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Abstract A result due in its various parts to Hendrickson, Connelly, and Jackson and
Jordán, provides a purely combinatorial characterisation of global rigidity for generic
bar-joint frameworks in R

2. The analogous conditions are known to be insufficient
to characterise generic global rigidity in higher dimensions. Recently Laman-type
characterisations of rigidity have been obtained for generic frameworks in R

3 when
the vertices are constrained to lie on various surfaces, such as the cylinder and the
cone. In this paper we obtain analogues of Hendrickson’s necessary conditions for the
global rigidity of generic frameworks on the cylinder, cone and ellipsoid.
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1 Introduction

A bar-joint framework in Euclidean space R
d is a geometric realisation of the vertices

of a graph with the edges considered as (fixed length) bars between them. Such a
framework is said to be rigid if there is no non-trivial continuous motion of the vertices
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in R
d which maintains bar-lengths, and is said to be flexible if it is not rigid. It is

redundantly rigid if it remains rigid after deleting any single edge. A foundational
theorem of Laman [11], obtained in 1970, asserts that the rigidity of a generically
positioned framework in R

2 depends only on the underlying graph and, furthermore,
that these graphs are characterised in terms of a simple counting condition. Finding an
analogous characterisation for the rigidity of generic frameworks in R

3 is an important
open problem.

Formally a framework (G, p) in R
d is the combination of a finite graph G = (V, E)

and a map p : V → R
d . Two frameworks (G, p) and (G, q) are said to be equivalent

if ‖p(v) − p(u)‖ = ‖q(v) − q(u)‖ for all pairs of adjacent vertices u, v ∈ V . More
strongly they are said to be congruent if ‖p(v)− p(u)‖ = ‖q(v)−q(u)‖ holds for all
pairs of vertices u, v ∈ V . A framework (G, p) is globally rigid if every framework
(G, q) equivalent to (G, p) is also congruent to (G, p).

Hendrickson derived the following necessary conditions for generic global rigidity
in R

d .1

Theorem 1 ([7]) Let (G, p) be a generic globally rigid framework in R
d . Then G is

a complete graph on at most d + 1 vertices or G is (d + 1)-connected and (G, p) is
redundantly rigid in R

d .

In the case of 2-dimensional frameworks these conditions are also sufficient.

Theorem 2 ([4,7] and [8]) Let (G, p) be a generic framework in R
2. Then (G, p) is

globally rigid if and only if either G is a complete graph on at most three vertices or
G is 3-connected and (G, p) is redundantly rigid.

Sufficiency follows by combining a geometric result due to Connelly and a combina-
torial construction of Jackson and Jordán.

Both rigidity and global rigidity have far reaching applications. In particular, deter-
mining when a framework has a unique realisation up to congruence has applications
in robotics [20] and in sensor networks [1].

Attention has recently been given to frameworks in R
3 whose vertices are con-

strained to lie on 2-dimensional surfaces and analogues of Laman’s theorem have
been obtained for a variety of surfaces [15,16]. In this paper we consider the global
rigidity of frameworks on these surfaces and obtain analogues of Hendrickson’s nec-
essary conditions for generic global rigidity. In the case when the surface is a sphere,
Connelly and Whiteley [5] proved that a generic framework (G, p) on the sphere is
globally rigid if and only if a corresponding generic framework (G, q) is globally
rigid in the plane. We focus our attention on cylinders, cones and ellipsoids. We also
include the sphere as it is covered by our proof technique and provides a complete
proof that redundant rigidity is a necessary condition for generic global rigidity on the
sphere, and hence also in the plane.

We conclude the introduction by giving a brief outline of the proof of our main
result, that redundant rigidity is a necessary condition for generic global rigidity. We

1 More precisely, Hendrickson proved the weaker result that almost all globally rigid frameworks in R
d

are redundantly rigid. His proof technique can be extended to cover all generic frameworks using the theory
of semi-algebraic sets and this extension has been taken to be implicit in the literature.
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adopt a similar approach to that of [7]. We consider the motion of the framework
that results from deleting a non-redundant edge e from a generic rigid framework
(G, p0) on a surface S. We obtain a series of geometric results in Sects. 3–6 that
enable us to show in Sect. 9 that this motion is diffeomorphic to a circle. We then
use genericity to prove that the motion reaches a framework (G − e, p1) such that
(G, p1) is equivalent but not congruent to (G, p0). We have to overcome two technical
difficulties for surfaces which do not arise in [7]. We actually show in Sect. 9 that there
is no isometry of S which maps (G, p0) onto (G, p1). We prove that this apparently
weaker conclusion implies that (G, p0) and (G, p1) are not congruent (as long as G
has enough vertices) in Sect. 7. In addition, to deduce that the motion of (G − e, p0)

is diffeomorphic to a circle we need to show that it is bounded. This is straightforward
for the sphere, cylinder and elipsoid, but requires a special argument for the cone. We
give this in Sect. 8.

2 Frameworks on Surfaces

We assume henceforth that G = (V, E) is a graph with V = {v1, v2, . . . , vn} and
E = {e1, e2, . . . , em}. Let S be a fixed surface in R

3. A framework (G, p) on S is the
combination of a finite graph G = (V, E) and a map p : V → S; such a framework
is said to be rigid on S if every continuous motion of the vertices on S that preserves
equivalence also preserves congruence; otherwise (G, p) is said to be flexible on S.
Moreover (G, p) is: minimally rigid on S if it is rigid on S and, for every edge e of
G, the framework (G − e, p) is flexible on S; redundantly rigid on S if (G − e, p)

is rigid on S for all e ∈ E ; and globally rigid on S if every framework (G, q) on S
which is equivalent to (G, p) is congruent to (G, p).

An infinitesimal flex s of (G, p) on S is a map s : V → R
3 such that s(v) is

tangential to S for all v ∈ V and (p(u)− p(v)) · (s(u)− s(v)) = 0 for all uv ∈ E . The
framework (G, p) is infinitesimally rigid on S if every infinitesimal flex of (G, p) is
an infinitesimal isometry of S.

In this paper we consider spheres, cylinders, cones and ellipsoids. These are natural
examples of surfaces for which the dimension of the space of infinitesimal isometries
is 3, 2, 1 and 0, respectively. In fact our proof techniques apply to the following more
general families of ‘concentric’ surfaces.

Let r = (r1, r2, . . . , rn) be a vector of (not necessarily distinct) positive real
numbers. For 1 ≤ i ≤ n, let Si = {(x, y, z) ∈ R

3 : x2 + y2 + z2 = ri },
Yi = {(x, y, z) ∈ R

3 : x2 + y2 = ri }, Ci = {(x, y, z) ∈ R
3 : x2 + y2 = ri z2}

and Ei = {(x, y, z) ∈ R
3 : x2 + ay2 + bz2 = ri } for some fixed a, b ∈ Q with

1 < a < b. Let S = ⋃n
i=1 Si , Y = ⋃n

i=1 Yi , C = ⋃n
i=1 Ci and E = ⋃n

i=1 Ei . We will
use S = ⋃n

i=1 Si to denote one of the four surfaces (S,Y, C, E) defined above and
� for the dimension of its space of infinitesimal isometries (so � = 3, 2, 1 or 0 when
S = S,Y, C or E , respectively). We will occasionally use S(r) when we wish to spec-
ify a particular vector r and S(1) for the special case when r1 = r2 = · · · = rn

(there is no loss in this case in assuming ri = 1 for all 1 ≤ i ≤ n). We
say that (G, p) is a framework on S if p : V → R

3 and p(vi ) ∈ Si for all
1 ≤ i ≤ n.
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The problem of determining whether or not a given framework on S is rigid is a
difficult problem in algebraic geometry. It becomes tractable however if we restrict our
attention to ‘generic’ frameworks. We consider a framework (G, p) on S to be generic
if td [Q(r, p) : Q(r)] = 2|V |, where td [Q(r, p) : Q(r)] denotes the transcendence
degree of the field extension. Thus (G, p) is generic on S if the coordinates of the
vertices of G are as algebraically independent as possible. For generic frameworks the
problem of determining rigidity reduces to that of determining infinitesimal rigidity.

Theorem 3 ([15]) Let (G, p) be a generic framework on S. Then (G, p) is rigid on S
if and only if G is a complete graph on at most 5−� vertices, or (G, p) is infinitesimally
rigid on S.

We note that [15] uses a different definition for a generic framework on S. Corollary
1 below verifies that any framework which satisfies our definition will also satisfy the
definition given in [15].

Theorem 3, combined with Theorem 5 below, imply that the problem of determining
generic rigidity on S depends only on the underlying graph. This problem has been
solved for three of our chosen surfaces.

Theorem 4 ([15,16]) Let (G, p) be a generic framework on S and suppose that S ∈
{S(r),Y(r), C(1)}. Then (G, p) is minimally rigid on S if and only if G is Kn for
1 ≤ n ≤ 5 − � or |E | = 2|V | − � and every subgraph H = (V ′, E ′) of G has
|E ′| ≤ 2|V ′| − �.

It is an open problem to characterise generic rigidity on the ellipsoid. The analogous
condition to that given in Theorem 4 is known to be necessary:

Lemma 1 ([15]) Let (G, p) be a generic framework on E(r). If (G, p) is minimally
rigid then G is Kn for 1 ≤ n ≤ 4 or |E | = 2|V | and every subgraph H = (V ′, E ′) of
G has |E ′| ≤ 2|V ′|.

However, the graph constructed by adding a vertex of degree two to K5 has an
infinitesimal flex for every generic realisation on the ellipsoid. This shows that the
condition in Lemma 1 is not sufficient to imply generic rigidity.

3 Generic Points and Smooth Manifolds

Let K , L be fields such that Q ⊆ K ⊆ L ⊆ C. Let W be an algebraic variety over K
in Ln , i.e. W = {x ∈ Ln : fi (x) = 0 for all 1 ≤ i ≤ m} for some f1, f2, . . . , fm ∈
K [X ]. We assume that W is irreducible; i.e. cannot be expressed as the union of two
proper subvarieties. The dimension of W , dim W , is the maximum length of a chain
of subvarieties of W . A point p ∈ W is generic over K if every h ∈ K [X ] satisfying
h(p) = 0 has h(x) = 0 for all x ∈ W . Given an integral domain R we use Fract(R)

to denote the field of fractions of R.

Lemma 2 Let W be an irreducible variety over K in C
n, p ∈ W , and I = { f ∈

K [X ] : f (x) = 0 for all x ∈ W }. Then:
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(a) dim W = td [Fract(K [X ]/I ) : K ];
(b) The map h + I �→ h(p) is a surjective ring homomorphism from K [X ]/I to

K (p), and is a ring isomorphism if and only if p is a generic point of W over K ;
(c) td [K (p) : K ] ≤ dim W , and equality holds if and only if p is a generic point of

W over K .

Proof Part (a) is well known (for example see [6, Exercise 3.20 (b)]) and Part (b) is
elementary. Part (a) along with the first part of (b) implies that

dim W = td [Fract(K [X ]/I ) : K ] ≥ td [K (p) : K ].

The second part of (b) tells us that if p is generic then equality holds in the above
inequality. It remains to show that p is a generic point of W over K when td [K (p) :
K ] = dim W . Let h ∈ K [X ] with h(p) = 0, W1 = {x ∈ W : h(x) = 0}, and let W2
be the irreducible component of W1 which contains p. The argument in the second
sentence of the proof tells us that dim W2 ≥ td [K (p) : K ] = dim W . The definition
of dimension and the fact that W2 is a subvariety of W now imply that W2 = W .
Hence h(x) = 0 for all x ∈ W and p is a generic point of W over K . 
�
Corollary 1 Let K be a field with Q ⊆ K ⊆ R, W be an irreducible variety over K
in C

n and p ∈ W ∩R
n. If td [K (p) : K ] = dim W then p is a generic point of W and

hence is also a generic point of W ∩ R
n.

Let X be a smooth manifold and f : X → R
m be a smooth map. Then x ∈ X is

said to be a regular point of f if d f |x has maximum rank and is a critical point of f
otherwise. Also f (x) is said to be a regular value of f if, for all y ∈ f −1( f (x)), y
is a regular point of f ; otherwise f (x) is a critical value of f .

Lemma 3 ([9]) Let M be a smooth manifold and x ∈ M. Suppose θ : M → R
a and

F : M → R
b are smooth maps. Define H : M → R

a+b by H(y) = (F(y), θ(y)).
Suppose θ(x) is a regular value of θ . Let X be the submanifold θ−1(θ(x)) of M, and
let f be the restriction of F to X. Then rank d f |x = rank d H |x − rank dθ |x .

Note that θ−1(θ(x)) is a submanifold of M by the following well known result, see
for example [13, p. 11, Lemma 1].

Lemma 4 Let X and Y be smooth manifolds and f : X → Y be a smooth map.
Suppose that S has dimension m, x ∈ X, f (x) is a regular value of f and rank d f |x =
t . Then f −1( f (x)) is an (m − t)-dimensional smooth manifold.

4 The Rigidity Map

Given the graph G, the rigidity map fG : R
3n → R

m is defined by fG(p) =
(‖e1‖2, . . . , ‖em‖2) where ‖ei‖2 = ‖p(v j ) − p(vk)‖2 when ei = v jvk . Given the
surface S, the S-rigidity map FG : R

3n → R
m+n is defined by FG = ( fG, θG) where

θG : R
3n → R

n is given by θG(p) = (h(p(v1)), . . . , h(p(vn))) and:
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h(xi , yi , zi ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2
i + y2

i + z2
i − ri if S = S,

x2
i + y2

i − ri if S = Y,

x2
i + y2

i − ri z2
i if S = C,

x2
i + ay2

i + bz2
i − ri if S = E .

We will consider the restriction of FG to the irreducible algebraic variety W =
S1 × S2 × · · · × Sn . The Jacobian matrix for the derivative of FG evaluated at any
point p ∈ W is (up to scaling) the rigidity matrix for the framework (G, p) on S. It is
shown in [15] that the null space of this matrix is the space of infinitesimal flexes of
(G, p) on S. This allows us to characterise infinitesimally rigid frameworks in terms
of d FG .

Theorem 5 ([15]) Let (G, p) be a framework on S. Then (G, p) is infinitesimally
rigid if and only if rank d FG |p = 3n − �.

Note that for any p = (x1, y1, z1, . . . , xn, yn, zn) ∈ W we have

dθG |p =

⎡

⎢
⎢
⎢
⎣

dh(p(v1)) 0 . . . 0
0 dh(p(v2)) . . . 0
...

. . .
...

0 0 . . . dh(p(vn))

⎤

⎥
⎥
⎥
⎦

,

where

dh(xi , yi , zi ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(xi , yi , zi ) if S = S,

2(xi , yi , 0) if S = Y,

2(xi , yi ,−ri zi ) if S = C,

2(xi , ayi , bzi ) if S = E .

It follows that rank dθG |p = n unless p(vi ) = (0, 0, 0) for some 1 ≤ i ≤ n (which
can only occur if S = C). Thus p is a regular point of θG for all such p. Moreover we
have θG(p) = 0, and 0 is a regular value of θG for all p ∈ W when S ∈ {S,Y, E}.
(Lemma 4 applied to θG at any p ∈ W now confirms that W is a manifold of dimension
3n − n = 2n in these three cases.)

We say that two frameworks (G, p) and (G, q) on S are S-congruent if there is
an isometry of S which maps (G, p) to (G, q). Note that S-congruence is a stronger
condition than congruence. For example, we may have two equivalent realisations of
K3 on the cylinder which are not Y-congruent (but clearly must be congruent). The
framework (G, p) is in standard position on S (with respect to the fixed ordering of the
vertices) if p(v1) = (x1, y1, z1), p(v2) = (x2, y2, z2) and: (x1, y1, z1) = (0, y1, 0)

and x2 = 0 if S = S; (x1, y1, z1) = (0, y1, 0) if S = Y; and x1 = 0 if S = C.
When S = E all frameworks are considered to be in standard position. It is easy to see
that any framework (G, p) on S is S-congruent to a framework in standard position
on S. We consider frameworks (G, p) in standard position in order to factor out the
continuous isometries of S.
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We will need a version of the S-rigidity map for frameworks which are constrained
to lie in standard position on S. Define α : R

3n → R
� by

α(x1, y1, z1, . . . , xn, yn, zn) =

⎧
⎪⎨

⎪⎩

(x1, z1, x2) if S = S,

(x1, z1) if S = Y,

x1 if S = C.

Define θ∗
G : R

3n → R
n+� by θ∗

G = (θG, α) if S ∈ {S,Y, C} and θ∗
G = θG if S = E .

Let F∗
G : R

3n → R
m+n+� by F∗

G = ( fG , θ∗
G). Then the null space of d F∗

G |p is the
space of all infinitesimal flexes of (G, p) which leave the coordinates in α(p) fixed.

We say a framework (G, p) on S is independent if rank d FG |p = m + n i.e. the
rows of (the Jacobian matrix for) d FG |p are linearly independent.

Lemma 5 Let (G, p) be an independent framework on S. Then d F∗
G |p has linearly

independent rows and hence rank d F∗
G |p = m + n + �.

Proof We first consider the case when (G, p) is minimally rigid, and hence infinites-
imally rigid. Since the null space of d F∗

G |p is the space of all infinitesimal flexes
of (G, p) which leave the coordinates in α(p) fixed, this space is trivial. Hence
rank d F∗

G |p = 3n = n + m + � and the rows of d F∗
G |p are linearly independent.

The case when (G, p) is not minimally rigid follows since any independent frame-
work (G, p) can be extended to a minimally rigid framework (H, p), and d F∗

G |p can
then be obtained by deleting rows from d F∗

H |p. 
�
We next use Lemma 5 to obtain an analogous result for the restriction of the rigidity

map fG to the (2n − �)-dimensional manifold

M={
p∈W : (G, p) is in standard position on S and p(v) �=(0, 0, 0) for all v∈V

}
.

(The condition that p(v) �= (0, 0, 0) for all v ∈ V ensures that M is a manifold. It is
only relevant when W = C.) Let f[G] = fG |M.

Lemma 6 Let (G, p) be an independent framework in standard position on S. Then
rank d f[G]|p = m and hence p is a regular point of f[G].

Proof We first consider the case when S ∈ {S,Y, E}. We can use a similar argument
to that given after Theorem 5 to show that rank dθ∗

G |q = n + � for all q ∈ W . Since
q ∈ W whenever θ∗

G(q) = θ∗
G(p), this implies that θ∗

G(p) is a regular value of θ∗
G .

Since M = (θ∗
G)−1(θ∗

G(p)), we may now use Lemmas 3 and 5 to deduce that

rank d f[G]|p = rank d F∗
G |p − rank dθ∗

G |p = m + n + � − (n + �) = m.

We proceed similarly in the case when S = C, but we have to restrict the domain
of F∗

G to an open neighbourhood of p which contains no critical points of F∗
G , i.e.

contains no points p with p(v) = (0, 0, 0) for some v ∈ V , otherwise p may no
longer be a regular value of θ∗

G . 
�
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5 Quasi-generic Frameworks

A framework (G, p) is quasi-generic on S if it is S-congruent to a generic framework.2

Lemma 7 Let (G, p) be a minimally rigid quasi-generic framework on S. Then

td [Q(r, fG(p)) : Q(r)] = m.

Proof Without loss of generality we may assume (G, p) is in standard position. Let
f[G](p) = (β1, . . . , βm) = β. Suppose g(β) = 0 for some polynomial g with coeffi-
cients in Q(r). Then g ◦ f[G](p) = 0. Since (G, p) is quasi-generic and g ◦ f[G] is a
polynomial with coefficients in Q(r), Corollary 1 implies that g ◦ f[G](q) = 0 for all
q ∈ W . In particular g ◦ f[G](q) = 0 for all q ∈ M. By Lemma 6, rank d f[G]|q = m.
Since (G, p) is minimally rigid, M is m-dimensional and hence the Inverse Function
Theorem implies that f[G] maps some open neighbourhood U of p in M diffeomor-
phically onto some neighbourhood f[G](U ) of f[G](p) in R

m . Then g(y) = 0 for all
y in the open subset f[G](U ) of R

m . This implies that g must be the zero polynomial
and hence {β1, . . . , βm} is algebraically independent over Q(r).

Lemma 8 A framework (G, p) on S is quasi-generic if and only if (G, p) is S-
congruent to a framework (G, q) in standard position with td [Q(r, q) : Q(r)] =
2n − �.

Proof Suppose that (G, p) is quasi-generic. Then (G, p) is S-congruent to a frame-
work (G, q) in standard position. Since the definition of quasi-generic depends only
on p, we may assume, without loss of generality, that G is minimally rigid. By Lemma
7, td [Q(r, fG(p)) : Q(r)] = td [Q(r, fG(q)) : Q(r)] = 2n − �. Let K and L be the
algebraic closures of Q(r, fG(q)) and Q(r, q) respectively. Since K ⊆ L we have

td [Q(r, q) : Q(r)] = td [L : Q(r)] ≥ td [K : Q(r)] = 2n − �.

Since (G, q) is in standard position on S, we also have td [Q(r, q) : Q(r)] ≤ 2n − �.
Hence td [Q(r, q) : Q(r)] = 2n − �.

Now suppose (G, p) is S-congruent to a framework (G, q) in standard position
with td [Q(r, q) : Q(r)] = 2n − �. Let q = (q(v1), x2, y2, z2, . . . , xn, yn, zn). When
S = E , we have � = 0 and (G, q) is generic so we are done.

Suppose S = Y . As td [R : Q(r)] = ∞ we may choose θ such that
{sin θ, x2, . . . , xn, z2, . . . , zn} is algebraically independent over Q(r). Apply the rota-
tion

⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦

2 It is convenient for our purposes to regard quasi-genericness as a property of a framework (G, p) even
though its definition depends only on the configuration p.
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to each of the vertices of (G, q) to achieve the equivalent framework (G, q ′). Then

q ′ = (−y1 sin θ, y1 cos θ, 0, x2 cos θ − y2 sin θ, x2 sin θ + y2 cos θ, z2, x3 cos θ

− y3 sin θ, x3 sin θ + y3 cos θ, z3, . . . , xn cos θ − yn sin θ, xn sin θ

+ yn cos θ, zn) .

As {sin θ, x2, . . . , xn, z2, . . . , zn} is algebraically independent over Q(r), S = Y
and x2

i + y2
i = ri for 2 ≤ i ≤ n, {sin θ, x2 cos θ − y2 sin θ, . . . , xn cos θ −

yn sin θ, z1, . . . , zn} is algebraically independent over Q(r). Next choose t ∈ R such
that T = {sin θ, x2 cos θ − y2 sin θ, . . . , xn cos θ − yn sin θ, z1 + t, . . . , zn + t} is
algebraically independent over Q(r). Translating (G, q ′) parallel to the z-axis by t we
reach the equivalent framework (G, q ′′) where q ′′ = (−y1 sin θ, y1 cos θ, t, x2 cos θ −
y2 sin θ, x2 sin θ + y2 cos θ, z2 + t, . . . , xn cos θ − yn sin θ, xn sin θ + yn cos θ, zn + t).
As T is algebraically independent over Q(r) we have that td [Q(r, q ′′) : Q(r)] = 2n.
Thus q ′′ is generic on Y . Since (G, p) is S-congruent to (G, q ′′), (G, p) is quasi-
generic.

The remaining cases, when S = S or S = C, follow by a similar argument.

Lemma 9 Let (G, p) be a minimally rigid framework on S. Then (G, p) is quasi-
generic if and only if td [Q(r, fG(p)) : Q(r)] = 2n − �.

Proof We may assume that (G, p) is in standard position on S. If (G, p) is quasi-
generic, then td [Q(r, fG(p)) : Q(r)] = 2n − � by Lemma 7.

Suppose on the other hand that td [Q(r, fG(p)) : Q(r)] = 2n − �. Since (G, p) is
in standard position on S we have td [Q(r, p) : Q(r)] ≤ 2n − �. Since Q(r, fG(p)) ⊆
Q(r, p) and td [Q(r, fG(p)) : Q(r)] = 2n − �, we must have td [Q(r, p) : Q(r)] =
2n − �. Lemma 8 now tells us that (G, p) is quasi-generic.

6 Regular Maps

Suppose (G, p) is in standard position on S. Lemma 6 implies that p is a regular point
of f[G] when (G, p) is independent. We will use the following fundamental theorems
to prove that f[G](p) is a regular value of f[G] when (G, p) is quasi-generic.

Let K be a field such that Q ⊆ K ⊆ R. Recall that a subset A of R
n is semi-algebraic

over K if it can be expressed as a finite union of sets of the form

{
x ∈ R

n : Pi (x) = 0 for 1 ≤ i ≤ s and Q j (x) > 0 for 1 ≤ j ≤ t
}
,

where Pi ∈ K[X1, . . . , Xn] for 1 ≤ i ≤ s, and Q j ∈ K[X1, . . . , Xn] for 1 ≤ j ≤ t .

Theorem 6 (Tarski–Seidenberg [17,19]) Let A ⊂ R
n+k be semi-algebraic over K

and π : R
n+k → R

n be the projection onto the first n coordinates. Then π(A) is
semi-algebraic over K.

Theorem 7 (Sard, see [13, p. 16]) Let f : U → R
n be a smooth map defined on an

open subset U of R
m and C be the set of critical points of f . Then f (C) has Lebesque

measure zero in R
n.
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We also need the following elementary result, see for example [9, Lemma 3.3].

Lemma 10 Let M be a smooth manifold and let f : M → R
n be a smooth map. Let

x ∈ M and choose an open neighbourhood U of x on M such that U is diffeomorphic
to R

m. Let g be the restriction of f to U and let x be a regular point of g. Suppose
that the rank of dg|x is n. Then there exists an open neighbourhood W ⊆ U of x such
that g(W ) is an open neighbourhood of g(x) in R

n.

Lemma 11 Let (G, p0) be a quasi-generic framework in standard position on S. Then
f[G](p0) is a regular value of f[G].
Proof Let (G, p0) be congruent to the generic framework (G, p1). We argue
for (G, p1) and first consider the case when (G, p1) is independent. Let t =
max{rank d f[G]|p : p ∈ M}. Let

A = {
(p, q) ∈ M × M : f[G](p) = f[G](q) and rank d f[G]|q < t

}

and

A′ = {
p ∈ M : there exists q ∈ M such that (p, q) ∈ A

}
.

The set A is semi-algebraic over K = Q(r), so Theorem 6 implies that A′ is semi-
algebraic over K.

Suppose that p1 ∈ A′. Then there exists a set

A′′ = {
x ∈ M : Pi (x) = 0 and Q j (x) > 0 for 1 ≤ i ≤ c and 1 ≤ j ≤ d

} ⊆ A′

that contains p1 where Pi , Q j ∈ K[x1, y1, z1, x2, . . . , zn] and c, d ≥ 0. Let I = {g ∈
K[x1, y1, z1, x2, . . . , zn] : g(x) = 0 for all x ∈ W}. Since p1 is generic on W and
Pi (p1) = 0, we have Pi ∈ I for all 1 ≤ i ≤ c. Hence

A′′ = {
x ∈ M : Q j (x) > 0 for 1 ≤ j ≤ d

}
.

This implies that there exists a neighbourhood W of p1 on M such that W ⊆ A′′. By
Lemmas 6 and 10 we can choose W ′ ⊂ W such that f[G](W ′) is an open subset of
R

m . Then each point of f[G](W ′) is a critical value of f[G], contradicting Theorem
7. Thus p1 �∈ A′. Since we also have rank d f[G]|p1 = t by Lemma 6, f[G](p1) is a
regular value of f[G].

When (G, p1) is not independent we choose a maximal subgraph H such that
(H, p1) is independent. Then f[H ](p1) is a regular value of f[H ] and hence f[G](p1)

is a regular value of f[G]. Since f[G](p1) is a regular value of f[G] and (G, p0) is
congruent to (G, p1) it follows that f[G](p0) is a regular value of f[G]. 
�
Lemma 12 Let (G, p) be a quasi-generic framework in standard position on S and
r = rank d f[G](p). Then f −1

[G]( f[G](p)) is a (2n−�−r)-dimensional smooth manifold.

Proof The domain of f[G] is M which is a (2n − �)-dimensional manifold.
Lemma 11 shows that f[G](p) is a regular value of f[G]. The result now follows by

applying Lemma 4. 
�
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7 Unique Surfaces Containing a Given Set of Points

We show in this section that if G has sufficiently many vertices and (G, p) and (G, q)

are congruent frameworks on S, then they are S-congruent; i.e. there is an isometry of
S which maps (G, p) onto (G, q).

We say that two surfaces in R
3 are congruent if there is an isometry of R

3 mapping
one to the other. We first show that if we choose a set V of sufficiently many generic
points on S, then the only surface which is congruent to S and contains V is S itself.

Lemma 13 Suppose (K7−�, p) is a generic realisation of K7−� on S. Let T be another
surface in R

3 which is congruent to S and contains (K7−�, p). Then T = S.

Proof We first consider the case when S = Y . Then � = 2, and T = ⋃5
i=1 Ti is

a congruent family of concentric cylinders containing (K5, p). We may characterise
T by four parameters c1, c2, c3, c4. For example, when the axis of T has a non-zero
z-component, we can take (c1, c2, 1) to be a direction vector for this axis and (c3, c4, 0)

to be the point where it crosses the xy-plane. Let Ŷi , T̂i be the complex extensions of
Yi and Ti , respectively, i.e. the sets of all complex solutions to the equations which
define Yi and Ti . Let Ẑi be the irreducible component of Ŷi ∩ T̂i which contains p(vi )

for all 1 ≤ i ≤ 5. Each Zi is a proper subvariety of Ŷi so has dimension at most
1. Let Z be the direct product of Z1, . . . , Z5. Then Z is irreducible and dim Z ≤ 5.
Lemma 2(c) now implies that td [K(p) : K] ≤ 5, where K = Q(r, c1, c2, c3, c4). Thus
td [K(p) : Q(r)] ≤ 9. However, since p is generic on W and dim W = 10, Lemma
2(c) also gives td [Q(r, p) : Q(r)] = 10. This is a contradiction since Q(r, p) ⊆ K(p).

The other cases follow similarly, using the fact that T can be characterised by a set
of 6 − � parameters. 
�
Lemma 14 Suppose (Kn, p) is a generic framework on S and n ≥ 7− �. Let (Kn, q)

be a framework on S equivalent to (Kn, p). Then there is an isometry ι of S such that
ι(p) = q.

Proof It suffices to prove the case n = 7 − �. Since (K7−�, p) and (K7−�, q) are
congruent there is an isometry ι of R

3 which maps (K7−�, p) onto (K7−�, q). Then
ι(S) is a surface in R

3 which is congruent to S. By Lemma 13, S is the unique such
surface containing (K7−�, q). Hence ι(S) = S and ι is an isometry of S. 
�

Note that, in the case when S = E , there are no continuous isometries so ι must be
a discrete isometry.

8 Compactness

Given a framework (G, p) on S, we define the configuration space C(G, p) by

C(G, p) = {
q ∈ R

3 : (G, q) is in standard position on S and equivalent to (G, p)
}
.

We will show in the next section that if (G, p) is rigid and generic, and (G − e, p)

is not rigid for some e ∈ E , then (G, p) is not globally rigid. This section is concerned
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with obtaining a preliminary result that the configuration space C(G−e, p) is compact.
We will see that this is straightforward except for the special case of showing that
C(G, p) is bounded when S = C(1) i.e. S is the cone defined by x2 + y2 = z2. To
solve this special case, we use a characterisation of realisations of Kn in R

m which
follows from the work of Cayley and Menger, see [3].

Let V = V (Kn) = {v1, v2, . . . , vn} and d be a map from E(Kn) to the non-negative
real numbers with d(viv j ) = di, j . The Cayley-Menger matrix C M(V, d) = (ci, j ) is
the symmetric (n + 1) × (n + 1)-matrix in which ci,i = 0 for all 0 ≤ i ≤ n,
c0,i = 1 = ci,0 for all 1 ≤ i ≤ n, and ci, j = di, j for all distinct 1 ≤ i, j ≤ n.

Theorem 8 Let V = V (Kn) = {v1, v2, . . . , vn} and d be a map from E(Kn)

to the non-negative real numbers with d(viv j ) = di, j . Then there exists a map
p : V → R

t with ‖p(vi ) − p(v j )‖2 = di, j for all 1 ≤ i < j ≤ n if and
only if (−1)|U | det C M(U, d|U ) ≥ 0 for all U ⊆ V with 3 ≤ |U | ≤ t + 1 and
det C M(U, d|U ) = 0 for all U ⊆ V with |U | = t + 2.

Note that, if p exists, then − 1
4 det C M(U, d|U ) is the square of the area of the

triangle induced by the points in p(U ) when |U | = 3, and 1
288 det C M(U, d|U ) is the

square of the volume of the tetrahedron induced by the points in p(U ) when |U | = 4.
More generally, if |U | = k + 1, then (−1)k+1 1

2k (k!)2 det C M(U, d|U ) is the square
of the ‘k-dimensional content’ of the (possibly degenerate) simplex induced by the
points in p(U ).

Lemma 15 Let (G, p) be a generic realisation of a graph G = (V, E) on the cone
with rank d FG |p = 3n − 2. Then C(G, p) is bounded.

Proof Let V = {v1, v2, . . . , vn}. If G is not connected then Theorem 5 implies that
(G, p) is the disjoint union of two rigid frameworks and hence C(G, p) is bounded.
Thus we may assume that G is connected. This implies that there exists a constant
K such that, for every equivalent framework (G, q) on the cone, we have ‖q(vi ) −
q(v j )‖2 < K for all vi , v j ∈ V .

Suppose C(G, p) is not bounded. Then there exist a sequence of frameworks
(G, q1), (G, q2), . . . on the cone such that (G, qt ) is equivalent to (G, p) and
‖qt (v)‖2 > t for all v ∈ V . Let di, j,t = ‖qt (vi ) − qt (v j )‖2. Then di, j,t is a bounded
sequence of real numbers for all 1 ≤ i < j ≤ n and hence we may choose a sequence
t1, t2, . . . such that each subsequence di, j,ts converges. Let di, j = lims→∞ di, j,ts for
all 1 ≤ i < j ≤ n.

Let Kn be the complete graph on V and dt : E(Kn) → R by dt (viv j ) = di, j,t

for all t ≥ 1 and all vi , v j ∈ V . Then lims→∞ dts = d where d : E(Kn) → R

by d(viv j ) = di, j . Since qt : V → R
3 we have (−1)|U | det C M(U, dt |U ) ≥ 0

for all U ⊂ V with |U | = 3, 4 by Theorem 8. Hence (−1)|U | det C M(U, d|U ) =
lims→∞(−1)|U | det C M(U, dts |U ) ≥ 0 when |U | = 3, 4. Furthermore, the facts
that the maximum curvature at a point on C decreases to zero as the point moves
away from the origin and ‖q(vi ) − q(v j )‖2 < K for all vi , v j ∈ V imply that
the volume of the tetrahedron induced by qt (U ) will converge to zero as t → ∞.
The remark immediately after Theorem 8 now implies that det C M(U, d|U ) =
lims→∞ det C M(U, dts |U ) = 0 for all U ⊂ V with |U | = 4. Theorem 8 now gives
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us a map q : V → R
2 such that ‖q(vi ) − q(v j )‖2 = di, j for all 1 ≤ i < j ≤ n.

We can use the isometries of R
2 to move (Kn, q) so that the first three coordinates of

q are zero. Since each di, j is a polynomial in the components of q, this implies that
td [Q(d) : Q] ≤ 2n − 3. On the other hand, Lemma 7 and the facts that (G, p) is
generic on the cone and rank d FG |p = 3n − 2 imply that td [Q(dG) : Q] ≥ 2n − 2,
where dG = {‖p(vi ) − p(v j )‖2 : viv j ∈ E}. This gives a contradiction since we
have di, j = di, j,t = ‖p(vi ) − p(v j )‖2 for all t ≥ 1 and all viv j ∈ E , and hence
Q(dG) ⊆ Q(d). 
�
Lemma 16 Let (G, p) be generic framework on S with rank d FG |p = 3n − (� + 1).
Then C(G, p) is a compact subset of R

3n and q(v) �= (0, 0, 0) for all q ∈ C(G, p)

and v ∈ V .

Proof We first show that C(G, p) is closed. Let p1, p2, . . . be a sequence of points
in C(G, p) which converge to a limit point p ∈ R

3n . Then (G, p1), (G, p2), . . . is a
sequence of frameworks in standard position on S which are equivalent to (G, p) and
converge to a limit (G, q). It is easy to see that (G, q) will be in standard position on
S and equivalent to (G, p). Hence q ∈ C(G, p).

We next verify boundedness. When S = E or S, this follows from the fact
C(G, p) ⊂ S and S is bounded. When S = Y or S = C(r) with r �= (r1, r1, . . . , r1),
it follows from the facts that G is connected (by Theorem 4) and that (G, q) is in
standard position on S and equivalent to (G, p0) for all q ∈ C(G, p). Boundedness
follows when S = C(1) by Lemma 15.

It remains to show that q(v) �= (0, 0, 0) for all q ∈ C(G, p) and v ∈ V . This is
trivial when S �= C, so we can assume that S = C. In this case Lemma 7 implies that
td [Q(r, fG(q)) : Q(r)] ≥ 2n − 2 for all q ∈ C(G, p) and hence q(v) �= (0, 0, 0) for
all v ∈ V . 
�

9 Global Rigidity

We can now show that the known necessary conditions for global rigidity in R
d given

in Theorem 1 have natural analogues for generic frameworks on surfaces. First we
consider k-connectivity.

Proposition 1 Let (G, p) be a generic globally rigid framework on S with at least
four vertices. Then G is k-connected where k = 3 if S = S, k = 2 if S ∈ {Y, C} and
k = 1 if S = E .

Proof Assume G is not k-connected. Then we have G = G1 ∪ G2 for subgraphs
Gi = (Vi , Ei ) with |V1 ∩ V2| ≤ k − 1. Let p1 = p|V1 and p2 = p|V2 . Let (G, q) be
obtained from (G, p) by reflecting (G2, p2) in a plane which contains p(V1 ∩ V2) and
also contains: the origin when S = S; the z-axis when S ∈ {Y, C}; the y- and z-axes
when S = E . Then (G, q) is a framework on S and is equivalent but not congruent to
(G, p). 
�

We next consider redundant rigidity.
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Theorem 9 Suppose (G, p0) is quasi-generic and globally rigid on S and n ≥ 7 − �.
Then (G, p0) is redundantly rigid on S.

Proof Without loss of generality we may assume that (G, p0) is in standard position.
Since (G, p0) is globally rigid, it is rigid. Suppose, for a contradiction, that (G, p0) is
not redundantly rigid. Choose e ∈ E such that (G−e, p0) is not rigid. Since n ≥ 7−�,
we have rank d f[G](p) = 2n−� and rank d f[G−e](p) = 2n−�−1. Hence, by Lemma
12, C(G − e, p0) = f −1

[G−e]( f[G−e](p0)) is a one dimensional submanifold of M.
Let O be the component of C(G − e, p0) which contains p0. Lemma 16 and

the classification of one dimensional manifolds tells us that O is diffeomorphic to
a circle. For any q ∈ M, we consider the framework (G, q) and define the map
fe : M → R by fe(q) = ‖q(u) − q(v)‖2, where e = uv. Then f[G] = ( fe, f[G−e]).
Let f[e] = fe|C(G−e,p0).

By Lemma 11, f[G−e](p0) is a regular value of f[G−e]. Since C(G − e, p0) =
f −1
[G−e]( f[G−e](p0)), Lemma 3 gives

rank d f[e]|p0 = rank d f[G]|p0 − rank d f[G−e]|p0 = 2n − � − (2n − (� + 1)) = 1.

Hence p0 is not a critical point of f[e], and there exists q1, q2 ∈ O with fe(q1) <

fe(p0) < fe(q2). There are two paths in O between q1 and q2, so by the Intermediate
Value Theorem there exists a p1 ∈ O with p1 �= p0 and fe(p1) = fe(p0). Then
(G, p0) is equivalent to (G, p1). We may assign an orientation to O and suppose that
p1 has been chosen such that p1 is as close to p0 as possible when we traverse O in the
forward direction. If (G, p0) is not congruent to (G, p1) we are done so we may assume
that (G, p0) is congruent to (G, p1). Then Lemma 14 implies there is an isometry ι of
S such that ι(p0) = p1. Since (G, p0) and (G, p1) are both in standard position with
respect to v1, ι is a discrete isometry of S; i.e. ι is a composition of reflections of S in
some planes. Given any point p ∈ O, let p−1 = ι(p). Let α : [0, 1] → O be a path
in O from p0 to p1, and put pt = α(t) for all t ∈ [0, 1]. Define α−1 : [0, 1] → O by
α−1(t) = p−1

t . Then α−1 is a path in O from p1 to p0.
First suppose that α and α−1 have different images in O. Then α and α−1 cover

O. Without loss of generality suppose that fe increases as we pass through p0 in
the forward direction. Then fe also increases as we pass through p1 in the forward
direction. Hence there exists t1, t2 with 0 < t1 < t2 < 1 such that fe(pt1) > fe(p0)

and fe(pt2) < fe(p1) = fe(p0). By the Intermediate Value Theorem, there exists
t3 ∈ [t1, t2] with fe(pt3) = fe(p0). Then (G, pt3) is equivalent to (G, p0) and pt3
contradicts the choice of p1.

Now suppose α and α−1 have the same image in O. Then α and α−1 traverse the
same segment of O in opposite directions. Call the direction from p0 to p1 forward.
By the Intermediate Value Theorem there exists t ∈ [0, 1] such that α(t) = α−1(t).
Putting α(t) = pt we have p−1

t = pt . We will show that this contradicts the fact that
(G, p0) is quasi-generic. Consider the following cases.
Case 1: S = S. Then ι is the unique reflection in the plane x = 0. Thus, for any
realisation (G, p), if p(vi ) = (xi , yi , zi ) we have p−1(vi ) = (−xi , yi , zi ). Since
pt (vi ) = p−1

t (vi ) we have pt (vi ) = (0, yi , zi ) for all vi ∈ V . Since pt (v1) =
(0, y1, 0) and x2

i + y2
i + z2

i = ri for all 2 ≤ i ≤ n this gives td [Q(r, pt ) : Q(r)] ≤
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n − 1. But fG−e(pt ) = fG−e(p0) and td [Q(r, fG(p0)) : Q(r)] = 2n − 3, hence
td [Q(r, f[G−e](pt )) : Q(r)] = 2n − 4, which gives a contradiction.
Case 2: S = Y . Then ι is a composition of reflections in the plane z = 0 and the plane
through (0, 1, 0) and the z-axis.

We first consider the subcase where ι is the reflection in the z = 0 plane. Then,
for any realisation (G, p), if p(vi ) = (xi , yi , zi ) we have p−1(vi ) = (xi , yi ,−zi ).
Since pt (vi ) = p−1

t (vi ) we have pt (vi ) = (xi , yi , 0) for all vi ∈ V . Since pt (v1) =
(0, y1, 0) and x2

i + y2
i = ri for all 2 ≤ i ≤ n this gives td [Q(r, pt ) : Q(r)] ≤

n − 1. But fG−e(pt ) = fG−e(p0) and td [Q(r, fG(p0)) : Q(r)] = 2n − 2, hence
td [Q(r, f[G−e](pt )) : Q(r)] = 2n − 3, which gives a contradiction.

Now consider the subcase where ι is the reflection in the plane through (0, y1, 0) and
the z-axis. Then, for any realisation (G, p), if p(vi ) = (xi , yi , zi ) we have p−1(vi ) =
(−xi , yi , zi ). Since pt (vi ) = p−1

t (vi ) we have pt (vi ) = (0, yi , zi ) for all vi ∈ V .
As before we have td [Q(r, pt ) : Q(r)] ≤ n − 1. But td [Q(r, f[G−e](pt )) : Q(r)] =
2n − 3, which gives a contradiction.

Finally consider the subcase where ι is the composition of the reflection in the
z = 0 plane and in the plane through (0, y1, 0) and the z-axis. Recall that reflections
generate a group, in this case Z2 × Z2, so this is indeed the last case. Then, for any
realisation (G, p), if p(vi ) = (xi , yi , zi ) we have p−1(vi ) = (−xi , yi ,−zi ). Since
pt (vi ) = p−1

t (vi ) we have pt (vi ) = (0, yi , 0) for all vi ∈ V . Since x2
i + y2

i = r2
i

we have td [Q(r, pt ) : Q(r)] = 0. But td [Q(r, f[G−e](pt )) : Q(r)] = 2n − 3, which
gives a contradiction.
Case 3: S = C. Then ι is the reflection in the plane through (0, y1, z1) and the z-
axis. Then, for any realisation (G, p), if p(vi ) = (xi , yi , zi ) we have p−1(vi ) =
(−xi , yi , zi ). Since pt (vi ) = p−1

t (vi ) we have pt (vi ) = (0, yi , zi ) for all vi ∈ V .
Hence td [Q(r, pt ) : Q(r)] ≤ n−1. But td [Q(r, f[G−e](pt )) : Q(r)] = 2n−2, which
gives a contradiction.
Case 4: S = E . Then ι is a composition of reflections in the plane x = 0, the plane
y = 0 and the plane z = 0. First consider the subcase when ι is the reflection in
the plane x = 0. Then, for any realisation (G, p), if p(vi ) = (xi , yi , zi ), we have
p−1(vi ) = (−xi , yi , zi ). Since pt (vi ) = p−1

t (vi ) we have pt (vi ) = (0, yi , zi ) for all
vi ∈ V . Hence td [Q(pt ) : Q] ≤ n. But td [Q(r, f[G−e](pt )) : Q(r)] = 2n − 1, which
gives a contradiction. The other subcases follow similarly. 
�

The necessary conditions for global rigidity given in Proposition 1 and Theorem
9 are independent since, for each S ∈ {S,Y, C, E}, there are examples of generic
frameworks (G, p) on S such that G is k-connected for k as in Proposition 1, but
(G, p) is not redundantly rigid, and examples such that (G, p) is redundantly rigid
but not k-connected.

10 Concluding Remarks

1. Theorem 2 and the result of Connelly and Whiteley [5] that generic global rigidity
in R

2 and the sphere are equivalent, show that the necessary conditions for generic
global rigidity given in Proposition 1 and Theorem 9 are sufficient for the sphere.
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We conjecture that they are also sufficient for (concentric families of) cylinders
and cones.

Conjecture 1 Let (G, p) be a generic framework on S where S ∈ {Y, C}. Then (G, p)

is globally rigid on S if and only if either G is a complete graph on at most four vertices
or G is 2-connected and (G, p) is redundantly rigid.

There is some hope that the special case of Conjecture 1 when S = Y(r) and
td [Q(r) : Q] = n will be resolved in the near future. The third author gives a recursive
construction for 2-connected graphs with 2n − 1 edges which are redundantly rigid
on Y in [14], and we are currently extending this construction to all 2-connected
redundantly rigid graphs. In addition, the first and third authors [10] have shown that
the main operation used in these recursive constructions, the so called Henneberg type
2 operation, preserves generic global rigidity on Y(r) when td [Q(r) : Q] = n.

We know of no examples for which the necessary conditions given in Proposition
1 and Theorem 9 fail to be sufficient to imply generic global rigidity on the ellipsoid.
On the other hand we do not even know how to characterise generic rigidity for the
ellipsoid.

2. If true, Conjecture 1 would give a polynomial algorithm to check generic global
rigidity on the cylinder and cone: redundant rigidity can be checked in polynomial
time, see for example [2] or [12], as can 2-connectivity, see [18].

3. The methods in this paper can be adapted to prove analogues of Theorem 9 for a
number of other surfaces including tori, elliptical cylinders and elliptical cones.
It is conceivable that the methods will apply to any irreducible 2-dimensional
algebraic variety embedded in R

3.
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