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Abstract
Benjamini and Schramm (Invent Math 126(3):565–587, 1996) used circle packing to
prove that every transient, bounded degree planar graph admits non-constant harmonic
functions of finite Dirichlet energy. We refine their result, showing in particular that
for every transient, bounded degree, simple planar triangulation T and every circle
packing of T in a domain D, there is a canonical, explicit bounded linear isomorphism
between the space of harmonic Dirichlet functions on T and the space of harmonic
Dirichlet functions on D.

Keywords Circle packing · Planar graphs · Harmonic functions · Dirichlet space ·
Electrical networks

1 Introduction

A circle packing is a collection P of discs in the Riemann sphere C ∪ {∞} such that
distinct discs in P do not overlap (i.e., have disjoint interiors), but may be tangent.
Given a circle packing P , its tangency graph (or nerve) is the graph whose vertices
are the discs in P and where two vertices are connected by an edge if and only if
their corresponding discs are tangent. The Circle Packing Theorem [24,39] states that
every finite, simple1 planar graph may be represented as the tangency graph of a circle
packing, and that if the graph is a triangulation (i.e., every face has three sides) then
the circle packing is unique up to Möbius transformations and reflections. See e.g.
[32,38] for further background on circle packing.

The Circle Packing Theorem was extended to infinite, simple planar triangulations
by He and Schramm [18–20,34]. In particular, they showed that if the triangulation
is simply connected, meaning that the surface formed by gluing triangles according

1 A graph is said to be simple if it does not contain any loops or multiple edges.
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to the combinatorics of the triangulation is homeomorphic to the plane, then the tri-
angulation can be circle packed in either the disc or the plane, but not both2; we call
the triangulation CP parabolic or CP hyperbolic accordingly. More generally, they
showed that, in the CP hyperbolic case, the triangulation can be circle packed in any
simply-connected domain D � C. These results can be viewed as discrete analogue
of the Riemann mapping theorem and of the uniformization theorem for Riemann
surfaces. Indeed, the theory of circle packing is closely related to the theory of confor-
mal mapping and geometric function theory, see e.g. [6,19,31,32,38] and references
therein.

He and Schramm also pioneered the use of circle packing to study probabilistic
questions about planar graphs, showing in particular that a bounded degree, simply
connected, planar triangulation is CP parabolic if and only if it is recurrent for simple
random walk [20]. This result was recently generalised by Gurel-Gurevich et al. [16],
who proved that a (not necessarily simply connected) bounded degree planar triangu-
lation admitting a circle packing in a domain D is recurrent for simple random walk
if and only if the domain is recurrent for Brownian motion.

Amore detailed study of the relationship between circle packing and randomwalks
was initiated by Benjamini and Schramm [7], who proved in particular that if T is a
bounded degree triangulation circle packed in the unit discD, then the randomwalk on
T converges almost surely to a point in the boundary ∂D, and the law of this limit point
is non-atomic. They used this to deduce the existence of various kinds of harmonic
functions on transient, bounded degree planar graphs. Recall that a function h on the
vertex set of a simple, locally finite graph G = (V , E) is said to be harmonic if

h(v) = 1

deg(v)

∑

u∼v

h(u)

for every v ∈ V . Here and elsewhere, we write V and E for the vertex and edge sets
of a graph G, and write u ∼ v if the vertices u and v are adjacent in G. Three partic-
ularly important and probabilistically meaningful classes of harmonic functions are
the bounded harmonic functions, the positive harmonic functions, and the harmonic
Dirichlet functions. It is an easy consequence of the Benjamini–Schramm convergence
theorem that every bounded degree, transient planar graph admits non-constant har-
monic functions in each of these three classes. Here, a harmonic Dirichlet function
on a graph with oriented edge set E→ is a harmonic function h such that

E(h) = 1

2

∑

e∈E→

[
h
(
e+) − h

(
e−)]2

< ∞.

We denote the space of harmonic Dirichlet functions on a graph G byHD(G) and the
space of bounded harmonic Dirichlet functions on G by BHD(G). For each vertex v

of G, ‖h‖ = h(v)2 + E(h) is a norm on HD(G), and BHD(G) is dense in HD(G)

with respect to this norm [37, Thm. 3.73]. (Without the h(v)2 term this would be a

2 Here the word in is being used in a technical sense to mean that the carrier of the circle packing is equal
to either the disc or the plane, see Sect. 1.3.
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seminorm rather than a norm.) Harmonic Dirichlet functions and function spaces on
domains are defined similarly; see Sect. 1.2 for details.

More recently, Angel et al. [4] showed that every bounded harmonic function and
every positive harmonic function on a bounded degree, simply connected, simple
planar triangulation can be represented geometrically in terms of the triangulation’s
circle packing in the unit disc. A similar representation theorem for bounded (but
not positive) harmonic functions using a different embedding, the square tiling, was
obtained slightly earlier by Georgakopoulos [14]. Simpler proofs of both results
for bounded harmonic functions have since been obtained by Peres and the author
[23].

In this paper we establish a similar representation theorem for harmonic Dirichlet
functions. We begin with a simple form of the result that can be stated with minimum
preparation. We say that two functions φ and ψ on the vertex set of a graph are
asymptotically equal if the set {v ∈ V : |φ(v)−ψ(v)| ≥ ε} is finite for every ε > 0.

Theorem 1.1 Let T be a bounded degree, simply connected, simple, planar triangu-
lation, let P be a circle packing of T in the unit disc D, and let z : V → D be the
function sending vertices to the centres of their corresponding discs.

1. For each bounded harmonic Dirichlet function h ∈ BHD(T ), there exists a unique
harmonic Dirichlet function H ∈ HD(D) such that h and H ◦ z are asymptotically
equal.

2. For each bounded harmonicDirichlet function H ∈ BHD(D), there exists a unique
harmonic Dirichlet function h ∈ HD(T ) such that h and H ◦ z are asymptotically
equal.

Moreover, the function assigning each h ∈ BHD(T ) to the unique H ∈ HD(D) such
that H ◦ z is asymptotically equal to h can be uniquely extended to a bounded linear
isomorphism from HD(T ) to HD(D).

By a bounded linear isomorphism we mean a bounded linear map with a bounded
inverse; such an isomorphism need not be an isometry. A more general form of our
theorem, applying in particular to bounded degree, multiply-connected planar trian-
gulations circle packed in arbitrary domains, is given in Theorem 1.5. See (2.11) and
(2.12) for an explicit description of the isomorphism.

Note that Theorems 1.1 and 1.5 are much stronger than those available for bounded
and or positive harmonic functions. For example, the representation theorem for
bounded harmonic functions [4] requires one to take integrals over the harmonic mea-
sure on the boundary, which is not particularly well understood and can be singular
with respect to the corresponding measure for Brownian motion. As a consequence,
there can exist bounded harmonic functions h on T such that h is not asymptotically
equal to H ◦ z for any bounded harmonic function H on D. The difference in strength
between these theorems is unsurprising given that the existence of non-constant har-
monic Dirichlet functions is known to be stable under various perturbations of the
underlying space [13,21,36], while the existence of non-constant bounded harmonic
functions is known to be unstable in general under similar perturbations [7].
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1.1 Applications

Theorem 1.1 also allows us to deduce various facts about the boundary behaviour
of harmonic Dirichlet functions on circle packings of triangulations from the cor-
responding facts about harmonic Dirichlet functions on the unit disc. For example,
we immediately obtain a representation theorem for the harmonic Dirichlet functions
on T in terms of boundary functions, similar to that obtained for bounded harmonic
functions in [4]. We say that a Borel function φ : ∂D → R is Douglas integrable if

D(φ) := 1

4π

∫

∂D

∫

∂D

∣∣∣∣
φ(ξ) − φ(ζ )

ξ − ζ

∣∣∣∣
2

dξ dζ < ∞. (1.1)

Note in particular that every Lipschitz function on ∂D is Douglas integrable. It is a
classical theorem of Douglas [11] that a harmonic function H : D → R is Dirichlet
if and only if it is the extension of a Douglas integrable function φ : ∂D → R, and in
this caseD(φ) = E(h). This equality is known as theDouglas integral formula. Thus,
we obtain the following corollary to Theorem 1.1.

Corollary 1.2 Let T be a bounded degree, simply connected, simple, planar triangula-
tion and let P be a circle packing of T in the unit disc D. Then a function h : V → R

is a harmonic Dirichlet function if and only if there exists a Douglas integrable Borel
function φ : ∂D → R such that

h(v) = Ev

[
φ

(
lim
n→∞ z(Xn)

)]
for every vertex v.

We remark that there is a generalization of the Douglas integral formula to other
domains due to Doob [8], and that related results for graphs have been announced by
Georgakopoulos and Kaimanovich [15]. The results of Doob could be combined with
Theorem 1.5 to obtain versions of Corollary 1.2 for more general domains. We do not
pursue this here.

Similarly, we can immediately deduce the following very strong boundary conver-
gence result from Theorem 1.1 together with a theorem of Nagel et al. [30].

Corollary 1.3 (Boundary convergence in exponentially tangential approach regions)
Let T be a bounded degree, simply connected, simple, planar triangulation, let P be
a circle packing of T in the unit disc D, and let z : V → D be the function sending
vertices to the centres of their corresponding discs. Then for each h ∈ BHD(T ), the
following holds for Lebesgue-a.e. ξ ∈ ∂D: For every sequence of vertices v1, v2, . . .

of T such that z(vi ) → ξ and

lim sup
i→∞

|z(vi ) − ξ | log 1

1 − |z(vi )| < ∞,

the limit limi→∞ h(vi ) exists.

See [12] and references therein for several further results concerning the boundary
behaviour of harmonic Dirichlet functions on the unit disc.
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Together with the Poisson boundary identification result of [4], Corollary 1.2 gives
us a good understanding of the relationship between the space of bounded Harmonic
Dirichlet functionsBHD(T ) and the space of all bounded harmonic functions, denoted
BH(T ): The latter is identified with the space of bounded Borel functions L∞(∂D),
while the former is identified with the space of bounded Douglas integrable functions
on ∂D. In particular, this allows us to easily generate many examples of bounded har-
monic functions on T that are not Dirichlet, such as harmonic extensions of indicator
functions. Moreover, since the identification of BH(T ) and L∞(∂D) is easily seen
to be a homeomorphism when BH(T ) is equipped with the topology of pointwise
convergence and L∞(∂D) is given the subspace topology from L1(∂D), and since the
Lipschitz functions are dense in L1(∂D), we obtain the following interesting corollary
concerning harmonic functions on triangulations.

Corollary 1.4 Let T be a bounded degree, simply connected, simple, planar triangu-
lation. Then BHD(T ) is dense in BH(T ) with respect to the topology of pointwise
convergence.

Anice feature of this corollary is that it is an ‘intrinsic’ result, whose statement does
not make any reference to circle packing. Corollaries 1.2–1.4 all have straightforward
extensions to simply connected, weighted, polyhedral planar with bounded codegrees
and bounded local geometry, both of which follow from Theorem 1.5.

Theorem 1.1 and its generalization Theorem 1.5 are also useful in the study of uni-
form spanning forests of planar graphs, for which closed linear subspaces of HD(T )

correspond, roughly speaking, to possible boundary conditions at infinity for the span-
ning forest measure. In particular, Theorem 1.5 will be applied in forthcoming work
with Nachmias on uniform spanning forests of multiply-connected planar maps.

1.2 The Dirichlet Space

We begin by reviewing the definitions of the Dirichlet spaces in both the discrete and
continuous cases, as well as some of their basic properties. For further background,
we refer the reader to [27,37] in the discrete case, and [2] and references therein for
the continuous case.

Recall that a network is a graph G = (V , E) (which in this paper will always be
locally finite and connected) together with an assignment c : E → (0,∞) of positive
conductances to the edges of G. The random walk on a locally finite network is the
Markov process that, at each step, chooses an edge to traverse from among those edges
emanating from its current position,where the probability of choosing a particular edge
is proportional to its conductance. Let G = (V , E) be a network, and let E→ be the
set of oriented edges of G. The Dirichlet energy of a function φ : V → R is defined
to be

E (φ) = 1

2

∑

e∈E→
c(e)

(
φ
(
e−) − φ

(
e+))2

.

We say that φ is a Dirichlet function (or equivalently that φ has finite energy) if
E (φ) < ∞. The space of Dirichlet functions onG and the space of harmonic Dirichlet
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functions on G are denoted by D(G) and HD(G) respectively. These spaces are both
Hilbert spaces with respect to the inner product

〈φ,ψ〉 = φ(o)ψ(o) + 1

2

∑

e∈E→
c(e)

[
φ
(
e−) − φ

(
e+)][

ψ
(
e−) − ψ

(
e+)]

, (1.2)

where o is a fixed root vertex. (It is easily seen that different choices of o yield
equivalent norms.) We denote the space of bounded Dirichlet functions by BD(G)

and the space of bounded harmonic Dirichlet functions by BHD(G). These spaces are
dense in D(G) and HD(G) respectively, see [27, p. 314] and [37, Thm. 3.73].

Let D0(G) be the closure in D(G) of the space of finitely supported functions. If
G is transient, then every Dirichlet function φ ∈ D(G) has a unique decomposition

φ = φD0 + φHD (1.3)

where φD0 ∈ D0(G) and φHD ∈ HD(G), known as the Royden decomposition of
φ [37, Thm. 3.69]. In other words, D(G) = D0(G) ⊕ HD(G). (Note that this is not
necessarily an orthogonal decomposition, althoughD0(G) andHD(G) are orthogonal
with respect to the Euclidean seminorm E , see [37, Lem. 3.66].) Let 〈Xn〉n≥0 be a
random walk on G. It is a theorem of Ancona et al. [2], which complements earlier
results of Yamasaki [40], that the limit limn→∞ φ(Xn) exists almost surely for each
φ ∈ D(G), that

lim
n→∞ φ(Xn) = lim

n→∞ φHD(Xn) (1.4)

almost surely, and moreover that φHD can be expressed as

φHD(v) = Ev

[
lim
n→∞ φ(Xn)

]
, (1.5)

where Ev denotes the expectation with respect to the random walk 〈Xn〉n≥0 started at
v. See also [27, Thm 9.11]. (The referee has informed us that the almost sure existence
of the limit limn→∞ φ(Xn) was in fact originally proven by Silverstein in 1974 [35],
independently of Ancona, Lyons, and Peres.)

A similar theory holds in the continuum. If D ⊆ C is a domain, the Dirichlet
energy of a locally L2, weakly differentiable3 function 	 : D → R on D is defined
to be

E (	) =
∫

D
‖∇	(z)‖2 dz.

3 Recall that a functionor vectorfield	 : D → R
d ,d ≥ 1, is said to be locally integrable if

∫
A ‖	(z)‖dz <

∞ for every precompact open subset A of D, and locally L2 if
∫
A ‖	(z)‖2dz < ∞ for every precompact

open subset A of D. A locally integrable vector field W : D → R
2 is said to be a weak gradient of the

locally integrable function 	 : D → R if the identity
∫
D 
Wdz = − ∫

D 	∇
dz holds for every smooth,
compactly supported function 
 on D. We say that a locally integrable function 	 : D → R is weakly
differentiable if it admits a weak gradient. The weak gradient of a locally integrable, weakly differentiable
	 : D → R

2 is unique up to almost-everywhere equivalence, and is denoted by ∇	. The weak gradient
coincides with the usual gradient of 	 at z if 	 is differentiable on an open neighbourhood of z.

123



Discrete & Computational Geometry (2019) 61:479–506 485

As in the discrete case, we say that	 is aDirichlet function (or equivalently that	 has
finite energy) if it is locally L2, weakly differentiable, and satisfies E (	) < ∞.We let
D(D), and HD(D) be the spaces of Dirichlet functions (modulo almost everywhere
equivalence) and harmonic Dirichlet functions respectively. The spaces D(D) and
HD(D) are Hilbert spaces with respect to the inner product

〈	,
〉 =
∫

O
	(z)
(z)dz +

∫

D
∇	(z) · ∇
(z)dz, (1.6)

where O is a fixed precompact open subset of D. (The Poincaré inequality implies
that different choices of O yield equivalent norms. In particular, convergence in this
norm implies local L2 convergence.) The spacesD(D) andHD(D) contain the spaces
of bounded Dirichlet functions BD(D) and of bounded harmonic Dirichlet functions
BHD(D) as dense subspaces respectively [33, Prop. 16].

Let D0(D) be the closure in D(D) of the space of compactly supported Dirichlet
functions. As in the discrete case, if D is a transient for Brownian motion, then every
	 ∈ D(D) has a uniqueRoyden decomposition	 = 	D0+	HDwhere	D0 ∈ D0(D)

and 	HD ∈ HD(D) [33]. Let 〈Bt 〉T∂D
t=0 be a Brownian motion stopped at the first time

it hits ∂D, denoted T∂D . Anconca, Lyons, and Peres [2] proved that if	 ∈ D(D), then
the limit limt↑T∂D 	(Bt ) exists almost surely,4 that

lim
t↑T∂D

	(Bt ) = lim
t↑T∂D

	HD(Bt ) (1.7)

almost surely, and that

	HD(z) = Ez

[
lim
t↑T∂D

	(Bt )
]

(1.8)

for every z ∈ D, where Ez denotes the expectation with respect to the Brownian
motion 〈Bt 〉T∂D

t=0 started at z. The almost sure existence of the limit limt↑T∂D 	(Bt )

also follows from the earlier work of Doob [9,10].

1.3 Planar Maps and Double Circle Packing

Let us briefly recall the definitions of planar maps; see e.g. [5,25,29] for detailed def-
initions. Recall that a (locally finite) map M is a connected, locally finite graph G
together with an equivalence class of proper embeddings ofG into orientable surfaces,
where two such embeddings are equivalent if there is an orientation preserving homeo-
morphism between the two surfaces sending one embedding to the other. Equivalently,
maps can be defined combinatorially as graphs equipped with cyclic orderings of the
oriented edges emanating from each vertex, see [25] or [5, Sect. 2.1]. We call a graph
endowed with both a map structure and a network structure (i.e., specified conduc-
tances) a weighted map. A map is planar if the surface is homeomorphic to an open

4 Strictly speaking, since 	 is only defined up to almost everywhere equivalence, we choose a quasi-
continuous version of 	 before applying it to the Brownian motion Bt . This ensures that 	(Bt ) is well-
defined and continuous in t almost surely. See [2] for details.
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Fig. 1 A finite polyhedral planar map (left) and its double circle packing (right). Primal circles are filled
and have solid boundaries, dual circles have dashed boundaries

subset of the sphere, and is simply connected if the surface is simply connected, that
is, homeomorphic to either the sphere or the plane.

Given a specified embedding of a map M , the faces of M are defined to be the
connected components of the complement of the embedding. We write F for the set of
faces of M , and write f ⊥ v if the face f is incident to the vertex v. Given an oriented
edge e of M , we write e� for the face to the left of e and er for the face to the right of
E . Every map M has a dual map M† that has the faces of M as vertices, the vertices
of M as faces, and for each oriented edge e of M , M† has an oriented edge e† from e�

to er . The definitions of F and M† are independent of the choice of embedding of M ,
as different embeddings give rise to face sets that are in canonical bijection with each
other and dual maps that are canonically isomorphic to each other. It is also possible
to define F and M† entirely combinatorially, see [25] or [5, Sect. 2.1] for details.

The carrier of a circle packing P , carr(P), is defined to be union of the discs in P
together with the components of C ∪ {∞} \ ⋃

P whose boundaries are contained in
a union of finitely many discs in P . Note that every circle packing P in the Riemann
sphere whose tangency graph is locally finite also defines a locally finite tangency
map, where we embed the tangency graph into the carrier of P by drawing straight
lines between the centres of tangent circles.

Let M be a locally finite map with locally finite dual M†. A double circle packing
ofM is a pair of circle packings (P, P†) in the Riemann sphere such that the following
conditions hold (see Fig. 1).

1. M is the tangency map of P = {P(v) : v ∈ V } and M† is the tangency map of
P† = {P†( f ) : f ∈ F}.

2. If v is a vertex of M and f is a face of M , then the discs P(v) and P†( f )
intersect if and only if v is incident to f , and in this case their boundaries intersect
orthogonally.

Observe that if (P, P†) is a double circle packing of a locally finite map with locally
finite dual then carr(P) = carr(P†) = ⋃

P ∪ ⋃
P†. It follows from Thurston’s

interpretation [28,39] of Andreev’s theorem [3] that a finite planar map has a double
circle packing in the Riemann sphere if and only if it is polyhedral, that is, simple
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and 3-connected. The corresponding infinite theory5 was developed by He [18], who
proved that every simply connected, locally finite, polyhedral map M with locally
finite dual admits a double circle packing in either the plane or the disc, and that
this packing is unique up to Möbius transformations. (Note that reflections are no
longer needed now that we are considering maps instead of graphs.) See [19] for a
related uniformization theorem for countably-connected triangulations. Without any
topological assumptions, we still have by an easy compactness argument that every
locally finite polyhedral planar map with locally finite dual admits a double circle
packing in some domain, although possibly a very wild one.

1.4 The Isomorphism

We are now ready to describe our isomorphism theorem in its full generality. We say
that a weighted map (or more generally a network) has bounded local geometry if
it has bounded degree and the conductances of its edges are bounded between two
positive constants. We say that a map has bounded codegree if its dual has bounded
degree.

Theorem 1.5 (The isomorphism) Let M be a transient weighted polyhedral planar
map with bounded codegrees and bounded local geometry, let (P, P†) be a double
circle packing of M in a domain D ⊂ C ∪ {∞}, and let z : V → D be the function
sending each vertex v to the centre of the corresponding disc P(v). Then the following
hold:

1. For every harmonicDirichlet function h ∈ HD(M), there exists a unique harmonic
Dirichlet function H ∈ HD(D) such that h − H ◦ z ∈ D0(M). We denote this
function H by Cont[h].

2. For everyharmonicDirichlet function H ∈ HD(D), there exists a uniqueharmonic
Dirichlet function h ∈ HD(M) such that h − H ◦ z ∈ D0(M). We denote this
function h by Disc[H ].

Moreover, the functions Cont : HD(M) → HD(D) and Disc : HD(D) → HD(M)

are bounded linear operators, and these operators are inverses of each other.

Note that even in the simply connected case there are many choices of domain D
and double circle packing (P, P†) for any given map M , and the theorem should be
understood as giving us an isomorphism for each such choice of D and (P, P†).

There are several ways to characterize the space D0(G), leading to several alter-
native characterisations of the functions Cont[h] and Cont[H ]. In particular, the
following hold under the assumptions of Theorem 1.5:

• For each h ∈ HD(M), H = Cont[h] is the unique harmonic Dirichlet function on
D such that

lim
n→∞

∣∣h(Xn) − H ◦ z(Xn)
∣∣ = 0 (1.9)

5 He worked in a more general setting, see [22, Sect. 2.5] for a discussion of how his results imply those
claimed here.
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almost surely when 〈Xn〉n≥0 is a random walk on G. Similarly, for each H ∈
HD(D), h = Disc[H ] is the unique harmonic Dirichlet function on M such that
(1.9) holds almost surely. Given Theorem 1.5, both statements are implied by (1.4).

• For each h ∈ HD(M), H = Cont[h] is the unique harmonic Dirichlet function on
D such that h and H ◦ z are quasi-asymptotically equal, meaning that

Cap
({

v ∈ V : |h(v) − H ◦ z(v)| ≥ ε
})

< ∞ (1.10)

for every ε > 0. See Sect. 2.1 for the definition of capacity. Similarly, for each
H ∈ HD(D), h = Disc[H ] is the unique harmonic Dirichlet function on M such
that h is quasi-asymptotically equal to H ◦ z. Given Theorem 1.5, both statements
are implied by Proposition 2.1.

We can get the stronger characterisation of Cont and Disc in terms of asymptotic
equality if we make additional assumptions on the domain. We say that a domain D
is uniformly transient if

inf
z∈DCap

(
B

(
z, εd(z, ∂D)

))
> 0

for every ε > 0. For example, the unit disc is uniformly transient, as is any finitely
connected domain none of whose complementary components are points.

• If D is uniformly transient, then for each bounded h ∈ BHD(M), H = Cont[h] is
the unique harmonic Dirichlet function on D such that h and H ◦ z are asymptoti-
cally equal. Similarly, for each bounded H ∈ BHD(D), h = Disc[H ] is the unique
harmonic Dirichlet function on M such that h is asymptotically equal to H ◦ z. As
we will see, given Theorem 1.5, both statements are implied by Proposition 2.11,
and yield Theorem 1.1 as a special case.

Note that the weighted map M is not required to be uniformly transient.

1.5 RelatedWork and an Alternative Proof

A related result concerning linear isomorphisms between harmonic Dirichlet spaces
induced by rough isometries between bounded degree graphs was shown by Soardi
[36], who proved that if G1 and G2 are bounded degree, rough isometric graphs, then
G1 admits non-constant harmonic Dirichlet functions if and only if G2 does. See e.g.
[27,37] for definitions of and background on rough isometries. Soardi’s result was
subsequently generalized by Holopainen and Soardi [21] to rough isometries between
bounded degree graphs and a certain class of Riemannian manifolds. This result was
then strengthened byLee [26],who showed that the dimension of the space of harmonic
Dirichlet functions is preserved under rough isometry.

By a small improvement on the methods in the works mentioned (or, alternatively,
using the methods of this paper), it is not difficult to show the stronger result that
for each rough isometry ρ : G1 → G2, we have that h �→ (h ◦ ρ)HD is a bounded
linear isomorphism HD(G2) → HD(G1). Similar statements hold for rough isome-
tries between graphs and manifolds and between two manifolds (under appropriate
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assumptions on the geometry in both cases). Indeed, in the discrete case the fact that
h �→ (h ◦ρ)HD is a bounded linear isomorphism can easily be read off from the proof
of Soardi’s result presented in [27].

Another setting inwhich one very easily obtains an isomorphism between harmonic
Dirichlet spaces is given by quasi-conformal mapping between domains (or other
Riemannian manifolds). Recall that a homeomorphism q : D → D′ is said to be
quasi-conformal if it is orientation preserving, weakly differentiable, and there exists
a constant C such that

‖Dq(z)‖2 ≤ C |det[Dq(z)]|

for a.e. z ∈ D. It is trivial to verify by change of variables that E(φ ◦ q) ≤ CE(φ) for
every φ ∈ D(D) and E(ψ ◦q−1) ≤ CE(ψ) for every ψ ∈ D(D′), so that composition
with q defines a bounded linear isomorphism from D(D′) to D(D). Moreover, it
is immediate that ψ ◦ q ∈ D0(D) if and only if ψ ∈ D0(D′), and it follows that
H �→ (H ◦ q)HD is a bounded linear isomorphism from HD(D′) to HD(D).

Using these ideas, one could obtain an alternative, less direct proof of Theorem 1.5,
sketched as follows: First, let S be the ‘piecewise flat’ surface obtained by gluing
regular polygons according to the combinatorics of the map M , which is Riemannian
apart from having conical singularities at its vertices. The assumption that M has
bounded degrees and codegrees readily implies that the function i sending each vertex
of M to the corresponding point of S is a rough isometry. One can then show that
H �→ (h ◦ i)HD is a bounded linear isomorphism HD(S) → HD(M), similar to
the above discussion. Next, the Ring Lemma easily allows us to construct, face-by-
face, a quasi-conformal map q : S → D such that q ◦ i = z. One can then arrive at
Theorem 1.5 by composing the isomorphism HD(S) → HD(M), H �→ (H ◦ i)HD
and the isomorphism HD(D) → HD(S), H �→ (H ◦ q)HD.

2 Proof

2.1 Capacity Characterisation of D0

Recall that the capacity of a finite set of vertices A in a network G is defined to be

Cap(A) =
∑

v∈A

c(v)Pv(τ
+
A = ∞),

where Pv(τ
+
A = ∞) is the probability that a random walk on G started at A never

returns to A after time zero and c(v) = ∑
e∈E→:e−=v c(e) is the total conductance

of all oriented edges emanating from the vertex v. The capacity of an infinite set A
is defined to be Cap(A) = sup{Cap(A′) : A′ ⊆ A finite}. Another way to compute
capacities is via Dirichlet’s principle, which gives the following variational formula
for the capacity of a (finite or infinite) set A in a network G (see e.g. [27, Chap. 2]):

Cap(A) = inf
{E(φ) : φ ∈ D0(G), φ|A ≥ 1

}
,
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where we set inf ∅ = ∞. (For example, ifG = (V , E) is transient then Cap(V ) = ∞
and the set {φ ∈ D0(G), φ|V ≥ 1} is empty.) A similar formula can also be taken as
the definition of the capacity of a set A in a domain D (see e.g. [2]):

Cap(A) := inf
{E(	) : 	 ∈ D0(D), 	 ≥ 1 a.e. on an open neighbourhood of A

}
.

A network is transient if and only if some (and hence every) finite set of its vertices
has positive capacity, and a domain is transient if and only if some (and hence every)
precompact open subset of it has positive capacity.

The following characterisation of D0 is presumably well-known to experts.

Proposition 2.1 1. Let G be a network and let φ ∈ D(G). Then φ ∈ D0(G) if and
only if it is quasi-asymptotically equal to the zero function, that is, if and only if

Cap
({v ∈ V : |φ(v)| ≥ ε}) < ∞

for every ε > 0.
2. Let D be a domain and let 	 ∈ D(D). Then 	 ∈ D0(D) if and only if it is

quasi-asymptotically equal to the zero function, that is, if and only if

Cap
({z ∈ D : |	(z)| ≥ ε a.e. on an open neighbourhood of z}) < ∞.

for every ε > 0.

Proof We prove item 1; item 2 is similar. If G is recurrent, then D0(G) = D(G) [37,
Thm. 3.63] and every set has capacity zero, so that the claim holds vacuously. Thus, it
suffices to consider the case that G is transient. Let φ ∈ D(G). If φ ∈ D0(G) then for
each ε > 0, the function ψ = ε−1|φ| satisfies ψ ≥ 1 on the set {v ∈ V : |φ(v)| ≥ ε}.
It is easily verified that ψ ∈ D0(G) and that E(ψ) ≤ ε−2E(φ), and so Dirichlet’s
principle implies that

Cap
({v ∈ V : |φ(v)| ≥ ε}) ≤ E(ψ) ≤ ε−2E(φ) < ∞ (2.1)

as claimed. Conversely, suppose that Cap({v ∈ V : |φ(v)| ≥ ε}) < ∞ for every
ε > 0. Then for every ε > 0 there existsψε ∈ D0(G) such thatψε ≥ 1 on the set {v ∈
V : |φ(v)| ≥ ε}. Let 〈Xn〉n≥0 be a randomwalk onM .We deduce from the uniqueness
of the Royden decomposition (1.3) and from (1.4) and (1.5) that limn→∞ ψε(Xn) = 0
almost surely, and hence that lim supn→∞ |φ(Xn)| ≤ ε almost surely. Since ε > 0
was arbitrary it follows that limn→∞ φ(Xn) = 0 almost surely, and we deduce from
(1.5) that φ ∈ D0(G) as claimed. ��

2.2 Proof of theMain Theorems

We begin by recalling the Ring Lemma of Rodin and Sullivan [31], which was origi-
nally proven for circle packings of triangulations and was generalized to double circle
packings of polyhedral maps in [22]. See [1,17] for quantitative versions in the case
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of triangulations. Given a double circle packing (P, P†) in a domain D ⊆ C of a map
M we write r(v) for the radius of P(v) and r( f ) for the radius of P†( f ) for each
v ∈ V and f ∈ F .

Theorem 2.2 (The Ring Lemma) There exists a family of positive constants 〈kn,m :
n ≥ 3,m ≥ 3〉 such that if (P, P†) is a double circle packing of a polyhedral planar
map M in a domain D ⊆ C, then

r(v)/r( f ) ≤ kdeg(v),maxg⊥v deg(g)

for every vertex v ∈ V and every f ∈ F incident to v.

For the rest of this section M will be a transient weighted polyhedral map with
bounded codegrees and bounded local geometry, (P, P†) will be a double circle
packing of M in a domain D ⊆ C ∪ {∞}, and z will be the associated embedding of
M . By applying a Möbius transformation if necessary, we can and will assume that
D ⊆ C (in which case D � C by the He–Schramm theorem since M is transient). We
writeM = M(M) for the data

M(M) =
(
max
v∈V deg(v), max

f ∈F deg( f ), sup
e∈E

c(e), sup
e∈E

c−1(e)

)
.

We say that two quantities are comparable if they differ up to positive multiplicative
constants depending only onM, and write �, �, and � for equalities and inequalities
that hold up to positivemultiplicative constants depending only on the dataM.We also
use standard big-O notation, where again the implicit positive multiplicative constants
depend only on M.

A consequence of the Ring Lemma is that the embedding of M given by drawing
straight lines between the centres of circles in its double circle packing is good6 in the
sense of [4], meaning that adjacent edges have comparable lengths and that the faces
in the embedding have internal angles uniformly bounded away from zero and π . We
will require the following useful geometric property of good embeddings of planar
graphs, stated here for double circle packings. For each v ∈ V and δ > 0, we write
Pδ(v) for the disc that has the same centre as P(v) but has radius δr(v). Given a set
of vertices A ⊆ V , we write Pδ(A) for the union Pδ(A) = ⋃

v∈A Pδ(v).

Lemma 2.3 (The Sausage Lemma [4]) There exists a positive constant δ1 = δ1(M)

such that for each two oriented edges e1, e2 ∈ E→ of M that do not share an endpoint,
the convex hull of Pδ1(e

−
1 ) ∪ Pδ1(e

+
1 ) and the convex hull of Pδ1(e

−
2 ) ∪ Pδ1(e

+
2 ) are

disjoint.

We now define the two operators that will be the key players in the proof of Theo-
rem 1.5.

6 We remark that all our results hold more generally for good straight-line embeddings of M , not just those
produced using double circle packing. However, we are not aware of any general method of producing good
embeddings that does not rely on double circle packing.
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Definition 2.4 (The operator R) Fix δ0 = δ0(M) ≤ 1/2 sufficiently small that δ0 is
less than or equal to the sausage lemma constant δ1 and that 1

4 |z(u) − z(v)| ≥ δ0r(v)

for every adjacent pair u, v ∈ V . For each locally integrable 	 : D → R, we define
R[	] : V → R by setting R[	](v) to be the average value of 	 on the disc Pδ0(v) for
each v ∈ V , that is,

R[	](v) = 1

πδ20r(v)2

∫

Pδ0 (v)

	(z)dz.

If H ∈ HD(D), then it follows from harmonicity that R[H ](v) = H ◦ z(v) for
every v ∈ V .

Definition 2.5 (The operator A) Consider the triangulation T embedded with straight
lines in D that is obtained by drawing a straight line between z(v) and z(u) whenever
u and v are adjacent vertices of M , and a straight line between z(v) and z( f ) (the
centre of P†( f )) whenever v is a vertex of M and f ⊥ v is a face of M incident to v.
For each function φ : V → R, we define the piecewise-affine extension A[φ] of φ to
D to be the unique function on D that takes the values

A[φ](z(v)) = φ(v) for every v ∈ V

and

A[φ](z( f )) = φ( f ) := 1

deg( f )

∑

v⊥ f

φ(v) for every f ∈ F

on z(V ) = {z(v) : v ∈ V } and z(F) = {z( f ) : f ∈ F}, and is affine on each edge
and each face of the triangulation T .

We fix a root vertex o of M with which to define the inner product on D(M) in
(1.2), and take the interior of Pδ0(o) to be the precompact open set O used to define
the inner product on D(D) in (1.6).

Lemma 2.6 R : D(D) → D(M) and A : D(M) → D(D) are bounded linear operators
with norms bounded by constants depending only onM(M), and also satisfy

E(R[	]) � E(	) and E(A[φ]) � E(φ)

for every	 ∈ D(D) and φ ∈ D(M). In particular, R[	] ∈ D(M) for every	 ∈ D(D)

and A[φ] ∈ D(D) for every φ ∈ D(M).

The main estimates needed for this lemma are implicit in [16], and our proof is
closely modeled on the arguments in that paper.

Proof of Lemma 2.6 We begin with A. We wish to show that E(A[φ]) � E(φ). Let
φ ∈ D(M), let e ∈ E→ be an oriented edge of M , and let Te be the triangle with
corners at z(e−), z(e+), and z(e�). For each e ∈ E→, letψe be the linear map sending

123



Discrete & Computational Geometry (2019) 61:479–506 493

Te to the convex hull of {0, 1, i} that sends e� to 0, e− to 1, and e+ to i . It follows
from the Ring Lemma that ‖Dψe(z)‖ � r(e−)−1 for all z ∈ Te, where Dψe denotes
the total derivative of ψe. On the other hand, A[φ] ◦ψ−1

e is equal to the affine function
x + iy �→ (1 − x − y)φ(e�) + xφ(e−) + yφ(e+), and we deduce that

‖∇A[φ](z)‖≤ ‖Dψe(z)‖‖∇
(
A[φ] ◦ ψ−1

e

)
(ψe(z))‖

� r(e−)−1 max
{|φ(e−) − φ(e+)|, |φ(e−) − φ(e�)|, |φ(e+) − φ(e�)|}.

Integrating over z ∈ Te and summing over e ∈ E→, we obtain that

E(A[φ]) =
∑

e∈E→

∫

Te
‖∇A[φ](z)‖2dz

�
∑

e∈E→
max

{|φ(e−) − φ(e+)|, |φ(e−) − φ(e�)|, |φ(e+) − φ(e�)|}2

�
∑

e∈E→
|φ(e−) − φ(e+)|2 +

∑

v∈V , f ∈F, f⊥v

|φ(v) − φ( f )|2, (2.2)

where in the first inequality we have used the fact that, by the Ring Lemma, the area
of Te is comparable to r(e−)2 for every e ∈ E→. Now, for each face f of M , we have
that

max
u,v⊥ f

|φ(u) − φ(v)| ≤
∑

e:e�= f

|φ(e+) − φ(e−)|,

and hence by Cauchy–Schwarz we have that

∑

v∈V , f ∈F, f ⊥v

|φ(v) − φ( f )|2 ≤
∑

v∈V , f ∈F, f ⊥v

max
u⊥ f

|φ(u) − φ(v)|2

≤
∑

v∈V , f ∈F, f ⊥v

[ ∑

e:e�= f

|φ(e+) − φ(e−)|
]2

≤
∑

v∈V , f ∈F, f ⊥v

deg( f )
∑

e:e�= f

|φ(e+) − φ(e−)|2.

(2.3)

Since each oriented edge is counted at most a constant number of times in this sum
we obtain from (2.2) and (2.3) that

E(A[φ]) �
∑

e∈E→
|φ(e+) − φ(e−)|2 � E(φ) (2.4)

as required. To control the other term in 〈A[φ],A[φ]〉, observe that
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∫

Pδ0 (o)
A[φ](z)2dz � max

{|φ(u)|2 : u shares a face with o
}

� φ(o)2 + max
{|φ(u) − φ(o)|2 : u shares a face with o

}
,

where we say that two vertices u and v share a face if there exists f ∈ F such that
u ⊥ f and v ⊥ f . A simple Cauchy–Schwarz argument similar to the above then
shows that ∫

Pδ0 (o)
A[φ](z)2dz � φ(o)2 + E(φ), (2.5)

and combining (2.4) and (2.5) yields that 〈A[φ],A[φ]〉 � 〈φ, φ〉 as required.
We now show that R is bounded. We wish to show that 〈R[	], R[	]〉 � 〈	,	〉 and

moreover that E(R[	]) � E(	) for every 	 ∈ D(D). Let us first suppose that 	 is
continuously differentiable. It is well known, and can be seen by a simple mollification
argument, that such	 are dense inD(D) (as indeed are the smoothDirichlet functions).
For each v ∈ V , let Xv be a random point chosen uniformly from the disc Pδ0(v),
independently from each other, so that R[	](v) = E	(Xv). For each u, v ∈ V , let
�u,v be the random line segment connecting Xu to Xv . By Jensen’s inequality and the
assumption that 	 is continuously differentiable we have that

(
R[	](u) − R[	](v)

)2 = E
[
	(Xu) − 	(Xv)

]2

≤ E
[(

	(Xu) − 	(Xv)
)2]

= E

[(∫

�u,v

‖∇	(z)‖dz
)2]

.

For each adjacent u, v ∈ V , conditional on �u,v , let Zu,v be a random point chosen
uniformly on the line segment �u,v . The Cauchy–Schwarz inequality implies that

(∫

�u,v

‖∇	(z)‖dz
)2 ≤ |�u,v|

∫

�u,v

‖∇	(z)‖2dz ≤ |�u,v|2 E
[‖∇	(Zu,v)‖2 | �u,v

]
.

Next, the Ring Lemma implies that |�u,v| � r(v), and we deduce that

(
R[	](u)−R[	](v)

)2 ≤ E

[(∫

�u,v

‖∇	(z)‖dz
)2] � r(v)2 E

[‖∇	(Zu,v)‖2
]
. (2.6)

Let μu,v be the law of Zu,v and let Au,v be its support, i.e., the convex hull of
Pδ0(u) ∪ Pδ0(v). We claim that the Radon–Nikodym derivative of μu,v with respect
to the Lebesgue measure on Au,v is O(r(v)−2). This is equivalent to the claim that

P
(
Zu,v ∈ B(z, δr(v))

) � δ2 (2.7)
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O δr v

O r v

Fig. 2 Illustration of the proof of the boundedness of R. Suppose that z (green square) is closer to z(v)

(navy disc) than to z(u) (brown disc). Then conditional on the location of Xu (red square), in order for Zu,v

to be located in B(z, δr(v)) (purple disc), Xv must be located in the intersection (blue segment) of Pδ0 (v)

with the cone whose vertex is at Xu and that is tangent to B(z, δr(v)). The dashed line is the perpendicular
bisector of the line from z(u) to z(v). This intersection is contained within a triangle (grey) whose sides
have lengths of order O(r(v)), O(r(v)) and O(δr(v)), and consequently has area O(δr(v)2)

for every z ∈ Au,v and δ > 0. Suppose without loss of generality that |z − z(v)| ≤
|z− z(u)|, and condition on the value of Xu , so that |Xu − z| ≥ |z(u)− z(v)|/4 � r(v)

by definition of δ0. In order for Zu,v to be in the ball B(z, δr(v)), we must have that
Xv is in the cone K that has its vertex at Xu and that is tangent to B(z, δr(v)), see
Fig. 2. Since |Xu − z| ≥ |z(u) − z(v)|/4, it follows by elementary trigonometry that
the internal angle at the vertex of K is O(δ), and consequently that the intersection
of K with Pδ0(v) (or indeed with all of Au,v), being contained inside a triangle with
height O(r(v)) and width O(δr(v)), has area at most O(δr(v)2). Thus, the probability
that Xv lies in this region is at most O(δ). Conditioned on the event that Xv lies
in K , the intersection of �u,v with B(z, δ) has length at most 2δr(v), and so the
conditional probability that Zu,v lies in this segment is O(δ). The estimate (2.7)
follows.

Integrating over the Radon–Nikoydm estimate (2.7) we obtain that

E
[‖∇	(Zu,v)‖2

] =
∫

Au,v

dμu,v(z)

dz
‖∇	(z)‖2dz � r(v)−2

∫

Au,v

‖∇	(z)‖2dz

and hence by (2.6) that

(
R[	](u) − R[	](v)

)2 �
∫

Au,v

‖∇	(z)‖2dz (2.8)

for every adjacent u, v ∈ V . Since (2.8) holds uniformly for all continuously differ-
entiable 	 ∈ D(D) and the expressions on both sides of the inequality are continuous
functions of 	 ∈ D(D), we deduce by density that the inequality holds for all
	 ∈ D(D).
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Since δ0 was taken to be less than the Sausage Lemma constant, we have that each
point z is in at most maxv∈V deg(v) = O(1) different regions of the form Au,v , so
that applying (2.8) yields that

E(R[	]) =
∑

e∈E→

(
R[	](e−) − R[	](e+)

)2

�
∑

e∈E→

∫

Ae−,e+
‖∇	(z)‖2dz �

∫

D
‖∇	(z)‖2dz = E(	) (2.9)

as required. The other term in 〈R[	], R[	]〉 can be bounded using Jensen’s inequality,
which yields that

|R[	](o)|2 �
∫

Pδ0 (o)
	2(z)dz. (2.10)

Combining (2.9) and (2.10) yields that 〈R[	], R[	]〉 � 〈	,	〉 as required. ��

It is an immediate consequence of the closed graph theorem that if a Banach space
V is written as the direct sum of two closed subspaces V = V1⊕V2 then the associated
projections onto each of the subspaces are bounded. (This can also be argued directly.)
Applying this fact in our setting we obtain that the projections φ �→ φHD and 	 �→
	HD are bounded. Thus, it follows as an immediate corollary to Lemma 2.6 that the
operators Disc : HD(D) → HD(M) and Cont : HD(M) → HD(D) defined by

Disc[H ](v) = (R[H ])HD(v) = (H ◦ z)HD(v) = Ev

[
lim
n→∞ H ◦ z(Xn)

]

H ∈ HD(D), v ∈ V (2.11)

Cont[h](z) = (A[h])HD(z) = Ez
[

lim
t→T∂D

A[h](Bt )
]

h ∈ HD(M), z ∈ D (2.12)

are also well defined and bounded. Here the final equalities of (2.11) and (2.12) follow
from (1.5) and (1.8) respectively.

A second immediate corollary is the following.

Corollary 2.7 If φ ∈ D0(M) then A[φ] ∈ D0(D). Similarly, if 	 ∈ D0(D) then
R[	] ∈ D0(M).

Proof We prove the first sentence, the second being similar. It is immediate from the
definitions that if φ ∈ D0(M) is finitely supported, then A[φ] is compactly supported.
We conclude by applying the boundedness of A. ��

The following lemma, which is proved below and is also an easy corollary of
Lemma 2.6, is also implicit in [16]; indeed, it can be thought of as a quantitative form
of the main result of that paper.
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Lemma 2.8 For every 0 < δ ≤ 1/2, we have that

δ4Cap(A) � Cap(Pδ(A)) � Cap(A)

for every set of vertices A in M.

We will require the following simple estimates.

Lemma 2.9 (Continuity estimates)

1. Let φ : V → R be a function. Then

sup
z∈Pδ(v)

∣∣A[φ](z) − φ(v)
∣∣

≤ δ sup
{|φ(u) − φ(v)| : u and v share a face of M

} � δ
√
E(φ)

for every v ∈ V and 0 < δ < 1.
2. Let H : D → R be a harmonic function. Then for every r > 0, α > 1, and z0 ∈ D

such that B(z0, αr) ⊆ D we have that

sup
z∈B(z0,r)

|H(z) − H(z0)|2 ≤ 1

π
log

[
α2

α2 − 1

] ∫

B(z0,αr)
‖∇H(z)‖2dz.

Proof The first inequality of item 1 is immediate from the definition of A[φ], while
the second follows since

sup
{|φ(u) − φ(v)| : u and v share a face of M

}

≤ sup
f ∈F

∑

e∈E→:e�= f

|φ(e+) − φ(e−)|

� sup
e∈E→

|φ(e+) − φ(e−)| � √
E(φ).

Item 2 follows by taking 	 : B(z0, r) → C to be holomorphic with real part H and
applying the inequality of [12, Thm. 1.2.1] to the function 
 : D → C defined by

(z) = 	((z0 + z)/αr). (Note that their definition of the energy of 
 disagrees with
ours by a factor of π .) ��
Proof of Lemma 2.8 We start with the upper bound. Let φ ∈ D0(M) be such that
φ|A ≥ 1, and let ψ = (φ ∧ 1) ∨ 0. It is easily verified that E(ψ) ≤ E(φ) and
ψ |A = 1, and it follows from Proposition 2.1 that ψ ∈ D0(M) (this is also easy to
verify directly). Lemma 2.9 implies that A[ψ](z) ≥ 1− δ for every z ∈ Pδ(A). Thus,
by Corollary 2.7, we have that 2(1−δ)−1A[ψ] ∈ D0(D) and that 2(1−δ)−1A[ψ] ≥ 1
on an open neighbourhood of Pδ(A), so that, by Dirichlet’s principle and Lemma 2.6,

Cap(Pδ(A)) ≤ E(2(1 − δ)−1A[ψ]) � E(ψ) ≤ E(φ).

The claimed upper bound follows by taking the infimum over φ.
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We now turn to the lower bound. Let 	 ∈ D0(D) be such that 	 ≥ 1 on an
open neighbourhood of Pδ(A), and let 
 = (	 ∧ 1) ∨ 0. As before, we have that
E(
) ≤ E(	) and that 
 = 1 on an open neighbourhood of A. For every v ∈ A we
have that

R[
](v) = 1

πδ20r(v)2

∫

Pδ0 (v)


(z)dz ≥ 1

πδ20r(v)2

∫

Pδ0 (v)

1
[
z ∈ Pδ(v)

]
dz = δ2

δ20
.

Thus, by Corollary 2.7, the function δ20R[
]/δ2 ∈ D0(M) is at least 1 on A, and so,
by Dirichlet’s principle and Lemma 2.6,

Cap(A) ≤ E
(

δ20

δ2
R[
]

)
� δ−4E(R[
]) � δ−4E(
) ≤ δ−4E(	).

The claimed lower bound follows by taking the infimum over 	. ��
There is one more lemma to prove before we prove Theorem 1.5.

Lemma 2.10 1. If φ ∈ D(M), then φ − R[A[φ]] ∈ D0(M).
2. If φ ∈ D(M), then A[φ] ∈ D0(D) if and only if φ ∈ D0(M).
3. If 	 ∈ D(D), then R[	] ∈ D0(M) if and only if 	 ∈ D0(D).

Proof of Lemma 2.10 We begin with item 1. Observe that, by the definitions of R and
A, we have that

∣∣φ(v) − R[A[φ]](v)
∣∣ ≤ sup

{|φ(v) − φ(u)| : u shares a face with v
}

for every vertex v ∈ V . It follows by a straightforward argument with the Cauchy–
Schwarz inequality, similar to that used in the proof of Lemma 2.6, that

∑

v∈V

∣∣φ(v) − R[A[φ]](v)
∣∣2 � E(φ),

and hence that, for each ε > 0,

Cap
({

v ∈ V : ∣∣φ(v) − R[A[ f ]](v)
∣∣ ≥ ε

}) �
∣∣∣
{
v ∈ V : ∣∣φ(v) − R[A[φ]](v)

∣∣ ≥ ε
}∣∣∣ � E(φ)ε−2.

The right hand side is finite for every ε > 0, and so we conclude by applying Propo-
sition 2.1.

We now turn to items 2 and 3. The ‘if’ parts of the statements are covered by
Corollary 2.7; It remains to prove only the ‘only if’ parts of the statements. We begin
with item 2. Let φ ∈ D(M) be such that A[φ] ∈ D0(D) and let ε > 0. It follows from
Lemma 2.9 that there exists a constant δ = δ(ε, E(φ),M(M)) such that

{
v ∈ V : |φ(v)| ≥ ε

} ⊆
{
v ∈ V : |A[φ](z)| ≥ ε

2
for all z ∈ Pδ(v)

}
,
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and it follows from Lemma 2.8 that there exists a constant C = C(ε, E(φ),M(M))

such that

Cap
({

v ∈ V : |φ(v)| ≥ ε
}) ≤ C Cap

({
z ∈ D : |A[φ](v)| ≥ ε

2

})
.

Here we have used the fact that if A ⊆ B then Cap(A) ≤ Cap(B), which is an
immediate consequence of the Dirichlet principle. Proposition 2.1 and the assumption
that A[φ] ∈ D0(D) implies that the right hand side is finite, so that the left hand side
is finite also. Since ε > 0 was arbitrary, applying Proposition 2.1 a second time shows
that φ ∈ D0(M) as claimed.

It remains to prove item 3. We begin by proving that for every H ∈ HD(D) and
ε > 0 there exists a compact set K ⊂ D such that

Cap
({
z ∈ D : |H(z)| ≥ ε

}) � Cap(K ) + Cap
[{

v ∈ V , |H ◦ z(u)| ≥ ε/4
}]

.

(2.13)
For each v ∈ V , define Fl(v) to be the union of the disc P(v) with all of the discs
P†( f ) where f is a face of M incident to v, and let N (v) be the set of all vertices of
M that share a face with v. Let H ∈ HD(D) and let ε > 0. Observe that

{z ∈ D : |H(z)| ≥ ε} ⊆
⋃{

P(v) : v ∈ V , sup{|H(z)| : z ∈ P(v)} ≥ ε
}

∪
⋃ {

P†( f ) : f ∈ F, sup{|H(z)| : z ∈ P†( f )} ≥ ε
}

⊆ {
Fl(v) : v ∈ V , sup

{|H(z)| : z ∈ P(v)
} ≥ ε

}
,

where the second inclusion follows from the maximum principle. Define the sets
Aε,1 = {v ∈ V : |H ◦ z(v)| ≥ ε/2} and

Aε,2 = {
v ∈ V : sup{|H(z)| : z ∈ P(v)

} ≥ ε
}
.

Clearly Aε,1 ⊆ Aε,2. We claim that Aε,2 \ Aε,1 is finite. Indeed, suppose for contra-
diction that Aε,2 \ Aε,1 is infinite. It follows from the Ring Lemma that there exists a
constantC > 1 such that B(z(v),Cr(v)) ⊆ D for every v ∈ V , and since the point set
{z(v) : v ∈ V } is locally finite in D, we can find an infinite set Aε,3 ⊆ Aε,2 \ Aε,1 such
that the balls B(z(v),Cr(v)) and B(z(u),Cr(u)) are disjoint whenever u, v ∈ Aε,3
are distinct. Applying item 2 of Lemma 2.9 we obtain that

E(H) ≥
∑

v∈Aε,3

∫

B(z(v),Cr(v))

‖∇H(z)‖2dz �
∑

v∈Aε,3

ε2 = ∞,

contradicting the assumption that H ∈ HD(D). It follows that if H ∈ HD(D) then

{
z ∈ D : |H(z)| ≥ ε

} ⊆ K ′ ∪
⋃ {

Fl(v) : v ∈ V , |H ◦ z(v)| ≥ ε/2
}

where K ′ ⊂ D is compact. Now, since H ◦ z ∈ D(M) by Lemma 2.6, it follows by
similar reasoning to above that {v ∈ V : |H ◦ z(u)| ≥ ε/2 for some u ∈ N (v)} \ {v ∈

123



500 Discrete & Computational Geometry (2019) 61:479–506

V : H ◦ z(u) ≥ ε/4 for every u ∈ {v} ∪ N (v)} is finite, and it follows that there exists
a compact set K ⊂ D such that

{
z ∈ D : |H(z)| ≥ ε

}

⊆ K ∪
⋃ {

Fl(v) : v ∈ V , |H ◦ z(u)| ≥ ε/4 for every u ∈ {v} ∪ N (v)
}
.

Now suppose that ψ ∈ D0 is such that ψ ≥ 1 on the set {v ∈ V : |H ◦ z(v)| ≥ ε/4}.
Then we clearly have that A[ψ] ≥ 1 on the set

⋃ {
Fl(v) : v ∈ V , |H ◦ z(u)| ≥

ε/4 for every u ∈ {v} ∪ N (v)
}
, and optimizing over ψ it follows that

Cap
({
z ∈ D : |H(z)| ≥ ε

})

≤ Cap(K ′) + Cap
[ ⋃{

Fl(v) : v ∈ V , |H ◦ z(u)| ≥ ε/4 for every u ∈ {v} ∪ N (v)
}]

� Cap(K ) + Cap
[{

v ∈ V , |H ◦ z(u)| ≥ ε/4
}]

as claimed.
Now let 	 = 	0 + 	HD ∈ D(D) and suppose that R[	] ∈ D0(M). We have

by Corollary 2.7 that R[	0] ∈ D0(M), and it follows that R[	HD] = 	HD ◦ z =
R[	] − R[	0] ∈ D0(M) also. Let ε > 0. Then we have by (2.13) and Proposition 2.1
that there exists a compact subset K of D such that

Cap
({
z ∈ D : |	HD(z)| ≥ ε

})

≤ Cap(K ) + Cap
[{

v ∈ V , |	HD ◦ z(v)| ≥ ε/4
}]

< ∞

where we have used the fact that compact subsets of transient domains have finite
capacity. Since ε > 0 was arbitrary it follows from Proposition 2.1 that 	HD ∈
D0(D), and hence that 	HD ≡ 0 by uniqueness of the Royden decomposition. Thus,
	 ∈ D0(D) as claimed. ��

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5 As discussed after the proof of Lemmas 2.6, 2.6 implies thatDisc
and Cont are both bounded. Thus, it suffices to prove the following:

1. For each H ∈ HD(D), h = Disc[H ] = (R[H ])HD is the unique element of
HD(M) such that R[H ] − h ∈ D0(M).

2. For each h ∈ HD(M), H = Cont[h] is the unique element of HD(D) such that
h − R[H ] ∈ D0(M).

3. h = Disc[Cont[h]] and H = Cont[Disc[H ]] for every h ∈ HD(M) and H ∈
HD(D) respectively.

Each of these items has a highly elementary but slightly tricky proof. Let PD0(M),

PHD(M), PD0(D), and PHD(D) be the projections associated to the Royden decomposi-
tions of D(M) and D(D) respectively.

1. This follows immediately from the uniqueness of the Royden decomposition (i.e.,
the fact that D(D) = D0(D) ⊕ HD(D)).
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2. We first wish to prove that h − RCont[h] = h − RPHD(D)Ah ∈ D0(M) for every
h ∈ D(M). To see this, note that h − RPHD(D)Ah = [h − RAh] + RPD0(D)Ah.
Since h − RAh ∈ D0(M) by item 1 of Lemma 2.10 and RPD0(D)Ah ∈ D0(M) by
Corollary 2.7, we deduce that h − RCont[h] ∈ D0(M) as claimed.
We now prove uniqueness. Suppose that H ∈ HD(D) is such that h − R[H ] is in
D0(M). Then wemust have that R[Cont[h]−H ] = (h−R[H ])−(h−R[Cont[h]])
is in D0(M) also, and it follows from Lemma 2.10 (more specifically the ‘only
if’ implication of item 3 of that lemma) that Cont[h] − H ∈ D0(D). But since
Cont[h] − H ∈ HD(D) we deduce that H = Cont[h] as claimed.

3. We first prove that h = Disc[Cont[h]] for every h ∈ HD(M). We have that
h −Disc[Cont[h]] = h − RCont[h] + PD0(M)RCont[h], and since, by item 2, h −
RCont[h] and PD0RCont[h] are both inD0(M), it follows that h−Disc[Cont[h]] ∈
D0(M) and hence that h − Disc[Cont[h]] = 0 as claimed.
It remains to prove that H = Cont[Disc[H ]] for every H ∈ HD(D). By item 2
we have that Disc[H ] − RCont[Disc[H ]] ∈ D0(M), and hence that

R
[
H − Cont[Disc[H ]]] = PD0(M)R[H ] + Disc[H ] − RCont[Disc[H ]] ∈ D0(M)

also. It follows by Lemma 2.10 that H − Cont[Disc[H ]] ∈ D0(D) and hence that
H − Cont[Disc[H ]] = 0 as claimed.

��

2.3 Asymptotic Equality in the Uniformly Transient Case

We now prove the following proposition, which, together with Proposition 2.1, allows
us to deduce Theorems 1.1 from 1.5.

Proposition 2.11 Let M be a transient weighted polyhedral planar map with bounded
codegrees and bounded local geometry, let (P, P†) be a double circle packing of M
in a domain D ⊂ C, and let z : V → D be the function sending each circle to the
centre of its corresponding disc. Let h and H be bounded harmonic functions on M
and D respectively. If D is uniformly transient, then h and H ◦ z are asymptotically
equal if and only if they are quasi-asymptotically equal.

The proof of this proposition applies the elliptic Harnack inequality, which we now
discuss. For each z ∈ C and r > 0, let B(z, r) denote the Euclidean ball of radius r
around z. Recall the classical elliptic Harnack inequality for the plane, which states
that for every z0 ∈ C, every non-negative harmonic function h : B(z0, r) → R, and
every z ∈ B(z0, r), we have that

r − |z − z0|
r + |z − z0| h(z0) ≤ h(z) ≤ r + |z − z0|

r − |z − z0| h(z0). (2.14)

An immediate consequence of this inequality is that

|h(z) − h(z0)| ≤ 2|z − z0|
r − |z − z0| h(z0) (2.15)
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under the same assumptions. If h : B(z0, r) → R is a harmonic function that is not
necessarily non-negative, we can apply this inequality to the normalized function
h − inf z∈B(z0,r) h(z) to obtain that

|h(z) − h(z0)| ≤ 2|z − z0|
r − |z − z0|

(
h(z0) − inf

z′∈B(z0,r)
h(z′)

)

≤ 2|z − z0|
r − |z − z0| sup

{|h(z1) − h(z2)| : z1, z2 ∈ B(z0, r)
}
. (2.16)

Angel et al. [4] established a version of the elliptic Harnack inequality that holds
for double circle packings with respect to the Euclidean metric. The version of the
theorem that we state here follows from that stated in [4] by a simple rearrangement
and iteration argument, below.

Theorem 2.12 (Elliptic Harnack Inequality) Let M be a transient weighted polyhedral
planar map with bounded codegrees and bounded local geometry, let (P, P†) be a
double circle packing of M in a domain D. Then for each α < 1 there exist positive
constants β = β(M) and C = C(M) such that

|h(u)−h(v)| ≤ C

( |z(u) − z(v)|
r

)β

sup
{|h(w1)−h(w2)| : z(w1), z(w2) ∈ B(z, r)

}

(2.17)
for every harmonic function h on V , every v ∈ V , every r ≤ d(z(v), ∂D), and every
u ∈ V with z(u) ∈ B(z(v), αr).

Proof Let X be the union of the straight lines between the centres of circles in P . The
Ring Lemma implies that the pathmetric on X is comparable to the subspacemetric on
X [4, Prop. 2.5]. Given a function φ on the vertex set of M , we extend φ to X by linear
interpolation along each edge. The version of the elliptic Harnack inequality stated in
[4, Thm. 5.4] implies that for each A > 1, there exists a constant C = C(A,M) > 1
such that for every x ∈ X with d(x, ∂D) ≥ Ar , and every harmonic function h on M
such that the extension of h to X is positive on B(x, Ar), we have that

sup
y∈X∩B(x,r)

h(y) ≤ C inf
y∈X∩B(x,r)

h(y). (2.18)

Now suppose that h is a harmonic function on M that is not necessary positive.
Write B(r) = X ∩ B(x, r). Applying this inequality to the normalized function
h(y) − inf z∈B(Ar) h(z), we deduce that

sup
y∈B(r)

h(y) − inf
y∈B(Ar)

h(y) ≤ C

[
inf

y∈B(r)
h(y) − inf

y∈B(Ar)
h(y)

]
.

Adding (C − 1) supy∈B(r) h(y) + inf y∈B(Ar) h(y) −C inf y∈B(r) h(y) to both sides of
this inequality, we obtain that
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C

[
sup

y∈B(r)
h(y) − inf

y∈B(r)
h(y)

]
≤ (C − 1) sup

y∈B(r)
h(y) − (C − 1) inf

y∈B(Ar)
h(y)

≤ (C − 1)

[
sup

y∈B(Ar)
h(y) − inf

y∈B(Ar)
h(y)

]
.

By applying this inequality for different values of r we obtain that

sup
y∈B(A−nr)

h(y) − inf
y∈B(A−nr)

h(y) ≤
(
C − 1

C

)[
sup

y∈B(A−n+1r)
h(y) − inf

y∈B(A−n+1r)
h(y)

]

for every n ≥ 1, every harmonic function h on M , every r > 0, every n ≥ 1, and
every x ∈ X such that d(x, ∂D) ≥ r . It follows by induction that

sup
y∈B(A−nr)

h(y) − inf
y∈B(A−nr)

h(y) ≤
(
C − 1

C

)n[
sup

y∈B(r)
h(y) − inf

y∈B(r)
h(y)

]

for every harmonic function h on M , every r > 0, every n ≥ 1, and every x ∈ X such
that d(x, ∂D) ≥ r . This is easily seen to imply the claimed inequality. ��

The following lemma is presumably well-known to experts, but we were not able
to find a reference.

Lemma 2.13 Let G be a transient network and suppose that A is a set of vertices for
which there exists ε > 0 and infinitely many disjoint sets A1, A2, . . . ⊆ A such that
Cap(Ai ) ≥ ε for every i ≥ 1. Then Cap(A) = ∞.

Proof First note that if A has finite capacity then we must have that simple random
walk on G visits A at most finitely often almost surely. Indeed, if Cap(A) < ∞ then
there exists ψ ∈ D0(G) with ψ |A ≥ 1, and it follows from (1.5) that if X is a random
walk then ψ(Xn) → 0 a.s. and hence that X visits A at most finitely often a.s. Thus,
it suffices to consider the case that the simple random walk visits A at most finitely
often almost surely.

For each i ≥ 1, there exists a finite set A′
i ⊆ Ai such that Cap(A′

i ) ≥ Cap(Ai )/2 ≥
ε/2. We construct a subsequence i1, i2, . . . as follows. Let i1 = 1. Since random walk
visits A at most finitely often almost surely, it follows that, given i1, . . . , im , there
exists j such that

m∑

�=1

∑

v∈A′
i�

c(v)Pv

(
hit

⋃

i≥ j

A′
i

)
≤ ε

8

Set im to be the minimal such j ; this gives a recursive procedure to define the entire
sequence i1, i2, . . . By the Dirichlet principle we have that Cap(A) ≥ Cap

(⋃m
�=1 A

′
i�

)

for each m ≥ 1, and so it suffices to prove that

Cap
( m⋃

�=1

A′
i�

)
≥ εm

4
(2.19)
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for every m ≥ 1. To see this, we use the elementary bound

Cap
( m⋃

�=1

A′
i�

)
=

m∑

�=1

∑

v∈A′
i�

c(v)Pv

(
do not return to

m⋃

�=1

A′
i�

)

≥
m∑

�=1

∑

v∈A′
i�

c(v)Pv

(
do not return to A′

i�

)

−
m∑

�=1

∑

v∈A′
i�

c(v)Pv

(
hit

⋃

k≥�+1

A′
ik

)

−
m∑

�=1

∑

v∈A′
i�

�−1∑

r=1

∑

u∈A′
ir

c(v)Pv

(
hit u, don’t return to

⋃

k≥�

A′
ik

)
,

from which the bound

Cap
( m⋃

�=1

A′
i�

)
≥ εm

2
− εm

8

−
m∑

�=1

∑

v∈A′
i�

l−1∑

r=1

∑

u∈A′
ir

c(v)Pv

(
hit u, don’t return to

⋃

k≥�

A′
ik

)

follows immediately. To control the final term, we reverse time to get that

Cap
( m⋃

�=1

A′
i�

)
≥ 3εm

8
−

m∑

r=1

∑

u∈A′
ir

m∑

�=r+1

∑

v∈A′
i�

c(u)Pu

(
hit

⋃

k≥�

A′
ik for first time at v

)

≥ 3εm

8
−

m∑

r=1

∑

u∈A′
ir

m∑

�=r+1

c(u)Pu

(
hit

⋃

k≥�

A′
ik

)

≥ 3εm

8
− m

m∑

r=1

∑

u∈A′
ir

c(u)Pu

(
hit

⋃

k≥r+1

A′
ik

)
≥ εm

4

as claimed. The claim that A has infinite capacity now follows immediately from
(2.19). ��

Proof of Proposition 2.11 Asymptotic equality clearly implies quasi-asymptotic equal-
ity. Suppose that h and H ◦ z are not asymptotically equal, so that there exists ε > 0
such that the set Aε = {v ∈ V : |h(v) − H ◦ z(v)| ≥ ε} is infinite. Since h and H are
bounded, it follows from the elliptic Harnack inequalities (2.16) and (2.17) that there
exists δ > 0 such that
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⋃

v∈Aε

{
u ∈ V : z(u) ∈ B

(
z(v), δd

(
z(v), ∂D

))} ⊆ Aε/2.

Since D is uniformly transient, Lemma 2.8 implies that the sets
{
z ∈ D : z ∈ B

(
z(v), δd

(
z(v), ∂D

))}

have capacity bounded below by some positive constant, and a simple variation on the
proof of Lemma 2.8 yields that the sets

{
u ∈ V : z(u) ∈ B

(
z(v), δd

(
z(v), ∂D

))}

also have capacity bounded below by a positive constant. Since there must exist
infinitely many disjoint sets of this form, we can apply Lemma 2.13 to deduce that
Cap(Aε/2) = ∞. It follows that h and H ◦ z are not quasi-asymptotically equal,
concluding the proof. ��
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