
Discrete & Computational Geometry (2020) 64:985–994
https://doi.org/10.1007/s00454-019-00143-5

R ICKY POLLACK MEMORIAL ISSUE

Rational Points of Some Elliptic Curves Related to the
Tilings of the Equilateral Triangle

Miklós Laczkovich1

Received: 3 February 2019 / Revised: 7 October 2019 / Accepted: 9 October 2019 /
Published online: 22 October 2019
© The Author(s) 2019

Abstract
Let n be a positive and squarefree integer. We show that the equilateral triangle can
be dissected into n · k2 congruent triangles for some k if and only if n ≤ 3, or at least
one of the curves Cn : y2 = x(x − n)(x + 3n) and C−n : y2 = x(x + n)(x − 3n)

has a rational point with y �= 0. We prove that if p is a positive prime such that p ≡ 7
(mod 24), then Cp and C−p do not have such points. Consequently, for these primes
the equilateral triangle cannot be dissected into p · k2 congruent triangles for any k.

Keywords Tilings of the equilateral triangle · Rank of some elliptic curves over the
rationals

1 Introduction andMain Results

Let Cn denote the elliptic curve y2 = x(x − n)(x + 3n), where n is an integer. The
group of rational points of Cn will be denoted by �n . We say that (x, y) ∈ Cn is a
nontrivial rational point of Cn if x, y are nonzero rational numbers; that is, if the order
of (x, y) as an element of the group �n is greater than two. Our first result shows that
the existence of nontrivial rational points of Cn is closely related to the number of
pieces in certain tilings of the equilateral triangle.

Theorem 1.1 For every positive and squarefree integer n the following are equivalent.

(i) There is a positive integer k such that the equilateral triangle can be dissected into
n · k2 congruent triangles.

(ii) Either n ≤ 3, or at least one of the curves Cn and C−n has a nontrivial rational
point.
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The proof of Theorem 1.1 is based on the fact that the congruent copies of a triangle
with sides a, b, c and corresponding angles α, β, γ tile an equilateral triangle if and
only if either α, β, γ are multiples of π/6, or γ ∈ {π/3, 2π/3} and a, b, c are pairwise
commensurable (see [4, Thm. 3.3]). By the law of cosines, we have γ = π/3 or 2π/3
if and only if c2 = a2 + b2 ± ab. Such triples are, e.g., (a, b, c) = (7, 8, 13) or
(a, b, c) = (3, 5, 7).

Suppose that a, b, c are positive integers with c2 = a2 +b2 ±ab. Then the triangle
with sides a, b, c tiles an equilateral triangle T . If the side length of T is m and the
tiling has N pieces, then, comparing the areas we getm2 = N ·ab, and thus the square
free part of N is the same as that of ab. For example, if (a, b, c) = (7, 8, 13), then the
construction described in [3, Thm. 3.1] produces a tiling with 2, 469, 600 = 14 · 4202
pieces. For the triangle with sides 3, 5, 7, a tiling with 10, 935 = 15 · 272 pieces was
found by Michael Beeson (see [2, Fig. 22, p. 28]).

As we shall see, a simple transformation maps these triples into nontrivial rational
points of one of the corresponding curves Cn or C−n . Thus the triple (7, 8, 13) gives
the point (−6, 48) of C−14, and (3, 5, 7) gives the point (−5, 50) of C−15.

In the other direction, every nontrivial rational point of Cn or C−n determines a
triple (a, b, c) as above. For example, from the point (−1, 8) of C−5 we obtain the
triple (5, 16, 19), and the from the point (−1, 30) of C17 we get (17, 225, 217). The
proof of Theorem 1.1 will be given in the next section.

Remarks 1.2 1. Since every triangle � can be dissected into m2 congruent triangles
similar to � for every m, it is clear that (i) of Theorem 1.1 is equivalent to the
following statement.
(i′) There are infinitely many positive integers k such that the equilateral triangle
can be dissected into n · k2 congruent triangles.

2. We shall prove in Lemma 3.1 that if p is a positive prime, then the only torsion
points of �p and �−p are the points having zero y-coordinates. Therefore, if n is a
positive prime, then (ii) of Theorem 1.1 is equivalent to the following statement.
(ii′) Either n ≤ 3, or at least one of the groups �n and �−n has positive rank.

It is easy to see that if n, k are nonzero integers thenCn has a nontrivial rational point
if and only if Cnk2 has one. Therefore, we have the following corollary of Theorem
1.1.

Corollary 1.3 If the equilateral triangle can be dissected into N congruent triangles,
then either N = k2, N = 2k2 or N = 3k2 for some k, or at least one of the curves
CN and C−N has a nontrivial rational point.

We remark that the converse is not true. For example, (−1, 8) is a nontrivial rational
point ofC−5, but the equilateral triangle cannot be dissected into 5 congruent triangles.
This follows from a result of Beeson stating that the equilateral triangle cannot be
dissected into p congruent triangles for any prime p > 3 (see [1]). On the other hand,
the equilateral triangle can be dissected into 5k2 congruent triangles for infinitely
many positive integer k by Theorem 1.1.

In Sect. 3 we shall prove that if p is a positive prime and p ≡ 7 (mod 24), then the
curves Cp and C−p have no nontrivial rational points (see Corollary 3.6). Comparing
with Theorem 1.1 we obtain the following.
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Corollary 1.4 If p is a positive prime such that p ≡ 7 (mod 24), then the equilateral
triangle cannot be dissected into p · k2 congruent triangles for any k.

2 Proof of Theorem 1.1

(i)⇒ (ii): Suppose that the equilateral triangle T can be tiled with n · k2 congruent
triangles having angles α, β, γ and corresponding sides a, b, c. We may assume that
the sides of T equal 1.

By [4, Thm. 3.3], one of the following cases holds: α = β = π/6 and γ =
2π/3; α = π/6, β = π/2, γ = π/3; γ ∈ {π/3, 2π/3} and a, b, c are pairwise
commensurable.

Comparing the areas of T and the tiles we obtain nk2 · ab ·
√
3
4 =

√
3
4 ; that is,

nk2 · ab = 1. (1)

If α = β = π/6, then a = b and thus, by (1), a = b = 1/(k · √n). By c/a = √
3 we

have c = √
3/(k ·√n). Since the side of the equilateral triangle is tiled with segments

of length a and c, we obtain 1 = ra+ sc with suitable nonnegative integers r , s. Thus
r + s

√
3 = k · √n. Since n is squarefree, this implies n = 1 or n = 3.

If α = π/6, β = π/2 and γ = π/3, then b = 2a and thus, by (1), a = 1/(k ·√2n).
By c/a = √

3 we have c = √
3/(k · √2n). The side of the equilateral triangle is tiled

with segments of length a, 2a and c, hence 1 = ra + sc with suitable nonnegative
integers r , s. Thus r + s

√
3 = k · √

2n. Since n is squarefree, this implies n = 2 or
n = 6. Now (9, 27) is a point of C6 : y2 = x(x − 6)(x + 18), and thus the statement
of (ii) is true in these cases.

In the remaining cases a, b, c are pairwise commensurable, and γ = π/3 or γ =
2π/3. Then we have c2 = a2 +b2 ±ab by the law of cosines. Since qa+rb+ sc = 1
with nonnegative integers q, r , s, it follows that a, b, c are rational. Replacing a by
−a if necessary, we may assume c2 = a2 + b2 + ab. Under this change (1) becomes
±nk2 · ab = 1. We put t = (c − b)/a; then t is rational, and b = c − ta. We have

c2 = a2 + b2 + ab = a2 + (c − ta)2 + ac − ta2

= a2(t2 − t + 1) − 2act + ac + c2,

a2(t2 − t + 1) = ac(2t − 1), and a/c = (2t − 1)/d, where d = t2 − t + 1. Note
that d �= 0, as the polynomial X2 − X + 1 has no rational roots. Then we have
b/c = 1 − (ta/c) = (1 − t2)/d. From (1) we get

1 = ±nk2ab = ±n · (2t − 1)(1 − t2) · (ck/d)2

and (2t − 1)(t2 − 1) = ∓nv2, where v = d/(nkc) is a nonzero rational number.
Putting x = n(2t − 1) we get t = (x + n)/(2n), t − 1 = (x − n)/(2n), t + 1 =

(x + 3n)/(2n), and

x(x − n)(x + 3n) = (2t − 1)(t2 − 1) · 4n3 = ∓nv2 · 4n3 = ∓y2,
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where y = 2n2v. Therefore, either (x, y) is a point of Cn or (−x, y) is a point of C−n .
(ii)⇒ (i): It is clear that if n ≤ 3 then the equilateral triangle can be dissected into n
congruent triangles.

Suppose that x, y are rational numbers, y �= 0, and (x, y) is a rational point of either
Cn or C−n . Then one of t = x/n and t = −x/n satisfies t(t + 1)(t − 3) = ±y2/n3.
Fix such a t . Note that t �= 0,−1, 3. Putting a = 4t , b = t2 − 2t − 3 and c = t2 + 3
we have ab �= 0 and a2 + b2 + ab = c2. Then |a|, |b|, c are the sides of a rational
triangle � such that a2 + b2 ±|a| · |b| = c2, and thus, by the law of cosines, the angle
between the sides of length |a| and |b| equals π/3 or 2π/3. By [3, Thm. 3.1], there is
an equilateral triangle T that can be dissected into triangles congruent to �. Let m be
the length of the side of T , and let N be the number of pieces of the decomposition.
Then N |ab| = m2, hence

m2/N = |ab| = 4|t(t2 − 2t − 3)| = 4|t(t + 1)(t − 3)| = 4y2/n3

and N = n3m2/(4y2) = nk2, where k = nm/(2y). Now k is rational and n is
squarefree by assumption, so N = nk2 implies that k must be an integer. We have
found a dissection of T into n · k2 congruent triangles, proving (i). 
�

3 Rational Points of C±p

In this section we show that if p is a positive prime and p ≡ 7 (mod 24), then Cp

and C−p have no nontrivial rational points (see Corollary 3.6). Recall that the group
of rational points of Cn is denoted by �n .

Lemma 3.1 Let p be a positive prime. Then the torsion points of the group �p are the
points (0, 0), (p, 0), (−3p, 0) andO (the point at infinity). The torsion points of �−p

are the points (0, 0), (−p, 0), (3p, 0) and O.

Proof The points listed above, being of order two and one, are torsion points. Suppose
there exists another torsion point (x, y). Since the discriminant of the curves equals
p2 ·(3p)2 ·(4p)2 = 32 ·24 · p6, it follows from the Nagell–Lutz theorem that x, y ∈ Z,
y �= 0 and y | 3 · 22 · p3. We distinguish between two cases.
Case I: p | y. Then p | x , x = pz, p2 | y, y = p2u, u �= 0, and

pu2 = z(z ∓ 1)(z ± 3). (2)

Clearly, z ≥ −2. It is easy to check that if−2 ≤ z ≤ 13 then z(z∓1)(z±3) is not of the
form qu2, where q is prime and u �= 0, except when z = 4 and z(z+1)(z−3) = 5 ·22.
This gives the point P1 = (20, 50) of �−5. One can easily check that the x-coordinate
of 2P1 is not an integer, hence P1 is not a torsion point. (Thus �−5 has positive rank.)
Therefore, we may assume z ≥ 14.

If p = 2 or p = 3 then y = p2u | 3 · 22 · p3 implies that all prime factors of z and
z ± 1 are 2 and 3. Thus z = 2α , z ± 1 = 3β or the other way around. Then z ≤ 10
which is impossible.
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Therefore, we may assume p > 3. Then at most one of the terms z, z ∓ 1, z ± 3 is
divisible by p. Since u | 3 · 22 · p3, it follows from (2) that the product of two of the
terms z, z∓1 z±3 is a divisor of 32 ·24 = 144. By z ≥ 4 this implies z(z−3) ≤ 144,
hence z ≤ 13 which is impossible.
Case II: p � y. Then y | 12. Replacing x by −x if necessary, we have x(x + p)(x −
3p) = ±y2, and thus

|x(x + p)(x − 3p)| = y2 | 144. (3)

It is easy to see that if a is a positive integer and x is an integer different from 0 and
a, then |x(a − x)| ≥ a − 1. Therefore, |x(x + p)| ≥ p − 1, |x(x − 3p)| ≥ 3p − 1,
|(x + p)(x − 3p)| ≥ 4p − 1,

(p − 1)(3p − 1)(4p − 1) ≤ |x(x + p)(x − 3p)|2 ≤ 1442,

and thus p ≤ 11.
It follows from (3) that there are (positive or negative) divisors d1, d2 of 144 such

that d2 − d1 = 4p, |x · d1 · d2| is a square and is a divisor of 144, where x = d2 − p.
Checking the cases p = 2, 3, 5, 7, 11, we find that the only possibility is p = 5,
(d1, d2) = (−16, 4) and x = −1. This gives the point P2 = (−1, 8) of �−5. One can
easily check that P2 = P1 + P0, where P0 = (−5, 0) and P1 = (20, 50). Since P0 is
a torsion point of �−5 and P1 is not, it follows that P2 is not a torsion point either.


�

Theorem 3.2

(i) The rank of �p is at most two for every positive prime p.
(ii) If p �≡ 1 (mod 24), then the rank of �p is at most one.
(iii) If p = 2, p = 3 or p ≡ 5, 7 or 19 (mod 24), then the rank of �p is zero.

In the proof of Theorem 3.2 we apply the method described in [5, §5, Chap. III,
pp. 92–94]. Consider the curves

Cp : y2 = x3 + 2px2 − 3p2x and C p : y2 = x3 − 4px2 + 16p2x

with groups of rational points �p = Cp(Q) and � p = C p(Q). We define α : �p →
Q

∗/Q
∗2 by α(O) = 1, α(0, 0) = −3p2 ≡ −3 and, for x �= 0, α(x, y) = x (mod

Q
∗2). Then α is a homomorphism from �p into Q

∗/Q
∗2.

We also define α : � p → Q
∗/Q

∗2 by α(O) = 1, α(0, 0) = 16p2 ≡ 1 and, for
x �= 0, α(x, y) = x (mod Q

∗2). Then α is a homomorphism from � p into Q
∗/Q

∗2.
The rank r of �p satisfies

2r = # α(�p) · # α(� p)

4
(4)

123



990 Discrete & Computational Geometry (2020) 64:985–994

(see [5, p. 91]). Here α(�p) equals the set of divisors b1 of b = −3p2 (mod Q
∗2) such

that the equation

N 2 = b1M
4 + 2pM2e2 + (−3p2/b1) e

4 (5)

is solvable in pairwise coprime integers N , M, e satisfying M �= 0 and gcd(e, b1) =
gcd(M,−3p2/b1) = 1 (see [5, pp. 92–93]). Similarly, α(� p) equals the set of divisors
b1 of b = 16p2 (mod Q

∗2) such that the equation

N 2 = b1M
4 − 4pM2e2 + (16p2/b1) e

4 (6)

is solvable in pairwise coprime integers N , M, e satisfying M �= 0 and gcd(e, b1) =
gcd(M, 16p2/b1) = 1.

The statement of Theorem 3.2 is an immediate consequence of (4) and of the
following lemma.

Lemma 3.3

(i) # α(�p) ≤ 8 for every positive prime p.
(ii) If p = 2, p = 3 or p ≡ 5, 7, 13 or 19 (mod 24), then # α(�p) ≤ 4.
(iii) # α(� p) ≤ 2 for every positive prime p.
(iv) If p �≡ 1 (mod 12), then # α(� p) = 1.

Proof

(i) is obvious from b1 ∈ {±1,±3,±p,±3p} (mod Q
∗2).

(ii) If p = 3 then b1 ∈ {±1,±3} (mod Q
∗2), and # α(�p) ≤ 4. Therefore, we may

assume p �= 3. We have (p, 0), (−3p, 0) ∈ �p and α(0, 0) = −3p2 ≡ −3, and
thus 1, p,−3,−3p ∈ α(�p). Since α(�p) is a subgroup of Q

∗/Q
∗2, it follows

that # α(�p) equals 4 or 8, and it equals 8 if and only if −1 ∈ α(�p).

Suppose that # α(�p) = 8. Then −1 ∈ α(�p) and thus, by b1 | 3p2, (5) is solvable
for at least one of b1 = −1 and b1 = −p2.

Suppose that N 2 = −M4 + 2pM2e2 + 3p2e4 is solvable. If p = 2, then M is odd
by gcd(M, 3p2) = 1, and N 2 ≡ −M4 (mod 4), which is impossible. If p > 3, then
p � M by gcd(M, 3p2) = 1, and thus we have

(−1
p

) = 1 and p ≡ 1 (mod 4).

We have N 2 = (3pe2−M2)(pe2+M2) = A ·B. Since p � M and gcd(M, e) = 1,
it follows that gcd(A, B) | 4. If gcd(A, B) = 1 or 4, then A and B are squares. Thus
3pe2 − M2 = n2, hence −M2 ≡ n2 (mod 3), which is impossible, as 3 � M .

If gcd(A, B) = 2, then A/2 and B/2 are squares. Thus 3pe2 − M2 = 2n2, hence
−M2 ≡ 2n2 (mod p). Since p � M and p ≡ 1 (mod 4), we get

( 2
p

) = 1 and p ≡ 1
(mod 8).

Next suppose that N 2 = −p2M4 + 2pM2e2 + 3e4 is solvable. Then we have
gcd(M, 3) = 1. If p = 2, then e is odd (since otherwise both N and e would be
even), and N 2 ≡ 3e4 (mod 4), which is impossible. Suppose p > 3. Then p � e (since
otherwise both e and N would be divisible by p), and thus

( 3
p

) = 1 and p ≡ ±1 (mod
12).
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We have N 2 = (3e2 − pM2)(e2 + pM2) = C · D. Since p � e and gcd(M, e) = 1,
it follows that gcd(C, D) | 4. If gcd(C, D) = 1 or 4, then C and D are squares. Thus
3e2 − pM2 = n2, −pM2 ≡ n2 (mod 3), p ≡ −1 (mod 3) and p ≡ −1 (mod 12).

If gcd(C, D) = 2, then C/2 and D/2 are squares. Thus e2 + pM2 = 2n2, hence
e2 ≡ 2n2 (mod p),

( 2
p

) = 1, p ≡ ±1 (mod 8).
We proved that if # α(�p) = 8, then p > 3 and either p ≡ 1 (mod 8), or p ≡ −1

(mod 12). This proves (ii).
(iii) We have to estimate # α(� p). It is clear that if b1 < 0 then (6) has no solutions,
and thus, by b1 | 16p2, we have b1 ∈ {2α pβ : 0 ≤ α ≤ 4, 0 ≤ β ≤ 2}. If p = 2, then
we obtain α(� p) ⊂ {1, 2} (mod Q

∗2). Therefore, we may assume p > 2.
Let b1 = 2pβ , and suppose that (6) is solvable. ThenM is odd by gcd(M, 16p2/b1)

= 1, and thus the left hand side of (6) is divisible by 4, while the right hand side is
not, which is impossible.

Next let b1 = 8pβ , and suppose that (6) is solvable. Then N is even and, conse-
quently, e is odd. Thus the left hand side of (6) is divisible by 4,while the right hand side
is not, which is impossible. We obtain that b1 ∈ {1, p, p2, 4, 4p, 4p2, 16, 16p, 16p2}
and b1 ∈ {1, p} (mod Q

∗2). This proves (iii).
(iv) Suppose that # α(� p) = 2. Then p ∈ α(� p), and (6) is solvable for at least one
of b1 = p, b1 = 4p and b1 = 16p.

Let b1 = p, and suppose that N 2 = pM4 − 4pM2e2 + 16pe4 is solvable. Then
M is odd by gcd(M, 16p) = 1, and N 2 ≡ pM4 (mod 4). Hence p > 2 and p ≡ 1
(mod 4). We have N = pN1 and

pN 2
1 = M4 − 4M2e2 + 16e4 = (M2 − 2e2)2 + 12e4.

Now p � e by gcd(e, b1) = 1, and we get
(−12

p

) = 1. Since p ≡ 1 (mod 4), we obtain
( 3
p

) = 1, p ≡ ±1 (mod 12) and p ≡ 1 (mod 12).
The case b1 = 16p is similar with the roles of M and e exchanged. Therefore, if

(6) is solvable for b1 = 16p, then p ≡ 1 (mod 12).
Finally, let b1 = 4p, and suppose that N 2 = 4pM4 − 4pM2e2 + 4pe4 is solvable.

Then 2 � M by gcd(M, 4p) = 1, and 2p | N . Let N = 2pN1, then pN 2
1 = M4 −

M2e2 + e4. Since M is odd, we have M4 − M2e2 + e4 ≡ 1 (mod 4), and thus p ≡ 1
(mod 4). We have

4pN 2
1 = 4M4 − 4M2e2 + 4e4 = (2M2 − e2)2 + 3e4.

Now p � e by gcd(e, b1) = 1, and we get
(−3

p

) = 1. Since p ≡ 1 (mod 4), we

obtain
( 3
p

) = 1, p ≡ ±1 (mod 12) and p ≡ 1 (mod 12).
We proved that if # α(�p) = 2, then p ≡ 1 (mod 12). This proves (iv). 
�
Our next aim is to prove

Theorem 3.4

(i) The rank of �−p is at most two for every positive prime p.
(ii) If p �≡ 1 (mod 12), then the rank of �−p is at most one.
(iii) If p = 2, p = 3 or p ≡ 7 (mod 24), then the rank of �−p is zero.
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We consider the curves

C−p : y2 = x3 − 2px2 − 3p2x and C−p : y2 = x3 + 4px2 + 16p2x .

First we prove the following lemma.

Lemma 3.5

(i) # α(�−p) ≤ 8 for every prime p.
(ii) If p = 2, p = 3 or p ≡ 7 (mod 12), then # α(�−p) ≤ 4.
(iii) # α(�−p) ≤ 2 for every prime p.
(iv) If p �= 3 and p �≡ 1, 13 or 19 (mod 24), then # α(�−p) = 1.

Proof The proof of the statement (i) is the same as in the case of Lemma 3.3.
(ii) Suppose # α(�−p) = 8. As in the proof of (ii) of Lemma 3.3, this implies p �= 3
and −1 ∈ α(�−p). Therefore, by b1 | −3p2, N 2 = b1M4 −2pM2e2 + (−3p2/b1)e4

is solvable for at least one of b1 = −1 and b1 = −p2.
Suppose that N 2 = −M4 − 2pM2e2 + 3p2e4 is solvable. If p = 2, then M is odd

by gcd(M, 3p2) = 1, and N 2 ≡ −M4 (mod 4), which is impossible. If p > 3, then
p � M by gcd(M, 3p2) = 1, and thus we have

(−1
p

) = 1 and p ≡ 1 (mod 4).

Next suppose that N 2 = −p2M4−2pM2e2+3e4 is solvable; then gcd(M, 3) = 1.
If p = 2, then e is odd (since otherwise both N and e would be even), and N 2 ≡ 3e4

(mod 4), which is impossible. Suppose p > 3. Then p � e by gcd(e, b1) = 1, and thus( 3
p

) = 1 and p ≡ ±1 (mod 12).

We have N 2 = (3e2 + pM2)(e2 − pM2) = C · D. Since p � e and gcd(M, e) = 1,
it follows that gcd(C, D) | 4. If gcd(C, D) = 1 or 4, then C and D are squares. Thus
3e2 + pM2 = n2, pM2 ≡ n2 (mod 3), p ≡ 1 (mod 3) and p ≡ 1 (mod 12).

If gcd(C, D) = 2, then C/2 and D/2 are squares. Thus 3e2 + pM2 = 2n2, hence
p ≡ pM2 ≡ 2n2 ≡ 2 (mod 3). Since p ≡ ±1 (mod 12), we get p ≡ −1 (mod 12).

We proved that if # α(�−p) = 8, then p ≡ 1 (mod 4) or p ≡ −1 (mod 12). This
proves (ii).
(iii) The argument proving (iii) of Lemma 3.3 shows that α(�−p) ⊂ {1, p} (modQ

∗2).
(iv) Suppose # α(�−p) = 2. Then p ∈ α(�−p), and

N 2 = b1M
4 + 4pM2e2 + (16p2/b1) e

4

is solvable for at least one of b1 = p, b1 = 4p and b1 = 16p.
Let b1 = p, and suppose that N 2 = pM4 + 4pM2e2 + 16pe4 is solvable. Then

M is odd by gcd(M, 16p) = 1, and N 2 ≡ pM4 (mod 4). Hence p > 2 and p ≡ 1
(mod 4). We have N = pN1 and

pN 2
1 = M4 + 4M2e2 + 16e4 = (M2 + 2e2)2 + 12e4.

Now p � e by gcd(e, b1) = 1, and we get
(−12

p

) = 1. Since p ≡ 1 (mod 4), we obtain
( 3
p

) = 1, p ≡ ±1 (mod 12) and p ≡ 1 (mod 12).
The case b1 = 16p is similar with the roles of M and e exchanged. Therefore, if

(6) is solvable for b1 = 16p, then p ≡ 1 (mod 12).
Finally, let b1 = 4p, and suppose that N 2 = 4pM4 + 4pM2e2 + 4pe4 is solvable.

Then M is odd by gcd(M, 4p) = 1. Also, 2p | N , and thus e is odd. Let N = 2pN1,
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then pN 2
1 = M4 + M2e2 + e4. Thus pN 2

1 ≡ 3 (mod 8), hence p ≡ 3 (mod 8). We
have

4pN 2
1 = 4M4 + 4M2e2 + 4e4 = (2M2 + e2)2 + 3e4.

Now p � e by gcd(e, b1) = 1, and we get p = 3 or
(−3

p

) = 1. Suppose p �= 3. Since

p ≡ 3 (mod 4), we obtain
( 3
p

) = −1, p ≡ 5 or 7 (mod 12). Since p ≡ 3 (mod 8), we
get p ≡ 19 (mod 24).

We proved that if # α(�−p) = 2, then p = 3 or p ≡ 1 (mod 12) or p ≡ 19 (mod
24), This proves (iv). 
�
Proof of Theorem 3.4 Statements (i) and (ii) of the theorem follow from Lemma 3.5
and from (4). If p = 2 or p ≡ 7 (mod 24), then the rank of �−p is zero by Lemma
3.5 and (4).

What remains to prove is that the rank of �−3 is zero. Since # α(�−3) ≤ 2 by
Lemma 3.5, it is enough to show that # α(�−3) ≤ 2.

Consider the curveC−3 : y2 = x3−6x2−27x . Then b1 ∈ {±1,±3,±9,±27}, and
thus α(�−3) ⊂ {±1,±3} (modQ

∗2).We show that 3 /∈ α(�−3). Suppose 3 ∈ α(�−3).
Then the equation N 2 = b1M4 − 6M2e2 − (27/b1)e4 is solvable for at least one of
b1 = 3 and b1 = 27.

Suppose that N 2 = 3M4−6M2e2−9e4 is solvable. Then 3 � M by gcd(M, 9) = 1,
and 3 � e since 3 | N . Let N = 3N1. Then 3N 2

1 = M4 − 2M2e2 − 3e4, hence
M4 ≡ 2M2e2 (mod 3), which is impossible.

Finally, suppose that N 2 = 27M4 − 6M2e2 − e4 is solvable. Then 3 � e by
gcd(e, b1) = 1. Thus N 2 ≡ −e2 (mod 3), which is impossible. 
�
Corollary 3.6 If p = 2, p = 3 or p ≡ 7 (mod 24), then the curves Cp and C−p have
no nontrivial rational points. 
�

4 Numerical Examples

As the following table shows, for all primes 3 < p < 100, if p �≡ 7 (mod 24), then at
least one of the curves Cp and C−p has nontrivial rational points and, consequently,
�p or �−p has positive rank. Note that the point (75, 210) belongs to both C−23 and
C73.

The points below were found by searching for integer solutions of N 2 = b1M4 ±
2pM2e2 + b2e4 with b1b2 = −3p2, and putting x = b1M2/e2, y = b1MN/e3.
The solutions for p �= 83 were found by using GNU Octave (https://www.gnu.org/
software/octave/). I am grateful to Peter Salvi for finding a solution for p = 83; he
used Julia 1.0 (https://julialang.org/blog/2018/08/one-point-zero).

p = 5 : (−1, 8) ∈ �−5,

p = 11 : (75, 720) ∈ �11,

p = 13 : (−12, 90) ∈ �13,

p = 17 : (−1, 30) ∈ �17,
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p = 19 :
(17689

225
,
1374688

3375

)
∈ �−19,

p = 23 : (75, 210) ∈ �−23,

p = 29 :
(
−529

25
,
16744

125

)
∈ �−29,

p = 37 :
(231361

324
,
116481365

5832

)
∈ �37,

p = 41 : (−121, 198) ∈ �41,

p = 43 :
(4165798849

21538881
,
171543655606240

99961946721

)
∈ �−43,

p = 47 : (1875, 79050) ∈ �−47,

p = 53 :
(

− 167281

4225
,
89165272

274625

)
∈ �−53,

p = 59 :
(

− 930433009

6076225
,
13189530387264

14977894625

)
∈ �59,

p = 61 : (−108, 1170) ∈ �61,

p = 67 :
(909373939321

51279921
,
863887766632341760

367215514281

)
∈ �−67,

p = 71 : (507, 9282) ∈ �−71,

p = 73 : (75, 210) ∈ �73,

p = 83 :
(

− 2140232721200

59682001401
,
13897116923228469980

14580253260262899

)
∈ �83,

p = 89 :
(

− 121

289
,
489280

4913

)
∈ �−89,

p = 97 :
(

− 121

25
,
45408

125

)
∈ �−97.
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