
Discrete Comput Geom (2014) 52:361–365
DOI 10.1007/s00454-014-9618-1

On the Maximum Number of Independent Elements
in Configurations of Points and Lines

Tomaž Pisanski · Thomas W. Tucker

Received: 10 June 2013 / Revised: 22 April 2014 / Accepted: 8 July 2014 /
Published online: 7 August 2014
© Springer Science+Business Media New York 2014

Abstract We show that the upper bound for the maximum number of independent
elements of a (vr ) configuration is given by �2v/(r + 1)� and that this bound is
attained for all integer values of r by geometric configurations of points and lines in
the Euclidean plane. This disproves a conjecture of Branko Grünbaum.
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1 Introduction

In his wonderful book Configurations of Points and Lines [4] Branko Grünbaum raises
a conjecture about the maximal size of independent sets of elements in configurations
of points and lines that is a motivation for this note. The question can be expressed
purely in terms of graph theory. In this note we give an answer first for graphs and
then translate it back to configurations.

A (combinatorial) configuration C of type (vr ), or a (vr ) configuration, is an inci-
dence structure with sets P and L of objects called points and lines respectively, such
that
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1. P ∩ L = ∅.
2. |P| = |L| = v.
3. each line is incident with r points,
4. each point is incident with r lines,
5. two distinct points are incident with at most one common line.

A geometric (vr ) configuration is a set of v points and v (straight) lines in the Euclidean
plane, such that precisely r of the lines pass through each of the points, and precisely
r of the points lie on each of the lines. It is clear that each geometric configuration
determines a combinatorial configuration, while the converse is not true [4].

Given a configuration C of type (vr ), its Levi graph L(C) , see [2] (also called the
incidence graph), is a r -regular bipartite graph with vertex parts P and L and edges
between p ∈ P and � ∈ L, whenever the point p lies on the line �. By condition 5 in
the definition for C, the girth of L(C) is at least 6. Conversely, each bipartite r -regular
graph with girth at least 6 determines a pair of mutually dual (vr ) (combinatorial)
configurations. We say that a configuration is connected whenever its Levi graph is
connected.

The members of P ∪ L are called elements of the configuration. Two elements are
said to be independent if they are two points not belonging to a common line, or two
lines not intersecting in a point, or a point and a line where the point does not lie
on the line. Independence of elements is an equivalence relation on P ∪ L. In this
note we are interested in the maximal size of an independent set of elements of a (vr )

configuration.
Let G be a graph and let the square of G, denoted G2, be the graph with vertex

set V (G) and an edge between u and w if their distance in G is d(u, w) ≤ 2, that
is there is a path of length at most 2 between u and w in G. If L = L(C) for a
configuration C, the edges of the graph L2 correspond to incidences of point on line,
two points on the same line, and two lines through the same point. Although the square
is a common graph-theoretic construction, in the context of configurations [5] we call
L2 the Grünbaum graph of C . In particular, two elements of the configuration C are
independent if and only if they are independent vertices in the graph L2. Recently
it has been shown that the Grünbaum graph uniquely determines a configuration of
points and lines [1,4,5].

Motivated by geometric reasons, Grünbaum defined a configuration C to be unsplit-
table if for any set S of independent elements of C the vertex-deleted subgraph L − S
of the corresponding Levi graph L = L(C) is connected.

We may generalize slightly the idea of unsplittable configurations and carry it over
to graphs. Define a connected graph G to be unsplittable if for any independent set S
from G2 the graph G − S remains connected.

2 An Upper Bound

Given a (vr ) configuration C, let M be the size of a maximal independent set of
elements of C. Grünbaum conjectured an upper bound of M ≤ �v/r�+ 1 (Conjecture
5.1.1, page 305 of [4]). In this section we establish instead that M ≤ 2v/(r + 1).
Furthermore for any integer r > 1, we construct a (vr ) configuration with v divisible
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by r + 1 such that M achieves the bound. We note that 2v/(r + 1) > v/r + 1 if
and only if v/(r + 1) > r/(r − 1). Since r/(r − 1) < 2, such a configuration is a
counterexample to Grünbaum’s conjecture as long as v 	= r + 1.

We first prove a general result for graphs:

Theorem 1 Let G be a regular graph on n vertices of valence r and let M be the size
of the largest independent set of G2. Then M ≤ �n/(r + 1)�.

Proof Each of the M independent vertices of G2 is incident with r vertices in G, in
total Mr distinct vertices that are also different from the original M vertices. Hence
M + r M ≤ n and the result follows readily. 
�

As a consequence we obtain the following upper bound for configurations.

Theorem 2 Let M be the size of an independent set of elements of a (vr ) configuration.
Then M ≤ �2v/(r + 1)�.

Proof Apply the previous Theorem to the Levi graph of the configuration with n = 2v.

�

For each r , we show that there is a geometric (vr ) configuration achieving the upper
bound of this theorem.

Theorem 3 For each integer r ≥ 3, there exists an integer v, divisible by r + 1, and
a connected geometric (vr ) configuration with M = 2v/(r + 1). In particular, this
configuration contradicts Grünbaum’s conjecture.

Proof Given an arbitrary geometric (Vr−1) configuration C in the plane with no pair
of parallel lines, make r copies of C stacked in the vertical direction. We note in
passing that any geometric configuration can be moved by a projective transformation
to a position so that it has no pair of parallel lines, and that for any r ≥ 3, there
exists such geometric (Vr−1) configuration for some V (alternatively, the construction
is by induction on r with the triangle serving as the initial case (V2).) Connect the
corresponding points in each copy by a new vertical line (introducing V vertical
lines this way). For each line direction in the original (Vr−1) configuration, add a
point at infinity (introducing V points in this way). The newly obtained structure
S is a (vr ) configuration with v = (r + 1)V . Note that S has 2v/(r + 1) = 2V
independent elements consisting of the V new lines and V new points at infinity.
Since S is projectively equivalent to a plane geometric configuration of points and
lines, this completes the construction. Since V > 1 and v = (r + 1)V , we have a
contradiction to Grünbaum’s conjecture.

This construction can be interpreted combinatorially beginning with a Levi graph
L of type (Vr−1). Take r copies of L to form a disconnected Levi graph H which
has type ((r V )r−1). If p is a point-vertex in G, call the corresponding H vertices
p1, . . . pr . Do the same for line vertices. Add r extra line-vertices and r extra point
vertices. Then add edges between p1, . . . pr and one of the extra line-vertices and
repeat for the other point vertices (with a different extra line-vertex). Repeat for line-
vertices joined to an extra point vertex. The result is a bipartite graph of type vr where
v = (r +1)V . The V extra point-vertices and V extra line-vertices are all independent,
so M ≥ 2V = 2v/(r + 1). 
�
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The configurations given by this construction are splittable, and we know of no
construction of unsplittable geometric configurations attaining the upper bound for
general r . However, we can give one for the case r = 3. The example is G = G(8, 3),
the Möbius–Kantor graph, or generalized Petersen graph, with vertices ui , wi for
0 ≤ i ≤ 7 and edges uiwi , ui ui+1, wiwi+3 for all i modulo 8. The graph G is
bipartite with girth at least 6, so it is the Levi graph of a configuration C, namely the
Möbius-Kantor configuration. It is easily checked that the largest independent set for
G2 (a set of vertices in G whose distances apart are at least 3), looks like u0, u4, w2, w6,
up to graph isomorphism. It is also easily checked that such a set does not separate
G2, so the configuration C is unsplittable. Since 4 = 2 · 8/(3 + 1), the upper bound is
achieved.

Given a (vr ) configuration achieving the upper bound, we can construct infinitely
many, for the same r , using covering graphs [3] (viewing connected, finite graphs G
and H as topological spaces, a covering map p : H → G is a local homeomorphism
onto G).

Theorem 4 Let G be a regular graph on n vertices of valence r such that r +1 divides
n and such that the upper bound for the size M of a maximal independent set in G2 is
attained: M = n/(r + 1). Let H be a covering graph over G. Then the maximal set
of independent vertices of H2 also attains the upper bound.

Proof Let p : H → G be the covering map and let S be a set of independent vertices in
G2 whose size M achieves the upper bound. We claim that p−1(S) is an independent
set in H2; it clearly attains the bound since H has the same valence as G and the
number of vertices in H is a multiple of n. Suppose that u, w ∈ p−1(S) are dependent
in H2 so they are joined by a path Q of length 1 or 2 in H . Then p(Q) has length 1 or
2. Since p(u), p(w) are in S and hence independent, it must be that p(u) = p(w). But
then p(Q) is a single edge e, as G does not have multiple edges. This is impossible
since p−1(e) consists of disjoint edges and cannot contain the path Q. 
�
Corollary 5 Given any r ≥ 3, there are infinitely many (vr ) combinatorial configu-
rations with 2v/(r + 1) independent elements.

Proof We take as G any Levi graph like that given in Theorem 3. Then any covering
graph H is bipartite with at least the same girth, so such a graph is a Levi graph for
some configuration. 
�

We do not know if there are, for each r ≥ 3, infinitely many geometric configura-
tions attaining the bound.

In general, configurations may be unbalanced, i.e. the corresponding Levi graph
may be only semi-regular. If we have v black vertices, each of valence r and b white
vertices, each of valence k, the corresponding incidence structure is called a (vr , bk)

configuration. In this context, we get the following upper bound.

Theorem 6 Let M be the size of an independent set of elements of a (vr , bk) config-
uration. Then M ≤ �(bk + vr − v − b)/(rk − 1)�.
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Proof Let M = p + q be the maximal number of independent elements, where
there are p points and q lines. Then pr + q ≤ b, qk + p ≤ v. Clearly, if we take
both equalities, the maximum for M will be achieved. Solving for p and q we get
M = (bk + vr − v − b)/(rk − 1) and the result follows. Note that in case b = v and
k = r we obtain the same result as Theorem 3. 
�

It would be interesting to find geometric realizations of the upper bound for non-
balanced configurations.
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