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Abstract Let Qn denote the n-dimensional hypercube with vertex set Vn = {0, 1}n .
A 0/1-polytope of Qn is the convex hull of a subset of Vn . This paper is concerned
with the enumeration of equivalence classes of full-dimensional 0/1-polytopes under
the symmetries of the hypercube. With the aid of a computer program, Aichholzer
obtained the number of equivalence classes of full-dimensional 0/1-polytopes of Q4
and Q5 with any given number of vertices and those of Q6 up to 12 vertices. Let
Fn(k) denote the number of equivalence classes of full-dimensional 0/1-polytopes of
Qn with k vertices. We present a method to compute Fn(k) for k > 2n−2. Let An(k)
denote the number of equivalence classes of 0/1-polytopes of Qn with k vertices, and
let Hn(k) denote the number of equivalence classes of 0/1-polytopes of Qn with k
vertices that are not full-dimensional. So we have An(k) = Fn(k)+ Hn(k). It is known
that An(k) can be computed by using the cycle index of the hyperoctahedral group. We
show that for k > 2n−2, Hn(k) can be determined by the number of equivalence classes
of 0/1-polytopes with k vertices that are contained in every hyperplane spanned by
a subset of Vn . We also find a way to compute Hn(k) when k is close to 2n−2. For
the case of Q6, we can compute F6(k) for k > 12. Together with the computation of
Aichholzer, we reach a complete solution to the enumeration of equivalence classes
of full-dimensional 0/1-polytopes of Q6.
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1 Introduction

Let Qn denote the n-dimensional hypercube with vertex set Vn = {0, 1}n . A 0/1-
polytope of Qn is defined to be the convex hull of a subset of Vn . The study of
0/1-polytopes has received much attention, see, for example [6,7,11–13,15,18,19].

In this paper, we are concerned with the problem of determining the number of
equivalence classes of n-dimensional 0/1-polytopes of Qn under the symmetries of
Qn , which has been considered as a difficult problem, see Ziegler [18]. It is also
listed by Zong [19, Problem 5.1] as one of the fundamental problems concerning
0/1-polytopes.

An n-dimensional 0/1-polytope of Qn is also called a full-dimensional 0/1-
polytope of Qn . Two 0/1-polytopes are said to be equivalent if one can be transformed
to the other by a symmetry of Qn . Such an equivalence relation is called the 0/1-
equivalence relation. For example, Fig. 1 gives the representatives of 0/1-equivalence
classes of Q2, among which (d) and (e) are full-dimensional.

As the first nontrivial case, full-dimensional 0/1-equivalence classes of Q4 were
counted by Below, see Ziegler [18]. With the aid of a computer program, Aichholzer
[1] completed the enumeration of full-dimensional 0/1-equivalence classes of Q5,
and those of Q6 up to 12 vertices, see also Aichholzer [3] and Ziegler [18]. The
5-dimensional hypercube Q5 has been considered as the last case that one can hope for
a complete solution to the enumeration of full-dimensional 0/1-equivalence classes.

Let Fn(k) denote the number of full-dimensional 0/1-equivalence classes of Qn .
The objective of this paper is to present a method to compute Fn(k) for k > 2n−2. We
also find a way to compute Fn(k) when k is close to 2n−2. Using our approach, we
can determine F6(k) for k > 12. Combining the computation of Aichholzer [1], we
reach a complete solution for the case of Q6.

To describe our approach, let An(k) denote the number of 0/1-equivalence classes
of Qn with k vertices, and let Hn(k) denote the number of 0/1-equivalence classes of
Qn with k vertices that are not full-dimensional. So we have

An(k) = Fn(k)+ Hn(k). (1.1)

It is clear that Fn(k) = 0 for 1 ≤ k ≤ n since any full-dimensional 0/1-polytope of
Qn has at least n + 1 vertices. As will be seen in Sect. 2, the values An(k) for any k

(a) (b) (c) (d) (e)

Fig. 1 Representatives of 0/1-equivalence classes of Q2
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can be computed from the cycle index of the hyperoctahedral group Bn . Hence Fn(k)
can be determined by Hn(k).

To compute Hn(k), we need a relation between the dimension of a 0/1-polytope
and the number of vertices. Let P be a 0/1-polytope of Qn , and let dim(P) denote
the dimension of P . It is known that P is affinely equivalent to a full-dimensional
0/1-polytope of Qd for some d ≤ n, see Ziegler [18]. Thus we have the following
consequence.

Theorem 1.1 Let P be a 0/1-polytope of Qn with more than 2m vertices, where
1 ≤ m < n. Then we have

dim(P) ≥ m + 1.

From Theorem 1.1, we see that if a 0/1-polytope P of Qn has more than 2n−1

vertices, then P has dimension n. Thus, for k > 2n−1, we have Fn(k) = An(k).
Based on Theorem 1.1, we show that the computation of Hn(k) for 2n−2 < k ≤

2n−1 can be carried out by determining the number of equivalence classes of 0/1-
polytopes with k vertices that are contained in every hyperplane spanned by vertices
of Qn . When 2n−2 < k ≤ 2n−1, we can apply Pólya’s theorem to count equivalence
classes of 0/1-polytopes with k vertices that are contained in a hyperplane spanned
by vertices of Qn . In particular, when n = 6, we obtain F6(k) for 16 < k ≤ 32.

We also find a way to compute Hn(k) when k is close to 2n−2. In particular, when
n = 6, we obtain F6(k) for 13 ≤ k ≤ 16.

This paper is organized as follows. In Sect. 2, we recall a method introduced by
Chen [9] to determine the cycle structure of a symmetry w in the hyperoctahedral
group Bn in terms of the number of vertices of Qn fixed by w. Sections 3–6 are
devoted to the computation of Hn(k) for 2n−2 < k ≤ 2n−1. In Sect. 7, we provide a
way to compute Hn(k) when k is close to 2n−2. This enables us to determine Hn(k)
for n = 6 and 13 ≤ k ≤ 16.

2 The Cycle Index of the Hyperoctahedral Group

The group of symmetries of Qn is known as the hyperoctahedral group Bn . In this
section, we give an overview of a method introduced by Chen [9] to compute the cycle
index of Bn , which will be used in the determination of the cycle index of the subgroup
consisting of symmetries that fix a hyperplane spanned by vertices of Qn .

We proceed with a brief review of the cycle index of a finite group acting on a
finite set, see, for example, Brualdi [8]. Let G be a finite group that acts on a finite
set X . Then each element g ∈ G induces a permutation on X . The cycle type of a
permutation is defined to be a multiset {1k1 , 2k2 , . . .}, where ki is the number of cycles
of length i that appear in the cycle decomposition of the permutation. For g ∈ G, let
c(g) denote the cycle type of the permutation on X induced by g. Let z = (z1, z2, . . .)

be a sequence of indeterminants, and let

zc(g) = zk1
1 zk2

2 · · · .
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The cycle index of G is defined as

ZG(z) = ZG(z1, z2, . . .) = 1

|G|
∑

g∈G

zc(g). (2.1)

Pólya’s enumeration theorem shows that the cycle index in (2.1) can be applied to
count nonisomorphic colorings of X by using a given number of colors. To be more
specific, let us color the elements of X by using m colors, say c1, c2, . . . , cm . Let
CG(u1, . . . , um) be the polynomial obtained from the cycle index ZG(z) by substi-
tuting zi with ui

1 + · · · + ui
m . Pólya’s enumeration theorem states that the number of

nonisomorphic colorings of X by using the m colors c1, . . . , cm such that ai elements
of X receive the color ci equals

[
ua1

1 · · · uam
m

]
CG(u1, . . . , um),

where
[
ua1

1 · · · uam
m

]
CG(u1, . . . , um) is the coefficient of ua1

1 · · · uam
m in

CG(u1, . . . , um).
For a coloring of Qn with two colors, say, black and white, the black vertices

can be considered as vertices of a 0/1-polytope of Qn . This establishes a one-to-one
correspondence between equivalence classes of colorings and 0/1-equivalence classes
of Qn . Let Zn(z) denote the cycle index of Bn acting on the vertex set Vn , and let
Cn(u1, u2) be the polynomial obtained from Zn(z) by substituting zi with ui

1 + ui
2.

By Pólya’s theorem, we have

An(k) = [
uk

1u2n−k
2

]
Cn(u1, u2). (2.2)

The computation of Zn(z) has been studied by Pólya [16] and Harrison and High
[14]. Explicit expressions of Zn(z) for n ≤ 6 are given by Aguila [5], which are listed
below.

Z1(z)= z1,

Z2(z)= 1

8

(
z4

1 + 2z2
1z2 + 3z2

2 + 2z4

)
,

Z3(z)= 1

48

(
z8

1 + 6z4
1z2

2 + 13z4
2 + 8z2

1z2
3 + 12z2

4 + 8z2z6

)
,

Z4(z)= 1

384

(
z16

1 + 12z8
1z4

2 + 12z4
1z6

2 + 51z8
2 + 48z2

8

+ 48z2
1z2z3

4 + 84z4
4 + 96z2

2z2
6 + 32z4

1z4
3

)
,

Z5(z)= 1

3840

⎛

⎜⎜⎝

z32
1 + 20z16

1 z8
2 + 60z8

1z12
2 + 231z16

2 + 80z8
1z8

3 + 240z4
1z2

2z6
4

+ 240z4
2z6

4 + 520z8
4 + 384z2

1z6
5 + 160z4

1z2
2z4

3z2
6 + 720z4

2z4
6

+ 480z4
8 + 384z2z3

10 + 320z2
4z2

12

⎞

⎟⎟⎠ ,
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Z6(z)= 1

46080

⎛

⎜⎜⎜⎜⎜⎝

z64
1 +30z32

1 z16
2 +180z16

1 z24
2 +120z8

1z28
2 +1053z32

2 +160z16
1 z16

3

+ 640z4
1z20

3 +720z8
1z4

2z12
4 +1440z4

1z6
2z12

4 +2160z8
2z12

4 +4920z16
4

+ 2304z4
1z12

5 +960z8
1z4

2z8
3z4

6+5280z8
2z8

6+3840z2
1z2z2

3z9
6+5760z8

8

+ 1920z2
2z10

6 + 6912z2
2z6

10 + 3840z4
4z4

12 + 3840z4z5
12

⎞

⎟⎟⎟⎟⎟⎠
.

For k > 2n−1, we have shown that Fn(k) = An(k). Thus, by (2.2) we obtain that
for k > 2n−1,

Fn(k) = [
uk

1u2n−k
2

]
Cn(u1, u2).

For n = 4, 5 and 6, the values of Fn(k) for k > 2n−1 are given in Tables 1, 2 and 3.

Table 1 F4(k) for k > 8

k 9 10 11 12 13 14 15 16

F4(k) 56 50 27 19 6 4 1 1

Table 2 F5(k) for k > 16

k 17 18 19 20 21 22 23 24

F5(k) 158658 133576 98804 65664 38073 19963 9013 3779

k 25 26 27 28 29 30 31 32

F5(k) 1326 472 131 47 29 5 1 1

Table 3 F6(k) for k > 32
k F6(k) k F6(k)

33 38580161986426 49 3492397119

34 35176482187398 50 1052201890

35 30151914536933 51 290751447

36 24289841497881 52 73500514

37 18382330104696 53 16938566

38 13061946976545 54 3561696

39 8708686182967 55 681474

40 5443544478011 56 120843

41 3186944273554 57 19735

42 1745593733454 58 3253

43 893346071377 59 497

44 426539774378 60 103

45 189678764492 61 16

46 78409442414 62 6

47 30064448972 63 1

48 10666911842 64 1
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We next recall the method of Chen [9] for computing the cycle index of Bn . A
symmetry of Qn can be represented as a signed permutation on {1, 2, . . . , n}, which
is a permutation on {1, 2, . . . , n} with a plus or a minus sign attached to each ele-
ment. Following the notation in Chen and Stanley [10] or Chen [9], we may write a
signed permutation as the form of the cycle decomposition and ignore the plus signs.
For example, (245)(3)(16) represents a signed permutation, where (245)(3)(16) is
its underlying permutation. The action of a signed permutation w ∈ Bn on the ver-
tices of Qn is defined as follows. For a vertex (x1, x2, . . . , xn) of Qn , we define
w(x1, x2, . . . , xn) to be the vertex (y1, y2, . . . , yn) of Qn as given by

yi =
{

xπ(i) if i is associated with a plus sign,
1 − xπ(i) if i is associated with a minus sign,

(2.3)

where π is the underlying permutation of w.
We end this section with the following formula of Chen [9], which will be used in

Sect. 5 to compute the cycle structure of a symmetry that fixes a hyperplane spanned
by vertices of Qn .

Let n be a positive integer, and let pn1
1 . . . pnr

r be the prime factorization of n. Let
μ(n) be the classical number-theoretic Möbius function, that is, μ(n) = (−1)r if
n1 = · · · = nr = 1, and μ(n) = 0 otherwise.

Theorem 2.1 Let G be a group that acts on a finite set X. For any g ∈ G, the number
of i-cycles of the permutation on X induced by g is given by

1

i

∑

j |i
μ(i/j)ψ(g j ),

where ψ(g j ) is the number of fixed points of g j acting on X.

3 Hn(k) for 2n−2 < k ≤ 2n−1

Recall that Hn(k) is the number of 0/1-equivalence classes of Qn with k vertices that
are not full-dimensional. In this section, we show that for 2n−2 < k ≤ 2n−1, the num-
ber Hn(k) is determined by the number of equivalence classes of 0/1-polytopes with
k vertices that are contained in every hyperplane spanned by vertices of Qn . For this
reason, it is necessary to consider all possible hyperplanes spanned by vertices of Qn .

A hyperplane spanned by vertices of Qn is also called a spanned hyperplane of Qn .
In other words, a spanned hyperplane of Qn is a hyperplane in R

n such that the affine
space spanned by the vertices of Qn contained in this hyperplane is of dimension n−1.
Let

H : a1x1 + a2x2 + · · · + an xn = b

be a spanned hyperplane of Qn , where a1, . . . , an and b are integers. For n ≤ 8, all
spanned hyperplanes of Qn have been found by Aichholzer and Aurenhammer [4].
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As will be seen, in order to compute Hn(k) for 2n−2 < k ≤ 2n−1, we need to
consider equivalence classes of spanned hyperplanes of Qn under the symmetries of
Qn . Note that the symmetries of Qn can be expressed by permuting the coordinates
and changing xi to 1 − xi for some indices i . Therefore, for each equivalence class of
spanned hyperplanes of Qn , we can choose a representative of the form

a1x1 + a2x2 + · · · + at xt = b, (3.1)

where t ≤ n and 0 < a1 ≤ a2 ≤ · · · ≤ at .
A complete list of spanned hyperplanes of Qn for n ≤ 6 can be found in Aichholzer

[2]. The following hyperplanes are representatives of equivalence classes of spanned
hyperplanes of Q4:

x1 = 0,

x1 + x2 = 1,

x1 + x2 + x3 = 1,

x1 + x2 + x3 + x4 = 1 or 2,

x1 + x2 + x3 + 2x4 = 2.

In addition to the above hyperplanes, which can also be viewed as spanned hyper-
planes of Q5, we have the following representatives of equivalence classes of spanned
hyperplanes of Q5:

x1 + x2 + x3 + x4 + x5 = 1 or 2,

x1 + x2 + x3 + x4 + 2x5 = 2 or 3,

x1 + x2 + x3 + 2x4 + 2x5 = 2 or 3,

x1 + x2 + 2x3 + 2x4 + 2x5 = 3 or 4,

x1 + x2 + x3 + x4 + 3x5 = 3,

x1 + x2 + x3 + 2x4 + 3x5 = 3,

x1 + x2 + 2x3 + 2x4 + 3x5 = 4.

When n = 6, for the purpose of computing F6(k) for 16 < k ≤ 32, we need the
representatives of equivalence classes of spanned hyperplanes of Q6 containing more
than 16 vertices. There are 6 such representatives:

x1 = 0,

x1 + x2 = 1,

x1 + x2 + x3 = 1,

x1 + x2 + x3 + x4 = 2,

x1 + x2 + x3 + x4 + x5 = 2,

x1 + x2 + x3 + x4 + x5 + x6 = 3.
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Note that two equivalent spanned hyperplanes of Qn contain the same number of
vertices of Qn because the symmetry of Qn preserves the number of vertices. So we
may say that an equivalence class of spanned hyperplanes of Qn contains k vertices, by
which we mean that every spanned hyperplane in this class contains k vertices of Qn .

To state the main result of this section, we need to define an equivalence relation on
0/1-polytopes contained in a set of points in R

n . Given a set S ⊂ R
n , consider the set of

0/1-polytopes of Qn that are contained in S. Restricting the 0/1-equivalence relation
to this set induces an equivalence relation. More precisely, two 0/1-polytopes in the
set of 0/1-polytopes of Qn contained in S are equivalent if one can be transformed
to the other by a symmetry of Qn . Such an equivalence class is called a partial 0/1-
equivalence class of S. Denote by P(S, k) the set of partial 0/1-equivalence classes
of S with k vertices. The cardinality of P(S, k) is denoted by NS(k).

Let h(n, k) denote the number of equivalence classes of spanned hyperplanes of Qn

that contain at least k vertices. Assume that H1, H1, . . . , Hh(n,k) are the representatives
of equivalence classes of spanned hyperplanes of Qn containing at least k vertices.
We use Hn(k) to denote the set of 0/1-equivalence classes of Qn with k vertices
that are not full-dimensional. We shall define a map, denoted �, from the (disjoint)
union of P(Hi , k), where 1 ≤ i ≤ h(n, k), to Hn(k). Given a partial 0/1-equivalence
class P ∈ P(Hi , k), we defineΦ(P) to be the unique 0/1-equivalence class in Hn(k)
containing P . Then we have the following theorem.

Theorem 3.1 For 2n−2 < k ≤ 2n−1, the map Φ is a bijection.

Proof We first show that Φ is injective. Let P1 and P2 be two distinct partial 0/1-
equivalence classes with k vertices, which are contained in the spanned hyperplanes
Hi and Hj of Qn , respectively. Let P1 be a 0/1-polytope in P1, and P2 be a 0/1-
polytope in P2. To prove that Φ is an injection, it suffices to show that P1 and P2 are
not equivalent. This is clear when i = j . We now consider the case i �= j . Suppose to
the contrary that P1 and P2 are equivalent. So there exists a symmetry w ∈ Bn such
that w(P1) = P2. Since 2n−2 < k ≤ 2n−1, by Theorem 1.1 we see that P1 and P2
are of dimension n − 1. For a spanned hyperplane H of Qn , we use w(H) to denote
the hyperplane obtained from H under the action of w. So we have w(Hi ) = Hj ,
contradicting the fact that the spanned hyperplanes Hi and Hj are not equivalent.
Consequently, the 0/1-polytopes P1 and P2 are not equivalent.

It remains to show thatΦ is surjective. For any C ∈ Hn(k), we aim to find a partial
0/1-equivalence class P such that Φ(P) = C. Let P be any 0/1-polytope in C. Since
P is not full-dimensional, there exists a spanned hyperplane H of Qn such that P
is contained in H . It follows that H contains at leat k vertices. Thus there exists a
representative Hj (1 ≤ j ≤ h(n, k)) such that H is in the equivalence class of Hj .
Assume thatw(H) = Hj for somew ∈ Bn . Sow(P) is contained in Hj . Let P be the
partial 0/1-equivalence class of Hj containing w(P). Clearly, we have Φ(P) = C.
This completes the proof. ��

It should also be noted that in the proof of Theorem 3.1, the condition 2n−2 < k ≤
2n−1 is required. When k ≤ 2n−2, the map Φ is not necessarily an injection while
is always a surjection. For a 0/1-polytope P with k ≤ 2n−2 vertices contained in a
spanned hyperplane of Qn , it is not always true that dim(P) = n − 1. So there may
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exist equivalent 0/1-polytopes P and P ′ with k vertices and nonequivalent spanned
hyperplanes H and H ′ such that P is contained in H and P ′ is contained in H ′. If this
is the case, then Φ maps these two partial 0/1-equivalence classes containing P and
P ′ to the same 0/1-equivalence class in Hn(k).

As a consequence of Theorem 3.1, we obtain the following formula.

Corollary 3.2 For 2n−2 < k ≤ 2n−1,

Hn(k) =
h(n,k)∑

i=1

NHi (k). (3.2)

By Corollary 3.2, the computation of Hn(k) for 2n−2 < k ≤ 2n−1 is carried
out by determining the number of partial 0/1-equivalence classes of every spanned
hyperplane of Qn . We shall explain how to compute the latter in the rest of this section.

For 2n−2 < k ≤ 2n−1, let H be a spanned hyperplane of Qn containing at least
k vertices. Let P and P ′ be two distinct 0/1-polytopes of Qn with k vertices that are
contained in H . Assume that P and P ′ belong to the same partial 0/1-equivalence
class of H . Then there exists a symmetry w ∈ Bn such that w(P) = P ′. By Theorem
1.1, both P and P ′ have dimension n − 1. Hence we have w(H) = H .

Let

F(H) = {w ∈ Bn |w(H) = H}

be the stabilizer subgroup of H , namely, the subgroup of Bn that fixes H . By the above
argument, we see that P and P ′ belong to the same partial 0/1-equivalence class of
H if and only if one can be transformed to the other by a symmetry in F(H). So,
for 2n−2 < k ≤ 2n−1, we can use Pólya’s theorem to compute the number NH (k) of
partial 0/1-equivalence classes of H with k vertices.

Denote by Vn(H) the set of vertices of Qn that are contained in H . Consider the
action of F(H) on Vn(H). Assume that each vertex in Vn(H) is assigned one of the
two colors, say, black and white. For such a coloring of the vertices in Vn(H), assume
that the black vertices are vertices of a 0/1-polytope contained in H . Clearly, for
2n−2 < k ≤ 2n−1, this leads to a one-to-one correspondence between partial 0/1-
equivalence classes of H with k vertices and equivalence classes of colorings of the
vertices in Vn(H) with k black vertices.

Write Z H (z) for the cycle index of F(H), and let CH (u1, u2) denote the polynomial
obtained from Z H (z) by substituting zi with ui

1 + ui
2.

Theorem 3.3 Assume that 2n−2 < k ≤ 2n−1, and let H be a spanned hyperplane of
Qn containing at least k vertices of Qn. Then we have

NH (k) = [
uk

1u|Vn(H)|−k
2

]
CH (u1, u2).

We shall compute the cycle index Z H (z) in Sects. 4 and 5. Section 4 is devoted to
a characterization of the stabilizer group F(H). In Sect. 5, we will give an explicit
expression for Z H (z).
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4 The Structure of the Stabilizer F(H)

In this section, we aim to characterize the stabilizer F(H) for a given spanned hyper-
plane H of Qn .

As mentioned in Sect. 3, for every equivalence class of spanned hyperplanes of Qn ,
we can choose a representative of the form

H : a1x1 + a2x2 + · · · + at xt = b, (4.1)

where the coefficients ai are positive integers with a1 ≤ a2 ≤ · · · ≤ at , and b is a
nonnegative integer.

From now on, we shall restrict our attention only to spanned hyperplanes of Qn

in the form of (4.1). We define the type of the spanned hyperplane H in (4.1) to be
a vector α = (α1, α2, . . . , α�), where αi is the multiplicity of i occurring in the set
{a1, a2, . . . , at }. For example, let

H : x1 + x2 + 2x3 + 2x4 + 3x5 = 4

be a spanned hyperplane of Q5. Then the type of H is α = (α1, α2, α3) = (2, 2, 1).
For positive integers i and j with i ≤ j , let [i, j] denote the interval {i, i+1, . . . , j}.

Let α = (α1, α2, . . . , α�) be the type of a spanned hyperplane. For i = 1, 2, . . . , �,
let Sαi be the group of permutations on the interval

[
α1 + · · · + αi−1 + 1, α1 + · · · + αi−1 + αi

]
, (4.2)

where we assume that α0 = 0. We define

Sα = Sα1 × Sα2 × · · · × Sα�, (4.3)

where × denotes the direct product of groups. We also define

Sα = Sα1 × Sα2 × · · · × Sα�, (4.4)

where Sαi is the set of signed permutations on the interval (4.2) for which every
element is associated with the minus sign.

Let

P(H) =
{

Sα if
∑t

i=1 ai �= 2b,
Sα ∪ Sα if

∑t
i=1 ai = 2b.

(4.5)

We have the following characterization of the stabilizer of a spanned hyperplane of
Qn .

Theorem 4.1 Let H : a1x1 + a2x2 + · · · + at xt = b be a spanned hyperplane of Qn.
Then

F(H) = P(H)× Bn,t ,

where Bn,t is the group of signed permutations on the interval [t + 1, n].
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To give a proof of Theorem 4.1, we need to describe the action of a symmetry of
Qn on a hyperplane in R

n . Let H : a1x1 + a2x2 + · · · + an xn = b be a hyperplane in
R

n , and w be a symmetry in Bn . Recall that w(H) is the hyperplane obtained from H
under the action of w. Let s(w) be the set of entries of w that are assigned the minus
sign. In view of (2.3), we see that w(H) is of the form

∑

i /∈s(w)

aπ(i)xi +
∑

j ∈s(w)

aπ( j)(1 − x j ) = b, (4.6)

where π is the underlying permutation of w. For 1 ≤ j ≤ n, let

s(w, j) =
{−1 if j ∈ s(w),

1 otherwise.

Then (4.6) can be rewritten as

s(w, 1) · aπ(1)x1 + s(w, 2) · aπ(2)x2 + · · · + s(w, n) · aπ(n)xn = b −
∑

j∈s(w)

aπ( j).

(4.7)

For example, let

H : x1 − x2 − x3 + 2x4 = 1

be a hyperplane in R
4, and let w = (1)(2̄3̄)(4) ∈ B4. Then w(H) is the following

hyperplane:

x1 + x2 + x3 + 2x4 = 3.

We are now in a position to prove Theorem 4.1.

Proof Assume that w ∈ F(H) and π is the underlying permutation of w. We aim to
show that w ∈ P(H)× Bn,t . Notice that w(H) can be expressed in the form of (4.7).
Since H = w(H), it follows that for 1 ≤ j ≤ t , s(w, j) are either all positive or all
negative. So we have the following two cases.
Case 1: s(w, j) is positive for 1 ≤ j ≤ t . In this case, it is clear that w(H) is of the
following form:

aπ(1)x1 + aπ(2)x2 + · · · + aπ(t)xt = b,

where aπ( j) = a j for 1 ≤ j ≤ t . So we deduce that, for any 1 ≤ j ≤ t , π( j) is in the
interval

[
α1 + · · · +αi−1 + 1, α1 + · · · +αi−1 +αi

]
that contains the element j . This

implies that w ∈ Sα × Bn,t .
Case 2: s(w, j) is negative for 1 ≤ j ≤ t . Then w(H) is of the following form:

−aπ(1)x1 − aπ(2)x2 − · · · − aπ(t)xt = b − (a1 + · · · + at ).
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Since w(H) = H , we have aπ( j) = a j for 1 ≤ j ≤ t and b − (a1 + · · · + at ) = −b.
This yields that w ∈ Sα × Bn,t .

Combining the above two cases, we deduce that w ∈ P(H) × Bn,t . It remains
to show that if w belongs to P(H) × Bn,t , then w fixes H . Write w = π σ , where
π ∈ P(H) and σ ∈ Bn,t . We have the following two cases.
Case 1: π ∈ Sα . By (4.7), the hyperplane w(H) is of the following form:

aπ(1)x1 + · · · + aπ(t)xt = b.

By the definition of Sα , we see that aπ(i) = ai for 1 ≤ i ≤ t . So we have w(H) = H .
Case 2: π ∈ Sα . Let π0 be the underlying permutation of π . By (4.7), the hyperplane
w(H) can be expressed as

−aπ0(1)x1 − · · · − aπ0(t)xt = b − (a1 + · · · + at ).

By the definition of Sα , we see that aπ0(i) = ai for 1 ≤ i ≤ t , which, together with
the following relation:

2b = a1 + · · · + at ,

implies that w(H) = H . This completes the proof. ��
We conclude this section with a sufficient condition to determine whether two

elements in the subgroup P(H) are in the same conjugacy class. Recall that for a
group G, two elements g1 and g2 are in the same conjugacy class of G if there exists
an element g ∈ G such that g1 = gg2g−1. This condition will be used in Sect. 5 for the
purpose of computing the cycle index of the stabilizer group of a spanned hyperplane
H .

Let H be a spanned hyperplane of Qn of type α = (α1, . . . , α�). Recall that each
element π in the subgroup P(H) is either in Sα or in Sα . Hence π can be expressed
as a product π = π1π2 · · ·π�, where, for 1 ≤ i ≤ �, πi belongs to Sαi if π ∈ Sα , and
πi belongs to Sαi if π ∈ Sα .

Theorem 4.2 Let π = π1π2 · · ·π� and π ′ = π ′
1π

′
2 · · ·π ′

� be two elements in P(H)
such that π and π ′ are both in Sα , or π and π ′ are both in Sα . If the underlying
permutations of πi and π ′

i have the same cycle type for any 1 ≤ i ≤ �, then π and π ′
are in the same conjugacy class of P(H).

Proof We first consider the case when both π and π ′ are in Sα . Since πi and π ′
i

are permutations of the same cycle type, they are in the same conjugacy class. So
there is a permutation wi ∈ Sαi such that πi = wiπ

′
iw

−1
i . It follows that π =

(w1π
′
1w

−1
1 ) · · · (w�π ′

�w
−1
� ) = wπ ′w−1, where w = w1 · · ·w� ∈ Sα . This shows that

π and π ′ are in the same conjugacy class.
It remains to consider the case when both π and π ′ are in Sα . Let π0 (resp., π ′

0)
be the underlying permutation of π (resp., π ′). Then there is a symmetry w ∈ Sα
such that π0 = wπ ′

0w
−1. We claim that π = wπ ′w−1. Indeed, it is enough to show
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that π(x1, x2, . . . , xt ) = wπ ′w−1(x1, x2, . . . , xt ) for any point (x1, x2, . . . , xt ) in
R

t . Assume that π(x1, x2, . . . , xt ) = (y1, y2, . . . , yt ) andwπ ′w−1(x1, x2, . . . , xt ) =
(z1, z2, . . . , zt ). Since every element of π is associated with the minus sign, by (2.3)
we find that yi = 1 − xπ0(i) for 1 ≤ i ≤ t . On the other hand, using (2.3), it is easy
to check that zi = 1 − xw−1π ′

0w(i)
for 1 ≤ i ≤ t . Since π0 = wπ ′

0w
−1, we deduce

that π0(i) = w−1π ′
0w(i). Therefore, we have yi = zi for 1 ≤ i ≤ t . So the claim is

justified. This completes the proof. ��

5 The Computation of ZH (z)

In this section, we obtain a formula for the cycle index Z H (z) of the stabilizer group
F(H) of a spanned hyperplane H of Qn .

Let

H : a1x1 + a2x2 + · · · + at xt = b (5.1)

be a spanned hyperplane of Qn . Recall that Vn(H) is the set of vertices of Qn contained
in H . To compute the cycle index Z H (z), we need to determine the cycle structures of
permutations on Vn(H) induced by the symmetries in F(H). By Theorem 4.1, each
symmetry in F(H) can be written uniquely as a product πw, where π ∈ P(H) and
w ∈ Bn,t . We shall define two group actions for the subgroups P(H) and Bn,t , and
we derive an expression for the cycle type of the permutation on Vn(H) induced by
πw in terms of the cycle types of the permutations induced by π and w.

Let H be a spanned hyperplane of Qn as given in (5.1). To define the action of
P(H), we should consider H as a hyperplane in R

t . Clearly, if H is regarded as a
hyperplane in R

t , it is a spanned hyperplane of Qt . Denote by Vt (H) the set of vertices
of Qt that are contained in H , namely,

Vt (H) = {(x1, x2, . . . , xt ) ∈ Vt | a1x1 + a2x2 + · · · + at xt = b}.

Since P(H) stabilizes the set Vt (H), we get an action of the group P(H) on Vt (H).
We also need to describe the action of a symmetry in the group Bn,t on the set of

vertices of Qn−t . Assume that w ∈ Bn,t , namely, w is a signed permutation on the
interval [t + 1, n]. Subtracting each element of w by t , we get a signed permutation
on [1, n − t]. In this way, each signed permutation in Bn,t corresponds to a symmetry
of Qn−t . Hence, Bn,t is isomorphic to the group Bn−t of symmetries of Qn−t . This
leads to an action on Vn−t .

Let πw be a symmetry in F(H), where π ∈ P(H) and w ∈ Bn,t . The following
lemma shows that the cycle type of the permutation on Vn(H) induced by πw is
determined by the cycle types of the permutations on Vt (H) and Vn−t induced by π
and w. For an element g in a group G acting on a finite set X , we use c(g) to denote
the cycle type of the permutation on X induced by g, which is written as a multiset
{1c1, 2c2 , . . .}.
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Lemma 5.1 Let H : a1x1 + a2x2 + · · · + at xt = b be a spanned hyperplane of Qn,
and πw be a symmetry in F(H), where π ∈ P(H) and w ∈ Bn,t . Assume that
c(π) = {1m1 , 2m2 , . . .} and c(w) = {1k1 , 2k2 , . . .}. Then we have

c(πw) =
⋃

i≥1

⋃

j≥1

{(
lcm(i, j)

) i jmi k j
lcm(i, j)

}
, (5.2)

where
⋃

denotes the disjoint union of multisets, and lcm(i, j) denotes the least com-
mon multiple of i and j .

Proof Clearly, each vertex in Vn(H) can be expressed as a vector of the following
form

(x1, . . . , xt , y1, . . . , yn−t ),

where (x1, . . . , xt ) is a vertex in Vt (H) and (y1, . . . , yn−t ) is a vertex of Qn−t . Assume
that |Vt (H)| = m. Let Vt (H) = {u1, u2, . . . , um} and Vn−t = {v1, v2, . . . , v2n−t }.
Then each vertex in Vn(H) can be expressed as an ordered pair (ui , v j ), where
1 ≤ i ≤ m and 1 ≤ j ≤ 2n−t .

Let Ci = (s1, . . . , si ) be an i-cycle of the permutation on Vt (H) induced by π , that
is, Ci maps the vertex usp to the vertex usp+1 for 1 ≤ p ≤ i − 1, and to the vertex us1

for p = i . Similarly, let C j = (t1, . . . , t j ) be a j-cycle of the permutation on Vn−t

induced by w, that is, C j maps the vertex vtq to the vertex vtq+1 for 1 ≤ q ≤ j − 1,
and to the vertex vt1 for q = j . Define Ci, j to be the permutation on the subset
{(usp , vtq ) | 1 ≤ p ≤ i, 1 ≤ q ≤ j} of Vn(H) such that

Ci, j (usp , vtq ) = (Ci (usp ),C j (vtq )).

It is easily seen that the induced permutation of πw on Vn(H) is the direct product
of Ci, j , where Ci (resp., C j ) runs over the cycles of the permutation on Vt (H) (resp.,
Vn−t ) induced by π (resp., w).

It can be verified that the cycle type of Ci, j is

{
(lcm(i, j))

i j
lcm(i, j)

}
.

Thus the cycle type of the induced permutation of πw on Vn(H) is given by (5.2).
This completes the proof. ��

For convenience, we introduce the following notation. Let π be a symmetry in
P(H). Assume that the cycle type of the permutation on Vt (H) induced by π is

c(π) = {1m1 , 2m2 , . . .}.

For j ≥ 1, we define

fπ, j (z) =
∏

i≥1

(zlcm(i, j))
i jmi

lcm(i, j) . (5.3)
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We have the following proposition.

Proposition 5.2 Let H be a spanned hyperplane of Qn of type α. Assume that π =
π1π2 · · ·π� and π ′ = π ′

1π
′
2 · · ·π ′

� are two symmetries in P(H) such that π and π ′
are both in Sα , or π and π ′ are both in Sα . If the underlying permutations of πi and
π ′

i have the same cycle type for 1 ≤ i ≤ �, then, for j ≥ 1,

fπ, j (z) = fπ ′, j (z). (5.4)

Proof It follows from Theorem 4.2 that π and π ′ are in the same conjugacy class
of P(H). Hence the permutations on Vt (H) induced by π and π ′ are in the same
conjugacy class, that is, c(π) = c(π ′). Since fπ, j (z) depends only on the cycle type
c(π), we deduce that fπ, j (z) = fπ ′, j (z). This completes the proof. ��

To compute the cycle index Z H (z), we recall some notation and terminology on
integer partitions. A partitionλ of a positive integer n, denotedλ � n, will be expressed
in the multiset form, that is,λ = {1m1 , 2m2 , . . .}, where mi is the number of occurrences
of i in λ. Denote by �(λ) the number of parts of λ, that is, �(λ) = m1 + m2 + · · · . For
a partition λ = {1m1 , 2m2 , . . .}, let

mλ = 1m1 m1!2m2 m2! · · · .

For two partitions λ and μ, define λ ∪ μ to be the partition obtained by putting the
parts of λ and μ together. For example, for λ = {1, 2} and μ = {12, 3}, we have
λ ∪ μ = {13, 2, 3}.

Let H be a spanned hyperplane of Qn of type α = (α1, α2, . . . , α�). For 1 ≤ i ≤ �,
let μi be a partition of αi , and let μ = μ1 ∪ · · · ∪ μ�. Assume that π = π1π2 · · ·π�
(resp., π ′ = π ′

1π
′
2 · · ·π ′

�) is a symmetry in Sα (resp., Sα) such that the underlying
permutation of πi (resp., π ′

i ) has cycle type μi for 1 ≤ i ≤ �. For j ≥ 1, define

gμ, j (z) = fπ, j (z)

and

gμ, j (z) = fπ ′, j (z).

By Proposition 5.2, the functions gμ, j (z) and gμ, j (z) are well defined.
Let

gμ(z) = (gμ,1(z), gμ,2(z), . . .)

and

gμ(z) = (gμ,1(z), gμ,2(z), . . .).

In the above notation, we obtain the following formula for the cycle index Z H (z).
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Theorem 5.3 Let H : a1x1 + a2x2 + · · · + at xt = b be a spanned hyperplane of Qn.
Assume that H is of type α = (α1, α2, . . . , α�). Then we have

Z H (z) = 1

2δ(H)
∑

(μ1,...,μ�)

�∏

i=1

m−1
μi

(
Zn−t (gμ(z))+ δ(H)Zn−t (gμ(z))

)
, (5.5)

where μi � αi , μ = μ1 ∪ · · · ∪ μ�, δ(H) = 1 if
∑t

i=1 ai = 2b and δ(H) = 0
otherwise.

Proof Let π ∈ P(H) and w ∈ Bn,t , and let

c(w) = {1k1 , 2k2 , . . .}

be the cycle type of the permutation on Vn−t induced by w. In view of Lemma 5.1,
we have

zc(πw) = fπ,1(z)
k1 fπ,2(z)

k2 · · · (5.6)

Summing over signed permutations w in Bn,t and using (2.1) and (5.6), we deduce
that

∑

πw

zc(πw) =
∑

w

fπ,1(z)
k1 fπ,2(z)

k2 · · ·

= (n − t)!2n−t Zn−t ( fπ,1(z), fπ,2(z), . . .)

= (n − t)!2n−t Zn−t ( fπ (z)),

where

fπ (z) = ( fπ,1(z), fπ,1(z), . . .).

Thus,

Z H (z) = 1

|F(H)|
∑

πw∈F(H)

zc(πw)

= 1

|F(H)|
∑

π∈P(H)

(n − t)!2n−t Zn−t ( fπ (z))

= (n − t)!2n−t

|F(H)|
( ∑

π∈Sα

Zn−t ( fπ (z))+ δ(H)
∑

π ′∈Sα

Zn−t ( fπ ′(z))

)
, (5.7)

where δ(H) = 1 if
∑t

i=1 ai = 2b and δ(H) = 0 otherwise.
For a partition λ � n, there are n!

mλ
permutations on {1, 2, . . . , n} that are of type

λ, see, for example, Stanley [17, Proposition 1.3.2]. So the number of symmetries
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π = π1π2 . . . π� in Sα (or, Sα) such that for i = 1, 2, . . . , �, the underlying permuta-
tion of πi is of type μi equals

�∏

i=1

αi !
mμi

. (5.8)

Combining (5.7), (5.8) and Proposition 5.2, we obtain that

Z H (z) = (n − t)!2n−t

|F(H)|
∑

(μ1,...,μ�)

�∏

i=1

αi !
mμi

(
Zn−t (gμ(z))+ δ(H)Zn−t (gμ(z))

)
,

(5.9)

where μi � αi and μ = μ1 ∪ · · · ∪ μ�.
It is easily seen that

|F(H)| = (n − t)!2n−t+δ(H)
�∏

i=1

αi !. (5.10)

Substituting (5.10) into (5.9), we are led to (5.5). ��
By Theorem 5.3, to compute the cycle index Z H (z), it suffices to determine the

cycle type c(π) of the permutation on Vt (H) induced by π ∈ P(H). Let c(π) =
{1m1 , 2m2 , . . .}. By Theorem 2.1, we have

mi = 1

i

∑

j |i
μ(i/j)ψ(π j ), (5.11)

where ψ(π j ) is the number of vertices in Vt (H) that are fixed by π j . The following
theorem gives a formula for ψ(π), leading to a formula for ψ(π j ) .

Theorem 5.4 Let H : a1x1 + a2x2 + · · · + at xt = b be a spanned hyperplane of
Qn. Assume that π = π1π2 · · ·π� is a symmetry in P(H) such that the underlying
permutation of πi is of type μi = {1mi1, 2mi2 , . . .} for i = 1, 2, . . . , �. Then

ψ(π) =
{[

xb
]∏�

i=1
∏

j≥1(1 + xi j )mi j if π ∈ Sα,
χ(μ)2�(μ) if π ∈ Sα,

(5.12)

where μ = μ1 ∪ · · · ∪ μ�, χ(μ) = 1 if μ has no odd parts and χ(μ) = 0 otherwise.

Proof We first consider the case when π is in Sα . Observe that, a vertex v =
(x1, x2, . . . , xt ) of Qt is both fixed by π and contained in Vt (H) if and only if

(1) For 1 ≤ i ≤ � and each k-cycle ( j1, j2, . . . , jk) of πi , we have

x j1 = x j2 = · · · = x jk .
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(2) a1x1 + a2x2 + · · · + at xt = b, or equivalently,

b1 + 2b2 + · · · + �b� = b,

where bi (1 ≤ i ≤ �) is the sum of the entries of v equal to 1.

It can be easily deduced that the number of vertices of Qt satisfying the above condi-
tions is given by

[
xb]

�∏

i=1

∏

j≥1

(
1 + xi j )mi j .

This proves (5.12) for the case when π ∈ Sα .
We now consider the case when π is in Sα . Notice that a vertex v = (x1, x2, . . . , xt )

of Qt is fixed by π if and only if, for any k-cycle ( j1, j2, . . . , jk) of π , we have

(x j1 , x j2 , . . . , x jk ) = (1 − x j2 , 1 − x j3 , . . . , 1 − x j1). (5.13)

Consequently, if a vertex v = (x1, x2, . . . , xt ) of Qt is fixed by π , then, for any k-
cycle ( j1, j2, . . . , jk) of π , the vector (x j1 , x j2 , . . . , x jk ) is either (0, 1, . . . , 0, 1) or
(1, 0, . . . , 1, 0). This implies that k is even. Thus π does not have any fixed points if
π contains an odd cycle.

We now assume that π has only even cycles. In this case, the number of vertices
of Qt fixed by π equals 2�(μ). To prove ψ(π) = 2�(μ), we need to demonstrate that
any vertex of Qt fixed by π is in Vt (H). Let v = (x1, x2, . . . , xt ) be a vertex of Qt

fixed by π . Since, for each cycle ( j1, j2, . . . , jk) of π , the vector (x j1 , x j2 , . . . , x jk ) is
either (0, 1, . . . , 0, 1) or (1, 0, . . . , 1, 0), we deduce that a1x1 +a2x2 +· · ·+at xt = b
by applying the relation a1 + · · · + at = 2b. Hence the vertex v is in Vt (H). This
completes the proof. ��

Based on Theorem 5.4, we can compute ψ(π j ) since the cycle structure of π j is
easily determined by the cycle structure of π . Let π = π1π2 . . . π� be a symmetry
in P(H) such that for 1 ≤ i ≤ �, the underlying permutation of πi is of type μi =
{1mi1, 2mi2 , . . .}. Clearly, we have π j = π

j
1 π

j
2 . . . π

j
� . Moreover, we see that π j

belongs to Sα if π is in Sα or π is in Sα and j is even, and π j belongs to Sα otherwise.
Let gcd(i, j) denote the greatest common divisor of i and j . Then the cycle type of
the underlying permutation of π j

i is given by

{
1mi1 , gcd(2, j)

2mi2
gcd(2, j) , gcd(3, j)

3mi3
gcd(3, j) , . . .

}
.

6 Fn(k) for n = 4, 5, 6 and 2n−2 < k ≤ 2n−1

This section is devoted to the computation of Fn(k) for n = 4, 5, 6 and 2n−2 < k ≤
2n−1. This requires the cycle index Z H (z) for every spanned hyperplane H of Qn for
n = 4, 5, 6 that contains more than 2n−2 vertices of Qn .
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Recall that h(n, k) denotes the number of equivalence classes of spanned hyper-
planes of Qn containing at least k vertices. Let H1, H2, . . . , Hh(n,k) be the representa-
tives of these equivalence classes. When 2n−2 < k ≤ 2n−1, combining relation (1.1),
Corollary 3.2 and Theorem 3.3, we deduce that

Fn(k) = An(k)− Hn(k)

= An(k)−
h(n,k)∑

i=1

NHi (k)

= An(k)−
h(n,k)∑

i=1

[
uk

1u|Vn(Hi )|−k
2

]
CHi (z1, z2). (6.1)

Using formula (6.1), we proceed to compute Fn(k) for n = 4, 5, 6 and 2n−2 < k ≤
2n−1. We start with the computation of F4(k) for 4 < k ≤ 8. For t ≤ n, we use Ht

n to
denote the following hyperplane in R

n

x1 + x2 + · · · + xt = �t/2 .

In this notation, representatives of equivalence classes of spanned hyperplanes of Q4
containing more than 4 vertices are as follows:

H1
4 : x1 = 0,

H2
4 : x1 + x2 = 1,

H3
4 : x1 + x2 + x3 = 1,

H4
4 : x1 + x2 + x3 + x4 = 2.

Employing the techniques in Sect. 5, we obtain the cycle indices Z H1
4
(z) and Z H2

4
(z)

as given below.

Z H1
4
(z) = Z3(z),

Z H2
4
(z) = 1

16

(
9z4

2 + 4z2
4 + 2z4

1z2
2 + z8

1

)
.

For the remaining two hyperplanes H = H3
4 and H4

4 , it is easily checked that
NH (k) = 1 for k = 5, 6, and NH (k) = 0 for k = 7, 8. Thus, applying (6.1) we can
determine F4(k) for k = 5, 6, 7, 8. These values are given in Table 4, which agree
with the computation of Aichholzer [1].

Observing that F4(k) = 0 for k ≤ 4, thus we have completed the enumeration of
full-dimensional 0/1-equivalence classes of Q4.

We now compute F5(k) for 8 < k ≤ 16. Representatives of equivalence classes of
spanned hyperplanes of Q5 containing more than 8 vertices are H1

5 , H2
5 , H3

5 , H4
5 , H5

5 .
By utilizing the techniques in Sect. 5, we obtain that
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Table 4 F4(k) for k = 5, 6, 7, 8
H1

4 H2
4 H3

4 H4
4 F4(k)

5 3 5 1 1 17

6 3 5 1 1 40

7 1 1 54

8 1 1 72

Table 5 F5(k) for 8 < k ≤ 16
H1

5 H2
5 H3

5 H4
5 H5

5 F5(k)

9 56 159 9 7 1 8781

10 50 135 5 5 1 19767

11 27 68 1 1 37976

12 19 43 1 1 65600

13 6 12 98786

14 4 7 133565

15 1 1 158656

16 1 1 159110

Z H1
5
(z) = Z4(z),

Z H2
5
(z) = 1

96

(
z16

1 + 6z8
1z4

2 + 33z8
2 + 8z4

1z4
3 + 24z4

4 + 24z2
2z2

6

)
,

Z H3
5
(z) = 1

48

(
12z6

2 + 8z3
4 + 2z6

1z3
2 + z12

1 + 6z2
1z5

2 + 3z4
1z4

2 + 6z2
6 + 4z12 + 4z2

3z6

+ 2z4
3

)
,

Z H4
5
(z) = 1

96

(
z12

1 + 27z6
2 + 9z4

1z4
2 + 8z4

3 + 24z2
6 + 18z2

2z2
4 + 6z4

1z2
4 + 3z8

1z2
2

)
,

Z H5
5
(z) = 1

120

(
24z2

5 + 30z2z2
4 + 20z1z3z6 + 20z1z3

3 + 15z2
1z4

2 + 10z4
1z3

2 + z10
1

)
.

Consequently, the values F5(k) for 8 < k ≤ 16 can be derived from (6.1), and they
agree with the computation of Aichholzer [1], see Table 5.

The main objective of this section is to compute F6(k) for 16 < k ≤ 32. As men-
tioned in Sect. 4, there are 6 representatives of equivalence classes of spanned hyper-
planes of Q6 containing more than 16 vertices, namely, H1

6 , H2
6 , H3

6 , H4
6 , H5

6 , H6
6 .

Again, by applying the techniques in Sect. 5, we obtain that

Z H1
6
(z) = Z5(z),

Z H2
6
(z) = 1

768

(
z32

1 + 12z16
1 z8

2 + 12z8
1z12

2 + 127z16
2 + 32z8

1z8
3

+ 48z4
1z2

2z6
4 + 168z8

4 + 224z4
2z4

6 + 96z4
8 + 48z4

2z6
4

)
,

Z H3
6
(z) = 1

288

(
z24

1 + 6z12
1 z6

2 + 52z12
2 + 18z8

3 + 48z6
4 + 32z3

2z3
6 + 3z8

1z8
2

+ 18z4
1z10

2 + 24z2
1z2

3z2
2z2

6 + 8z6
1z6

3 + 12z4
3z2

6 + 42z4
6 + 24z2

12

)
,
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Table 6 F6(k) for 16 < k ≤ 32

H1
6 H2

6 H3
6 H4

6 H5
6 H6

6 F6(k)

17 158658 767103 1464 1334 12 5 30063520396

18 133576 642880 657 630 5 3 78408664654

19 98804 474635 220 216 1 1 189678190615

20 65664 312295 81 86 1 1 426539396250

21 38073 179829 19 20 893345853436

22 19963 92309 7 8 1745593621167

23 9013 40948 1 1 3186944223591

24 3779 16335 1 1 5443544457875

25 1326 5500 8708686176141

26 472 1753 13061946974320

27 131 441 18382330104124

28 47 129 24289841497705

29 10 23 30151914536900

30 5 9 35176482187384

31 1 1 38580161986424

32 1 1 39785643746724

Z H4
6
(z) = 1

384

(
z24

1 + 81z12
2 + +2z12

1 z6
2 + 18z4

1z10
2 + 15z8

1z8
2 + 72z4

6 + 32z2
12

+ 64z6
4 + 16z4

3z2
6 + 8z8

3 + 54z4
2z4

4 + 12z4
1z2

2z4
4 + 6z8

1z4
4 + 3z16

1 z4
2

)
,

Z H5
6
(z) = 1

240

(
z20

1 + 24z2
10 + 60z2

2z4
4 + 26z10

2 + 20z2
1z2

3z2
6

+ 20z2
1z6

3 + 15z4
1z8

2 + 10z8
1z6

2 + 40z2z3
6 + 24z4

5

)
,

Z H6
6
(z) = 1

1440

(
z20

1 + 144z4
5 + 144z2

10 + 320z2z3
6 + 270z2

2z4
4 + 76z10

2

+ 90z4
1z4

4 + 30z8
1z6

2 + 45z4
1z8

2 + 240z2
1z2

3z2
6 + 80z2

1z6
3

)
.

Using (6.1), we can compute F6(k) for 16 < k ≤ 32. These values are listed in Table 6.

7 H6(k) for k = 13, 14, 15, 16

In this section, we compute H6(k) for k = 13, 14, 15, 16. Together with the com-
putation of Aichholzer for n = 6 and k ≤ 12, we complete the enumeration of
full-dimensional 0/1-equivalence classes of the 6-dimensional hypercube. In fact, we
can compute Hn(k) when n > 4 and k is close to 2n−2.

Let us recall the map Φ defined in Sect. 3. Let H1, H2, . . . , Hh(n,k) be the repre-
sentatives of equivalence classes of spanned hyperplanes of Qn containing at least
k vertices. As before, we use P(Hi , k) to denote the set of partial 0/1-equivalence
classes of Hi with k vertices, and use NHi (k) to denote the cardinality of P(Hi , k).
Let P be a partial 0/1-equivalence class in the (disjoint) union of P(Hi , k) where
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1 ≤ i ≤ h(n, k). Then Φ maps P to the unique 0/1-equivalence class in Hn(k) that
contains P .

When k ≤ 2n−2, it is possible that there exist equivalent 0/1-polytopes P and
P ′ that are contained respectively in Hi and Hj , where 1 ≤ i �= j ≤ hn,k . Let P
and P ′ be the partial 0/1-equivalence classes of Hi and Hj that contain P and P ′
respectively. Then we haveΦ(P) = Φ(P ′). SoΦ is not necessarily an injection when
k ≤ 2n−2. Note that when restricted to P(Hi , k), Φ is always an injection. Thus, in
order to compute Hn(k) for k ≤ 2n−2, we need to compute the number NHi (k) of
partial 0/1-equivalence classes of each spanned hyperplane Hi as well as the number
of partial 0/1-equivalence classes with k vertices that are contained in the intersection
of distinct spanned hyperplanes.

The objective of this section is to find a way to compute NHi (k) when k is close
to 2n−2. As will be seen, when 2n−3 < k ≤ 2n−2, to compute NHi (k) we need to
consider all possible symmetries w ∈ Bn such that the intersections of Hi and w(Hi )

contain at least k vertices. To be more specific, we need to determine the number of
partial 0/1-equivalence classes with k vertices that are contained in the intersection
Hi ∩ w(Hi ). Moreover, when k is close to 2n−2, there are only a few symmetries
w such that the intersection Hi ∩ w(Hi ) contains at least k vertices. This makes it
possible to compute NHi (k) when k is close to 2n−2.

When k is close to 2n−2, the same technique can be applied to determine the number
of partial 0/1-equivalence classes with k vertices that are contained in the intersection
of distinct spanned hyperplanes.

Notice that

Hn(k) = A1 ∪ A2 ∪ · · · ∪ Ah(n,k),

where

Ai = Φ(P(Hi , k)).

By the principle of inclusion–exclusion, we have the following expression for Hn(k).

Lemma 7.1 Let H be a spanned hyperplane of Qn. Then we have

Hn(k) =
∑

1≤i≤h(n,k)

|Ai | −
∑

1≤i1<i2≤h(n,k)

|Ai1 ∩ Ai2 |

+
∑

1≤i1<i2<i3≤h(n,k)

|Ai1 ∩ Ai2 ∩ Ai3 | − · · · (7.1)

By Lemma 7.1, the computation of Hn(k) reduces to the evaluation of the cardi-
nalities of Ai1 ∩ Ai2 ∩ · · · ∩ Aim , where 1 ≤ i1 < · · · < im ≤ h(n, k). Since Φ is an
injection when restricted to P(Hi , k), we have |Ai | = NHi (k). Moreover, as will be
shown, when 2n−3 < k ≤ 2n−2 and m ≥ 2, the computation of |Ai1 ∩ Ai2 ∩· · ·∩ Aim |
can be transformed to the determination of partial 0/1-equivalence classes contained
in the intersection of distinct spanned hyperplanes.
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We now focus on the computation of NH (k), where H is a spanned hyperplane of
Qn and k is close to 2n−2. Let S ⊆ H be a subset of H . In Sect. 3, we have defined
the partial 0/1-equivalence relation on the set of 0/1-polytopes of Qn contained in
S. Here we need another equivalence relation on this set, that is, two 0/1-polytopes
are said to be equivalent if one can be transformed to the other by a symmetry in
the stabilizer F(H) of H . The associated equivalence classes are called local 0/1-
equivalence classes of S. Since F(H) is a subgroup of Bn , each local 0/1-equivalence
class of S is contained in a unique partial 0/1-equivalence class of S.

Denote by L(S, k) the set of local 0/1-equivalence classes of S with k vertices.
To compute NH (k) when k is close to 2n−2, we need to compute the cardinality of
L(H, k) and the cardinality of L(S, k), where S can be expressed as S = H ∩ w(H)
for a symmetry w in Bn satisfying certain conditions. The cardinality of L(H, k)
can be obtained from the cycle index Z H (z) of the stabilizer F(H). In the following
formula, CH (u1, u2) denotes the polynomial obtained from Z H (z) by substituting zi

with ui
1 + ui

2, as defined in Sect. 3.

Lemma 7.2 For any 1 ≤ k ≤ 2n−1, we have

|L(H, k)| = [
uk

1u|Vn(H)−k|
2

]
CH (u1, u2). (7.2)

In the remaining of this section, we assume that 2n−3 < k ≤ 2n−2. Keep in mind
that NH (k) is the cardinality of the set P(H, k) of partial 0/1-equivalence classes of
H . To compute |P(H, k)|, we shall define a subset L1(H, k) of L(H, k) and a subset
P1(H, k) of P(H, k), which satisfy the following relation:

|P(H, k)| = |L(H, k)| − |L1(H, k)| + |P1(H, k)|.

We first define the subset L1(H, k), which depends on a map � from the set of
local 0/1-equivalence classes of certain intersections H ∩w(H) to the set L(H, k). To
define �, let E(H, k) denote the set of affine subspaces H ∩ w(H), where w ranges
over symmetries in Bn such that

(1) H �= w(H), that is, the symmetry w of Qn does not fix H ;
(2) H ∩ w(H) contains at least k vertices of Qn .

Consider the equivalence classes of E(H, k) under the symmetries in F(H). This
means that two elements H ∩w(H) and H ∩w′(H) in E(H, k) are equivalent if there
exists a symmetry σ ∈ F(H) such that

H ∩ w(H) = σ(H ∩ w′(H)).

Denote by h1(H, k) the number of equivalence classes of E(H, k) under the symme-
tries in F(H). Let

E1(H, k) = {H ∩ wi (H) | 1 ≤ i ≤ h1(H, k)}

be the set of representatives of these equivalence classes of E(H, k).

123



Discrete Comput Geom (2014) 52:630–662 653

The map � is defined from the (disjoint) union of L(H ∩ wi (H), k), where 1 ≤
i ≤ h1(H, k), to L(H, k). Let L be a local 0/1-equivalence class in L(H ∩wi (H), k).
Define �(L) to be the unique local 0/1-equivalence class in L(H, k) containing L.
We have the following property.

Theorem 7.3 For n > 4 and 2n−3 < k ≤ 2n−2, the map � is an injection.

Proof Let L and L′ be two distinct local 0/1-equivalence classes with k ver-
tices. Assume that L is contained in L(H ∩ wi (H), k) and L′ is contained in
L(H ∩ w j (H), k)), where 1 ≤ i, j ≤ h1(H, k). To prove that � is an injection,
we need to show that �(L) �= �(L′). If i = j , from the definition of the local
0/1-equivalence relation, it is clear that �(L) �= �(L′).

We now consider the case i �= j . Let P and P ′ be two 0/1-polytopes contained
in L and L′, respectively. We claim that dim(P) = dim(P ′) = n − 2. We only give
a proof of the assertion that dim(P) = n − 2. The relation dim(P ′) = n − 2 can be
justified by the same argument.

Since P has more than 2n−3 vertices, it follows from Theorem 1.1 that dim(P) ≥
n − 2. On the other hand, since P is contained in the intersection H ∩wi (H), we see
that dim(P) ≤ n − 2. Hence we have dim(P) = n − 2.

Based on the above claim, it can be shown that �(L) �= �(L′). Suppose to
the contrary that �(L) = �(L′). Then there is a symmetry w ∈ F(H) such that
P = w(P ′). Since dim(P) = dim(P ′) = n − 2, we deduce that H ∩ wi (H) =
w(H ∩ w j (H)), which contradicts the fact that H ∩ wi (H) and H ∩ w j (H) are not
equivalent under the symmetries in F(H). This completes the proof. ��

We can now give the definition of the subset L1(H, k) of L(H, k). Notice that for
each 1 ≤ i ≤ h1(H, k),�(L(H ∩wi (H), k)) is a subset of L(H, k). By Theorem 7.3,
these subsets are disjoint. We define L1(H, k) to be the union of�(L(H ∩wi (H), k)),
where 1 ≤ i ≤ h1(H, k).

We proceed to define the subset P1(H, k) of P(H, k). Let L1(H, k) be the com-
plement of L1(H, k), that is,

L1(H, k) = L(H, k)\L1(H, k). (7.3)

In the above notation, for any local 0/1-equivalence class L ∈ L1(H, k) and any
0/1-polytope P ∈ L, if w ∈ Bn is a symmetry such that w(P) is contained in H ,
then w(H) = H . This yields that L is also a partial 0/1-equivalence class of H .
Consequently, when 2n−3 < k ≤ 2n−2, L1(H, k) is a subset of P(H, k). Define

P1(H, k) = P(H, k)\L1(H, k). (7.4)

From (7.3) and (7.4), we see that NH (k) can be expressed in terms of the cardinal-
ities of L(H, k), L1(H, k) and P1(H, k). More precisely,

NH (k) = |P(H, k)|
= |L1(H, k)| + |P1(H, k)|
= |L(H, k)| − |L1(H, k)| + |P1(H, k)|. (7.5)
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By Lemma 7.2, |L(H, k)| can be computed from the cycle index Z H (z). From
Theorem 7.3, |L1(H, k)| can be derived from the cardinalities of L(H ∩ w(H), k),
where H ∩ w(H) ∈ E1(H, k). To compute |P1(H, k)|, we need a map  defined as
follows.

Let h2(H, k) denote the number of equivalence classes of E(H, k) under the sym-
metries in Bn , and let

E2(H, k) = {H ∩ wi (H) | 1 ≤ i ≤ h2(H, k)}

be the set of representatives of these equivalence classes of E(H, k). We define a
map  from the (disjoint) union of P(H ∩ wi (H), k), where 1 ≤ i ≤ h2(H, k), to
P1(H, k). Let P be a partial 0/1-equivalence class in P(H ∩wi (H), k). Then  maps
P to the unique partial 0/1-equivalence class in P1(H, k) that contains P .

When 2n−3 < k ≤ 2n−2, it has been shown that each 0/1-polytope with k vertices
contained in the intersection H ∩wi (H) has dimension n − 2. This enables us to use
the same argument as in the proof Theorem 7.3 to reach the following assertion.

Theorem 7.4 For n > 4 and 2n−3 < k ≤ 2n−2, the map  is a bijection.

Combining Lemma 7.2, Theorem 7.3 and Theorem 7.4, formula (7.5) can be rewrit-
ten as

NH (k) = [
uk

1u|Vn(H)|−k
2

]
CH (u1, u2)−

∑

H∩w(H)∈E1(H,k)

|L(H ∩ w(H), k)|

+
∑

H∩w(H)∈E2(H,k)

|P(H ∩ w(H), k)|. (7.6)

So, to compute NH (k), it is enough to determine |L(H ∩ w(H), k)| and |P(H ∩
w(H), k)|. We can compute |L(H ∩ w(H), k)| and |P(H ∩ w(H), k)| by applying
Pólya’s theorem.

We first consider |L(H ∩ w(H), k)|. Let P and P ′ be any two 0/1-polytopes
belonging to the same local 0/1-equivalence class in L(H ∩ w(H), k). Then there
exists a symmetry σ in F(H) such that σ(P) = P ′. It is clear from Theorem 1.1 that
both P and P ′ have dimension n −2. So we deduce thatw′(H ∩w(H)) = H ∩w(H).

Let F1(H, w) be the subgroup of F(H) that stabilizes H ∩ w(H), that is,

F1(H, w) = {σ ∈ F(H) | σ (H ∩ w(H)) = H ∩ w(H)} .

Denote by Vn(H ∩w(H)) the set of vertices of Qn contained in H ∩w(H). Consider
the action of F1(H, w) on Vn(H ∩w(H)). Assume that each vertex in Vn(H ∩w(H)) is
assigned one of the two colors, say, black and white. Clearly, when 2n−3 < k ≤ 2n−2,
this leads to a one-to-one correspondence between local 0/1-equivalence classes in
L(H ∩w(H), k) and equivalence classes of colorings of the vertices in Vn(H ∩w(H))
with k black vertices.

Denote by Z(H,w)(z) the cycle index of F1 (H, w) acting on Vn(H ∩w(H)). Write
C(H,w)(u1, u2) for the polynomial obtained from Z(H,w)(z) by substituting zi with
ui

1 + ui
2. For 2n−3 < k ≤ 2n−2, we obtain that
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|L(H ∩ w(H), k)| = [
uk

1u|Vn(H∩w(H))|−k
2

]
C(H,w)(u1, u2). (7.7)

Similarly, we can use Pólya’s theorem to compute |P(H ∩w(H), k)|. Let F2 (H, w)
be the subgroup of Bn that stabilizes H ∩ w(H), that is,

F2 (H, w) = {
σ ∈ Bn | σ (H ∩ w(H)) = H ∩ w(H)}.

Denote by Z H∩w(H)(z) the cycle index of F2 (H, w) acting on Vn(H ∩w(H)). Write
CH∩w(H)(u1, u2) for the polynomial obtained from Z H∩w(H)(z) by substituting zi

with ui
1 + ui

2. For 2n−3 < k ≤ 2n−2, we have

|P(H ∩ w(H), k)| = [
uk

1u|Vn(H∩w(H))|−k
2

]
CH∩w(H)(u1, u2). (7.8)

Now, plugging (7.7) and (7.8) into (7.6), we arrive at the following formula for
NH (k).

Theorem 7.5 Assume that n > 4 and 2n−3 < k ≤ 2n−2. Let H be a spanned
hyperplane of Qn containing at least k vertices of Qn. Let q(w) = |Vn(H ∩w(H))|.
Then we have

NH (k) = [
uk

1u|Vn(H)|−k
2

]
CH (u1, u2)−

∑

H∩w(H)∈E1(H,k)

[
uk

1uq(w)−k
2

]
C(H,w)(u1, u2)

+
∑

H∩w(H)∈E2(H,k)

[
uk

1uq(w)−k
2

]
CH∩w(H)(u1, u2).

(7.9)

For n = 6 and k = 13, 14, 15, 16, we can use Theorem 7.5 to compute
NH (k), where H is a spanned hyperplane of Q6 containing more than 12 ver-
tices. By the computation of Aichholzer [2], in addition to the spanned hyper-
planes H1

6 , H2
6 , H3

6 , H4
6 , H5

6 , H6
6 , there are 8 representatives of equivalence classes

of spanned hyperplanes of Q6 containing more than 12 vertices, namely,

H1 : x1 + x2 + x3 + 2x4 = 2,

H2 : x1 + x2 + x3 + x4 = 1,

H3 : x1 + x2 + x3 + x4 + 2x5 = 3,

H4 : x1 + x2 + x3 + x4 + x5 + 2x6 = 3,

H5 : x1 + x2 + x3 + x4 + x5 + x6 = 2,

H6 : x1 + x2 + x3 + x4 + 2x5 = 2,

H7 : x1 + x2 + x3 + 2x4 + 2x5 = 3,

H8 : x1 + x2 + x3 + x4 + 2x5 + 2x6 = 4.

Using a Maple program, when k = 13, 14, 15, 16, it is routine to check that E(H, k) =
∅ for H = H3

6 , H4
6 , H5

6 , H6
6 and H = H1, H2, . . . , H8. Therefore, for these spanned

hyperplanes, by Theorem 7.5 we obtain that
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NH (k) = [
uk

1u|Vn(H)|−k
2

]
CH (u1, u2). (7.10)

The cycle indices Z H (z) for H = H3
6 , H4

6 , H5
6 , H6

6 are given in Sect. 6. Using the
techniques in Sect. 5, we can derive the cycle indices for H1, H2, . . . , H5, which are
given below.

Z H1(z) = 1

48

(
z16

1 + 4z12z4 + 4z2
3z6z2

1z2 + 2z4
3z4

1

+12z8
2 + 8z4

4 + 6z4
1z6

2 + 5z8
1z4

2 + 6z2
6z2

2

)
,

Z H2(z) = 1

192

(
z16

1 + 68z4
4 + 24z2

6z2
2 + 16z12z4 + 8z4

3z4
1

+ 39z8
2 + 12z4

1z6
2 + 8z8

1z4
2 + 16z2

3z6z2
1z2

)
,

Z H3(z) = 1

96

(
z16

1 + 24z2
6z2

2 + 8z4
3z4

1 + 33z8
2 + 6z8

1z4
2 + 24z4

4

)
,

Z H4(z) = 1

120

(
z15

1 +24z3
5+30z2z3

4z1+20z1z2
3z6z2+20z3

1z4
3+15z3

1z6
2+10z7

1z4
2

)
,

Z H5(z) = 1

720

(
z15

1 + 120z3z2
6 + 144z3

5 + 40z5
3 + 180z1z2z3

4

+ 40z3
1z4

3 + 60z3
1z6

2 + 15z7
1z4

2 + 120z1z2z2
3z6

)
.

For H = H6, H7, H8, we obtain that NH (13) = 2, NH (14) = 1, and NH (15) =
NH (16) = 0 without computing the cycle index Z H (z). For example, for H = H6,
since H6 contains 14 vertices of Q6, we have NH (14) = 1 and NH (15) = NH (16) =
0. On the other hand, there are 14 0/1-polytopes with 13 vertices contained in H6. It is
easy to check that these 14 0/1-polytopes form two partial 0/1-equivalence classes. So
we have NH (13) = 2. Similarly, we get NH (13) = 2, NH (14) = 1, and NH (15) =
NH (16) = 0 for H = H7, H8.

It remains to compute NH (k) for H = H1
6 , H2

6 and k = 13, 14, 15, 16. We first
consider H1

6 . Keep in mind that H1
6 is the spanned hyperplane x1 = 0. Thus, for H1

6 and
k = 13, 14, 15, 16, it is easily seen that the intersections H1

6 ∩w(H1
6 ) in E(H1

6 , k) form
only one equivalence class under the symmetries in F(H1

6 ) or Bn . A representative of
this equivalence class can be chosen as H1

6 ∩w(H1
6 ), where w = (1, 2)(3)(4)(5)(6).

So we have

E1(H
1
6 , k) = E2(H

1
6 , k) = {

(x1, x2, . . . , x6) ∈ R
6 | x1 = x2 = 0

}
.

Moreover, for k = 13, 14, 15, 16, it is easy to check that if two 0/1-polytopes in
H1

6 ∩ w(H1
6 ) with k vertices are equivalent under the symmetries in Bn , then they

are equivalent under the symmetries in F(H1
6 ). This implies that each local 0/1-

equivalence class of H1
6 ∩w(H1

6 ) is also a partial 0/1-equivalence class of H1
6 ∩w(H1

6 )

and vice versa. Hence we obtain

L(H1
6 ∩ w(H1

6 ), k) = P(H1
6 ∩ w(H1

6 ), k).

Therefore, for k = 13, 14, 15, 16, by formula (7.6) we have

NH1
6
(k) = [

uk
1u32−k

2

]
CH1

6
(u1, u2). (7.11)
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We now compute NH2
6
(k) for k = 13, 14, 15, 16. Recall that H2

6 is the spanned

hyperplane x1 + x2 = 1. It is not hard to check that the intersections H2
6 ∩ w(H2

6 )

in E(H2
6 , k) form two equivalence classes under the symmetries in F(H2

6 ) or Bn .
Moreover, each equivalence class in E(H2

6 , k) under the symmetries in F(H2
6 ) is

an equivalence class in E(H2
6 , k) under the symmetries in Bn and vice versa. The

representatives of these two equivalence classes can be chosen as H2
6 ∩ w1(H2

6 ) and
H2

6 ∩ w2(H2
6 ), where w1 = (1, 3, 2)(4)(5)(6) and w2 = (1, 3)(2, 4)(5)(6). Notice

that the intersections H2
6 ∩ w1(H2

6 ) and H2
6 ∩ w2(H2

6 ) are of the following form:

H2
6 ∩ w1(H

2
6 ) = {

(x1, x2, . . . , x6) ∈ R
6 | x1 + x2 = 1 and x2 + x3 = 1

}
,

H2
6 ∩ w2(H

2
6 ) = {

(x1, x2, . . . , x6) ∈ R
6 | x1 + x2 = 1 and x3 + x4 = 1

}
.

Since the set of vertices contained in H2
6 ∩ w1(H2

6 ) is

{(1, 0, 1, x4, x5, x6), (0, 1, 0, x4, x5, x6) | xi = 0 or 1 for i = 4, 5, 6},

it is easy to check that for k = 13, 14, 15, 16, if two 0/1-polytopes contained in
H2

6 ∩w1(H2
6 )with k vertices are equivalent under the symmetries in Bn , then they are

equivalent under the symmetries in F(H2
6 ). This means that each local 0/1-equivalence

class of H2
6 ∩w1(H2

6 ) is also a partial 0/1-equivalence class of H2
6 ∩w1(H2

6 ) and vice
versa. So, we have

L(H2
6 ∩ w1(H

2
6 ), k) = P(H2

6 ∩ w1(H
2
6 ), k).

Therefore, by formula (7.6) we obtain that for k = 13, 14, 15, 16,

NH2
6
(k) = [

uk
1u32−k

2

]
CH2

6
(u1, u2)+ |P(H2

6 ∩ w(H2
6 ), k)− |L(H2

6 ∩ w(H2
6 ), k),

(7.12)

where w = (1, 3)(2, 4)(5)(6).
Combining (7.10), (7.11) and (7.12) , for n = 6 and k = 13, 14, 15, 16, we obtain

that

h(6,k)∑

i=1

|Ai | =
6∑

i=1

[
uk

1u
|V6(Hi

6)|−k
2

]
CHi

6
(u1, u2)+

8∑

i=1

[
uk

1u|V6(Hi )|−k
2

]
CHi (u1, u2)

+ |P(H2
6 ∩ w(H2

6 ), k)− |L(H2
6 ∩ w(H2

6 ), k), (7.13)

where w = (1, 3)(2, 4)(5)(6).
By Lemma 7.1, to determine H6(k) for k = 13, 14, 15, 16, we still need to compute

|Ai1 ∩ Ai2 ∩ · · · ∩ Aim | for m ≥ 2. We first consider the case m = 2. The computation
of the general case can be carried out in the same way.

We now demonstrate how to compute |Ai ∩ A j | for 1 ≤ i < j ≤ h(n, k). Let
E(Hi , Hj , k) be the set of affine subspaces Hi ∩w(Hj ) that contain at least k vertices
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of Qn . Denote by h(Hi , Hj , k) the number of equivalence classes in E(Hi , Hj , k)
under the symmetries in Bn , and let

E1(Hi , Hj , k) = {
Hi ∩ wt (Hj ) | 1 ≤ t ≤ h(Hi , Hj , k)

}

be the set of representatives of equivalence classes in E(Hi , Hj , k).
We consider the union of the sets P(Hi ∩ wt (Hj ), k) of partial 0/1-equivalence

classes of Hi ∩wt (Hj ) with k vertices, where 1 ≤ t ≤ h(Hi , Hj , k), and we define a
map ϒ from this set of partial 0/1-equivalence classes to Ai ∩ A j . Let P be a partial
0/1-equivalence class in P(Hi ∩wt (Hj ), k). Then there is a unique 0/1-equivalence
class P ′ in Ai ∩ A j that contains P . Define ϒ(P) = P ′. We have the following
property. The proof is omitted since it is similar to that of Theorem 7.3.

Theorem 7.6 For n > 4 and 2n−3 < k ≤ 2n−2, the map ϒ is a bijection.

As a consequence of Theorem 7.6, for n > 4 and 2n−3 < k ≤ 2n−2, we have

|Ai ∩ A j | =
h(Hi ,Hj ,k)∑

t=1

|P(Hi ∩ wt (Hj ), k)|. (7.14)

The above approach can be used to determine |Ai1 ∩ Ai2 ∩ · · · ∩ Aim | for m ≥ 3.
Let

E(Hi1 , . . . , Him , k)

be the set of affine subspaces Hi1 ∩w2(Hi2)∩ · · · ∩wm(Him ), where w2, . . . , wm are
symmetries in Bn such that Hi1 ∩w2(Hi2)∩· · ·∩wm(Him ) contains at least k vertices
of Qn . Denote by E1(Hi1 , . . . , Him , k) the set of representatives of equivalence classes
of E(Hi1 , . . . , Him , k) under the symmetries in Bn .

Consider the union of the sets P(Hi1 ∩ w2(Hi2) ∩ · · · ∩ wm(Him ), k) of partial
0/1-equivalence classes, where

Hi1 ∩ w2(Hi2) ∩ · · · ∩ wm(Him ) ∈ E1(Hi1 , . . . , Him , k).

We define a map� from this set of partial 0/1-equivalence classes to Ai1 ∩ Ai2 ∩ · · ·∩
Aim . Let P be a partial 0/1-equivalence of Hi1 ∩ w2(Hi2) ∩ · · · ∩ wm(Him ). Then �
maps P to the unique 0/1-equivalence class in Ai1 ∩ Ai2 ∩ · · · ∩ Aim that contains
P . Using the same argument as in the proof of Theorem 7.3, we obtain the following
property.

Theorem 7.7 For n > 4 and 2n−3 < k ≤ 2n−2, the map � is a bijection.

As a consequence of Theorem 7.7, we see that for n > 4 and 2n−3 < k ≤ 2n−2,

|Ai1 ∩ Ai2 ∩ · · · ∩ Aim | =
∑

|P(Hi1 ∩ w2(Hi2) ∩ · · · ∩ wm(Him ), k)|, (7.15)
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where the sum ranges over the representatives Hi1 ∩ w2(Hi2) ∩ · · · ∩ wm(Him ) of
equivalence classes in E(Hi1 , . . . , Him , k).

The following theorem shows that for m ≥ 3, the set E(Hi1 , . . . , Him , k) is empty
under certain conditions. When n = 6 and k = 13, 14, 15, 16, this property allows
us to deduce that for any m ≥ 4 and any spanned hyperplanes Hi1 , . . . , Him , the set
E(Hi1 , . . . , Him , k) is empty.

Theorem 7.8 Let n > 4 and 2n−3 < k ≤ 2n−2. If there exist 1 ≤ p < q ≤ m such
that E(Hi p , Hiq , k) is empty, then E(Hi1 , . . . , Him , k) is empty.

Proof Assume that there exist 1 ≤ p < q ≤ m such that E(Hi p , Hiq , k) is empty.
Suppose to the contrary that E(Hi1 , . . . , Him , k) is nonempty. Let

S = Hi1 ∩ w2(Hi2) ∩ · · · ∩ wm(Him )

be an affine space belonging to E(Hi1 , . . . , Him , k). Let w1 be the identity element e
in Bn . We claim that

S = wp(Hi p ) ∩ wq(Hiq ). (7.16)

Clearly, S ⊆ wp(Hi p )∩wq(Hiq ). Since dim(wp(Hi p )∩wq(Hiq )) = n−2, to prove
(7.16), it suffices to show that dim(S) = n−2. Since S contains more than 2n−3 vertices
of Qn , by Theorem 1.1, we deduce that dim(S) ≥ n −2. But S ⊆ wp(Hi p )∩wq(Hiq ),
so we have dim(S) = n − 2. This proves the claim.

Let w = (wp)
−1. By (7.16), we see that w(S) is an affine space in E(Hi p , Hiq , k),

contradicting the assumption that E(Hi p , Hiq , k) is empty. This completes the
proof. ��

Using formulas (7.14) and (7.15), we can compute |Ai1 ∩ Ai2 ∩· · ·∩ Aim | for n = 6,
k = 13, 14, 15, 16 and m ≥ 2. We first consider the case when m = 2. Using a Maple
program, it can be checked that there are only four pairs for which E(Hi , Hj , k) is
nonempty. Recall that for t ≤ n, Ht

n denotes the hyperplane x1 + · · · + xt = �t/2 in
R

n .
Case 1: (H1

6 , H2
6 ). In this case, it can be easily checked that the affine subspaces in

E(H1
6 , H2

6 , k) form two equivalence classes under the symmetries in Bn . The repre-
sentatives can be chosen as H1

6 ∩ H2
6 and H1

6 ∩w(H2
6 ), wherew = (1, 3, 2)(4)(5)(6).

Notice that w(H2
6 ) is the hyperplane x2 + x3 = 1. So we have

E1(H
1
6 , H2

6 , k) = {
H1

6 ∩ H2
6 , H1

6 ∩ H3
6

}
. (7.17)

Case 2: (H1
6 , H3

6 ). In this case, the affine subspaces in E(H1
6 , H3

6 , k) form only one
equivalence class under the symmetries in Bn . The representative can be chosen as
H1

6 ∩ H3
6 , and hence

E1(H
1
6 , H3

6 , k) = {
H1

6 ∩ H3
6

}
. (7.18)
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Case 3: (H2
6 , H3

6 ). This case is similar to Case 2. We have

E1(H
2
6 , H3

6 , k) = {
H1

6 ∩ H3
6

}
. (7.19)

Case 4: (H2
6 , H4

6 ). In this case, it can be verified that

E1(H
2
6 , H4

6 , k) = {
H2

6 ∩ H4
6

}
. (7.20)

By (7.17)–(7.20), we obtain that for n = 6 and k = 13, 14, 15, 16,

∑

1≤i< j≤h(6,k)

|Ai ∩ A j | = |P(H1
6 ∩ H2

6 , k)| + 3|P(H1
6 ∩ H3

6 , k)| + |P(H2
6 ∩ H4

6 , k)|.
(7.21)

Finally, we compute |Ai1 ∩ Ai2 ∩ · · · ∩ Aim | for n = 6, k = 13, 14, 15, 16 and
m ≥ 3. We claim that E(Hi1 , . . . , Him , k) is empty for any m ≥ 4. If this is not the
case, then, by Theorem 7.8, for any 1 ≤ p < q ≤ m, E(Hi p , Hiq , k) is nonempty.
Since m ≥ 4, there are at least six pairs (Hi , Hj ) with 1 ≤ i < j ≤ h(6, k) for
which E(Hi , Hj , k) is nonempty. However, as shown before, there are only four pairs
(Hi , Hj ) with 1 ≤ i < j ≤ h(6, k) for which E(Hi , Hj , k) is nonempty, leading to a
contradiction. So the claim is proved.

When m = 3, it is easy to check that E(Hi1 , Hi2 , Hi3 , k) is nonempty if and only if

(Hi1 , Hi2 , Hi3) = (H1
6 , H2

6 , H3
6 ).

Moreover, we have
E1(H

1
6 , H2

6 , H3
6 , k) = {

H1
6 ∩ H3

6

}
.

Thus, for n = 6, k = 13, 14, 15, 16 and m ≥ 3, we have

∑

1≤i1<···<im≤h(6,k)

|Ai1 ∩ · · · ∩ Aim | =
{ |P(H1

6 ∩ H3
6 , k)| if m = 3,

0 if m > 3.
(7.22)

By Lemma 7.1 and formulas (7.13), (7.21) and (7.22), we deduce that for n = 6
and k = 13, 14, 15, 16,

H6(k) =
6∑

i=1

[
uk

1u
|V6(Hi

6)|−k
2

]
CHi

6
(u1, u2)+

8∑

i=1

[
uk

1u|V6(Hi )|−k
2

]
CHi (u1, u2)

+ |P(H2
6 ∩ w(H2

6 ), k)| − |P(H1
6 ∩ H2

6 , k)| − 2|P(H1
6 ∩ H3

6 , k)|
− |P(H2

6 ∩ H4
6 , k)| − |L(H2

6 ∩ w(H2
6 ), k)|, (7.23)

where w = (1, 3)(2, 4)(5)(6). Notice that for w = (1, 3)(2, 4)(5)(6),

H2
6 ∩ w(H2

6 )= H2
6 ∩ H4

6 ={
(x1, x2, . . . , x6) ∈ R

6 | x1+x2 =1 and x3+x4 =1
}
.
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Thus, (7.23) can be rewritten as

H6(k) =
6∑

i=1

[
uk

1u
|V6(Hi

6)|−k
2

]
CHi

6
(u1, u2)+

8∑

i=1

[
uk

1u|V6(Hi )|−k
2

]
CHi (u1, u2)

− |P(H1
6 ∩ H2

6 , k)| − 2|P(H1
6 ∩ H3

6 , k)| − |L(H2
6 ∩ w(H2

6 ), k)|, (7.24)

where w = (1, 3)(2, 4)(5)(6).
As for |P(H1

6 ∩ H2
6 , k)|, we notice that

H1
6 ∩ H2

6 = {(0, 1, x3, x4, x5, x6) | xi = 0 or 1 for i = 3, 4, 5, 6}.

Thus the vertices of Q6 contained in H1
6 ∩ H2

6 are in one-to-one correspondence
with the vertices of Q4. To be more specific, given a vertex (0, 1, x3, x4, x5, x6) of Q6
contained in H1

6 ∩ H2
6 , we get a vertex (x3, x4, x5, x6) of Q4 and vice versa. Moreover,

the partial 0/1-equivalence classes of H1
6 ∩ H2

6 are in one-to-one correspondence with
the 0/1-equivalence classes of Q4. Hence, for n = 6 and k = 13, 14, 15, 16, we have

|P(H1
6 ∩ H2

6 , k)| = [
uk

1u16−k
2

]
C4(u1, u2). (7.25)

We now compute |P(H1
6 ∩ H3

6 , k)|. Since

H1
6 ∩ H3

6 = {(0, x2, x3, x4, x5, x6) | x2 + x3 = 1},

we see that each vertex (0, x2, x3, x4, x5, x6) of Q6 contained in H1
6 ∩ H3

6 corresponds
to a vertex (x2, x3, x4, x5, x6) of Q5 contained in the spanned hyperplane H2

5 of Q5

and vice versa. Hence the partial 0/1-equivalence classes of H1
6 ∩ H3

6 are in one-to-one
correspondence with the partial 0/1-equivalence classes of the spanned hyperplane H2

5
of Q5. Therefore, for n = 6 and k = 13, 14, 15, 16, we have

|P(H1
6 ∩ H3

6 , k)| = [
uk

1u16−k
2

]
CH2

5
(u1, u2). (7.26)

Finally, we determine |L(H2
6 ∩ w(H2

6 ), k)| for w = (1, 3)(2, 4)(5)(6). By (7.7),
we see that |L(H2

6 ∩ w(H2
6 ), k)| can be obtained from the cycle index Z(H2

6 ,w)
(z).

Using the technique in Sect. 5, we obtain that

Z(H2
6 ,w)

(z) = 1

32

(
z16

1 + 21z8
2 + 8z4

4 + 2z8
1z4

2

)
.

Hence

|L(H2
6 ∩ H4

6 , k)| = [
uk

1u16−k
2

]
C(H2

6 ,w)
(u1, u2), (7.27)

where C(H2
6 ,w)

(u1, u2) is the polynomial obtained from Z(H2
6 ,w)

(z) by substituting zi

with ui
1 + ui

2.
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Table 7 F6(k) for k = 13, 14, 15, 16

k 13 14 15 16

F6(k) 290159817 1051410747 3491461629 10665920350

Using (7.24)–(7.27), we can compute H6(k) for k = 13, 14, 15, 16. Since F6(k) =
A6(k)− H6(k), we obtain F6(k) for k = 13, 14, 15, 16 as given in Table 7.
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