ δ δ γ β β α β β α α α 1 δ δ γ δ δ γ

δ δ δ γ δ γ δ γ δ α β β γ δ δ γ δ δ γ δ δ 1 α α α β β

δ δ δ γ δ γ δ γ δ β α β δ γ δ δ γ δ δ γ δ α 1 α β α β

δ δ δ γ δ γ δ γ δ β β α δ δ γ δ δ γ δ δ γ α α 1 β β α

δ δ δ δ γ δ γ δ γ α β β γ δ δ γ δ δ γ δ δ α β β 1 α α

δ δ δ δ γ δ γ δ γ β α β δ γ δ δ γ δ δ γ δ β α β α 1 α

δ δ δ δ γ δ γ δ γ β β α δ δ γ δ δ γ δ δ γ β β α α α 1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (11)
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