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Abstract We establish an isoperimetric inequality with constraint by n-dimensional
lattices. We prove that, among all sets which consist of lattice translations of a given
rectangular parallelepiped, a cube is the best shape to minimize the ratio involving its
perimeter and volume as long as the cube is realizable by the lattice. For its proof a solv-
ability of finite difference Poisson–Neumann problems is verified. Our approach to the
isoperimetric inequality is based on the technique used in a proof of the Aleksandrov–
Bakelman–Pucci maximum principle, which was originally proposed by Cabré (Butll
Soc Catalana Mat 15:7–27, 2000) to prove the classical isoperimetric inequality.
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1 Introduction

The classical isoperimetric inequality asserts that for any bounded E ⊂ Rn we
have
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Fig. 1 When Ω = {Pi }3
i=1 ⊂ hZ2, its closure and boundary are given as Ω = {Pi }3

i=1 ∪ {Si }7
i=1 and

∂Ω = {Si }7
i=1, respectively, as in the left figure. The right figure shows the definition of E[Ω]

|∂ E |n
|E |n−1

>=
|∂B1|n
|B1|n−1 , (1.1)

where |E | and |∂ E | denote, respectively, the volume of E and the perimeter of E , and
Br := {x ∈ Rn | |x | < r} is a ball. This inequality says that among all sets a ball is the
best shape to minimize the ratio given as the left-hand side of (1.1). Topics related to
the classical isoperimetric problem or arguments on its generalization can be found in
the book [5] and the survey paper [22]. See also the recent book [27] for connections
with Sobolev inequalities and optimal transport.

In this paper we are concerned with the case where E is a collection of rectangular
parallelepipeds with a common shape. To describe the situation more precisely we first
define a weighted lattice. For each i ∈ {1, . . . , n} we fix a positive constant hi > 0 as
a step size in the direction of xi . Then the resulting lattice is

hZn := (h1Z) × · · · × (hnZ) = {(h1x1, . . . , hn xn) ∈ Rn | (x1, . . . , xn) ∈ Zn}.

Consider a subset Ω ⊂ hZn . We define Ω , the closure of Ω , as

Ω := {x + σhi ei | x ∈ Ω, i ∈ {1, . . . , n}, σ ∈ {−1, 0, 1}},

where {ei }n
i=1 ⊂ Rn is the standard orthogonal basis of Rn , e.g., e1 = (1, 0, . . . , 0).

Note that Ω is not a closure in Rn . We also set ∂Ω := Ω \ Ω , the boundary of Ω .
(See the left of Fig. 1.)

Given a bounded Ω ⊂ hZn , we define the volume of Ω and the perimeter of Ω as,
respectively,

Vol(Ω) := hn × (#Ω), Per(Ω) := hn ×
( n∑

i=1

ωi

hi

)

with

ωi = ωi [Ω] =
∑

x∈Ω

#({x ± hi ei } ∩ ∂Ω),
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where hn := h1 × · · · × hn and # A stands for the number of elements of a set A. The
number ωi counts the edges that are parallel to the xi -direction and are connecting
points of Ω with points of ∂Ω . For example, when Ω ⊂ hZ2 is given as in Fig. 1, we
have ω1 = ω2 = 4. Our definitions of the volume and the perimeter are natural in that
if we let

E = E[Ω] :=
⋃

(x1,...,xn)∈Ω

[
x1 − h1

2
, x1 + h1

2

]
× · · · ×

[
xn − hn

2
, xn + hn

2

]
(1.2)

for a given Ω ⊂ hZn (see the right of Fig. 1), we then have Vol(Ω) = Ln(E),
the n-dimensional Lebesgue measure of E , and Per(Ω) = Hn−1(∂ E), the (n − 1)-
dimensional Hausdorff measure of ∂ E (the boundary of E in Rn). We say Ω ⊂ hZn

is connected if for all x, y ∈ Ω there exist m ∈ {1, 2, . . . } and z1, . . . , zm ∈ Ω such
that z1 ∈ {x}, zk+1 ∈ {zk} (k = 1, . . . , m − 1) and y ∈ {zm}.

We denote by Qr and Q̄r , respectively, the open and closed cube in Rn centered
at 0 with side-length 2r > 0, i.e., Qr := (−r, r)n ⊂ Rn and Q̄r := [−r, r ]n ⊂ Rn .
Let Q̄r (a) := a + Q̄r for a ∈ Rn . The volume and perimeter of Qr are, respectively,
|Qr | = (2r)n and |∂Qr | = 2n(2r)n−1. We are now in a position to state our main
result.

Theorem 1.1 (Discrete Isoperimetric Inequality) For any nonempty, bounded and
connected Ω ⊂ hZn we have

Per(Ω)n

Vol(Ω)n−1
>=

|∂Q1|n
|Q1|n−1 . (1.3)

Moreover, the equality in (1.3) holds if and only if E[Ω] is a cube, i.e., E[Ω] = Q̄r (a)

for some r > 0 and a ∈ Rn.

The isoperimetric constant for the cube is |∂Q1|n/|Q1|n−1 = (2n)n . Although
(1.3) can be regarded as a “continuous” isoperimetric inequality if we identify Ω with
E[Ω] in (1.2), we call (1.3) a “discrete” isoperimetric inequality since our approach
to Theorem 1.1 uses numerical techniques which study functions defined on the lattice
hZn . Note that our result is different from the classical one in that the minimizer of
the left-hand side of (1.3) is a cube. This is a consequence of the constraint by square
lattices; see Example 2.4. We also remark that the equality in (1.3) does not necessarily
hold; consider the two dimensional case where h1 = 1 and h2 = √

2.
Isoperimetric problems on discrete spaces are studied by many authors. The paper

[1] gives a survey, and in the recent book [13, Chapter 8] isoperimetric problems are
studied on graphs (networks). Various results including discrete Sobolev inequalities
on finite graphs are also found in [9]. Isoperimetric problems concerning lattices are
discussed in several previous works; however, their settings and problems are different
from ours. The authors of [2,15] study planar convex subsets and lattice points lying
in them. In [4] isoperimetric inequalities for lattice-periodic sets are derived. The
reader is also referred to its related work [3,14,24]. Properties of planar subsets with
constraint by a triangular lattice are discussed in [11].
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For the proof of our discrete isoperimetric inequality we employ the idea by Cabré.
As an application of the technique used in a proof of the Aleksandrov–Bakelman–Pucci
(ABP for short) maximum principle, Cabré pointed out in [8] (and the original paper
[7] in Catalan) that the ABP method gives a simple proof of the classical isoperimetric
inequality (1.1).

The ABP maximum principle ([12, Theorem 9.1], [6, Theorem 3.2]) is a pointwise
estimate for solutions of elliptic partial differential equations. In a typical case the
principle asserts that if u is a (sub)solution of the equation F(∇2u) = f (x) in E ⊂ Rn ,
where F is a possibly nonlinear elliptic operator and ∇2u denotes the Hessian of u,
then we have

max
E

u <= max
∂ E

u + C‖ f ‖Ln(�).

Here C > 0, ‖ f ‖Ln(�) = (
∫
�

| f (x)|ndx)1/n and � is an upper contact set of u which
is defined as the set of points in E where the graph of u has a tangent plane that lies
above u in E . Discrete versions of the ABP estimate are also established in a series
of studies by Kuo and Trudinger; see [16,21] for linear equations, [17] for nonlinear
operators, [18,20] for parabolic cases and [19,20] for general meshes.

Unfortunately, the result in [8] does not cover subsets having corners such as (1.2)
since domains E in [8] is assumed to be smooth in order to solve Neumann problems
on E . To be more precise, the author of [8] takes a function u which solves the
Poisson–Neumann problem

⎧
⎪⎨

⎪⎩

−�u = |∂ E |
|E | in E,

∂u

∂ν
= −1 on ∂ E,

(1.4)

and proves (1.1) by studying the n-dimensional Lebesgue measure of ∇u(�), the
image of the upper contact set of u under the gradient of u. Here ν is the outward unit
normal vector to ∂ E . In this paper we solve a finite difference version of (1.4) instead
of the continuous equation. Considering such discrete equations and their discrete
solutions enables us to deal with non-smooth domains.

Our proof is similar to that in [8] except that the minimizers are not balls but
cubes and that a superdifferential of u, which is the set of all slopes of hyperplanes
touching u from above, is used instead of the gradient of u ([16]). However, there
are some extra difficulties in our case. One is a solvability of the discrete Poisson–
Neumann problem. Such problems are discussed in the previous work [23,25,26,28],
but domains are restricted to rectangles [23,26,28] or their collections [25]. For the
proof of our discrete isoperimetric inequality, fortunately, it is enough to require u to
be a subsolution of the Poisson equation in (1.4) and to satisfy the Neumann condition
in (1.4) with some direction ν. For this reason we are able to construct such solutions
on general subsets of hZn . Another difficulty is to study a necessary and sufficient
condition which leads to the equality in (1.3). This is not discussed in [8].

This paper is organized as follows. In Sect. 2 we give a proof of the discrete
isoperimetric inequality. Since we use a discrete solution of the Poisson–Neumann
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problem in the proof, we show the existence of such solutions in Sect. 3. In Sect. 4
we present two results on maximum principles; one is an ABP maximum principle
shown by a similar method to the isoperimetric inequality, and the other is a strong
maximum principle which is used in Sect. 3.

2 A Proof of the Discrete Isoperimetric Inequality

Throughout this paper we always assume

Ω ⊂ hZn is nonempty, bounded and connected.

We first introduce a notion of superdifferentials and upper contact sets, and then study
their properties. Let u : Ω → R. We denote by ∂+u(z) a superdifferential of u on Ω

at z ∈ Ω , which is given as

∂+u(z) := {p ∈ Rn | u(x) <= 〈p, x − z〉 + u(z), ∀x ∈ Ω
}
,

where 〈·, ·〉 stands for the Euclidean inner product in Rn . It is easy to see that ∂+u(z)
is a closed set in Rn . We next define �[u], an upper contact set of u on Ω , as

�[u] :={z ∈ Ω | ∂+u(z) 
= ∅}

={z ∈ Ω | ∃p ∈ Rn such that u(x) <= 〈p, x − z〉 + u(z), ∀x ∈ Ω
}
.

For x ∈ Ω and i ∈ {1, . . . , n} we define discrete differential operators as follows:

δ+
i u(x) := u(x + hi ei ) − u(x)

hi
, δ−

i u(x) := −u(x − hi ei ) − u(x)

hi
,

δ2
i u(x) := δ+

i u(x) − δ−
i u(x)

hi
= u(x + hi ei ) + u(x − hi ei ) − 2u(x)

h2
i

,

�′u(x) :=
n∑

j=1

δ2
j u(x) =

n∑

j=1

u(x + h j e j ) + u(x − h j e j )

h2
j

−
⎛

⎝2
n∑

j=1

1

h2
j

⎞

⎠ u(x).

Lemma 2.1 Let u : Ω → R. For all z ∈ �[u] we have δ+
i u(z) <= δ−

i u(z) for every
i ∈ {1, . . . , n} and

∂+u(z) ⊂ [δ+
1 u(z), δ−

1 u(z)] × · · · × [δ+
n u(z), δ−

n u(z)]. (2.1)

Proof Let p = (p1, . . . , pn) ∈ ∂+u(z). From the definition of the superdifferential
it follows that u(x) <= 〈p, x − z〉 + u(z) for all x ∈ Ω . In particular, taking x =
z ± hi ei ∈ Ω , we have

u(z ± hi ei ) <= 〈p,±hi ei 〉 + u(z);
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that is,

u(z + hi ei ) − u(z)

hi
<= pi � −u(z − hi ei ) − u(z)

hi
.

This implies δ+
i u(z) <= δ−

i u(z) and (2.1). ��
Remark 2.2 Since δ+

i u(z) <= δ−
i u(z) at z ∈ �[u] by Lemma 2.1, we see that δ2

i u(z) <=
0 for all i ∈ {1, . . . , n}.

In the proof of the classical isoperimetric inequality proposed by Cabré [7,8],
solutions of the Poisson–Neumann problem (1.4) are studied, and actually the proof
still works for a subsolution u of (1.4), i.e., −�u <= |∂ E |/|E | in E and ∂u/∂ν = −1
on ∂ E . Similarly to this classical case, for the proof of Theorem 1.1 we consider the
discrete version of (1.4) on Ω , which is

− �u <=
Per(Ω)

Vol(Ω)
in Ω, (2.2)

∂u

∂ν
= −1 on ∂Ω. (2.3)

We denote the problem (2.2) with (2.3) by (DPN). The meaning of solutions of (DPN)
is given as follows. We say u : Ω → R is a discrete solution of (DPN) if

(a) −�′u(x) <= Per(Ω)/Vol(Ω) for all x ∈ Ω;
(b) For all x ∈ ∂Ω there exist some i ∈ {1, . . . , n} and σ ∈ {−1, 1} such that

x + σhi ei ∈ Ω and

u(x) − u(x + σhi ei )

hi
= −1.

The condition (b) requires that the outward normal derivative of u be −1 for some
direction ν = ±ei . This boundary condition is also explained by saying that δ+

i u(x) =
1 or δ−

i u(x) = −1 for all x ∈ ∂Ω . We will prove the existence of discrete solutions
of (DPN) in the next section (Proposition 3.2).

Proof of Theorem 1.1 1. Let u : Ω → R be a discrete solution of (DPN) and let �[u]
be the upper contact set of u on Ω .

We claim

Q1 ⊂
⋃

z∈�[u]
∂+u(z). (2.4)

Let p ∈ Q1. We take a maximum point x̂ ∈ Ω of u(x) − 〈p, x〉 over Ω . To show
(2.4) it is enough to prove that x̂ ∈ Ω since we then have x̂ ∈ �[u] and p ∈ ∂+u(x̂).
Suppose by contradiction that x̂ ∈ ∂Ω . Take any i ∈ {1, . . . , n} and σ ∈ {−1, 1} such
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that y := x̂ + σhi ei ∈ Ω . Since u(x) − 〈p, x〉 attains its maximum at x̂ and since p
lies in the open cube Q1, we compute

u(x̂) − u(y)

hi
>=

〈p, x̂〉 − 〈p, y〉
hi

= 〈p,−σhi ei 〉
hi

>= −|pi | > −1.

This implies that u does not satisfy the boundary condition (2.3) at x̂ ∈ ∂Ω , a contradic-
tion. Therefore (2.4) follows. We also remark that (2.4) guarantees �[u] is nonempty.

2. By (2.4) we see

|Q1| = Ln(Q1) <= Ln

⎛

⎝
⋃

z∈�[u]
∂+u(z)

⎞

⎠ <=
∑

z∈�[u]
Ln(∂+u(z)). (2.5)

Also, for each z ∈ �[u] Lemma 2.1 implies

Ln(∂+u(z)) <= Ln([δ+
1 u(z), δ−

1 u(z)] × · · · × [δ+
n u(z), δ−

n u(z)])
= (δ−

1 u(z) − δ+
1 u(z)) × · · · × (δ−

n u(z) − δ+
n u(z))

= hn(−δ2
1u(z)) × · · · × (−δ2

nu(z)). (2.6)

We next apply the arithmetic–geometric mean inequality to obtain

(−δ2
1u(z)) × · · · × (−δ2

nu(z)) <=
(

−δ2
1u(z) − · · · − δ2

nu(z)

n

)n

=
(−�′u(z)

n

)n

.

(2.7)

Consequently, combining (2.5)–(2.7) yields

|Q1| <=
∑

z∈�[u]
hn
(−�′u(z)

n

)n

<=
∑

z∈�[u]
hn Per(Ω)n

nnVol(Ω)n
<=

Per(Ω)n

nnVol(Ω)n−1 . (2.8)

Since n = |∂Q1|/|Q1|, it follows that

Per(Ω)n

Vol(Ω)n−1
>= nn|Q1| = |∂Q1|n

|Q1|n |Q1| = |∂Q1|n
|Q1|n−1 .

3. We next assume that the equality in (1.3) holds. In view of Step 2, we then have
�[u] = Ω by (2.8) and

Ln(Q1) = Ln
( ⋃

x∈Ω

∂+u(x)
)
, (2.9)

Ln(∂+u(x)) = Ln([δ+
1 u(x), δ−

1 u(x)] × · · · × [δ+
n u(x), δ−

n u(x)]) for all x ∈ Ω,

(2.10)
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δ2
1u(x) = · · · = δ2

nu(x) =: μ(x) (<= 0) for all x ∈ Ω (2.11)

by (2.5), (2.6) and (2.7), respectively. Here we have derived (2.11) from the equality
case of the arithmetic–geometric mean inequality. We claim

∂+u(x) = [δ+
1 u(x), δ−

1 u(x)] × · · · × [δ+
n u(x), δ−

n u(x)] for all x ∈ Ω. (2.12)

One inclusion is known by (2.1). Also, both the sets in (2.12) are closed and have the
same measure by (2.10). Thus they have to be the same set. For the same reason it
follows from (2.4) and (2.9) that

Q̄1 =
⋃

x∈Ω

∂+u(x). (2.13)

4. Let x, y ∈ Ω be such that y = x + hi ei for some i ∈ {1, . . . , n}. Then we show
μ(x) = μ(y) and

∂+u(y) = ∂+u(x) + hiμ0ei (2.14)

with μ0 := μ(x), where μ(·) is the function in (2.11). Without loss of generality we
may assume x = 0, y = h1e1 and u(x) = 0. We then notice that u(y) = h1δ

+
1 u(0). Fix

i ∈ {2, . . . , n} and set p± := δ+
1 u(0)e1 + δ±

i u(0)ei . Because of (2.12) we see that p±
belong to ∂+u(0). Since x = 0 ∈ �[u], we observe that u(z) <= 〈p±, z〉 for all z ∈ Ω .
In particular, letting z = h1e1 ± hi ei , we deduce u(z) <= h1δ

+
1 u(0) ± hiδ

±
i u(0) =

u(y) ± hiδ
±
i u(0), i.e., δ+

i u(y) <= δ+
i u(0) and δ−

i u(0) <= δ−
i u(y). Changing the role

of x and y we also have δ+
i u(y) >= δ+

i u(0) and δ−
i u(0) >= δ−

i u(y). Thus

δ+
i u(y) = δ+

i u(0) and δ−
i u(0) = δ−

i u(y) (2.15)

for all i ∈ {2, . . . , n}. By (2.11) these equalities imply μ(x) = μ(y), and then δ±
1 u(y)

are computed as

δ−
1 u(y)=δ+

1 u(x) = δ−
1 u(x) + h1μ0, δ+

1 u(y)=δ−
1 u(y)+h1μ0 = δ+

1 u(x) + h1μ0.

Namely, we have [δ−
1 u(y), δ+

1 u(y)] = [δ−
1 u(x), δ+

1 u(x)]+h1μ0, which together with
(2.15) shows (2.14).

5. By translation we may let 0 ∈ Ω . Set R := [−h1/2, h1/2]×· · ·×[−hn/2, hn/2]
and in view of (2.11) and (2.12) there exists z ∈ Rn such that ∂+u(0) = z + μR with
μ := μ(0). Since Ω is now connected, as a consequence of Step 4 we see μ(x) ≡ μ

and ∂+u(x) = ∂+u(0) + μx = z + μx + μR for all x ∈ Ω . Therefore (2.13) implies

Q̄1 =
⋃

x∈Ω

(z + μx + μR).
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Finally, from translation and rescaling it follows that

Q̄1/|μ|(−z/μ) =
⋃

x∈Ω

(x + R) = E[Ω],

which is the desired conclusion. ��

Remark 2.3 If a nonempty and bounded subset Ω ′ ⊂ hZn is not connected, then we
have the strict inequality

Per(Ω ′)n

Vol(Ω ′)n−1 >
|∂Q1|n
|Q1|n−1 . (2.16)

This is shown by docking one connected component with another one. To be more
precise, translating two connected components Ω1 and Ω2, we are able to construct one
connected set whose volume is equal to that of Ω1 ∪Ω2 and whose perimeter is strictly
less than that of Ω1 ∪Ω2. Iterating this procedure, we finally obtain a connected set Ω

such that Vol(Ω ′) = Vol(Ω) and Per(Ω ′) > Per(Ω). These relations and Theorem 1.1
imply (2.16).

Example 2.4 In the planar case (n = 2) it is easily seen that round-shaped subsets
are not optimal. Let h1 = h2 = 1 for simplicity, and consider Ω ⊂ Z2 which is
nonempty, bounded and connected. We choose R = {a, a + 1, . . . , a + M − 1} ×
{b, b+1, . . . , b+ N −1} ⊂ Z2 as the minimal rectangle such that Ω ⊂ R. Obviously,
Vol(Ω) < Vol(R) if Ω 
= R. We next consider their perimeters. Since Ω is connected,
for each x ∈ {a, a + 1, . . . , a + M − 1} there exist (x, y−), (x, y+) ∈ Ω such that
(x, y− − 1), (x, y+ + 1) 
∈ Ω . This implies ω1[Ω] >= 2M = ω1[R]. Similarly, we
obtain ω2[Ω] >= 2N = ω2[R], and therefore Per(Ω) >= Per(R). We thus conclude
that Per(Ω)2/Vol(Ω) > Per(R)2/Vol(R), i.e., Ω is not optimal. Moreover, we see
that, among all rectangles R = {a, a +1, . . . , a + M −1}×{b, b+1, . . . , b+ N −1},
a square is the best shape since

Per(R)2

Vol(R)
= {2(M + N )}2

M N
= 4

(
M

N
+ N

M
+ 2

)
>= 4(2 + 2) = 16

by the arithmetic–geometric mean inequality. Therefore, in the planar case Theo-
rem 1.1 is easily shown. However, the above argument is not valid for n >= 3 since the
inequalities ωi [Ω] >= ωi [R] do not necessarily hold.

On the contrary, if we define a volume and a perimeter of Ω as #Ω and #(∂Ω),
respectively, then it is easily seen that a cube is not an optimal shape. In the article [10]
the author asserts that if Ω has a minimal #∂Ω , then Ω is roughly diamond-shaped. In
the present paper, however, we do not discuss the problem concerning the functional
(#(∂Ω))n/(#Ω)n−1.
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Fig. 2 Ω = {Pi }3
i=1 and ∂Ω = {Si }7

i=1. We solve a system of linear equations for the right lattice, and
then define u(S1) := max{u(S1,1), u(S1,2)}

3 An Existence Result for the Poisson–Neumann Problem

We shall prove the solvability of (DPN), the Poisson equation with the Neumann
boundary condition which appeared in the proof of the discrete isoperimetric inequal-
ity. Before starting the proof, using a simple example, we explain how to construct the
solutions.

Example 3.1 Consider Ω ⊂ hZ2 which consists of three points P1, P2 and P3 in the
left lattice of Fig. 2. We also denote by S1, . . . , S7 all points on ∂Ω as in the same
figure. In order to determine values of u on Ω we solve a system of linear equations of
the matrix form L�a = �b which corresponds to the finite difference equation (DPN).
However, if we require u to satisfy the Neumann condition (2.3) at S1 toward both
adjacent points P1 and P3, the linear system may not be solvable since the number of
the unknowns is less than that of equations; in the present example there are 10 and 11,
respectively. Thus it might seem natural to remove one of the equations by imposing
the Neumann condition at S1 toward only one of the points P1 and P3. We are now
allowed to do this since such a solution is still a discrete solution of (DPN) according
to our definition. Then the number of equations decreases to 10, but, unfortunately, it
becomes difficult to study the linear system since the new matrix L is not symmetric.
In addition, we do not know a priori how to choose the adjacent point toward which
the Neumann condition is satisfied.

To avoid these situations we regard S1 as two different points S1,1 and S1,2 which
are connected to P1 and P3, respectively, and consider a modified system with new
unknowns u(S1,1) and u(S1,2) instead of u(S1); see the right lattice in Fig. 2. Then
the number of the unknowns in our example becomes 11. Thanks to this increase of
the unknowns, it turns out that the modified linear system admits at least one solu-
tion (u(P1), u(P2), u(P3), u(S1,1), u(S1,2), u(S2), . . . , u(S7)). (In the notation of the
proof below we write u(S1,1) = β(1, 1) and u(S1,2) = β(1, 2).) In the process of prov-
ing the solvability we find that the right-hand side of (2.2) should be Per(Ω)/Vol(Ω).
Also, for its proof we employ the strong maximum principle for the discrete Laplace
equation.

The remaining problem is how to define u(S1). We define u(S1) as the maxi-
mum of u(S1,1) and u(S1,2), so that, if u(S1,1) >= u(S1,2), we have −�′u(P3) <=
Per(Ω)/Vol(Ω) since u(S1) >= u(S1,2) and {u(S1) − u(P1)}/h2 = −1 since
u(S1) = u(S1,1). In this way we obtain a solution of (DPN).
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Discrete solutions of (DPN) are not unique as well as the continuous case since
adding a constant gives another solution. Accordingly, the resulting coefficient matrix
of a linear system which corresponds to (DPN) is not invertible even if the number
of unknown is increased. Thus an existence of discrete solutions is established by
determining the kernel of the matrix. It turns out that the kernel is a straight line which
is spanned by a vector (1, 1, . . . , 1).

Proposition 3.2 The problem (DPN) admits at least one discrete solution.

Proof 1. We first introduce notations. Let Ω = {P1, . . . , PM } and ∂Ω =
{S1, . . . , SN0}, where M := #Ω and N0 := #(∂Ω). For each i ∈ {1, . . . , M} we
define subsets M(i) ⊂ {1, . . . , M} and N (i) ⊂ {1, . . . , N0} so that {Pi } \ {Pi } =
{Pj } j∈M(i) ∪ {S j } j∈N (i). We also set si := #({Si } ∩ Ω) for i ∈ {1, . . . , N0}, which

stands for the number of points of Ω adjacent to Si , and N := ∑N0
j=1 s j . Next,

for i ∈ {1, . . . , N0} we define a map ni : {1, . . . , si } → {1, . . . , M} such that
ni (1) < ni (2) < · · · and {Si } ∩ Ω = {Pni ( j)}si

j=1. We denote by n−1
i the inverse map

of ni ; that is, Pj is the n−1
i ( j)-th point of (Pni (1), . . . , Pni (si )) if Pj ∈ {Si } ∩ Ω . (We

illustrate the definitions of the above notations by referring to Fig. 2. When Ω ⊂ hZ2 is
given as in Fig. 2, we have M = 3, N0 = 7,M(1) = {2},M(2) = {1, 3},M(3) = {2},
N (1) = {1, 2, 3}, N (2) = {4, 5}, N (3) = {1, 6, 7}, s1 = 2, s2 = · · · = s7 = 1,
N = 8, n1(1) = 1, n1(2) = 3, n2(1) = n3(1) = 1, n4(1) = n5(1) = 2,
n6(1) = n7(1) = 3.)

For x, y ∈ Ω such that y = x + σhi ei with σ = ±1 and i ∈ {1, . . . , n} we set
h(x, y) := hi . Obviously, we then have h(x, y) = h(y, x). We denote by E(i, j) the
(M + N )× (M + N ) matrix with 1 in the (i, j) entry and 0 elsewhere. Given a vector

�a = t (α(1), . . . , α(M), β(1, 1), . . . , β(1, s1), . . . , β(N0, 1), . . . , β(N0, sN0))

∈ RM+N ,

(3.1)

where t �v means the transpose of a vector �v, we define u = u[�a] : Ω → R as

u(x) :=
{

α(i) (x = Pi ∈ Ω, i ∈ {1, . . . , M}),
max{β(i, j) | 1 <= j <= si } (x = Si ∈ ∂Ω, i ∈ {1, . . . , N0}).

2. We consider the following system of linear equations

L�a = �b, (3.2)

where �a ∈ RM+N is the unknown vector and �b = (bk)
M+N
k=1 ∈ RM+N is given as

bk =

⎧
⎪⎪⎨

⎪⎪⎩

Per(Ω)

Vol(Ω)
(k = 1, . . . , M),

−1

h(S j , Pn j (i))
(k = M +∑ j−1

l=0 sl + i with j ∈ {1, . . . , N0}, i ∈ {1, . . . , s j }).
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Here s0 = 0. Also, the (M + N ) × (M + N ) matrix L is defined by

L :=
(

θ IM 0
0 0

)
−

M∑

i=1

⎧
⎨

⎩

∑

j∈M(i)

E(i, j)

h(Pi , Pj )2 +
∑

j∈N (i)

E
(
i, M +∑ j−1

l=0 sl + n−1
j (i)

)

h(Pi , S j )2

⎫
⎬

⎭

+
N0∑

j=1

s j∑

i=1

E
(

M+∑ j−1
l=0 sl +i, M+∑ j−1

l=0 sl + i
)
−E
(

M+∑ j−1
l=0 sl + i, n j (i)

)

h(S j , Pn j (i))
2 ,

where IM is the identity matrix of dimension M and θ := 2
∑n

i=1(1/h2
i ). (See

Example 3.4, where we will give a small sized matrix L along the example of
Fig. 2.) By definition L is symmetric. To check the symmetricity we first take
i ∈ {1, . . . , M} and j ∈ M(i). Then the (i, j) entry of L is −1/h(Pi , Pj )

2.
Since j ∈ M(i), we see Pj ∈ {Pi }. Thus Pi ∈ {Pj } and this implies i ∈ M( j).
As a result, it follows that the ( j, i) entry of L is −1/h(Pj , Pi )

2. We next let

i ∈ {1, . . . , M} and j ∈ N (i), so that the (i, M +∑ j−1
l=0 sl + n−1

j (i)) entry of L

is −1/h(Pi , S j )
2. In this case we have S j ∈ {Pi }, and so Pi ∈ {S j }. By the def-

inition of n j it follows that n j (t) = i for some t ∈ {1, . . . , s j }, i.e., t = n−1
j (i).

Since (M +∑ j−1
l=0 sl + n−1

j (i), i) = (M +∑ j−1
l=0 sl + t, n j (t)), we conclude that the

(M +∑ j−1
l=0 sl +n−1

j (i), i) entry of L is −1/h(S j , Pn j (t))
2 = −1/h(S j , Pi )

2. Hence
the symmetricity of L is proved.

3. We claim that if �a ∈ RM+N is a solution of (3.2), then u = u[�a] is a discrete
solution of (DPN). Let x ∈ Ω , i.e., x = Pi for some i . Without loss of generality we
may assume x = P1. Since �a satisfies (3.2), comparing the first coordinates of both
the sides in (3.2), we observe

Per(Ω)

Vol(Ω)
= θα(1) −

∑

j∈M(1)

α( j)

h(P1, Pj )2 −
∑

j∈N (1)

β( j, n−1
j (1))

h(P1, S j )2

� θu(P1) −
∑

j∈M(1)

u(Pj )

h(P1, Pj )2 −
∑

j∈N (1)

u(S j )

h(P1, S j )2

= −�′u(P1).

We next let x ∈ ∂Ω . Again we may assume x = S1. We also let β(1, j0) =
max{β(1, j) | 1 <= j <= s1}. Then the (M + j0)-th coordinates in (3.2) implies

β(1, j0) − α(n1( j0))

h(S1, Pn1( j0))
2 = −1

h(S1, Pn1( j0))
,

that is,

u(S1) − u(Pn1( j0))

h(S1, Pn1( j0))
= −1.
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Consequently, we see that u is a discrete solution of (DPN) in our sense.
4. We shall show that (3.2) is solvable. For this purpose, we first assert that KerL =

R�ξ , where KerL is the kernel of L and

�ξ = t (1, 1, . . . , 1) ∈ RM+N .

By the definition of L we see that the sum of each row of L is zero. This implies
KerL ⊃ R�ξ . We next let �a ∈ KerL , i.e., L�a = 0. We represent each component of �a
as in (3.1). Now, by the same argument as in Step 3 we see that u = u[�a] is a discrete
solution of

−�u <= 0 in Ω, (3.3)
∂u

∂ν
= 0 on ∂Ω, (3.4)

where the notion of a discrete solution of (3.3) with (3.4) is the same as that of
(DPN). We take a maximum point z ∈ Ω of u over Ω . If z ∈ ∂Ω , there exists
some y ∈ {z} ∩ Ω such that u(y) = u(z) since u satisfies the Neumann boundary
condition (3.4) at z. Thus u attains its maximum at some point in Ω . Since Ω is
now bounded and connected, the strong maximum principle for the Laplace equation
(Corollary 4.5) ensures that u must be some constant c ∈ R on Ω . From this it follows
that α(1) = · · · = α(M) = c. Also, since L�a = 0, we have β(i, j) = α(ni ( j)) for
all i ∈ {1, . . . , N0} and j ∈ {1, . . . , si }. As a result, we see �a = c�ξ ∈ R�ξ . We thus
conclude that KerL = R�ξ .

5. Since L is symmetric and KerL = R�ξ , we see that (ImL)⊥ = R�ξ , where (ImL)⊥
stands for the orthogonal complement of ImL , the image of L . Thus, for �b′ ∈ RM+N

it follows that �b′ ∈ ImL if and only if 〈�ξ, �b′〉 = 0. Noting that −1/hi appears ωi times
in a sequence {bk}M+N

k=M+1 for each i ∈ {1, . . . , n}, we compute

〈�ξ, �b〉 = Per(Ω)

Vol(Ω)
× M +

n∑

i=1

(−1

hi
× ωi

) = Per(Ω)

hn
−

n∑

i=1

ωi

hi
= 0.

Consequently �b ∈ ImL , and therefore the problem (3.2) has at least one solution
�a ∈ RM+N . Hence by Step 3 the corresponding u = u[�a] solves (DPN). ��
Remark 3.3 We have actually proved that u, which we constructed as a subsolution,
is a solution of (2.2) in Ω \ ∂Ω . Namely, we have −�′u(x) = Per(Ω)/Vol(Ω) for
all x ∈ Ω \ ∂Ω . This is clear from the construction of u.

Example 3.4 We revisit Example 3.1 and consider Ω given in Fig. 2. Let us solve the
system (3.2). For simplicity we assume h1 = h2 =: h > 0. In the notation used in the
proof of Proposition 3.2, the unknown vector �a is given as

t �a = (α(1) α(2) α(3) β(1, 1) β(1, 2) β(2, 1) β(3, 1) . . . β(7, 1)
)
.

Here α(i) (i = 1, 2, 3) represents the value of u(Pi ). Also, β(1, j) ( j = 1, 2) and
β(k, 1) (k = 2, 3, . . . , 7) represent the values of u(S1, j ) and u(Sk), respectively. Since
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Vol(Ω) = 3h2 and Per(Ω) = 8h in this example, we see

t �b = 1

h

(
8

3

8

3

8

3
−1 −1 −1 −1 −1 −1 −1 −1

)
,

and the coefficient matrix L is

L = 1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 −1 −1 −1 −1
−1 4 −1 −1 −1

−1 4 −1 −1 −1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The rest entries in L are zeros. A direct computation shows that �a0 given as

t �a0 = h

3

(
3 4 3 0 0 0 0 1 1 0 0

)

is a particular solution of (3.2). Since the kernel of L is known, we conclude that the
general solution of (3.2) is �a = �a0 + c t (1, . . . , 1) with c ∈ R.

4 Maximum Principles

In this section we present a few results on maximum principles for elliptic difference
equations. The first one is an ABP maximum principle. The result is more or less
known ([16,17,21]) and technique for the proof is essentially same as them, but we
present it here in order to show how the proof of the isoperimetric inequality is related
to that of the ABP maximum principle. We next prove a strong maximum principle.
The strong maximum principle for the Laplace equation, which was used in Step 4 of
the proof of Proposition 3.2, is well known in the literature. In this paper we study a
wider class of elliptic equations and give a necessary and sufficient condition for the
strong maximum principle. As far as the author knows, such general statement is new.

4.1 An ABP Maximum Principle

We consider the second order fully nonlinear elliptic equations of the form

F
(
∂2

x1
u, . . . , ∂2

xn
u
)

= f (x) in Ω, (4.1)
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where F : Rn → R and f : Ω → R are given functions such that F(0, . . . , 0) = 0.
Let �δ2u(x) := (δ2

1u(x), . . . , δ2
nu(x)). We say u : Ω → R is a discrete subsolution

of (4.1) if F(�δ2u(x)) <= f (x) for all x ∈ Ω . As an ellipticity condition on F for our
ABP estimate, we use the following:

(F1) −λ
∑ �X <= F( �X) for all �X ∈ Rn with �X <= 0.

Here λ > 0. Also,
∑ �X :=∑n

i=1 Xi for �X = (X1, . . . , Xn) ∈ Rn and the inequality
�X <= 0 means that Xi <= 0 for every i ∈ {1, . . . , n}. For K ⊂ hZn and g : K → R
the n-norm of g over K is given as ‖g‖�n(K ) := (∑x∈K hn|g(x)|n)1/n . We also set
diam(Ω) := maxx∈Ω,y∈∂Ω |x − y| and |Br | := Ln(Br ).

Theorem 4.1 (ABP Maximum Principle) Assume (F1). Let u : Ω → R be a discrete
subsolution of (4.1). Then the estimate

max
Ω

u <= max
∂Ω

u + CAdiam(Ω)‖ f ‖�n(�[u]) (4.2)

holds, where CA = CA(λ, n) is given as CA = (λn|B1|1/n)−1.

A crucial estimate to prove Theorem 4.1 is

Proposition 4.2 For all u : Ω → R we have

max
Ω

u <= max
∂Ω

u + diam(Ω)

n|B1|1/n
‖ − �′u‖�n(�[u]). (4.3)

Proof 1. We first prove Bd ⊂ ⋃z∈�[u] ∂+u(z), where d is a constant given as d =
(maxΩ u −max∂Ω u)/diam(Ω). If d = 0, the assertion is obvious. We assume d > 0,
i.e., u(x̂) = maxΩ u > max∂Ω u for some x̂ ∈ Ω . Let p ∈ Bd and set φ(x) :=
〈p, x − x̂〉. We take a maximum point z of u − φ over Ω . Then we have z ∈ Ω .
Indeed, for all x ∈ ∂Ω we observe

u(x)−φ(x) <= max
∂Ω

u+|p| · |x − x̂ |<max
∂Ω

u + d · diam(Ω)=max
Ω

u =u(x̂) − φ(x̂).

Thus z ∈ Ω , and so we conclude that z ∈ �[u] and p ∈ ∂+u(z).
2. By Step 1 the estimate (2.5) with Bd instead of Q1 holds. Thus the same argument

as in the proof of Theorem 1.1 yields

|Bd | <=
∑

z∈�[u]
hn
(−�′u(z)

n

)n

= 1

nn
‖ − �′u‖n

�n(�[u]).

Applying |Bd | = dn|B1| to the above inequality, we obtain (4.3) by the choice of d. ��
Proof of Theorem 4.1 By Remark 2.2 we have �δ2u(z) <= 0 for z ∈ �[u], and therefore
the condition (F1) yields −λ�′u(z) = −λ

∑ �δ2u(z) <= F(�δ2u(z)). Since u is a
discrete subsolution of (4.1), we also have F(�δ2u(z)) <= f (z). Applying these two
inequalities to (4.3), we obtain (4.2). ��
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4.2 A Strong Maximum Principle

We study homogeneous equations of the form

F(∂2
x1

u, . . . , ∂2
xn

u) = 0 in Ω. (4.4)

From the ABP maximum principle (4.2) we learn that all discrete subsolutions u of
(4.4) satisfy

max
Ω

u <= max
∂Ω

u

if (F1) holds. This is the so-called weak maximum principle. Our aim in this subsection
is to prove that a certain weaker condition on F actually leads to the strong maximum
principle and conversely the weaker condition is necessary for it. Here the rigorous
meaning of the strong maximum principle is

(SMP) If u : Ω → R is a discrete subsolution of (4.4) such that maxΩ u = maxΩ u,
then u must be constant on Ω .

Following the classical theory of partial differential equations, we consider bounded
and connected subsets Ω ⊂ hZn for (SMP). It turns out that the strong maximum
principle holds if and only if F satisfies the following weak ellipticity condition (F2).
It is easily seen that (F1) implies (F2).

(F2) If �X ∈ Rn , �X <= 0 and F( �X) <= 0, then �X must be zero, i.e., �X ≡ 0.

Theorem 4.3 (Strong Maximum Principle) The two conditions (SMP) and (F2) are
equivalent.

To show this theorem we first study discrete quadratic functions. They will be used
when we prove that (SMP) implies (F2).

Example 4.4 Let (A1, . . . , An) ∈ Rn . We define a quadratic function q : hZn → R
as

q(x) :=
n∑

j=1

(h j x j )
2 A j for x = (h1x1, . . . , hn xn) ∈ hZn .

Then δ2
i q is a constant for each i ∈ {1, . . . , n}. Indeed, we observe

δ2
i q(x) = q(x + hi ei ) + q(x − hi ei ) − 2q(x)

h2
i

= h2
i (xi + 1)2 Ai + h2

i (xi − 1)2 Ai − 2h2
i x2

i Ai

h2
i

= 2Ai

for all x = (h1x1, . . . , hn xn) ∈ hZn .
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Proof of Theorem 4.3 1. We first assume (F2). Let u : Ω → R is a discrete subsolution
of (4.4) such that u(x̂) = maxΩ u for some x̂ ∈ Ω . This maximality implies that for
each i ∈ {1, . . . , n}

δ2
i u(x̂) = u(x̂ + hi ei ) + u(x̂ − hi ei ) − 2u(x̂)

h2
i

<=
u(x̂) + u(x̂) − 2u(x̂)

h2
i

= 0.

Thus �δ2u(x̂) <= 0. Since u is a discrete subsolution, we also have F(�δ2u(x̂)) <= 0. It
now follows from (F2) that �δ2u(x̂) ≡ 0, and hence we see that u(x̂) = u(x̂ ± hi ei )

for all i . We next apply the above argument with the new central point x̂ ± hi ei if the
point is in Ω . Iterating this procedure, we finally conclude that u ≡ u(x̂) on Ω since
Ω is now connected.

2. We next assume (SMP). Take any �X = (X1, . . . , Xn) ∈ Rn such that �X <= 0
and F( �X) <= 0. We may assume 0 ∈ Ω . Now, we take the quadratic function q in
Example 4.4 with Ai = Xi/2 <= 0. By the calculation in Example 4.4 we then have
δ2

i q(x) = Xi for all i , i.e., �δ2q(x) = �X . Thus F(�δ2q(x)) = F( �X) <= 0, which means
that q is a discrete subsolution of (4.4). Next, we deduce from the nonpositivity of
each Ai that q attains its maximum over Ω at 0 ∈ Ω . Therefore (SMP) ensures that
q ≡ q(0) = 0 on Ω , which implies that Ai = 0 for all i ∈ {1, . . . , n}. Consequently,
we find �X ≡ 0. ��

A simple example of F satisfying (F2) is F( �X) = −∑ �X , and then (4.4) represents
the Laplace equation for u. We therefore have

Corollary 4.5 Let u : Ω → R. If −�′u(x) <= 0 for all x ∈ Ω and maxΩ u =
maxΩ u, then u is constant on Ω .

5 Concluding Remark

The extension of the result presented in this paper to general lattices rather than
rectangular lattices is an interesting open problem. However, in such a case we must
address the following issues in a consistent way:

(1) definitions of a volume and a perimeter;
(2) a definition of a discrete Laplace operator �′;
(3) an optimal estimate for Ln(∂+u(z)) by −�′u(z), where z is a point of the upper

contact set of u;
(4) solvability of the Poisson–Neumann problem −�′u = Per/Vol, ∂u/∂ν = −1.

One of possible definitions of �′ is the definition appearing in the finite volume method
in numerical analysis which is related to the Voronoi diagram for the set of points.
Since the idea of the Voronoi diagram will also be needed when we derive an inclusion
relation of the type (2.4), such definition seems to be natural. However, it seems non-
trivial to complete the proof. We hope the ABP method presented in the present paper
could be extended in the future.
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