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Abstract We study constructions of k×n matrices A that both (1) satisfy the restricted
isometry property (RIP) at sparsity s with optimal parameters, and (2) are efficient in
the sense that only O(n log n) operations are required to compute Ax given a vector
x . Our construction is based on repeated application of independent transformations
of the form DH , where H is a Hadamard or Fourier transform and D is a diagonal
matrix with random {+1,−1} elements on the diagonal, followed by any k ×n matrix
of orthonormal rows (e.g. selection of k coordinates). We provide guarantees (1) and
(2) for a regime of parameters that is comparable with previous constructions, but
using a construction that uses Fourier transforms and diagonal matrices only. Our
main result can be interpreted as a rate of convergence to a random matrix of a random
walk in the orthogonal group, in which each step is obtained by a Fourier transform H
followed by a random sign change matrix D. After a few number of steps, the resulting
matrix is random enough in the sense that any arbitrary selection of rows gives rise
to an RIP matrix for, sparsity as high as slightly below s = √

n, with high probability.
The proof uses a bootstrapping technique that, roughly speaking, says that if a matrix
A has some suboptimal RIP parameters, then the action of two steps in this random
walk on this matrix has improved parameters. This idea is interesting in its own right,
and may be used to strengthen other constructions.
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1 Introduction

The theory of compressive sensing predicts that sparse vectors can be stably recon-
structed from a small number of linear measurements via efficient reconstruction
algorithms including �1-minimization [8,9]. The restricted isometry property (RIP)
of the measurement matrix streamlines the analysis of various reconstruction algo-
rithms [5,6,10,11]. All known matrices that satisfy the RIP in the optimal parameter
regime (see below for details) are based on randomness. Well known examples include
Gaussian and Bernoulli matrices where all entries are independent. Unfortunately, such
matrices do not possess any structure and therefore no fast matrix-vector multiplica-
tion algorithm. The latter is important for speed-up of recovery algorithms. This article
addresses constructions of matrices that satisfy the RIP in the optimal parameter regime
and have fast matrix-vector multiplication algorithms. It provides an analysis of such
matrices obtained after a few steps in a natural random walk in the orthogonal group.

A vector x ∈ C
n is said to be s-sparse if the number of nonzero entries of x is at

most s. A matrix A ∈ C
k×n satisfies the RIP with respect to parameters (s, δ) if, for

all s-sparse vectors x ∈ C
n ,

(1 − δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2, (1.1)

where‖·‖2 denotes the Euclidean norm.1 If A satisfies the RIP with parameters (2s, δ∗)
for a suitable δ∗ < 1 then a variety of recovery algorithms reconstruct an s-sparse
vector exactly from y = Ax . Moreover, reconstruction is stable under passing from
sparse to approximately sparse vectors and under adding noise on the measurements.
The value of δ∗ depends only on the reconstruction algorithm [4,6,10,11,24].

It is well known by now [3,5,17] that a Gaussian random matrix (having inde-
pendent normal distributed entries of variance 1/m) satisfies the RIP with parameters
(s, δ) with probability at least 1 − e−cδ2k if

k ≥ Cδ−2s ln(n/s),

where c, C > 0 are universal constants. Using lower bounds for Gelfand widths of
�p-balls for 0 < p ≤ 1, it can be shown that k must be at least Cδs log(n/s) for the
RIP to hold [12]. It can further be shown [11, Theorem 6.8] that the constant (as a
function of δ) satisfies Cδ ≥ Cδ−2. Since we will always assume in this paper that
s ≤ Cn1/2, log(n/s) is equivalent to log(n) up to constants. Hence, we will say that
a k × n matrix is RIP-optimal at s if it satisfies the RIP with (s, δ) for

1 In much of the related literature, the definition of RIP uses squared Euclidean norms. The definition (1.1)
is, however, more convenient for our purposes. Of course, both versions are equivalent up to a transformation
of the parameter δ.
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δ = C

√
s log n

k
.

(The reader should keep in mind that for large s, RIP optimality should be defined to
hold when k is at most Cδ−2s log(n/s).)

The restricted isometry property is closely connected to Johnson–Lindenstrauss
embeddings. We say that a random k ×n matrix A satisfies the Johnson–Lindenstrauss
property (JLP) with parameters (N , δ) if for any set X ⊆ R

n of cardinality at most N
(1.1) holds uniformly for all x ∈ X with constant probability. It is well known that a
matrix of independently drawn subgaussian elements satisfies JLP if k ≥ Cδ−2 log N .
Specializations of this fact to Gaussians and to Bernoulli random variables can be found
in [1,13]. The general claim is obtainable by noting that the subgaussian property is
the crux of these proofs. If A satisfies JLP with (N , δ) for k ≤ Cδ−2 log N , then we
say that A is JLP-optimal.

The JLP and RIP properties are known to be almost equivalent, in a certain sense.
One direction is stated as follows: A (random) k × n matrix satisfying JLP with
(N , δ) satisfies RIP with (C(log N )/(log n), 2δ) with constant probability [3,17].
This implies that we can always obtain, with high probability, an RIP-optimal matrix
if we know how to draw a JLP-optimal matrix with k = Cδ−2s log n. The derivation
of RIP from JLP is a specialization of JLP to a set X consisting of a ε-net of s sparse
unit vectors, for ε = 0.1 say, which has cardinality N ≤ (Cn)s .

The other direction is a remarkable recent result by Krahmer and Ward [14] imply-
ing that if A has RIP with (s, δ/4), then AD has JLP with (N , δ) as long as N ≤ 2s ,
where D is a diagonal matrix with independent random signs (±1) on the diagonal.
Notice that from this result, RIP-optimality of A does not imply JLP-optimality of
AD, because RIP-optimality implies that the embedding dimension of k is at least
Cδ−2s log n, which suffers from an additional factor of log n compared to the JLP-
optimality guarantee bound of Cδ−2 log N = Cδ−2s (for N = 2s). From this obser-
vation we intuitively conclude the following stipulation:

RIP-optimality is weaker than JLP-optimality, and RIP-optimal constructions are
easier to obtain.

One of the results of this paper, roughly speaking, confirms this by providing con-
structions of RIP-optimal matrices which are simpler than previously known construc-
tions that relied on JLP optimality.

1.1 Known Constructions of RIP-Optimal and JLP-Optimal Matrices

No deterministic RIP-optimal matrix constructions are known. Deterministic construc-
tions of RIP matrices are known only for a grossly suboptimal regime of parameters.
See [14] for a nice survey of such constructions.

Of particular interest are RIP or JLP matrices A that are efficient in the sense
that for any vector x ∈ C

n , Ax can be computed in time O(n log n). Such con-
structions are known for JLP-optimal (and hence also RIP-optimal) matrices as long
as k ≤ n1/2−μ for any arbitrarily small μ [2]. This is achieved with the transfor-
mation B H D(1)H D(2)H . . . H D(r), where D(i) are independent random sign diag-
onal matrices, H are Hadamard transforms and B is a subsampled (and rescaled)
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Hadamard transform, where the subset of sampled coordinates is related to a carefully
constructed dual binary code, and r is at most C/μ. For larger k, the best efficient
constructions satisfying RIP were for a long while due to Rudelson and Vershynin
[22] with k ≥ Cs log4 n, namely a factor of log3 n away from optimal, see also [20].
It was more recently improved by Nelson et al. to only log2 n factors away from
optimal [18] (note also an improvement of Rudelson et al.’s result by Cheraghchi
et al. [8]). The construction in [22] is a Fourier transform followed by a subsam-
pling operator. Another family of RIP almost optimal matrices with a fast transform
algorithm is that of partial random circulant matrices and time-frequency structured
random matrices. The best known results in that vein have recently appeared in the
work of Krahmer et al. [15], where RIP matrices of almost optimal embedding dimen-
sion k = Cs log4 n are designed. These constructions improve on previous work in
[21].

We should also mention that, in light of the result [14] coupled with [22] (and the
more recent improved [18]), a method for obtaining JLP-optimal (and hence, RIP-
optimal) efficient constructions for target dimension k ≈ √

n/ polylog(n) could be
obtained by applying a slightly sub-optimal transformation in time O(n log n) (paying
an additional polylog(n) factor in target dimension), and then reducing the unwanted
excess in dimensions by multiplying the result by a naïve JLP matrix, e.g. using a
random Gaussian or Bernoulli matrix containing O(n log n) entries (due to our choice
of s). Since a major open problem in this field is obtaining JLP (resp. RIP) optimality
efficiently for any target dimension (resp. any sparsity), we argue that our approach
provides an additional avenue for potentially achieving this goal and is hence important
to explore.

1.2 Contribution

We pay particular attention to the aforementioned JLP matrix construction B H D(1)

H D(2)H . . . H D(r) from [2]. The combination H D of a Hadamard transform and a
random diagonal sign matrix, repeatedly iterated, can be viewed as a random walk in
the orthogonal group. The matrix B there is carefully chosen using an error correcting
code, and is not easy to implement in practice.

We show that for the purpose of obtaining efficient RIP-optimality in the regime
s ≤ n1/2−μ (the same regime studied in [2]), the matrix B can be replaced with any
“reasonable” matrix. More precisely, for this regime, we show that the transformation
P D(1) H D(2)H . . . D(r) H is RIP-optimal and efficient, where the D(i)’s are as above,
P is an arbitrary deterministic matrix with properly normalized, pairwise orthogonal
rows and r is at most C/μ. One could even set P to be a subsampling onto the set of
first coordinates. No binary code designs are necessary.

Our main proof techniques involve concentration inequalities of vector valued
Rademacher chaos of degree 2, together with a bootstrapping argument that, roughly
speaking, shows that the RIP parameters of ADH D′H are better than those of A.

We believe that the random walk in the orthogonal group induced by the random
steps H D is interesting in its own right, and leave the question of studying stronger
convergence rates for this walk to future work.
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2 Notation and Main Results

Throughout, the letter C denotes a general global constant, whose value may change
from appearance to appearance. The integer n denotes the ambient dimension, k ≤ n
denotes the embedding dimension, and C

n denotes the n dimensional complex space
with standard inner product. The usual �p-norms are denoted by ‖ · ‖p, the spectral
norm of a matrix A by ‖A‖ and the Frobenius norm as ‖A‖F = √

trace(A∗ A).
We let H ∈ C

n×n denote a fixed matrix with the following properties:

(1) H is unitary,
(2) the maximal magnitude of an entry of H is n−1/2,
(3) the transformation H x given a vector x ∈ C

n can be computed in time O(n log n).

Note that any matrix satisfying 1. and 2. is usually called a bounded orthogonal system.
Both the discrete Fourier matrix and the Walsh-Hadamard matrix are examples of such
matrices. Note that the upper bound of n−1/2 in Property 2. above could be replaced by
K n−1/2 for any constant K , thus encompassing transformations such as the discrete
cosine transform (with K = √

2) with little effect on the guarantees. We have decided
to concentrate on the case K = 1 for simplicity.

For any vector z ∈ C
n , Dz denotes a diagonal matrix with the elements of z on the

diagonal. For a subset � of {1, . . . , n}, let ind(�) ∈ R
n denote the vector with 1 at

coordinates i ∈ � and 0 elsewhere. Then define P� = Dind(�) and (letting k = |�|)
R� ∈ R

k×n to be the map that restricts a vector in R
n to its entries in �, i.e., a

subsampling operator.
Recall that a k × n matrix A has the RIP property with respect to parameters (s, δ)

where s is an integer and δ > 0, if for any s-sparse unit vector x ∈ C
n ,

1 − δ ≤ ‖Ax‖2 ≤ 1 + δ.

(Note that we allow δ > 1, unlike typical definitions of RIP). For a fixed sparsity
parameter s, we denote by δs(A) the infimum over all δ such that A has the RIP
property with respect to parameters (s, δ). We say that A is RIP optimal at a given
sparsity parameter s if

δs(A) ≤ C

√
s log n

k
. (2.1)

A random vector ε with independent entries that take the values ±1 with equal
probability is called a Rademacher vector.

Our first main result provides a simple RIP-optimal matrix with a fast transform
algorithm for small sparsities s = O(n1/3/ log2/3 n).

Theorem 2.1 Let ε, ε′ ∈ {±1}n be two independent Rademacher vectors, and let �

be any subset of {1, . . . , n} of size k. The k × n random matrix A = R� H Dε H Dε′ H
is RIP-optimal for the regime k ≤ √

n/s. More precisely, if

√
n/s ≥ k ≥ Cδ−2s log n, (2.2)
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then A satisfies the RIP (1.1) with probability at least 1 − e−Cδ2k . In particular, the
conditions on k entail

s ≤ Cδ4/3n1/3

log2/3 n
.

Clearly, A = R� H Dε H Dε′ H x can be computed in O(n log n) time by assumption on
H . Also note that (2.2) implies a restriction on δ for which the result applies, namely

δ ≥ c
s3/4√log n

n1/4 . (2.3)

Our second main result gives an RIP-optimal matrix construction with a fast trans-
form for the enlarged parameter regime s = O(

√
n/ log n) and k = O(n/(s log n)).

Theorem 2.2 Assume s0 ≤ s log n ≤ k ≤ √
n and κ = C

√
sk log n

n < 1/2, where s0

is a global constant. Let A be an arbitrary k × n matrix satisfying AA∗ = n
k Idk . Let

r = ⌈− log(2
√

n/k)
log κ

⌉
, and let ε(1), . . . , ε(r) ∈ {±1}n denote independent Rademacher

vectors. Then the k × n matrix

Â = ADε(1)
H Dε′

(1)
H Dε(2)

H Dε′
(2)

H . . . Dε(r+1)
H Dε′

(r+1)
H (2.4)

is RIP-optimal with probability at least 0.99, that is, (1.1) holds if k ≥ Cδ−2s log n.
In particular, if we strengthen the constraints by requiring s ≤ n1/2−μ for some

global μ > 0, and that A is efficient, then Â is also computationally efficient in the
sense that Âx can be computed in time O(n log n).

(The second part of the theorem clearly follows the first, because if s ≤ n1/2−μ

then r = O(1/μ).) The probability 0.99 in the above theorem is arbitrary and can be
replaced by any different value in (0, 1). This effects only the constant C . However,
we remark that the present proof does not seem to give the optimal dependence of C
in terms of the probability bound.

It is presently not clear whether the restrictions s = O(n1/3/ ln2/3 n) and s =
O(

√
n/ log n) in the above theorems can be removed. In any case, regimes of small s

are of interest in many applications of compressive sensing. Nevertheless, we remark
that also larger regimes of s may be important, and the extension of our main result
to larger s remains an interesting open problem.

Section 3 is dedicated to proving Theorem 2.1, and Sect. 4 proves Theorem 2.2.

3 The Regime s = O(n1/3/ log2/3 n)

Our first randomized, computationally efficient, RIP-optimal construction involves
three applications of H , two random sign diagonal matrices, and a choice of an arbi-
trary set of k coordinates. Fix x ∈ Us := {x ∈ C

n : ‖x‖2 = 1, x is s-sparse} and let
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ε, ε′ ∈ {±1}n be two random sign vectors. Consider the following random variable,
indexed by x ,

α(x) =
√

n

k

∥∥P� H Dε H Dε′ H x
∥∥

2,

where k is the cardinality of �. It is not hard to see that E[α(x)2] = 1. Indeed, denoting
x̃ = H Dε′ H x and conditioning on a fixed value of ε′, for any i ∈ {1, . . . , n},

Eε‖P{i} H Dε x̃‖2
2 = ‖x̃‖2

2/n = 1/n.

The random variable α(x) is the norm of a decoupled Rademacher chaos of degree 2.
For the sake of notational convenience, we denote, for i, j ∈ {1, . . . , n},

xi j =
√

n

k
P� H P{i} H P{ j} H x, (3.1)

so that we can conveniently write

α(x) = ∥∥ n∑
i=1

n∑
j=1

εiε
′
j xi j

∥∥
2.

By a seminal result of Talagrand [23] (Theorem 1.2), a Rademacher chaos concentrates
around its median. We will exploit the following version.

Theorem 3.1 With a double sequence xi j , i, j = 1, . . . , n, of vectors in C
n and two

independent Rademacher vectors ε, ε′ ∈ {±1}n let

α = ∥∥ n∑
i=1

n∑
j=1

εiε
′
j xi j

∥∥
2.

Let Mα be a median of α. For y ∈ C
n introduce the n × n matrix By = (y∗ xi j )

n
i, j=1

and the parameters

U = sup
y∈Cn ,‖y‖2≤1

‖By‖ (3.2)

V = E sup
y∈Cn ,‖y‖2≤1

(‖Byε‖2
2 + ‖B∗

y ε′‖2
2)

1/2. (3.3)

Then, for t > 0,

Pr(|α − Mα| ≥ t) ≤ 2 exp

(
− C min

{
t2

V 2 ,
t

U

})
. (3.4)
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Proof With A = (xi j )
n
i, j=1 and

S = 1

2

(
0 A
A∗ 0

)
, ε̃ =

(
ε

ε′
)

we can rewrite the decoupled chaos as the coupled symmetric chaos

ε̃∗ Sε̃ =
n∑

i, j=1

εiε
′
j xi j ,

where matrix multiplication is extended in an obvious way to matrices with vector-
valued entries. Observe that S has zero diagonal. Therefore, the claim follows from
Theorem 1.2 in [23]. ��

We bound the quantity U = U (x) in (3.2), where the xi j are defined by (3.1). Note
that

∑
i, j αiβ j y∗ xi j = y∗ P� H Dα H Dβ H x , and hence

U = sup
‖y‖2,‖α‖2,‖β‖2≤1

n∑
i=1

n∑
j=1

ᾱiβ j y∗ xi j

=
√

n

k
sup

y,α,β

y∗ P� H Dα∗ H Dβ H x

=
√

n

k
sup

y,α,β

α∗ Dy∗ P� H H DH xβ

≤
√

n

k
sup

y,α,β

‖α‖2 · ‖Dy∗ P� H ‖ · ‖DH x‖ · ‖β‖2

≤
√

n

k
sup
y,β

‖y∗ P� H‖∞ · ‖H x‖∞ · ‖β‖2

≤
√

n

k
sup

y
‖y∗ P�‖1n−1/2 · ‖x‖1n−1/2

≤
√

n

k
k1/2n−1/2‖x‖1n−1/2

≤ √
s/n. (3.5)

To bound V , we define a process ν(y) as

ν(y) =
√

‖Byε‖2
2 + ‖B∗

y ε′‖2
2 (3.6)

so that V = E sup‖y‖≤1 ν(y). By the definition of the vectors xi j , it clearly suffices
to take the supremum on vectors y supported on �. For any such y, let μy = Eν(y).
Jensen’s inequality yields
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μν(y) ≤
√

Eν2
y ≤

√
2n

k
‖Dy∗ P� H H DH x‖F

≤
√

2n

k
· ‖H‖∞ · ‖H x‖2 · ‖H P�y‖2.

By definition of the Frobenius norm, together with the fact that the matrix elements
of H are bounded above by n−1/2 in absolute value, we obtain

μν(y) ≤ ‖y‖2
√

2/k. (3.7)

We use a concentration bound for vector-valued Rademacher sums (tail inequality
(1.9) in [16]) to notice that for any y and t > 0,

Pr
(|ν(y) − Mν(y)| > t

) ≤ 4 exp
( − Ct2/σ 2

ν(y)

)
, (3.8)

where Mν(y) is a median of ν(y) and, with A = √
n/k P�,

σν(y) = sup
‖β‖2

2+‖γ ‖2
2≤1

( n∑
j=1

∣∣ n∑
i=1

βi y∗ xi j + γi y∗ x j i
∣∣2

)1/2

≤ sup
‖β‖2,‖γ ‖2≤1

‖y∗ ADβ H DH x‖2 + ‖Dy∗ A H Dγ H x‖2

≤ sup
‖β‖2,‖γ ‖2≤1

‖β ′‖2,‖γ ′‖2≤1

y∗ ADβ H Dβ ′ H x + y∗ ADγ H Dγ ′ H x

≤ 2 sup
‖β‖2,‖γ ‖2≤1

y∗ ADβ H Dγ H x

≤ 2
√

n/k‖Dy∗ P� H H DH x‖ (3.9)

≤ 2‖y‖2 · ‖x‖1/
√

n ≤ 2
√

s/n. (3.10)

Upper bounding the expression (3.9) was done exactly as above when upper bounding
U . Using (3.7) and the second part of Lemma 1, we conclude that

Mν(y) ≤ μν(y) + Cσy ≤ ‖y‖2
√

2/k + C
√

s/n. (3.11)

We will now bound V .To that end, we use a general epsilon-net argument. Given a
subset T of a Euclidean space, we recall that a set N ⊂ T is called μ-separated if
‖y − y′‖2 > μ for all y, y′ ∈ N , y �= y′. It is called maximally μ-separated if no
additional vector can be added to N in a μ-separated position.

Lemma 3.2 Let γ : C
m �→ R

+ be a seminorm, and let N denote a maximal
μ-separated set of Euclidean unit vectors y ∈ C

m for some μ < 1. Let

S = sup
y∈N

γ (y) I = inf
y∈N

γ (y).
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Then

sup
‖y‖2=1

γ (y) ≤ 1

1 − μ
S (3.12)

inf‖y‖2=1
γ (y) ≥ I − μ

1 − μ
S. (3.13)

In particular, if κ := supy∈N |γ (y) − 1|, then

sup
‖y‖2=1

|γ (y) − 1| ≤ κ + μ

1 − μ
. (3.14)

The proof of the bound (3.12) is contained in [25] (Lemma 5.3). The proof of (3.13)
is similar and implicitly contained in [3] (inside the proof of Lemma 5.1).

We use the lemma by constructing a maximal η = 0.1-separated set N of S� :=
{y ∈ C

n : ‖y‖2 = 1, supp y ⊂ �}. Using a standard volumetric argument (see e.g.
[20, Proposition 10.1])

card N ≤ (1 + 2/η)2k = 212k . (3.15)

We also notice that ν(·) is a seminorm for any fixed ε, ε′. Using (3.12),

sup
y:y=P�y
‖y‖2=1

ν(y) ≤ 1

1 − 0.1
sup

y′∈N
ν(y′).

Taking expectations yields

E sup
y:y=P�y
‖y‖2=1

ν(y) ≤ 1.2E sup
y′∈N

ν(y′). (3.16)

The expectation on the right hand side can now be bounded, in light of (3.8) and
using Lemma 5.2 (with σ ′

i = 0), as follows:

E sup
y′∈N

ν(y′) ≤ sup
y

Mν(y) + sup
y

σν(y)

√
log card N . (3.17)

Together with (3.11), (3.15), and (3.10), this implies

E sup
y′∈N

ν(y′) ≤ C
(√

1/k + √
s/n +

√
s

n
k
)
. (3.18)

If we now assume that k ≤ 1
2

√
n
s , then we conclude from (3.16), (3.18) and (3.5) that

V = E sup
y:y=P�y
‖y‖=1

ν(y) ≤ C/
√

k and U ≤ 2/k.
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Plugging these upper bounds into (3.4) we conclude that for all 0 < t ≤ 1

Pr(|α(x) − Mα(x)| ≥ t) ≤ 2 exp
( − Ct2k

)

(because min{t2/V 2, t/U } = Ct2/V 2 for 0 < t ≤ 1 and for the derived values
of U, V ). But we also know, using Lemma 1, that |√Eα(x)2 − Mα(x)| ≤ C/

√
k.

Recalling that Eα(x)2 = 1 and combining, we conclude that for t ≤ 1,

Pr(|α(x) − 1| ≥ t) ≤ C exp
{ − Ct2k

}
. (3.19)

Now we fix a support set T ⊂ {1, . . . , N } of size s and consider the complex unit
sphere restricted to T , i.e., ST = {x ∈ C

n : ‖x‖2 = 1, supp x ∈ T }. Let NT be a
maximal η-separated set of ST , which has cardinality at most (1 + 2/η)2s by (3.15).
By a union bound, we have

Pr( max
x∈NT

|α(x) − 1| ≥ t) ≤ (1 + 2/η)2sCe−Ct2k

= C exp
( − Ct2k + 2s ln(1 + 2/η)

)
.

It follows from Lemma 3.2 that

Pr(max
x∈Us

|α(x) − 1| ≥ (t + η)/(1 − η))

= Pr
(

max
#T =s

max
x∈ST

|α(x) − 1| ≥ (t + η)/(1 − η)
)

≤
∑

#T =s

Pr
(

max
x∈NT

|α(x) − 1| ≥ t
) ≤

(
n
s

)
C exp

( − Ct2k + 2s ln(1 + 2/η)
)

≤ exp
( − Ct2k + 2s ln(1 + 2/η) + s ln(en/s)

)
.

Choosing η = min{t, 0.5) we conclude that maxx∈Us |α(x)−1| ≤ 4t with probability
at least 1 − ε if

k ≥ Ct2(s(ln(1 + 2/t) + ln(en/s))) + ln(Cε−1).

Replacing t by δ/4 and noting that (2.3) implies ln(1 + 8/δ) ≤ c ln(en/s) concludes
the proof.

4 The Regime s = O(
√

n/ log n)

We now use the idea developed in the previous section to bootstrap an efficient RIP-
optimal construction for a larger regime.

Let A be a fixed k × n matrix with pairwise orthogonal rows of Euclidean length√
n/k each. Namely,

AA∗ = n

k
Idk . (4.1)
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The strategy will be to improve the RIP parameter δs(A) of A by replacing A with
Ã = ADε H Dε′ H . To analyze the (random) RIP parameter δs( Ã), fix an s-sparse unit
vector x ∈ C

n . Now define the random variable

α(x) = ‖ Ãx‖2.

As before, we note that α(x) is the norm of a decoupled Rademacher chaos of degree
2 in a k-dimensional Hilbert space, which can be conveniently written as α(x) =
‖∑n

i=1
∑n

j=1 εiε
′
j xi j‖2, where

xi j = AH P{i} H P{ j} H x .

As in the previous discussion, we bound the invariants of interest U and V as defined
in (3.2) and (3.3), respectively. We start by bounding U . By definition,

U ≤ sup
y,α,β

‖y‖2,‖α‖2,‖β‖2≤1

y∗ ADα H Dβ H x . (4.2)

Notice now that since x is s-sparse by assumption, we have ‖x‖1 ≤ √
s and hence

‖H x‖∞ ≤ √
s/n so that

‖Dβ H x‖2 ≤ √
s/n and ‖Dβ H x‖1 ≤ 1.

The right hand side inequality is due to Cauchy–Schwarz. In turn, this implies

‖H Dβ H x‖∞ ≤ 1/
√

n and ‖H Dβ H x‖2 ≤ √
s/n.

Therefore,

‖Dα H Dβ H x‖2 ≤ 1/
√

n and ‖Dα H Dβ H x‖1 ≤ √
s/n. (4.3)

Again, the right hand side inequality is due to Cauchy–Schwarz. We need the following
simple lemma, see also [19, Lemma 3.1].

Lemma 4.1 Let w ∈ C
n be such that ‖w‖1 ≤ √

sρ and ‖w‖2 ≤ ρ for some integer
s and number ρ > 0. Then there exist N = �n/s� vectors w(1), . . . , w(N ) such that
w(i) is s-sparse for each i , w = ∑N

i=1 w(i) and
∑N

i=1 ‖w(i)‖2 ≤ 2ρ.

Proof Assume wlog that the coordinates w1, . . . , wn of w are sorted so that |w1| ≥
|w2| ≥ · · · ≥ |wn|. For i = 1, . . . , N , let

w(i) = ( 0, . . . , 0︸ ︷︷ ︸
(i−1)s times

, w(i−1)s+1, . . . , wis, 0, . . . , 0)∗ ∈ C
n

and αi = ‖w(i)‖∞ = |w(i−1)s+1|. Clearly w = ∑N
i=1 w(i), and we have:

∑
‖w(i)‖2 = ‖w(1)‖2 +

N∑
i=2

‖w(i)‖2 ≤ ρ +
N∑

i=2

αi
√

s. (4.4)
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But now notice that for all i = 1, . . . , N , ‖w(i)‖1 ≥ αi+1s (where we define
αN+1 = 0), hence we conclude, using the assumptions, that

N∑
i=2

αi s ≤
N∑

i=1

‖w(i)‖1 = ‖w‖1 ≤ √
sρ.

Therefore,
∑N

i=1 αi
√

s ≤ ρ. Together with (4.4), this implies the lemma. ��
Remark 4.2 Note that the technique of grouping together monotonically decreasing
coordinates of a vector in blocks is rather standard in compressive sensing, see for
example [6] or [14].

From (4.3) we conclude that Dα H Dβ H x can be decomposed as
∑N

i=1 w(i) as in
the lemma with ρ = n−1/2. For brevity, we will henceforth use δ to denote δs(A).
By definition, for each i = 1, . . . , N , ‖Aw(i)‖2 ≤ ‖w(i)‖2(1 + δ). By the lemma’s
premise, and using the triangle inequality, this implies

U ≤ 2(1 + δ)/
√

n. (4.5)

Bounding V is done as follows. We define the process ν as

ν(y) = (‖Byε‖2
2 + ‖B∗

y ε′‖2
2

)1/2
,

where (By)i j = y∗ xi j , over the set {y ∈ R
k : ‖y‖2 ≤ 1}, so that V = E supy ν(y).

For any y, ν(y) is a Rademacher sum in k-dimensional Hilbert space. Thus, we can
use (3.8) to conclude that for all y,

Pr
(
ν(y) > Mν(y) + t

) ≤ 4 exp(−t2/8σ 2
ν(y)),

where Mν(y) is a median of ν(y) and

σν(y) = sup
‖β‖2+‖γ ‖2≤1

( n∑
j=1

∣∣ n∑
i=1

βi y∗ xi j + γi y∗ x j i
∣∣2

)1/2

≤ sup
‖β‖2,‖γ ‖2≤1

‖y∗ ADβ H DH x‖2 + ‖Dy∗ A H Dγ H x‖2

≤ sup
‖β‖2,‖γ ‖2≤1

‖β ′‖2,‖γ ′‖2≤1

y∗ ADβ H Dβ ′ H x + y∗ ADγ H Dγ ′ H x

≤ 2 sup
‖β‖2,‖γ ‖2≤1

y∗ ADβ H Dγ H x (4.6)

≤ 4(1 + δ)/
√

n. (4.7)

For the last inequality, notice that (4.6) is bounded by twice the RHS of (4.2), and
recall the derivation of (4.5). Using the first part of Lemma 1, we conclude that for all
y such that ‖y‖ = 1,

Mν(y) ≤ μν(y) + C(1 + δ)/
√

n, (4.8)
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where μν(y) is the expectation of ν(y). Jensen’s inequality yields

μν(y) ≤ ‖DH∗ A∗ y H DH x‖F ≤ ‖H∗ A∗ y‖2 · ‖H x‖2/
√

n = ‖A∗ y‖2 · ‖x‖2/
√

n

≤ (
√

n/k)/
√

n = k−1/2.

Again we notice that for any fixed ε, ε′, ν is a seminorm. As before, let N denote
a maximal 0.1-separated set of Euclidean unit vectors in C

k . Hence by (3.12) in
Lemma 3.2, for any fixed ε, ε′,

sup
‖y‖2=1

ν(y) ≤ 1.2 sup
y∈N

ν(y).

Taking expectation on both sides and using Lemma 5.2 to bound the right hand side
(recalling that the cardinality of N is at most 212k), we conclude

V = E sup
‖y‖2=1

ν(y) ≤ sup
‖y‖2=1

Mν(y) + C
√

k sup
‖ν(y)‖2=1

σν(y).

By (4.7) and by our bound on Mν(y), we conclude

V ≤ k−1/2 + C(1 + δ)/
√

n + C
√

k(1 + δ)/
√

n

≤ (k−1/2 + (1 + δ)C
√

k/n). (4.9)

From (3.4), (4.5), (4.9) we then conclude that for all t > 0,

Pr(|α(x) − Mα(x)| ≥ t)

≤ 2 exp

(
− C min

{
t2

((1 + δ)
√

k/n + 1/
√

k)2
,

t
√

n

(1 + δ)

})
. (4.10)

Using the first part of Lemma 1 and recalling that Eα(x)2 = 1 this implies that

∣∣Mα(x) − 1
∣∣ ≤ C((1 + δ)

√
k/n + 1/

√
k), (4.11)

We now use the net-technique to pass to the supremum over all s-sparse unit
vectors to provide an estimate of the restricted isometry constant. For each subset
T ⊂ {1, . . . , n} of cardinality s we consider a maximal μ-separated net NT of the unit
sphere ST of complex unit length vectors with support T where μ = 1/k. By (3.15)
and since k <

√
n/s and s ≤ √

n, the union N = ⋃
#T =s NT is bounded in size by

#N ≤
(

N
s

)
(1 + 2/η)2s ≤ (en/s)s(1 + 2

√
n/s)2s ≤ exp(Cs log n). (4.12)
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Using Lemma 5.2, (4.10) and (4.11), we conclude that

E sup
x∈N

|α(x) − 1| ≤ C((1 + δ)
√

k/n + 1/
√

k) + C
√

s log n(1 + δ)
√

k/n

+ C(s log n)(1 + δ)/
√

n

≤ C

(
(1 + δ)

(√
sk log n

n
+ s log n√

n

)
+ k−1/2

)
. (4.13)

We will assume in what follows that

s log n ≤ k, (4.14)

so that (4.13) takes the simpler form

E sup
x∈N

|α(x) − 1| ≤ C

(
(1 + δ)

√
sk log n

n
+ k−1/2

)
. (4.15)

Recalling that α is a seminorm and applying (3.14) in Lemma 3.2 we pass to the
set of all s-sparse Euclidean unit normed vectors,

E sup
‖x‖2=1
‖x‖0≤s

|α(x) − 1| = E max#T =s supx∈ST
|α(x) − 1|

≤ C

(
(1 + δ)

√
sk log n

n + k−1/2
)

. (4.16)

4.1 A Bootstrapping Argument

Let δ′ denote δs( Ã). Assume henceforth that the parameters s, k satisfy

κ := C

√
sk log n

n
< 1/2. (4.17)

Clearly (4.15) is a bound on E[δ′]. With the new notation, we get

E[1 + δ′] ≤ (1 + δ)κ + 1 + Ck−1/2.

Denote Ã by A(1) and A by A(0). Now consider inductively repeating the above
process, obtaining (for i ≥ 2) A(i) from A(i−1) by

A(i) = A(i−1) Dε(i) H Dε′
(i)

H,

123



Discrete Comput Geom (2014) 52:780–798 795

where ε(i), ε
′
(i) are independent copies of ε, ε′. Let δ(i) denote δs(A(i)). By indepen-

dence and the principle of conditional expectation, we conclude that

E[1 + δ(i)] ≤ (1 + δ(0))κ i + 1 + Ck−1/2

(1 − κ)
≤ (1 + δ(0))κ i + 2(1 + Ck−1/2).

Assume in what follows that k is large enough so that Ck−1/2 ≤ 1. Then the last
inequality conveniently implies E[1+δ(i)] ≤ (1+δ(0))κ i +4. Recall by our definition
of A that δ = δ(0) can be no more than

√
n/k. Let r be taken as

r :=
⌈− log(2

√
n/k)

log κ

⌉
(4.18)

so that (1 + δ(0))κr ≤ (1 + √
n/k)κr ≤ 2

√
n/kκr ≤ 1 and hence

E[1 + δ(r)] ≤ 5.

Using Markov’s inequality, this implies that with probability at least, say, 0.995

1 + δ(r) ≤ 1000. (4.19)

From now on assume that the event (4.19) holds. Now for an s-sparse unit vector x , let
x (r+1) := A(r+1)x . The assumption k ≤ √

n is equivalent to 1/
√

k ≥ √
k/n. Using

this, and substituting a constant for (1 + δ), (4.10) implies

Pr(|‖x (r+1)‖2 − M‖x (r+1)‖2
| ≥ t)

≤ 2 exp
( − C min

( t2

(k−1/2)2 , t
√

n
))

. (4.20)

where M‖x (r+1)‖2
is a median of ‖x (r+1)‖2.

Once again we consider maximal μ-separated sets NT of ST with μ = 1/k for
each T ⊂ {1, . . . , N } of size s and form N = ⋃

#T =s NT . The cardinality of N is at
most exp{Cs log n}, see (4.12). We can now use a union bound over N , to conclude
that with probability at least 0.995,

max
x∈N

∣∣‖x (r+1)‖2 − M‖x (r+1)‖2

∣∣ ≤ C max

(√
s log n

k
,

s log n√
n

)
. (4.21)

Using (4.11), this implies

max
x∈N

∣∣‖x (r+1)‖2 − 1
∣∣ ≤ C

(
max

(√
sk log n

n
,

s log n√
n

)
+ k−1/2

)

≤ C

(√
sk log n

n
+ k−1/2

)
, (4.22)
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where the last inequality used (4.14). As before, using (3.14) in Lemma 3.2, allows us
to pass to the set of all s-sparse vectors:

sup
‖x‖=1

‖x‖0≤s

∣∣‖x (r+1)‖2 − 1
∣∣ ≤ C

(√
sk log n

n
+ k−1/2

)
. (4.23)

Recalling the assumption k ≤ √
n, this implies

δ(r+1) ≤ C

√
s log n

k

and the proof of Theorem 2.2 is concluded.
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Appendix: Properties of Mixed Gaussian and Exponential Processes

Let us collect some auxiliary results relating tails and expectations of certain random
variables, which are required in the proofs of our main results.

Lemma 5.1 Assume X is a random variable such that for some number M and for
all t ≥ 0,

Pr[|X − M | > t] ≤ C exp
{ − min{t2/σ 2

1 , t/σ2}
}
,

for some σ1, σ2 ≥ 0. Then

(1)
∣∣(EX2)1/2 − |M |∣∣ ≤ C ′′

√
σ 2

1 + σ 2
2

(2) |EX − M | ≤ C ′′∣∣σ1 + σ2t
∣∣

for some constant C ′′ that depends only on C.

Proof For the first part, assume that M ≥ 0 for the moment. By integrating and
changing variables,

E(X − M)2 =
∫ ∞

0
Pr[|X − M | ≥ √

t]dt

≤ C
∫ ∞

0
exp

{ − t/σ 2
1

}
dt + C

∫ ∞

0
exp

{ − √
t/σ2

}
dt

= Cσ 2
1

∫ ∞

0
e−sds + 2Cσ 2

2

∫ ∞

0
e−ssds

≤ (σ 2
1 + σ 2

2 )C ′ (5.1)
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for some constant C ′ > 0. On the other hand, with p2 = EX2 we have E(X −
M)2 = p2 + M2 − 2MEX and EX ≤ E|X | ≤ √

EX2 = p. We hence conclude that
(p − M)2 ≤ (σ 2

1 + σ 2
2 )C ′. If M < 0 then we simply replace the random variable X

with −X and M with −M .
The second part is obtained in the same way by integrating to bound E|X − M |. ��

Lemma 5.2 Assume that Xi , i = 1, . . . , N are random variables such that for each
i there exist numbers Mi and σi , σ

′
i ≥ 0 such that for all t ≥ 0,

Pr[|Xi − Mi | > t] ≤ 2 exp
{ − min{t2/σ 2

i , t/σ ′
i }

}
.

Then
E sup

i
|Xi − Mi | ≤ C

(√
log N sup

i
σi + log N sup

i
σ ′

i

)
. (5.2)

Note that the variables Xi are not required to be independent. The proof can be done
by integration by parts, very similar to the derivation of (3.6) in [16].
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