Skip to main content
Log in

Nonobtuse Triangulations of PSLGs

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We show that any planar straight line graph with n vertices has a conforming triangulation by \(O(n^{2.5})\) nonobtuse triangles (all angles \(\le 90^\circ \)), answering the question of whether any polynomial bound exists. A nonobtuse triangulation is Delaunay, so this result also improves a previous \(O(n^3)\) bound of  Edelsbrunner and Tan for conforming Delaunay triangulations of PSLGs. In the special case that the PSLG is the triangulation of a simple polygon, we will show that only \(O(n^2)\) triangles are needed, improving an \(O(n^4)\) bound of Bern and Eppstein. We also show that for any \(\varepsilon >0\), every PSLG has a conforming triangulation with \(O(n^2 /\varepsilon ^2)\) elements and with all angles bounded above by \(90^\circ + \varepsilon \). This improves a result of S. Mitchell when \(\varepsilon = \frac{3}{8} \pi =67.5^\circ \) and Tan when \(\varepsilon = \frac{7}{30} \pi = 42^\circ \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

References

  1. Abedi, R., Chung, S.H., Erickson, J., Fan, Y., Garland, M., Guoy, D., Haber, R., Sullivan, J.M., Thite, S., Zhou, Y.: Spacetime meshing with adaptive refinement and coarsening. In: SCG’04: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 300–309. ACM, New York (2004)

  2. Baker, B.S., Grosse, E., Rafferty, C.S.: Nonobtuse triangulation of polygons. Discrete Comput. Geom. 3(2), 147–168 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barth, T.J., Sethian, J.A.: Numerical schemes for the Hamilton–Jacobi and level set equations on triangulated domains. J. Comput. Phys. 145(1), 1–40 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bern, M., Eppstein, D.: Polynomial-size nonobtuse triangulation of polygons. Int. J. Comput. Geom. Appl. 2(3), 241–255, 1992. Selected papers from the 7th Annual Symposium on Computational Geometry I, Conway (1991)

  5. Bern, M., Eppstein, D.: Computing in Euclidean Geometry. Lecture Notes Series in Computer Science, pp. 23–90. World Science Publications, River Edge (1992)

    Book  Google Scholar 

  6. Bern, M., Gilbert, J.R.: Drawing the planar dual. Inf. Process. Lett. 43(1), 7–13 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. Comput. System Sci., 48(3), 384–409 (1994). In: 31st Annual Symposium on Foundations of Computer Science (FOCS), St. Louis (1990)

  8. Bern, M., Dobkin, D., Eppstein, D.: Triangulating polygons without large angles. Int. J. Comput. Geom. Appl. 5(1–2), 171–192 (1995). In: Eighth Annual ACM Symposium on Computational Geometry, Berlin (1992)

  9. Bern, M., Mitchell, S., Ruppert, J.: Linear-size nonobtuse triangulation of polygons. Discrete Comput. Geom. 14(4), 411–428, 1995. In: ACM Symposium on Computational Geometry, Stony Brook (1994)

  10. Bern, M., Plassmann, P.: Mesh generation. In: Handbook of Computational Geometry, pp. 291–332. North-Holland, Amsterdam (2000)

  11. Bishop, C.J.: Quadrilateral meshes for PSLGs. Discrete Comput. Geom. (2016). doi:10.1007/s00454-016-9771-9

  12. Bobenko, A.I., Springborn, B.A.: A discrete Laplace–Beltrami operator for simplicial surfaces. Discrete Comput. Geom. 38(4), 740–756 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Boman, E.G., Hendrickson, B., Vavasis, S.: Solving elliptic finite element systems in near-linear time with support preconditioners. SIAM J. Numer. Anal. 46(6), 3264–3284 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Brandts, J., Korotov, S., Křížek, M., Šolc, J.: On nonobtuse simplicial partitions. SIAM Rev. 51(2), 317–335 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Burago, YuD, Zalgaller, V.A.: Polyhedral embedding of a net. Vestn. Leningrad. Univ. 15(7), 66–80 (1960)

    MATH  MathSciNet  Google Scholar 

  16. Cassidy, C., Lord, G.: A square acutely triangulated. J. Recreational Math., 13(4), 263–268 (1980–1981)

  17. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2, 17–31 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Edelsbrunner, H.: Triangulations and meshes in computational geometry. In: Acta Numerica, 2000. Acta Numerica, vol. 9, pp. 133–213. Cambridge University Press, Cambridge (2000)

  19. Edelsbrunner, H., Tan, T.S.: An upper bound for conforming Delaunay triangulations. Discrete Comput. Geom. 10(2), 197–213 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Erten, H., Üngör, A.: Computing acute and non-obtuse triangulations. In: CCCG 2007, Ottawa (2007)

  21. Erten, H., Üngör, A.: Quality triangulations with locally optimal Steiner points. SIAM J. Sci. Comput. 31(3), 2103–2130 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gabriel, K., Sokal, R.: A new statistical approach to geographic variation analysis. Syst. Zool. 18, 259–278 (1969)

    Article  Google Scholar 

  23. Gardner, M.: Mathematical games: a fifth collection of brain-teasers. Sci. Am. 202(2), 150–154 (1960)

    Article  Google Scholar 

  24. Gardner, M.: Mathematical games: the games and puzzles of Lewis Carroll, and the answers to February’s problems. Sci. Am. 202(3), 172–182 (1960)

    Article  Google Scholar 

  25. Gerver, J.L.: The dissection of a polygon into nearly equilateral triangles. Geom. Dedicata 16(1), 93–106 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Goldberg, M., Manheimer, W.: Elementary problems and solutions: solutions: E1406. Am. Math. Mon. 67(9), 923 (1960)

    Article  MathSciNet  Google Scholar 

  27. Hangan, T., Itoh, J., Zamfirescu, T.: Acute triangulations. Bull. Math. Soc. Sci. Math. Roum., Nouv. Ser. 43(91), 279–285 (2000)

    MATH  MathSciNet  Google Scholar 

  28. Itoh, J.: Acute triangulations of sphere and icosahedron. In: Differential Geometry, Sakado. Josai Mathematical Monographs, vol. 3, pp. 53–62. Josai University, Sakado (2001)

  29. Itoh, J., Yuan, L.: Acute triangulations of flat tori. Eur. J. Comb. 30(1), 1–4 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Itoh, J., Zamfirescu, T.: Acute triangulations of the regular icosahedral surface. Discrete Comput. Geom. 31(2), 197–206 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Itoh, J., Zamfirescu, T.: Acute triangulations of the regular dodecahedral surface. Eur. J. Comb. 28(4), 1072–1086 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kopczynski, E., Pak, I., Przytycki, P.: Acute triangulations of polyhedra and \(R^n\). Combinatorica 32(1), 85–110 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Korotov, S., Stańdo, J.: Nonstandard nonobtuse refinements of planar triangulations. In: Conjugate Gradient Algorithms and Finite Element Methods. Scientific Computing, pp. 149–160. Springer, Berlin (2004)

  34. Křížek, M.: There is no face-to-face partition of \({ R}^5\) into acute simplices. Discrete Comput. Geom. 36(2), 381–390 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Li, J.Y.S., Zhang, H.: Nonobtuse remeshing and mesh decimation. In: SGP’06: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 235–238. Eurographics Association, Aire-la-Ville (2006)

  36. Maehara, H.: Acute triangulations of polygons. Eur. J. Comb. 23(1), 45–55 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Melissaratos, E.A., Souvaine, D.L.: Coping with inconsistencies: a new approach to produce quality triangulations of polygonal domains with holes. In: SCG’92: Proceedings of the Eighth Annual Symposium on Computational Geometry, pp. 202–211. ACM, New York (1992)

  38. Mitchell, S.A.: Refining a triangulation of a planar straight-line graph to eliminate large angles. In: 34th Annual Symposium on Foundations of Computer Science, Palo Alto, pp. 583–591. IEEE Computer Society Press, Los Alamitos (1993)

  39. Nackman, L.R., Srinivasan, V.: Point placement algorithms for Delaunay triangulation of polygonal domains. Algorithmica 12(1), 1–17 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ruppert, J.: A new and simple algorithm for quality \(2\)-dimensional mesh generation. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, pp. 83–92. ACM, New York (1993)

  41. Saalfeld, A.: Delaunay edge refinements. In: Proceedings of the Third Canadian Conference on Computational Geoemtry, pp. 33–36 (1991)

  42. Salzberg, S., Delcher, A.L., Heath, D., Kasif, S.: Best-case results for nearest-neighbor learning. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 599–608 (1995)

    Article  Google Scholar 

  43. Saraf, S.: Acute and nonobtuse triangulations of polyhedral surfaces. Eur. J. Comb. 30(4), 833–840 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22(1–3), 21–74 (2002). In: 16th ACM Symposium on Computational Geometry, Hong Kong (2000)

  46. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (electronic), pp. 81–90. ACM, New York (2004)

  47. Tan, T.-S.: An optimal bound for high-quality conforming triangulations. Discrete Comput. Geom. 15(2), 169–193 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  48. Thite, S.: Adaptive spacetime meshing for discontinuous Galerkin methods. Comput. Geom. 42(1), 20–44 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  49. Üngör, A., Sheffer, A.: Pitching tents in space-time: mesh generation for discontinuous Galerkin method. Int. J. Found. Comput. Sci. 13(2), 201–221 (2002). Volume and surface triangulations

  50. VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.: Well-centered planar triangulation—an iterative approach. In: Brewer, M.L., Marcum, D. (eds.) Proceedings of the 16th International Meshing Roundtable, Seattle, 14–17 Oct 2007, pp. 121–138

  51. Vanderzee, E., Hirani, A.N., Zharnitsky, V., Guoy, D.: A dihedral acute triangulation of the cube. Computational Geometry: Theory and Applications (Accepted, and available online), 2009. Also available as a preprint at arXiv as arXiv:0905.3715v4 [cs.CG]

  52. VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.: Well-centered triangulation. SIAM J. Sci. Comput. 31(6), 4497–4523 (2010). Also available as preprint arXiv:0802.2108v3 [cs.CG]

  53. Vanselow, R.: About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation. Appl. Math. 46(1), 13–28 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  54. Vavasis, S.A.: Stable finite elements for problems with wild coefficients. SIAM J. Numer. Anal. 33(3), 890–916 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  55. Yuan, L.: Acute triangulations of polygons. Discrete Comput. Geom. 34(4), 697–706 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  56. Yuan, L., Zamfirescu, C.T.: Acute triangulations of doubly covered convex quadrilaterals. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10(3, bis), 933–938 (2007)

    MATH  MathSciNet  Google Scholar 

  57. Yuan, L., Zamfirescu, T.: Acute triangulations of flat Möbius strips. Discrete Comput. Geom. 37(4), 671–676 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  58. Zamfirescu, C.: Acute triangulations of the double triangle. Bull. Math. Soc. Sci. Math. Roum., Nouv. Ser. 47(95), 189–193 (2004)

    MATH  MathSciNet  Google Scholar 

  59. Zamfirescu, C.T.: Survey of two-dimensional acute triangulations. Discrete Math. 313, 35–49 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  60. Zamfirescu, T.: Acute triangulations: a short survey. In: Proceedings of the VI Annual Conference of the Romanian Society of Mathematical Sciences (Romanian), Sibiu, 2002, vol. I, pp. 10–18. Societatea de Ştiinţe Matematice din România, Bucharest (2003)

Download references

Acknowledgments

Many thanks to Joe Mitchell and Estie Arkin for numerous conversations about computational geometry in general and the results of this paper in particular. Also thanks to two anonymous referees for many helpful comments and suggestions on two earlier versions of the paper; their efforts greatly improved the presentation in this version. The author was partially supported by NSF Grant DMS 13-05233.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Bishop.

Additional information

Editor in Charge: Herbert Edelsbrunner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishop, C.J. Nonobtuse Triangulations of PSLGs. Discrete Comput Geom 56, 43–92 (2016). https://doi.org/10.1007/s00454-016-9772-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9772-8

Keywords

Mathematics Subject Classification

Navigation