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Abstract
We investigate some topological properties of random geometric complexes and ran-
dom geometric graphs on Riemannian manifolds in the thermodynamic limit. In
particular, for random geometric complexes we prove that the normalized counting
measure of connected components, counted according to isotopy type, converges in
probability to a deterministic measure. More generally, we also prove similar conver-
gence results for the counting measure of types of components of each k-skeleton of a
random geometric complex. As a consequence, in the case of the 1-skeleton (i.e., for
random geometric graphs) we show that the empirical spectral measure associated to
the normalized Laplace operator converges to a deterministic measure.

Keywords Random graphs · Graph Laplacian · Random geometric complexes

Mathematics Subject Classification 05C62 · 05C80 · 15B52

1 Introduction

1.1 RandomGeometric Complexes

The subject of random geometric complexes has recently attracted a lot of attention,
with a special focus on the study of expectation of topological properties of these com-
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plexes [5,6,31,39,43,53]1 (e.g. number of connected components, or, more generally,
Betti numbers). In a recent paper [1], Auffinger, Lerario, and Lundberg have imported
methods from [38,48] for the study of finer properties of these random complexes,
namely the distribution of the homotopy types of the connected components of the
complex. Before moving to the content of the current paper, we discuss the main ideas
from [1] and introduce some terminology.

Let (M, g) be a compact, Riemannian manifold of dimension m. We normalize the
metric g in such a way that

vol M = 1.

We denote by B̂(x, r) ⊂ M the Riemannian ball centered at x of radius r > 0 and we
construct a random M-geometric complex in the thermodynamic regime as follows.We
let {p1, . . . , pn} be a set of points independently sampled from the uniformdistribution
on M , we fix a positive number α > 0, and we consider

Un :=
n⋃

k=1

B̂(pk, r) where r := αn−1/m . (1.1)

The choice of such r is what defines the so-called critical or thermodynamic regime2

and it is the regime where topology is the richest [1,31]. We say that Un is a random
M-geometric complex; the name is motivated by the fact that, for n large enough, Un

is homotopy equivalent to its Čech complex, as we shall see in Lemma 2.4 below.
Auffinger, Lerario, and Lundberg [1] proved that, in the case when vol M = 1, the

normalized counting measure of connected components of such complexes, counted
according to homotopy type, converges in probability to a deterministic measure. That
is,

�̃n := 1

b0(Un)

∑
δ[u]

P−−−→
n→∞ �̃, (1.2)

where the sum is over all connected components u of Un , [u] denotes their homotopy
type and b0 is the zeroth Betti number, therefore b0(Un) is the number of connected
components of Un . In (1.2) the measure �̃n is a random probability measure on the
countable set of all possible homotopy types of connected geometric complexes and the
convergence is in probability with respect to the total variation distance (see Sect. 4
for more precise definitions). The support of the limiting deterministic measure �̃

equals the set of all homotopy types for Euclidean geometric complexes of dimension
m = dim M . Roughly speaking, (1.2) tells us that, for every fixed homotopy type [u]
of connected geometric complexes, denoting byNn([u]) the random variable “number

1 This list is by no means complete, see [5] for a survey and a more complete set of references!
2 Quoting the introduction from [1]: random geometric complexes are studied within three main phases or
regimes based on the relation between density of points and radius of the neighborhoods determining the
complex: the subcritical regime (or “dust phase”) where there are many connected components with little
topology, the critical regime (or “thermodynamic regime”) where topology is the richest (and where the
percolation threshold appears), and the supercritical regime where the connectivity threshold appears. The
thermodynamic regime is seen to have the most intricate topology.
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Fig. 1 The unknot and the trefoil knot are homotopy equivalent but they are not isotopic

of connected components of Un that are in the homotopy equivalence class [u]”, there
is a convergence of the random variableNn([u])/b0(Un) to a constant c[u] as n → ∞
(the convergence is in L1 and c[u] > 0 if and only if [u] contains an R

m-geometric
complex).

1.2 Isotopy Classes of Geometric Complexes

We nowmove to the content of the current paper. Our first goal is to include the results
of [1] into a more general framework which allows to make even more refined counts
(e.g. according to the type of the embedding of the components, or on the structure
of their skeleta, or on the property of containing a given motif3). The first result
we prove is that (1.2) still holds if we consider isotopy classes instead of homotopy
classes: intuitively, two complexes are isotopic if the vertices of one can be moved
continuously to the vertices of the other without ever changing the combinatorics
of the intersection of the corresponding balls (see Definition 2.5). From now on we
will always make the assumption that our complexes are nondegenerate, i.e., that the
boundaries of the balls defining them intersect transversely (see Definition 2.3); our
random geometric complexes will be nondegenerate with probability one, and the
notion of isotopic nondegenerate complexes coincides with the one from differential
topology. In Theorem 4.2 we show that

�n
P−−−→

n→∞ �,

where �n is defined in a similar way as �̃n above, with isotopy classes instead of
homotopy classes. Interestingly, the limiting measure depends only on α and on the
dimension of M .4 To appreciate the differencewith the results from [1]: the unknot and
the trefoil knot in R

3 (Fig. 1) are homotopy equivalent but they are not isotopic, and
with positive probability there are connected M-geometric complexes whose embed-
ding looks like these two knots (see Proposition 4.5 below); Theorem 4.2 is able to
distinguish between them, whereas the construction from [1] is not.

3 A motif in a graph (or more generally in a complex) is a recurrent and statistically significant sub-graph
or pattern.
4 In the rest of the paper we will consider α as fixed from the very beginning and omit it in the notation;
the study of the dependence on α > 0 of various objects is an interesting problem, on which for now we
cannot say much.
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1.3 A Cascade of Measures

Theorem 4.2 contains in a sense the richest possible information on the topological
structure of our geometric complexes and the convergence of many other counting
measures can be deduced from it. To explain this idea, we consider the space

(G/∼=) := {isotopy classes of connected geometric complexes}

and we put an equivalence relation ρ on G/∼= (the relation can be for example: two
isotopy classes are the same if their k-skeleta are isomorphic, or if they contain the
same number of given motifs). Then the natural map ψ : (G/∼=) → (G/∼=)/ρ defines
the random pushforward measure ψ∗�n on (G/∼=)/ρ and Theorem 4.2 implies that
ψ∗�n → ψ∗�.

This idea can be used to produce a “cascade” of random relevantmeasures. Consider
the following diagram of maps and spaces:

G/∼= G/� G/∼

G(k)/�

ϕ

ϕ(k)

φ

where the spaces are

(G/�) := {isomorphism classes of connected geometric Čech complexes},
(G(k)/�) := {isomorphism classes of components of the k-skeleton

of Čech complexes},
(G/∼) := {homotopy classes of connected geometric complexes},

and themaps are the natural “forgetful”maps. For example, themapϕ takes the isotopy
class of a nondegenerate complex and associates to it its homotopy class; the map ϕ(k)

associates to it the isomorphism class of its k-skeleton (it is well defined since isotopic
complexes have isomorphic Čech complexes). Then for all the pushforward measures
defined by these maps we have convergence in probability with respect to the total
variation distance (see Sect. 4), and as n → ∞,

φ∗�n → φ∗�, ϕ∗�n → ϕ∗�, and ϕ(k)∗ �n → ϕ(k)∗ �.

1.4 RandomGeometric Graphs

Of special interest is the case of random geometric graphs: vertices of a random M-
geometric graph 	n are the points {p1, . . . , pn} and we put an edge between pi and
p j if and only if i �= j and B̂(pi , r) ∩ B̂(p j , r) �= ∅. Using the above language, a
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random M-geometric graph is the 1-skeleton of the Čech complex associated to the
complex Un .

To every random M-geometric graph 	n we can associate the measure

ϕ(1)∗ �n = 1

b0(	n)

∑
δγ → ϕ(1)∗ �, (1.3)

where the sum is over all connected components of	n andγ denotes their isomorphism
class (as graphs). There is an interesting fact regarding the random variable b0(	n)

appearing in (1.3): it is the same randomvariable as b0(Un) (the number of components
of the random graph and of the random complex are the same), and in [1] it is proven
that there exists a constant β (depending on the parameter α in (1.1)) such that

b0(	n)

n
= b0(Un)

n
L1−→ β.

Theexistenceof this limit also follows from[24],where the authors establish a limit law
in the thermodynamic regime for Betti numbers of random geometric complexes built
over possibly inhomogeneous Poisson point processes in Euclidean space, including
the case when the point process is supported on a submanifold. Moreover, we note that
for a related model of random graphs (the Poisson model on Rm , see Sect. 1.6 below)
Penrose [43] has proven that there exists a constant β (depending on the parameter
α in (1.1)) such that the normalized component count converges to a constant in L2.
In fact, as we will see below, related to our M-geometric model there is a way to
construct a corresponding Rm-geometric model, which is in a sense the rescaled limit
of the Riemannian one, and the limit constants for the two models are the same.

In fact the limit measure ϕ
(1)∗ � also comes from the rescaled Euclidean limit and it

is supported on connectedRm-geometric graphs. For a given m, the set of such graphs
is not easy to describe, but in the case m = 1 they can be characterized by a result of
Roberts [45], and from this result we can deduce a description of the support of the
limit measure in (1.3) (see Corollary 5.4 and Sect. 5 for more details).

Remark 1.1 (Related work on random geometric graphs) The general theory of ran-
dom graphs has been founded in 1959 by Erdős and Rényi, who proposed a model
of random graph G(n, p) where the number of vertices is fixed to be n and each pair
of distinct vertices is joined by an edge with probability p, independently of other
edges [12,14–17]. Later on, other models have been proposed in the literature [11], as
for instance the Barabási–Albert scale-free network model [2] and the Watts–Strogatz
small-world network model [51]. For general references on random graphs, the reader
is referred to [7–10,13,18,29,33,42]. Here we focus on the random geometric graph
model and we refer to [23,43,50] for more literature on this topic. Applications of ran-
dom geometric graphs can be found, for instance, in the contexts of wireless networks,
epidemic spreading, city growth, power grids, protein-protein interaction networks
[11].
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1.5 The Spectrum of a RandomGeometric Graph

When talking about a graph, a natural associated object to look at is its normalized
Laplace operator, see Sect. 6. It is known that the spectrum of the (symmetric) nor-
malized Laplace operator for graphs encodes important information about the graphs
[8]. For example, it tells us how many connected components a graph has; it tells us
whether a graph is bipartite and whether it is complete; it tells us how difficult it is to
partition the vertex set of a graph into two disjoint sets V1 and V2 such that the number
of edges between V1 and V2 is as small as possible and such that the volume of both V1
and V2, i.e., the sum of the degrees of their vertices, is as big as possible. Therefore, the
normalized Laplace operator gives a partition of graphs into families and isospectral
graphs share important common features. Since, furthermore, the computation of the
eigenvalues can be performed with tools from linear algebra, such operator is a very
powerful and useful tool in graph theory and data analytics.

In the context of random M-geometric graphs, the convergence of the counting
measure in (1.3) can be used to deduce the existence of a limitmeasure for the spectrum
of the normalizedLaplace operator for randomgeometric graphs.More specifically,we
define the empirical spectral measure of a graph as the normalized counting measure
of eigenvalues of the normalized Laplace operator and we prove that there exists a
deterministic measure μ on the real line such that (Theorem 7.4)

μ	n := 1

n

n∑

i=1

δλi (	n)
∗
⇀

n→∞μ. (1.4)

Here,λ1(	n), . . . , λn(	n) are the eigenvalues of the normalizedLaplace operator of	n

and the convergence in (1.4) means that for every continuous function f : [0, 2] → R

we have

lim
n→∞E

∫

[0,2]
f dμ	n =

∫

[0,2]
f dμ.

The measure μ in (1.4) is far from trivial and we do not have yet a clear understanding
of it: we know it is supported on the interval [0, 2], but for example it is not absolutely
continuous with respect to Lebesgue measure (in fact, μ({0}) = β > 0).

Remark 1.2 Interestingly, [12] studies the convergence of μ	n as n → ∞ in the case
where 	n is a G(n, p) random graph and the eigenvalues are the ones of the non-
normalized Laplacian or the ones of the adjacency matrix. In particular, it is shown
that in such context, under suitable conditions, μ	n converges to the semi-circle law
if associated to the adjacency matrix and it converges to the free convolution of the
standard normal distribution if associated to the non-normalized Laplacian.

Remark 1.3 In [25], Gu, Jost, Liu, and Stadler introduce the notion of spectral class
of a family of graphs. Given a Radon measure ρ on [0, 2] and a sequence (	n)n∈N of
graphs with # (V (	n)) = n, they say that this sequence belongs to the spectral class

ρ if μ	n

∗
⇀ρ as n → ∞. We can interpret (1.4) as saying that our family of random

geometric graphs (	n)n belongs to the spectral class μ (in a probabilistic sense).
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Remark 1.4 (Related work on spectral theory) Similarly to the spectrum of the nor-
malized Laplace operator, also the spectra of the non-normalized Laplacian matrix
(defined in Sect. 6) and the one of the adjacency matrix have been widely studied.
We refer the reader to [8,44] for general references on spectral graph theory. We refer
to [3,30] for applications of spectral graph theory in chemistry and we refer to [19–
21,37,40,46,47] for applications in theoretical physics and quantum mechanics. For
references on spectral graph theory of (not necessarily geometric) random graphs, we
refer to [9,11,12,41]. In [11], in particular, the eigenvalues of the adjacency matrix
for random geometric graphs are studied using numerical and statistical methods.
Remarkably, it is shown that random geometric graphs are statistically very similar
to the other random graph models we have mentioned above: Erdős–Rényi random
graphs, Barabási–Albert scale-free networks, Watts–Strogatz small-world networks.
On the other hand, in [41], it is shown that symmetric structures abundantly occur in
random geometric graphs, while the same does not hold for the other random graph
models. Our main results on spectral graph theory for random geometric graphs, The-
orem 7.4 and Proposition 7.5 below, follow the same general idea as [11] and [41], in
the sense that we are interested in the limiting spectrum of large random geometric
graphs. The main difference is that [11] is focused on the adjacency matrix, [41] gives
a focus on the non-normalized Laplacian and we focus on the normalized Laplacian.
Therefore the final implications differ very much.

It is worth mentioning the unpublished work [4], where the authors also derive
convergence of the spectral measure of random R

m-geometric graphs in the ther-
modynamic regime. The results from [4] are slightly different from the results of our
paper: the authors of [4] considerRm-geometric graphs sampled by a general bounded
density; here in the Euclidean case we only consider the Poisson distribution. On the
other hand, our Theorem7.4 holds also for general compactRiemannianmanifolds and
establishes the universality of the limiting measures. Moreover, we believe the tech-
nique we present here is even more general and can be used besides the context of geo-
metric graphs, for instance by studying Laplacians of random geometric complexes.

Finally, we remark that there is an interesting connection between the spectrum of
random geometric graphs on a compact Riemannian manifold and the spectrum of
the Laplacian of the manifold—but in a regime different from the one of the current
paper. It is possible to prove “convergence” as n → ∞ of one spectrum to the other
if the size of the balls is of the order n−1/m log n, see [22] for more details. However,
the results from [22] do not apply in our case: they correspond to a “denser” set of
points than the one for being in the thermodynamic regime.

1.6 The Euclidean PoissonModel

As we already observed, in [1], the proof of (1.2) is based on a rescaling limit idea.
Namely, one can fix R > 0 and a point p ∈ M , and study the limit structure of the
random complexes inside the ball B̂(p, Rn−1/m). The random geometric complex
obtained as n → ∞ can then be described as follows. Let P := {p1, p2, . . .} be a set
of points sampled from the standard spatial Poisson distribution in Rm . For α > 0, let
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P :=
⋃

p∈P

B(p, α)

and let

PR := {connected components ofP entirely contained in the interior of B(0, R)}.

For the random complex PR , one can define completely analogous measures, where
now the parameter is R > 0, and all the above discussion applies also to this model
(it is discussed throughout the paper).

Structure of the Paper

This paper is structured as follows. In Sect. 2 we discuss (deterministic) M-geometric
complexes and, in particular, we define and see some properties of the set G/∼= of
isotopy classes of connected, nondegenerate M-geometric complexes. In Sect. 3 we
discuss random M-geometric complexes; inSect. 4weprove (1.2).Moreover, inSect. 5
we define and see some properties of geometric graphs; in Sect. 6 we recall the defini-
tion of the normalized Laplace operator L̂ for graphs and we prove some properties of
the spectral measure in the case of geometric graphs. Finally, in Sect. 7 we prove (1.4).

2 Geometric Complexes

Throughout this paper we fix a Riemannian manifold (M, g) of dimension m.

Definition 2.1 (M-geometric complex and its skeleta) Let p1, . . . , pn be points in M
and fix r ≥ 0. We define an M-geometric complex as

U({p1, . . . , pn}, r) :=
n⋃

k=1

B̂(pk, r) = {x ∈ M : dM (x, {p1, . . . , pn}) ≤ r}.

For U := U({p1, . . . , pn}, r), we also let

Č(U) := Č({p1, . . . , pn}, r) := nerve of the cover {B̂(pk, r)}n
k=1 and

Č (k)(U) := Č (k)({p1, . . . , pn}, r) := k-skeleton of Č({p1, . . . , pn}, r).

In particular, we call Č (1)({p1, . . . , pn}, r) an M-geometric graph.

Remark 2.2 In order to avoid unnecessary complications, in the sequel we will always
assume that the injectivity radius5 inj M of M is strictly positive (which is true if M

5 Recall that the injectivity radius injp M of M at one point p is defined to be the largest radius of a ball
in the tangent space Tp M on which the exponential map expp : Tp M → M is a diffeomorphism and the
injectivity radius of M is defined as the infimum of the injectivity radii at all points:

inj M = inf
p∈M

injp M .
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is compact or if M = R
m with the flat metric) and that

0 < r ≤ inj M .

This requirement ensures that for every point p ∈ M the set

∂ B̂(p, r) = {x ∈ M : d(x, pk) = r}

is smooth (in fact it is the image of the sphere of radius r in the tangent space at p
under the exponential map, which is a diffeomorphism on BTp M (0, inj M)). Observe
also that for r ≤ inj M the ball B̂(p, r) is contractible, but not necessarily geodesically
convex.

We will denote by
{n

l

}
the set of all l-tuples { j1, . . . , jl} of elements from the set

{1, . . . , n}.
Definition 2.3 We say that U({p1, . . . , pn}, r) is nondegenerate if for each J =
{ j1, . . . , jl} ∈ {n

l

}
the intersection

⋂l
k=1 B̂(p jk , r) is transversal, i.e., at a point of

intersection both the interiors of the balls and their boundaries intersect transversely,
in the sense of differential topology; see [27, Chaps. 1 and 3].

The next result is classical and relates the homotopy of a geometric complex to the
one of its associated Čech complex.

Lemma 2.4 (Nerve Lemma) If M is compact, there exists ρ > 0 such that, for each
r ≤ ρ,

U({p1, . . . , pn}, r) ∼ Č({p1, . . . , pn}, r),

i.e., they are homotopy equivalent.

Proof For the proof in this setting, see [1, Lem. 6.1]. ��
Definition 2.5 (Isotopy classes of connected geometric complexes) Let p1, . . . , pn

and q1, . . . , qn be points in M and let r0, r1 ≥ 0 be such that

U0 := U({p1, . . . , pn}, r0) and U1 := U({q1, . . . , qn}, r1)

are nondegenerate M-geometric complexes. We say that U0 and U1 are (rigidly) iso-
topic andwewrite U0 ∼= U1 if there exists an isotopy of diffeomorphismsϕt : M → M
with ϕ0 = idM and a continuous function r(t) > 0, for t ∈ [0, 1], such that

– for each t ∈ [0, 1], U({ϕt (p1), . . . , ϕt (pn)}, r(t)
)
is nondegenerate,

– r(0) = r0, r(1) = r1, and
– ϕ1(p1) = q1, . . . , ϕ1(pn) = qn .

Remark 2.6 (Isotopy classes and discriminants) The definition of two complexes
being (rigidly) isotopic is very reminiscent of the notion of rigid isotopy from algebraic
geometry, where the “regular” deformations are those which do not intersect some
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discriminant. We can make this analogy more precise. For every n ∈ N consider the
smooth manifold

Hn := M × · · · × M︸ ︷︷ ︸
n times

×(0, inj M), (2.1)

together with the discriminant

�n := {(p1, . . . , pn, r) : U({p1, . . . , pn}, r) is degenerate}. (2.2)

The set�n is closed since its complement Rn is defined by finitely many transversality
conditions.Adopting this point of view, isotopy classes of nondegenerate M-geometric
complexes built using n many balls are labeled by the connected components of
Rn := Hn\�n (the complement of a discriminant). In fact, given a nondegenerate
complex U({p1, . . . , pn}, r), (p1, . . . , pn, r) ∈ Rn (because it is nondegenerate) and,
vice versa, every point in Rn corresponds to a nondegenerate complex. Moreover, a
nondegenerate isotopy of two nondegenerate complexes defines a curve between the
corresponding points of Rn , and this curve is entirely contained in Rn ; the two cor-
responding parameters must therefore lie in the same connected component of Rn ;
vice versa, because for an open set of a manifold connected and path connected are
equivalent, every two points in the same component Rn can be joined by an arc all
contained in Rn and give therefore rise to isotopic complexes.

Definition 2.7 We define the set

G(M) := {connected, nondegenerate M-geometric complexes}

and use the notation G := G(M) when M is given. We also let

(G/∼=) := {isotopy classes of connected, nondegenerate M-geometric complexes}.

Remark 2.8 Observe that, by definition, each class [U] ∈ G/∼= keeps also the informa-
tion on thewayU is embedded in M . In particular, itmight be that to two nondegenerate
M-geometric complexes U1 and U2 there correspond isomorphic Čech complexes
Č(U1) � Č(U2), but at the same time the complexes U1 and U2 themselves are not
rigidly isotopic (see Fig. 2).

Remark 2.9 For each M of dimension m, G(M)/∼= ⊃ G(Rm)/∼=.

Theorem 2.10 G/∼= is a countable set.

Proof We first partition G/∼= into countably many sets. For every n ∈ N we consider
the set

(Gn/∼=) := {classes of complexes inG/∼= that are built using n balls};

we need to prove that this set is countable. We have already seen (Remark 2.6) that
isotopy classes of nondegenerate complexes which are built using n balls are in one-
to-one correspondence with the connected components of Rn = Hn\�n (these sets
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are defined by (2.1) and (2.2)). The function “number of connected components of
a nondegenerate complex” is constant on each component of Rn and consequently
the number of isotopy classes of connected and nondegenerate complexes (i.e., the
cardinality of Gn/∼=) is smaller than the number of components of Rn :

# (Gn/∼=) ≤ # ({connected components of Rn}).

We are therefore reduced to prove that Rn has at most countably many components.
To this end we write Rn as the disjoint union of its components (each of which is an
open set in Hn):

Rn =
⊔

α∈A

Cα. (2.3)

We cover now the manifold Hn with countably many manifold charts {(Vj , ϕ j )} j∈N
with ϕ j : Vj

∼−→ R
m . For every j ∈ N we consider also the decomposition of the

open set Rn ∩ Vj into its connected components:

Rn ∩ Vj =
⊔

β∈B j

Cβ, j .

Since each Cα from (2.3) is the union of elements of the form

Cα =
⋃

j∈Nα, β∈B j

Cβ, j

with the index set j running over the countable set Nα ⊂ N, it is therefore enough
to prove that for every j ∈ N the index set B j is countable, i.e., that the number
of connected components of Rn ∩ Vj is countable. Observe now that, since ϕ j is a
diffeomorphism between Vj and R

m , then the number of connected components of
Rn ∩ Vj is the same of the number of connected components of ϕ j (Rn ∩ Vj ), which
is an open subset of Rm . Since in each component of ϕ j (Rn ∩ Vj ) we can pick a point
with rational coordinates, it follows that the number of such components is countable,
and this concludes the proof. ��
Remark 2.11 Observe that the key point of the proof of Theorem 2.10 is showing that
the number of connected components of an open set in a differentiable manifold is
countable.

Definition 2.12 We let

(G/∼) := {homotopy classes of connected, nondegenerate

M-geometric complexes},
(G(k)/�) := {isomorphism classes of k-skeleta of connected

M-geometric complexes}.
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Fig. 2 The threeR3-geometric complexes described in Remark 2.13. From left to right, we call themU1,U2,
and U3 and we assume the number of balls and their combinatorics needed to describe the first two are the
same. Then [U1] = [U2] = [U3] in G/∼, because they are all homotopy equivalent, [U1] = [U2] �= [U3]
in G/� (the first two give rise to the same Čech complex, which is however different from the last one) and
[U1] �= [U2] �= [U3] �= [U1] in G/∼= (they are all pairwise non-isotopic)

In particular,

G(1)/� = {isomorphism classes of connected M-geometric graphs}.

Remark 2.13 In order to appreciate the difference between the classes in (G/∼=),
(G/∼), and (G(k)/�), we look at Fig. 2. Here, we have three R

3-geometric com-
plexes, given by the union of balls in R

3, that have three different shapes. All three
complexes are homotopy equivalent to each other and they are all pairwise not iso-
topic. Moreover, while the first one and the second one have isomorphic 1-skeleta, the
1-skeleton of the third complex is not isomorphic to the other ones.

Remark 2.14 There are natural forgetful maps

φ : G/∼= −→ G/∼, [U] �−→ [U], and

ϕ(k) : G/∼= −→ G(k)/�, [U] �−→ [Č (k)(U)].

Definition 2.15 (Component counting function) Given a nondegenerate geometric
complex U ⊂ M , a topological subspace Y ⊂ M , and a class w ∈ G/∼=, we define

N (U;w) := # (components of U of type w),

N (U , Y ;w) := # (components of U of type w entirely contained

in the interior of Y ),

N ∗(U , Y ;w) := # (components of U of type w intersecting Y ).

In the paper [38] Nazarov and Sodin have introduced a powerful tool (the “integral
geometry sandwich”) for localizing the count of the number of components of the zero
set of randomwaves in a Riemannian manifold. This tool has been used by Sarnak and
Wigman [48] for the study of distribution of components type of the zero set of random
waves on a Riemannian manifold, and it has been adapted to geometric complexes in
[1]. We recall here this tool, stated in the language of this paper.
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Theorem 2.16 (Analogue of the Integral Geometry Sandwich) The following two
estimates are true:

(1) (The local case) Let U be a generic geometric complex in R
m and fix w ∈

G(Rm)/∼=. Then for 0 < r < R,

∫

BR−r

N (U , B(x, r);w)

vol Br
dx ≤ N (U , BR;w) ≤

∫

BR+r

N ∗(U , B(x, r);w)

vol Br
dx .

(2) (The global case) Let U be a generic geometric complex in a compact Rieman-
nian manifold M and fix w ∈ G(M)/∼=. Then for every ε > 0 there exists η > 0
such that for every r < η,

(1 − ε)

∫

M

N (U , B(x, r);w)

vol Br
dx ≤ N (U , M;w)

≤ (1 + ε)

∫

M

N ∗(U , B(x, r);w)

vol Br
dx .

Proof The proof of both statements is exactly the same as in [48], after noticing that
the only property needed on the counting functions is that the considered topologi-
cal spaces only have finitely many components, and these components are counted
according to a specific type (here are selected according to isotopy type, but we could
consider instead any function that partitions the set of components and count only the
components belonging to a given class). ��

3 RandomGeometric Complexes (Thermodynamic Regime)

Definition 3.1 (Riemannian case) Let M be a compact Riemannian manifold of
dimension m and consider a set of points {p1, . . . , pn} independently sampled from
the uniform distribution on M . Fix a positive number α > 0, let r := αn−1/m and

Un := U({p1, . . . , pn}, r).

We say that Un is a random M-geometric complex. The choice of such r is what defines
the so-called critical or thermodynamic regime.

Definition 3.2 (Euclidean Poisson case) Let P := {p1, p2, . . .} be a set of points
sampled from the standard spatial Poisson distribution in Rm . For α > 0, let

P :=
⋃

p∈P

B(p, α)

and, for R > 0, let

PR := {connected components ofP entirely contained in the interior of B(0, R)}.
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Remark 3.3 With probability 1, we have that # (P ∩ B(0, R)) is finite. To see this,
observe that

P {# (P ∩ B(0, R)) ≥ l} =
∑

k≥l

vol B(0, R)

k! e− vol B(0,R) and

P {# (P ∩ B(0, R)
) = ∞} ≤ P {# (P ∩ B(0, R)) ≥ l} l→∞−−−→ 0.

From now on, we will only consider nondegenerate complexes, without further
mentioning this assumption. This is not reductive, since our random complexes are
nondegenerate with probability one.

4 RandomMeasures

We fix the following notation. Given a set A with a fixed σ -algebra (omitted in the
notation), we denote by

M(A) := {measures on A} and M1(A) := {probability measures on A}.

Definition 4.1 Let U ⊂ M be a finite geometric complex and let

U = U1 � . . . � Ub0(U)

be its decomposition into connected components. We define �U ∈ M1(G/∼=) as

�U := 1

b0(U)

b0(U)∑

j=1

δ[U j ].

Observe that the measure �U just defined is a probability measure. We also endow
M1(G/∼=) with the total variation distance:

dtv(�1,�2) := sup
A⊂G/∼=

|�1(A) − �2(A)|.

When U is a random geometric complex, �U is a random variable with values in
the metric space (M1(G/∼=), dtv). In this context, recall the notion of convergence in
probability:

�n
P−→ � ⇐⇒ ∀ε, lim

n→∞P(dtv(�n,�) ≥ ε) = 0.

Using the previous notation, we set

�n := �Un and �R := �PR .
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Theorem 4.2 There exists a probability measure � ∈ M1(G/∼=) such that

(1) �n
P−−−→

n→∞ � and �R
P−−−→

R→∞ �,

(2) supp� = G(Rm)/∼=.

We shall see the proof of Theorem 4.2 in Sect. 4.1. As a first corollary we recover the
results from [1].

Corollary 4.3 ([1, Thms. 1.1 and 1.3]) Consider the forgetful map

φ : G/∼= −→ G/∼, [U] �−→ [U].

We have that
φ∗�n

P−→ φ∗� and φ∗�R
P−→ φ∗�.

Also, suppφ∗� = G(Rm)/∼.

Proof We give the proof in the case of the measures φ∗�n , the other case is identical.

By definition we have φ∗�n
P−→ φ∗� if and only if

lim
n→∞P(dtv(φ∗�n, φ∗�) ≥ ε) = 0.

Observe now that

dtv(φ∗�n, φ∗�) = sup
A

|φ∗�n(A) − φ∗�(A)| = sup
A

∣∣�n(φ−1(A)) − �(φ−1(A))
∣∣

≤ sup
Ã

|�n( Ã) − �( Ã)| = dtv(�n,�).

In particular, the inequality dtv(φ∗�n, φ∗�) ≥ ε implies the inequality dtv(�n,�) ≥
ε and therefore

lim
n→∞P(dtv(φ∗�n, φ∗�) ≥ ε) ≤ lim

n→∞P (dtv(�n,�) ≥ ε) = 0. ��

As a second corollary we see that, because Theorem 4.2 keeps track of fine properties
of the geometric complex, we can use other forgetful maps and obtain information on
the limit distribution of the components type of each k-skeleton.

Corollary 4.4 For each k ∈ N, consider the forgetful map from Remark 2.14,

ϕ(k) : G/∼= −→ G(k)/�, [U] �−→ [Č (k)(U)].

We have that
ϕ(k)∗ �n

P−→ ϕ(k)∗ � and ϕ(k)∗ �R
P−→ ϕ(k)∗ �.

Also, suppϕ
(k)∗ � = G(k)(Rm)/�.
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Proposition 4.5 (Existence of all isotopy types) Let U be a nondegenerate geometric
complex in R

m and let α > 0. Let (Un)n be a sequence of random M-geometric
complexes constructed using α. There exist n0, R, c > 0 (depending on 	 and α but
not on M) such that for every p ∈ M and for every n ≥ n0,

P
{Un ∩ B̂

(
p, Rn−1/m) ∼= U}

> c.

Proof The proof is similar to the proof of [1, Prop. 1.2]. Here we sketch this proof for
the sake of completeness, pointing out what is the main difference with [1].

Assume that U ⊂ B(0, R′) is constructed using balls of radius r = 1:

U =
�⋂

k=1

B(yk, 1),

set R = αR′ and consider the sequence of maps:

ψn : B̂
(

p, Rn−1/m) exp−1
p−→ BTp M

(
0, Rn−1/m) dilation−→ BTp M (0, R′) � B(0, R′).

For n large enough the map ψn becomes a diffeomorphism and we denote by ϕn

its inverse. [1, Prop. 6.2] implies that there exist ε0 > 0 and n0 > 0 such that
if ‖ỹk − yk‖ ≤ ε0 for every k = 1, . . . , �, then for n ≥ n0 the two complexes⋃�

k=1 B̂(ϕn(ỹk), αn−1/m) and U are isomorphic. In fact, because U is nondegener-
ate, possibly choosing ε0 > 0 even smaller, we can make sure that the complex⋃�

k=1 B̂(ϕn(ỹk), αn−1/m) belongs to the same rigid isotopy class of U , because this
is an open condition.

One then proceeds considering the event

En =
{
∃ I� ∈

{
n
�

}
: ∀ j ∈ I�, p j ∈ ψ−1

n (B(y j , ε)) &

∀ j /∈ I�, p j ∈ B̂
(

p, (R + α) n−1/m)c
}
.

Observe that

En �⇒ Un ∩ B̂
(

p, Rn−1/m) ∼= U ,

and in particular, in order to get the conclusion, it is enough to estimate from below
the probability of En . This is done in the last lines of the proof of [1, Prop. 1.2]. ��
Example 4.6 Let C137 be the cycle with 137 vertices and 137 edges. By Proposition
4.5 there exist n0, R, and c > 0 (depending on C137 and α but not on M) such that for
every p ∈ M and for every n ≥ n0,

P
{
	n ∩ B̂

(
p, Rn−1/m) ∼= C137

}
> c.
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4.1 Proof of Theorem 4.2

We split the statement of Theorem 4.2 into two parts. The first part, Theorem 4.8,
states that the randommeasure�R converges in probability to a deterministic measure
� ∈ M1(G/∼=) supported on the set G(Rm)/∼=. The second part, Theorem 4.12, states
that also the random measure �n converges in probability to �.

4.1.1 The Local Model

Proposition 4.7 For every w ∈ G(Rm)/∼= there exists a constant cw > 0 such that the
random variable

cR,w := N (PR, w)

vol B(0, R)

converges to cw in L1 and almost surely as R → ∞.

Proof Following the proof of [1, Prop. 2.1] withN (PR, τ, w) instead ofN (PR, τ, γ )

and with the application of Theorem 2.16 instead of [1, Thm. 6.6], one proves that
there exists a constant cw such that

N (PR, B(0, R);w)

vol B(0, R)
−→ cw.

Since PR ⊂ B(0, R), this implies that

N (PR, w)

vol B(0, R)
−→ cw.

We now have to prove that cw > 0. Since w ∈ G(Rm)/∼=, given U ∈ w there exist
β > 0 and y1, . . . , yn ∈ R

m such that

U ∼= U({y1, . . . , yn}, β).

Let R1 be such that U ⊂ B(0, R1) and choose r such that rβ = α, where α is the
constant that we used for constructing the random complex P . We can then rescale U
in B(0, r R1) so that it is constructed on radius α. Now, since U is nondegenerate, there
exists ε > 0 such that, if for every i we have ‖yi − y′

i‖ < ε, then the complex

U ′({y′
1, . . . , y′

n}, α)

is isotopic to U . Take K R = k ·vol B(0, R) disjoint balls {B(y j , r R1)} j=1,...,K R inside
B(0, R) with c > 0. Then

N (PR, B(0, R);w)

vol B(0, R)
≥ 1

vol B(0, R)

K R∑

j=1

N (PR, B(y j , r R1);w).
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Therefore

E

(N (PR, B(0, R);w)

vol B(0, R)

)
≥ E

(
1

vol B(0, R)

K R∑

j=1

N (PR, B(y j , r R1);w)

)

= K R

vol B(0, R)
· E(N (PR, B(y, r R1);w)

)
,

since the random variables N (PR, B(y j , r R1);w) are identically distributed by the
fact that the balls are disjoint. Now,

K R

vol B(0, R)
≥ k · vol B(0, R)

vol B(0, R)
= k > 0

and

E
(N (PR, B(y, r R1);w)

)
> 0.

Therefore, cw > 0. ��
Proposition 4.7 allows us to deduce the following theorem.

Theorem 4.8 There exists � ∈ M1(G/∼=) such that

�R
P−−−→

R→∞ �.

Also, supp� = G(Rm)/∼=.

Proof The proof is the same as the one of [1, Thm. 1.3], replacing the homotopy type
counting function with the isotopy type one. ��

4.1.2 Riemannian Case

Theorem 4.9 Let p ∈ M. For every δ > 0 and for R > 0 sufficiently big there exists
n0 such that for every w ∈ G(Rm)/∼= and for n ≥ n0,

P
{N (PR, B(0, R);w) = N (Un, B̂

(
p, Rn−1/m);w

)} ≥ 1 − δ.

Proof The proof is the same as the one of [1, Thm. 3.1], with the following differences:

– At point (3), instead of considering the homotopy equivalence between the unions
of the balls, we consider the isotopy equivalences between their k-skeleta. This is
allowed because, at the end of the proof of (3), it is proven that the combinatorics
of the covers are the same.
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– After assuming point (1), point (2), and the modified point (3), we can say that
the k-skeleta of the two unions of balls are isotopic and also the unions of all
the components entirely contained in B(0, R) (respectively B̂(p, Rn−1/m)) have
isotopic k-skeleta. In particular, the number of components of a given isotopy class
w is the same for both sets with probability at least 1 − δ. ��

Corollary 4.10 For each w ∈ G(Rm)/∼=, α > 0, x ∈ M, and ε > 0, we have

lim
R→∞ lim sup

n→∞
P

{∣∣∣∣
N (Un, B(x, Rn−1/d);w)

vol B(0, R)
− cw

∣∣∣∣ > ε

}
= 0.

Proof The proof is the same as the one of [1, Cor. 3.2], with the application of Theorem
4.9 and Proposition 4.7 instead of [1, Thm. 3.1] and [1, Prop. 2.1]. ��
Theorem 4.11 For every w ∈ G(Rm)/∼=, the random variable

cn,w := N (Un;w)

n

converges in L1 to cw · vol M, where cw is the constant appearing in Proposition 4.7.
In particular, this implies that the random variable

cn := N (Un)

n
,

i.e., when we consider all components with no restriction on their type, converges in
L1 to c, where c = ∑

w∈G(Rm )/∼= cw > 0.

Proof The proof is the same as the one of [1, Thm. 4.1], with the application of
Theorem 2.16 instead of [1, Thm. 6.7] and the application of Corollary 4.10 instead
of [1, Cor. 3.2]. ��
Theorem 4.12 The measure � ∈ M1(G/∼=) appearing in Theorem 4.8 is such that

�n
P−−−→

n→∞ �.

Proof The proof is the same as the one of [1, Thm. 1.1], with the following differences:

– We apply Theorem 4.11 instead of [1, Thm. 4.1];
– We use w ∈ G(Rm)/∼= instead of γ ∈ G, �n instead of μ̂n , and G(M)/∼= instead
of Ĝ. ��

5 Geometric Graphs

We specialize the previous discussion to the case k = 1, and consider

G(1) = {isomorphism classes of connected, nondegenerate M-geometric graphs}.
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Fig. 3 Seven kissing spheres in dimension 2. The eighth sphere does not know where to go

Remark 5.1 The set of M-geometric graphs defined using closed balls equals the set
of M-geometric graphs defined using open balls. To see this, assume that a geometric
graph 	 = (V (	), E(	)) is defined using closed balls of radius r . Then, for each pair
of distinct vertices (pi , p j ),

(pi , p j ) ∈ E(	) ⇐⇒ d(pi , p j ) ≤ r .

Now, choose ε ≥ 0 small enough that, for each pair of distinct vertices (pi , p j ),

(pi , p j ) ∈ E(	) ⇐⇒ d(pi , p j ) < r + ε.

Therefore, 	 can be constructed as an M-geometric graph using open balls of radius
r + ε. The inverse implication is analogous.

In the case M = R
m , the problem of describing the set G(1)(Rm) is equivalent

to asking which graphs are realizable as Rm-geometric graphs in a given dimension
m. There is a vast literature about this problem and, commonly, geometric graphs
realizable in dimension m are called m-sphere graphs while the minimal dimension
m such that a given graph is an m-sphere graph is called its sphericity. In [35] it is
proven that every graph has finite sphericity; in [32] the authors prove that the problem
of deciding, given a graph 	, whether 	 is an m-sphere is NP-hard for all m > 1.
We can also observe that, for each m > 0, there are graphs that are not m-sphere
graphs. To see this, consider the kissing number k(m) in dimension m, defined as the
number of non-overlapping unit spheres that can be arranged such that they each touch
a common unit sphere. Consider the star graph with a central vertex connected to n
external vertices, where n > k(m). In order to have a realization of dimension m of
this graph, we need a central sphere that touches n spheres which do not touch each
other. Since n > k(m), this is not possible.

Example 5.2 In dimension 2, the kissing number is 6, as shown in Fig. 3. Therefore,
any star graph Sn on n + 1 vertices, with n > 6, is not realizable in dimension 2 as a
sphere graph.
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Fig. 4 Together with the cycles of length at least four, these are the non-admissible induced subgraphs for
unit interval graphs on the line

In the particular case of m = 1, 1-sphere graphs are called indifference graphs or
unit interval graphs, and there are many characterizations of such graphs [26,28,34,
36,45,52]. A classical characterization is due to Roberts and Wegner [28,45,52] and it
characterizes unit interval graphs by the absence of certain forbidden subgraphs; this
is recalled in Theorem 5.3.

Theorem 5.3 (Roberts and Wegner) A graph is a unit interval graph, i.e., it is an
element of G(1)(R), if and only if it does not contain any cycle of length at least four
and any of the graphs shown in Fig. 4 as induced subgraph.

As a consequence, we get the following corollary.

Corollary 5.4 The support of the measure ϕ
(1)∗ � defined in Corollary 4.4 is given by

all graphs that do not contain any cycle of length at least four and any of the graphs
shown in Fig. 4 as induced subgraph.

6 Normalized Laplacian of a Graph and Its Spectrum

We now fix a graph 	 on n vertices v1, . . . , vn and recall the definition of the (sym-
metric) normalized Laplace matrix, together with other common matrices associated
to graphs. We shall then define the spectrum and the spectral measure associated to
these matrices, and show some properties.

Definition 6.1 (Matrices associated to a graph) Let A be the adjacency matrix of
	; let D := diag (deg v1, . . . , deg vn) be the degree matrix; let L := D − A be the
non-normalized Laplacian matrix and let L̂ := In − D−1/2AD−1/2 be the symmetric
normalized Laplacian matrix.

Definition 6.2 (Spectrum of a matrix) Given Q ∈ Sym(n,R) let spec(Q) be the
spectrum of Q, i.e., the collection of its eigenvalues repeated with multiplicity,

λ1(Q) ≤ . . . ≤ λn(Q).
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We define the empirical spectral measure of Q as

μQ := 1

n

n∑

i=1

δλi (Q).

Definition 6.3 (Spectrum of a graph) We define spectrum of 	, spec(	), as the spec-
trum of L̂ and we write it as λ1(	) ≤ . . . ≤ λn(	). We also define

s(	) :=
n∑

i=1

δλi (	)

and the spectral measure of 	 as

μ	 := μL̂ = 1

n

n∑

i=1

δλi (	).

Recall that, for every i = 1, . . . , n, λi (	) ∈ [0, 2] [8, Eq. (1.1) and Lem. 1.7]. In
particular, this implies that s(	) ∈ M([0, 2]) and μ	 ∈ M1([0, 2]).

In order to state the next theorem, let us denote byC0
c (R,R) the space of continuous

functions f : R → R with compact support.

Theorem 6.4 Let (	1,n)n and (	2,n)n be two sequences of graphs such that, for every
n, 	1,n and 	2,n are two graphs on n nodes that differ at most by c edges. Denote
by μ1,n and μ2,n the spectral measures associated to one of the matrices A, D, L, L̂ .
Then

μ1,n − μ2,n
∗
⇀ 0,

where
∗
⇀ denotes the weak star convergence, i.e., for each f ∈ C0

c (R,R)

∣∣∣∣
∫

R

f dμ1,n −
∫

R

f dμ2,n

∣∣∣∣ → 0.

We shall prove Theorem 6.4 in Sect. 6.1.

Remark 6.5 In the case of L̂ , we have convergence in total variation distance for
“connected sum” of complete graphs, but not for paths, as we shall see in Sect. 6.2.

Remark 6.6 [25, Thm. 2.8] says that, if two families (	1,n)n and (	2,n)n differ by at
most c edges and their corresponding spectral measures have weak limits, then they
belong to the same spectral class (the notion of spectral class of a family of graphs is
recalled in Remark 1.3). In this sense our previous Theorem 6.4 can be considered as
an analogue of [25, Thm. 2.8]: the difference of the spectral measure of two families
of graphs (	1,n)n and (	2,n)n differing by at most a finite number c of edges, goes to
zero weakly (without the assumption that the corresponding spectral measures have
weak limits).
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6.1 Proof of Theorem 6.4

6.1.1 Preliminaries

Given Q ∈ Sym(n,R), we define the 1-Shatten norm of Q as

‖Q‖S1 :=
n∑

i=1

|λi (Q)|.

The Weilandt–Hoffman inequality [49, Exercise 1.3.6] holds:

n∑

i=1

|λi (Q1) − λi (Q2)| ≤ ‖Q1 − Q2‖S1 . (6.1)

We will also need the Frobenius norm, defined for a symmetric matrix Q by

‖Q‖F := (trace(Q2))1/2.

The Frobenius norm and the Schatten norm are orthogonally invariant. Moreover, the
square of the Frobenius norm equals the sum of the squares of the entries of the matrix
‖Q‖2F = ∑

i j Q2
i j .

Proposition 6.7 Let Q1, Q2 ∈ Sym(n,R) be such that

‖Q1 − Q2‖S1 ≤ C .

Then, for each f ∈ C0
c (R,R) and for each ε > 0, there exists δ > 0 such that

∣∣∣∣
∫

R

f dμQ1 −
∫

R

f dμQ2

∣∣∣∣ ≤ ε + 2 sup | f |
δn

· C .

Proof Denote by {λ(1)
i }n

i=1 and {λ(2)
i }n

i=1 the eigenvalues of Q1 and Q2 respectively.
Then ∫

R

f dμQ1 −
∫

R

f dμQ2 = 1

n

n∑

i=1

(
f
(
λ

(1)
i

) − f
(
λ

(2)
i

))
,

therefore ∣∣∣∣
∫

R

f dμQ1 −
∫

R

f dμQ2

∣∣∣∣ ≤ 1

n

n∑

i=1

∣∣ f
(
λ

(1)
i

) − f
(
λ

(2)
i

)∣∣.

Now, since f ∈ C0
c (R,R), f is uniformly continuous and given ε > 0 there exists

δ = δ( f ) such that |λ1 − λ2| ≤ δ implies | f (λ1) − f (λ2)| ≤ ε. Therefore, since by
(6.1) and by hypothesis we have

n∑

i=1

∣∣λ(1)
i − λ

(2)
i

∣∣ ≤ ‖Q1 − Q2‖S1 ≤ C,
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it follows that ∣∣{∣∣λ(1)
i − λ

(2)
i

∣∣ > δ
}∣∣ ≤ C

δ
.

Therefore,

∣∣∣∣
∫

R

f dμQ1 −
∫

R

f dμQ2

∣∣∣∣ ≤ 1

n

n∑

i=1

∣∣ f
(
λ

(1)
i

) − f
(
λ

(2)
i

)∣∣

= 1

n

∑

|λ(1)
i −λ

(2)
i |<δ

∣∣ f
(
λ

(1)
i

) − f
(
λ

(2)
i

)∣∣ + 1

n

∑

|λ(1)
i −λ

(2)
i |≥δ

∣∣ f
(
λ

(1)
i

) − f
(
λ

(2)
i

)∣∣

≤ 1

n

∑

|λ(1)
i −λ

(2)
i |<δ

ε + 1

n

∑

|λ(1)
i −λ

(2)
i |≥δ

(∣∣ f
(
λ

(1)
i

)∣∣ + ∣∣ f
(
λ

(2)
i

)∣∣)

≤ 1

n
· ε · ∣∣{∣∣λ(1)

i − λ
(2)
i

∣∣ < δ
}∣∣ + 1

n
· 2 sup | f | · ∣∣{∣∣λ(1)

i − λ
(2)
i

∣∣ ≥ δ
}∣∣

≤ 1

n
· ε · n + 1

n
· 2 sup | f |

δ
· C ≤ ε + 2 sup | f |

δn
· C . ��

6.1.2 Applications to Graphs

Lemma 6.8 Let 	1, 	2 be two graphs with V (	1) = V (	2) that differ by at most C
edges. Then,

‖A1 − A2‖S1 ≤ 4C, ‖D1 − D2‖S1 ≤ 4C2,

‖L1 − L2‖S1 ≤ 4C2, ‖L̂1 − L̂2‖S1 ≤ 2C · √2 · √
n − 1.

Proof Observe that any of the matrices

�1 := A1 − A2, �2 := D1 − D2, �3 := L1 − L2

consists of all zeros except for at most 4C entries, all of which are bounded by a
constant (it is 1 for �1 and C for �2 and �3). Therefore, each �i ∈ Sym(n,R) for
i = 1, 2, 3 has rank at most 4C and all its eigenvalues are zero, except for at most 4C
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of them. It follows that, for i = 1, 2, 3,

‖�i‖S1 =
n∑

j=n−4C+1

|λ j (�i )| = 〈
(|λn−4C+1|, . . . , |λn|), (1, . . . , 1)

〉

≤
⎛

⎝
n∑

j=n−4C+1

λ j (�i )
2

⎞

⎠
1/2 √

4C = 2C1/2‖�i‖F = 2C1/2

⎛

⎝
∑

j,k

(�i )
2
jk

⎞

⎠
1/2

≤ 2C1/2(4CC̃2
i )1/2 ≤ 4CC̃i ,

where

C̃i =
{
1 if i = 1,

C if i = 2, 3.

Similarly, �4 := L̂1 − L̂2 consists of all zeros except for at most 2C(n − 1) entries,
all of which are bounded by 1, and it has rank at most 4C . Therefore,

‖�4‖S1 =
n∑

j=1

|λ j (�4)| ≤
⎛

⎝
n∑

j=1

λ j (�4)
2

⎞

⎠
1/2 √

4C =
⎛

⎝
∑

j,k

(�4)
2
jk

⎞

⎠
1/2

2
√

C

≤
⎛

⎝
2C(n−1)∑

1

1

⎞

⎠
1/2

2
√

C = 2C · √
2 · √

n − 1. ��

As a corollary, we can prove Theorem 6.4.

Proof of Theorem 6.4 We prove that, for each f ∈ C0
c (R,R) and for each ε > 0,

lim
n→∞

∣∣∣∣
∫

R

f dμ1,n −
∫

R

f dμ2,n

∣∣∣∣ ≤ ε.

Let c1 := 4C , c2 = c3 := 4C2 and c4 := 2C
√
2. ByLemma6.8,we have ‖�i‖S1 ≤ ci

for each i = 1, 2, 3. By Proposition 6.7, there exists δ > 0 such that

∣∣∣∣
∫

R

f dμ1,n −
∫

R

f dμ2,n

∣∣∣∣ ≤ ε + 2 sup | f |
δn

· ci .

Therefore,

lim
n→∞

∣∣∣∣
∫

R

f dμ1,n −
∫

R

f dμ2,n

∣∣∣∣ ≤ ε.

Similarly, by Lemma 6.8 we have that ‖�4‖S1 ≤ c4
√

n − 1. By Proposition 6.7, there
exists δ > 0 such that

∣∣∣∣
∫

R

f dμ1,n −
∫

R

f dμ2,n

∣∣∣∣ ≤ ε + 2 sup | f |
δn

· c4
√

n − 1.
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Therefore,

lim
n→∞

∣∣∣∣
∫

R

f dμ1,n −
∫

R

f dμ2,n

∣∣∣∣ ≤ ε. ��

6.2 Strong Convergence for Complete Graphs

Lemma 6.9 Given N ∈ N
+, let KN and K ′

N be two complete graphs on N nodes.
Let KN � K ′

N be their disjoint union and let 	N := KN ∪c edges K ′
N be their union

together with c edges (vi , v
′
i ) where vi ∈ KN and v′

i ∈ K ′
N , for i = 1, . . . , c. Let also

μKN �K ′
N

and μ	N be the spectral measures of these two graphs. Then,

μKN �K ′
N

= 1

N
· δ0 + N − 1

N
· δN/(N−1) and

μ	N = 1

2N
· δ0 + 1

2N
·
2c+1∑

i=1

δai + N − 1 − c

N
· δN/(N−1)

for some ai ∈ (0, 2).

Remark 6.10 In order to prove Lemma 6.9, we make the following observation. It is
easy to see that the spectrum of the symmetric normalized Laplacian matrix L̂ =
In − D−1/2AD−1/2 equals the spectrum of the random walk normalized Laplacian
matrix L̃ := In − D−1A. Moreover, for a graph with vertex set V , L̃ can be seen as
an operator from the set { f : V → R} to itself. We shall work on this operator for
proving Lemma 6.9 and, for a graph 	, we shall use the simplified notation L	 in
order to indicate the random walk normalized Laplace operator for 	.

Proof of Lemma 6.9 Since the spectrum of KN � K ′
N is given by 0 with multiplicity 2

and N/(N − 1) with multiplicity 2(N − 1), we have that

μKN �K ′
N

= 1

2N

(
2 · δ0 + 2(N − 1) · δN/(N−1)

)
.

In order to prove the second part of the lemma, we shall find 2(N −1−c) functions on
V (	N ) that are eigenfunctions for the normalized Laplace operator with eigenvalue
N/(N − 1) and are orthogonal to each other. In particular, by the symmetry of 	N , it
suffices to find N − 1 − c such functions that are 0 on the vertices of K ′

N .
Observe that KN−c is a subgraph of KN \{v1, . . . , vc} that has N −1−c eigenfunc-

tions f1, . . . , fN−1−c for the largest eigenvalue. These are orthogonal to each other
and orthogonal to the constants, therefore

0 =
∑

v∈V (KN−c)

degKN−c
(v) fi (v) f j (v) = (N − 2 − c)

∑

v∈V (KN−c)

fi (v) f j (v)

and
∑

v∈V (KN−c)

degKN−c
(v) fi (v) = (N − 2 − c)

∑

v∈V (KN−c)

fi (v) = 0
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for each i, j ∈ {1, . . . , N − 1 − c}. Now, for i ∈ {1, . . . , N − 1 − c}, let f̃i be the
function on V (KN ) that is equal to zero on v1, . . . , vc and is equal to fi otherwise.
Then, f̃1, . . . , f̃N−1−c are orthogonal to each other and orthogonal to the constants
because

∑

v∈V (KN )

degKN
(v) f̃i (v) f̃ j (v) =

∑

v∈V (KN−c)

(N − 1) f̃i (v) f̃ j (v)

= (N − 1)
∑

v∈V (KN−c)

f̃i (v) f̃ j (v)

= (N − 1)
∑

v∈V (KN−c)

fi (v) f j (v) = 0

and
∑

v∈V (KN )

f̃i (v) =
∑

v∈V (KN−c)

fi (v) = 0.

Since for complete graphs any function that is orthogonal to the constants is an
eigenfunction for N/(N − 1), we have that f̃1, . . . , f̃N−1−c are (pairwise orthogonal)
eigenfunctions for N/(N − 1).

Analogously, for i ∈ {1, . . . , N − 1 − c}, let now f̂i be the function on V (	N )

that is equal to zero on K ′
N ∪ {v1, . . . , vc} and is equal to fi otherwise. It is then

easy to see that also these functions are orthogonal to each other and orthogonal to
the constants. Now, for each i and for each v ∈ 	N with f̃i (v) �= 0, we have that
v ∈ KN−c, therefore

L	N f̂i (v) = f̂i (v) − 1

deg	N
(v)

∑

w∼v

f̂i (w) = f̃i (v) − 1

degKN
(v)

∑

w∼v in KN

f̃i (w)

= L KN f̃i (v) = N

N − 1
· f̃i (v) = N

N − 1
· f̂i (v).

This proves that the functions f̂i are N − 1 − c orthogonal eigenfunctions of the
Laplace operator in 	N for the eigenvalue N/(N − 1). Since they are all 0 on K ′

N , by
symmetry we can also get N − 1− c eigenfunctions for N/(N − 1) on 	N that are 0
on KN and therefore are orthogonal to the first N − 1− c functions. This implies that
the multiplicity of N/(N − 1) for 	N is at least 2(N − 1 − c). Therefore,

μ	N = 1

2N
· δ0 + 1

2N
·
2c+1∑

i=1

δai + N − 1 − c

N
· δN/(N−1)

for some ai ∈ (0, 2). ��
Corollary 6.11 The total variation distance between the probability measures μKN �K ′

N
and μ	N defined in the previous lemma is

sup
A⊆[0,2] measurable

∣∣μKN �K ′
N
(A) − μ	N (A)

∣∣ = 2c + 1

2N
.
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In particular, if c = o(N ), the total variation distance tends to zero for N → ∞.

Example 6.12 The previous corollary does not hold in general. As a counterexample,
take two copies of the path on N vertices, PN and P ′

N . Their union via one external
edge can be for example the path on 2N vertices, and

μP2N = 1

2N

2N−1∑

k=0

δ1−cos (πk/(2N−1)), while μPN �P ′
N

= 1

N

N−1∑

k=0

δ1−cos (πk/(N−1)).

The total variation distance between these two measures does not tend to zero for
N → ∞.

7 RandomGeometric Graphs

Specializing Corollary 4.4 to the case k = 1, we get

ϕ(1)∗ �n
P−→ ϕ(1)∗ � and ϕ(1)∗ �R

P−→ ϕ(1)∗ �,

with suppϕ
(1)∗ � = G(1)(Rm).

Definition 7.1 We define the random geometric graphs

	n := Č (1)(Un) and 	R := Č (1)(PR)

and we associate the empirical spectral measures

μn := μ	n = 1

n

n∑

i=1

δλi (	n) and μR := μ	R = 1

#(V (	R))

#(V (	R))∑

i=1

δλi (	R).

Since the spectrum of a graph 	 is finite, we can rewrite the two random measures
μn andμR above as follows. First, the set of all possible isomorphism classes of graphs
is countable and therefore there exists a sequence {x�}�∈N ⊂ [0, 2] such that

μn =
∞∑

�=1

c�,nδx�
and μR =

∞∑

�=1

c�,Rδx�
,

where the random variables c�,n and c�,R are defined by
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c�,n = #
{
components	n, j of	n = ⊔

j 	n, j with x� in the spectrum of	n, j
}

n
,

c�,R = #
{
components	R, j of	R = ⊔

j 	R, j with x� in the spectrum of	R, j
}

#(V (	R))
.

In the above definitions of the coefficients c�,n and c�,R , the components should be
counted “with multiplicity”: if x� belongs to the spectrum of 	n, j (respectively 	R, j )
with some multiplicity m(x�), then the component 	n, j (respectively 	R, j ) is counted
m(x�) times.

We will need the following lemma.

Lemma 7.2 For every δ > 0 there exists L > 0 such that

E

∑

�≥L

c�,n <
δ

4
and E

∑

�≥L

c�,R <
δ

4
.

Proof Let A ⊂ {x�}�∈N be any subset. Then

∑

�

Ec�,n = E

∑

�

c�,n ≤ 1 and
∑

�

Ec�,R = E

∑

�

c�,R ≤ 1.

In particular, the two series E
∑

� c�,n and E
∑

� c�,R converge and therefore the exis-
tence of such L is clear (as the tails of the series must be arbitrarily small). ��
Corollary 7.3 For every � ∈ N there exist constants c� ≥ 0 such that we have the
following convergence of random variables:

c�,n
L1−→ c� and c�,R

L1−→ c�.

The constants c� are positive if and only if x� belongs to the spectrum of an R
m-

geometric graph. Moreover, the measure

μ :=
∑

�∈N
c�δx�

(7.1)

is a probability measure on R with support contained in [0, 2].
Proof The convergence in L1 of the random variables c�,n and c�,R follows from their
description as “number of components such that x� belongs to the spectrum of the
random geometric graph”: in fact, for every � ≥ 0 we can introduce the counting
function

N (	, �) = #{components of	 for which x� belongs to their spectrum}.

With this notation we have

c�,n = N (	n, �)

n
and c�,R = N (	R, �)

vol B(0, R)
= N (	R, �)

#(V (	R))
· #(V (	R))

vol B(0, R)
.
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The convergence of c�,n can be argued as in the proof of Theorem 4.11, and the
convergence of c�,R proceeds as in Proposition 4.7. The measure μ is well defined
and the fact that it is a probability measure follows from the same proof as [1, Prop.
6.4], using the above Lemma 7.2 as a substitute of [1, Lem. 6.3]. ��
Theorem 7.4 Let μ ∈ M1([0, 2]) be the measure defined in (7.1). Then

μn
∗
⇀

n→∞μ and μR
∗
⇀

R→∞μ.

i.e., for every f ∈ C0([0, 2],R) we have E
∫

f dμn → ∫
f dμ and E

∫
f dμR →∫

f dμ.

Proof The proof of the statement for μn and μR is the same: we do it for μR . Let
f ∈ C0([0, 2],R) and fix ε > 0. Apply Lemma 7.2 with the choice of δ = ε/sup| f |,
and get the corresponding set F = {�1, . . . , �a} ⊂ N. Also, from the convergence of
the series

∑
c� we get the existence of a finite set F ′ such that

∑
�/∈F ′ c� < ε/sup| f |.

Define F ′′ = F ∪ F ′ (this is still a finite set) and
∣∣∣∣E

∫

[0,2]
f dμR −

∫

[0,2]
f dμ

∣∣∣∣ =
∣∣∣∣∣E

∑

�

c�,R f (x�) −
∑

�

c� f (x�)

∣∣∣∣∣

=
∣∣∣∣∣E

∑

�∈F ′′
c�,R f (x�) + E

∑

�/∈F ′′
c�,R f (x�) −

∑

�∈F ′′
c� f (x�) −

∑

�/∈F ′′
c� f (x�)

∣∣∣∣∣

≤
∣∣∣∣∣E

∑

�∈F ′′
c�,R f (x�) −

∑

�∈F ′′
c� f (x�)

∣∣∣∣∣ +
∣∣∣∣∣E

∑

�/∈F ′′
c�,R f (x�)

∣∣∣∣∣ +
∣∣∣∣∣
∑

�/∈F ′′
c� f (x�)

∣∣∣∣∣

≤
∣∣∣∣∣
∑

�∈F ′′
E(c�,R − c�) f (x�)

∣∣∣∣∣ +
∣∣∣∣∣
∑

�/∈F ′′
Ec�,R

∣∣∣∣∣ · sup | f | +
∣∣∣∣∣
∑

�/∈F ′′
c�

∣∣∣∣∣ · sup | f |

≤ sup | f |
∑

�∈F ′′
E|c�,R − c�| + δ

4
· sup | f | + δ

4
· sup | f |

≤ E|c�,R − c�| + ε

2
→ ε

2
as R → ∞,

where in the last line we have used the L1 convergence of c�,R → c�. Since this is
true for every ε > 0, it follows that

lim
R→∞E

∫

[0,2]
f dμR =

∫

[0,2]
dμ. ��

Proposition 7.5 The measure μ appearing in Theorem 7.4 has the following proper-
ties:

(1) μ is not absolutely continuous with respect to Lebesgue;
(2) lim

n→∞E #{eigenvalues of 	n in [a, b]}/n = μ([a, b]) > 0;

(3) μ({0}) = β.
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Proof We start with (3): we have that μ({0}) = c�0 where 0 = x�0 and c�0 is the
L1-limit of c�0,R , which is the random variable

c�0,R = #{components of	R containing 0 in their spectrum} = b0(	R),

and therefore (3) follows from the definition of β.
The item (1) also follows immediately, since β0 > 0 and μ charges positively sets

of Lebesgue measure zero (hence it cannot be absolutely continuous with respect to
Lebesgue measure).

For the proof of (2) we argue exactly as in the proof of Theorem 7.4, by replacing
f with χ[a,b] (the characteristic function of the interval [a, b]) and observing that the
only property of f that we have used is its boundedness. ��
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