
Discrete Comput Geom (2014) 52:390–398
DOI 10.1007/s00454-014-9613-6

A New Topological Helly Theorem and Some
Transversal Results

Luis Montejano

Received: 9 January 2014 / Revised: 31 March 2014 / Accepted: 5 July 2014 /
Published online: 6 August 2014
© Springer Science+Business Media New York 2014

Abstract We prove that for a topological space X with the property that H∗(U ) = 0
for ∗ ≥ d and every open subset U of X , a finite family of open sets in X has nonempty
intersection if for any subfamily of size j, 1 ≤ j ≤ d + 1, the (d − j)-dimensional
homology group of its intersection is zero. We use this theorem to prove new results
concerning transversal affine planes to families of convex sets.
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1 Introduction and Preliminaries

A prominent role in combinatorial geometry is played by the Helly Theorem [7], which
states that a finite family of convex sets in R

d has nonempty intersection if and only if
any subfamily of size at most d + 1 has nonempty intersection. Helly himself realized
in 1930 (see [9]) that a finite family of sets in R

d has nonempty intersection if for
any subfamily of size at most d + 1, its intersection is homeomorphic to a ball in R

d .
In fact, the result is true if we replace the notion of topological ball by the notion of
acyclic set, see [3,10]. In 1970, Debrunner [8] proved that a finite family of open sets
in R

d has nonempty intersection if for any subfamily of size j, 1 ≤ j ≤ d + 1, its
intersection is (d − j)-acyclic. In fact, these hypothesis imply that each one the open
sets are acyclic.
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Unlike all previous topological Helly results in the literature, where the ambient
space is the euclidean space and the sets are acyclic, we only require as an ambient
space a topological space X in which H∗(U ) = 0 for ∗ ≥ d and for any subfamily of
size j of our sets, the (d − j)-dimensional homology group of its intersection to be
zero.

The fact that this is a non-expensive topological Helly theorem—in the sense that
it does not require the open sets to be simple—from the homotopy point of view
(we only require its (d − 1)-dimensional homology group to be zero), allows us
to prove interesting new results concerning transversal planes to families of convex
sets.

Throughout this paper we use reduced singular homology with any nonzero coef-
ficient group. Let U be a topological space. We say that H−1(U ) = 0 if and only if U
is nonempty and we say that U is connected if and only if H0(U ) = 0. For q = −1
and q = 0, the exactness of the Mayer–Vietoris sequence should be understood as the
statement that if Hq(U ) occurs there between two vanishing terms, then Hq(U ) = 0.

For an integer n ≥ −1, we say that U is n-acyclic if H∗(U ) = 0 for −1 ≤ ∗ ≤ n.

Furthermore, U is acyclic if H∗(U ) = 0 for ∗ ≥ −1.

2 A Topological Helly-Type Theorem

We start with the following auxiliary proposition.

Proposition A(m,λ). Let F = {A1, . . . , Am} be a family of open subsets of a topolog-
ical space X and let λ ≥ 0 be an integer. Suppose that for any subfamily F

′ ⊂ F of
size j, 1 ≤ j ≤ m,

Hm−1− j+λ

(⋂
F

′) = 0.

Then

Hm−2+λ

( ⋃
F

) = 0.

Proof Proposition A(2,0) claims that the union of two connected sets with nonempty
intersection is a connected set, and Proposition A(2,λ) is just the statement of the
exactness of the Mayer–Vietoris sequence: 0 = Hλ(A1)⊕Hλ(A2) → Hλ(A1∪A2) →
Hλ−1(A1 ∩ A2) = 0.

The proof is by induction on m. In fact, we shall prove that Proposition A(m,λ)

together with Proposition A(m,λ+1) implies Proposition A(m+1,λ).

Suppose F = {A0, . . . , Am} is a finite collection of m + 1 open subsets of X such
that for 1 ≤ j ≤ m+1 and any subfamily F

′ ⊂ F of size j, Hm− j+λ

(⋂
F

′) = 0. We
will prove that Hm−1+λ

(⋃
F

) = 0. Let us first prove, using Proposition A(m,λ+1), that

Hm−2+λ(A1∪· · ·∪ Am) = 0. This is so because for any subfamily F
′ ⊂ {A1, . . . , Am}

of size j, 1 ≤ j ≤ m, we have Hm−1− j+(λ+1)

(⋂
F

′) = 0.
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Let us consider the Mayer–Vietoris exact sequence of the pair ((A1∪· · ·∪Am), A0) :

0 = Hm−1+λ(A0) ⊕ Hm−1+λ(A1 ∪ · · · ∪ Am) → Hm−1+λ

( ⋃
F

)

→ Hm−2+λ(A0 ∩ (A1 ∪ · · · ∪ Am)) = 0.

Since by hypothesis, Hm−1+λ(A0) = 0, in order to conclude the proof of Propo-
sition A(m+1,λ) it is sufficient to prove that Hm−2+λ(A0 ∩ (A1 ∪ · · · ∪ Am)) = 0.

For that purpose, let G = {B1, . . . , Bm} be the family of open subsets of X given
by Bi = A0 ∩ Ai , 1 ≤ i ≤ m. Note that for any subfamily G

′ ⊂ G of size
j, 1 ≤ j ≤ m, Hm−1− j+λ

( ⋂
G

′) = 0. This is so because the homology group

Hm−1− j+λ

( ⋂
G

′) = Hm−( j+1)+λ

( ⋂
F

′) = 0, where F
′

is the corresponding sub-
family of F of size j + 1. Then by Proposition A(m,λ), 0 = Hm−2+λ

( ⋃
G

) =
Hm−2+λ(A0 ∩ (A1 ∪ · · · ∪ Am)). This completes the proof. ��

We now give the Topological Berge’s Theorem. See [1].

Theorem B(m,λ) Let F = {A1, . . . , Am} be a family of open subsets of a topological
space X and let λ ≥ 0 be an integer. Suppose that

(a) Hm−2+λ

( ⋃
F

) = 0;
(b) for 1 ≤ j ≤ m − 1 and any subfamily F

′ ⊂ F of size j,

Hm−2− j+λ

(⋂
F

′) = 0.

Then

Hλ−1
(⋂

F
) = 0.

Proof The proof is by induction. Theorem B(2,0) claims that two nonempty open sets
whose union is connected must have a point in common and Theorem B(2,λ) is just
the statement of the exactness of the Mayer–Vietoris sequence: 0 = Hλ(A1 ∪ A2) →
Hλ−1(A1 ∩ A2) → Hλ−1(A1) ⊕ Hλ−1(A2) = 0.

Let us prove that Theorem B(m,λ) implies Theorem B(m+1,λ). Let
F = {A0, A1, . . . , Am} as in Theorem B(m+1,λ). That is, Hm−1+λ

( ⋃
F

) = 0 and

for 1 ≤ j ≤ m and any subfamily F
′ ⊂ F of size j we have Hm−1− j+λ

(⋂
F

′) = 0.
Let G = {B1, . . . , Bm}, where Bi = A0 ∩ Ai , 1 ≤ i ≤ m. In order to prove
that Hλ−1

(⋂
F

) = Hλ−1
( ⋂

G
) = 0, it is enough to show that the family

G = {B1, . . . , Bm} satisfies properties (a) and (b) of Theorem B(m,λ).

Proof of (a) We need to prove that Hm−2+λ(A0 ∩ (A1 ∪ · · · ∪ Am−1)) =
Hm−2+λ

(⋃
G

) = 0. Note that Hm−1+λ

( ⋃
F

) = 0 and Hm−2+λ(A0) = 0.

Furthermore, by Proposition A(m,λ), for the family {A1, . . . , Am}, we have that
Hm−2+λ(A1 ∪ · · · ∪ Am) = 0. Thus the conclusion follows from the Mayer–Vietoris
exact sequence of the pair (A0, (A1 ∪ · · · ∪ Am));

0 = Hm−1+λ(A0 ∪ · · · ∪ Am) → Hm−2+λ(A0 ∩ (A1 ∪ · · · ∪ Am))

→ Hm−2+λ(A0) ⊕ Hm−2+λ(A1 ∪ · · · ∪ Am) = 0.
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Proof of (b) For 1 ≤ j ≤ m − 1 and any subfamily G
′ ⊂ G of size j,

⋂
G

′ = ⋂
F

′
,

where F
′ ⊂ F has size j +1. Thus Hm−1−( j+1)+λ

( ⋂
F

′) = Hm−2− j+λ

( ⋂
G

′) = 0.

This completes the proof of Theorem B(m+1,λ). ��
We now state our main theorem.

Topological Helly Theorem Let F be a finite family of open subsets of a topological
space X. Let d > 0 be and integer such that Hi (U ) = 0 for i ≥ d and every open
subset U of X.

Suppose that

Hd− j
( ⋂

F
′) = 0

for any subfamily F
′ ⊂ F of size j, 1 ≤ j ≤ d + 1. Then

⋂
F = ∅.

Furthermore,
⋂

F is acyclic.

Proof Suppose the size of F is m. Take an integer 3 ≤ n ≤ m + 1. Using Theorem
B(n−1−λ,λ), from λ = 0 up to λ = n − 3, we can prove the following:

Claim Cn . Suppose that for every 1 ≤ j ≤ n −1 and any subfamily F
′ ⊂ F of size j,

Hn−3
(⋃

F
′) = 0, and

for every 1 ≤ j ≤ n − 2 and any subfamily F
′ ⊂ F of size j,

Hn− j−3
( ⋂

F
′) = 0.

Then for every 1 ≤ j ≤ n − 1 and any subfamily F
′ ⊂ F of size j,

Hn− j−2
( ⋂

F
′) = 0.

Assume now H∗(U ) = 0 for every ∗ ≥ d and every open U ⊂ X and suppose that
d ≤ n − 3. By repeating the use of Claim Cn, from n = d + 3 up to n = m + 1, we
obtain that

⋂
F = ∅.

Arguing as above and using Theorem B(m−1−λ,λ), from λ = 0 up to λ = m −3, we
obtain that H0

(⋂
F

) = 0. The conclusion of acyclicity can be achieved by repeating
the use of Theorem B(n,λ), 2 ≤ n ≤ m − 1, 1 ≤ λ ≤ m − 3. Note that in the case
m = d +2, our argument does not produce Hd−1

(⋂
F

) = 0 , so we need to continue
to λ = m − 2. This concludes the proof of our main theorem. ��

For completeness, we include here a Topological Breen’s Theorem.
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Theorem �m . Let F = {A1, . . . , Am} be a family of open subsets of a topological
space X. Suppose that for 1 ≤ j ≤ m and any subfamily F

′ ⊂ F of size j,

Hj−2
(⋃

F
′) = 0.

Then
⋂

F = ∅.

Proof The proof is by induction. Theorem �2 claims that two nonempty open sets
whose union is connected must have a point in common. Suppose Theorem �m is
true and let F = {A0, A1, . . . , Am} be a family of open subsets of X such that for
1 ≤ j ≤ m and any subfamily F

′ ⊂ F of size j, Hj−2
( ⋃

F
′) = 0.

Let us prove first that for any subfamily F
′ ⊂ {A2, . . . , Am} of size j, 0 ≤ j ≤

m − 1,

Hj−1
(
(A0 ∩ A1) ∪

⋃
F

′) = 0.

To do so, simply consider the Mayer–Vietoris exact sequence of the pair
(

A0 ∪
⋃

F
′
, A1 ∪ ⋃

F
′):

0 = Hj
(

A0 ∪ A1 ∪
⋃

F
′) → Hj−1

(
(A0 ∩ A1) ∪

⋃
F

′)

→ Hj−1
(

A0 ∪
⋃

F
′) ⊕ Hj−1

(
A1 ∪

⋃
F

′) = 0.

This implies that the family {A0∩A1, A2, . . . , Am} satisfies the hypothesis of Theorem
�m, and therefore by induction that A0 ∩ A1 ∩ · · · ∩ Am = ∅. This completes the
proof of this theorem. ��

As an immediate consequence, we have the following theorem:

Topological Breen Theorem Let F be a finite family of open subsets of a topological
space X. Let d > 0 be and integer such that H∗(U ) = 0 for ∗ ≥ d and every open
subset U of X.

Suppose that

Hj−2
( ⋃

F
′) = 0

for 1 ≤ j ≤ d + 1 and any subfamily F
′ ⊂ F of size j. Then

⋂
F = ∅.

Remark The corresponding theorems for Čech cohomology groups are also true. Fur-
thermore, the theorems in this section are true for a class of sets Ai in which the
Mayer–Vietoris sequence of the pair (A0, (A1 ∪ · · · ∪ Am)) is exact. For example,
when X is a polyhedron and every Ai ⊂ X is a subpolyhedron.
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3 Transversal Theorems

3.1 Preliminary Lemmas

We start with some notation.
Let G(n, d), be the Grassmannian space of all n -planes in R

d through the origin and let
M(n, d) be the space of all affine n-planes in R

d as an open subset of G(n +1, d +1).

Let F be a collection of nonempty convex sets in euclidean d-space R
d and let

0 ≤ n < d be an integer. We denote by Tn(F) ⊂ G(n, d) the topological space of
all n-planes in R

d transversals to F ; that is, the space of n-planes that intersect all
members of F . We say that F is separated if for every 2 ≤ n ≤ d and every subfamily
F

′ ⊂ F of size n, there is no (n − 2)-plane transversal to F
′
.

Let F = {A1, . . . , An} be a collection of closed subsets of a metric space X and
let ε > 0 be a real number. We denote by Fε = {A1

ε, . . . , An
ε } the collection of open

subsets of X , where Aε denotes the open ε-neighborhood of A ⊂ X.

Lemma 3.1 Let A be a nonempty convex set in R
d and let 1 ≤ n < d. Then Tn({A})

is homotopically equivalent to G(n, d), the Grassmannian space of all n-planes in
R

d through the origin.

Proof Let ϒ : Tn({A}) → G(n, d) be given as follows: for every H ∈
Tn({A}), let ϒ(H) be the unique n-plane through the origin parallel to H . Then if
� ∈ G(n, d), ϒ−1(�) is homeomorphic to π(A), where π : R

d → �⊥ is the
orthogonal projection and �⊥ ∈ G(d − n, d) is orthogonal to �. Since ϒ has con-
tractible fibers, it is a homotopy equivalence. ��
Lemma 3.2 Let F = {A1, A2, . . . , An} be a separated family of nonempty convex sets
in R

d , 2 ≤ n ≤ d, and let n ≤ m ≤ d be an integer. Then Tm−1(F) is homotopically
equivalent to G(m − n, d − n + 1).

Proof We start by proving that Tn−1(F) is contractible. For this purpose let � :
A1 × · · · × An → Tn−1(F) given by �((a1, . . . , an)) be equal to the unique (n − 1)-
plane in R

d through {a1, . . . , an}, for every (a1, . . . , an) ∈ A1 ×· · ·× An . Note that �
is well defined because F is a separated family of sets. Furthermore, if H ∈ Tn−1(F),

then �−1(H) = (H ∩ A1) × · · · × (H ∩ An) is contractible. This implies that � is a
homotopy equivalence and hence that Tn−1(F) is contractible.

Let E = {(H, �) | H is a (n − 1)-plane of R
d , � is a (m − 1)-plane of R

d and
H ⊂ �}. Then γ : E → M(n − 1, d), given by the projection in the first coordinate,
is a classical fiber bundle with fiber G(m − n, d − n + 1). Now let Y = {(H, �) ∈
Tn−1(F) × Tm−1(F) | H ⊂ �}. Clearly, the restriction γ |: Y → Tn−1(F) is a fiber
bundle with fiber G(m −n, d −n +1) and contractible base space Tn−1(F). Therefore
γ |: Y → Tn−1(F) is a trivial fiber bundle and hence Y is homotopically equivalent
to G(m − n, d − n + 1).

Consider now the projection π : Y → Tm−1(F). Note that for every � ∈ Tm−1(F),

the fiber π−1(�) is equal to Tn−1({A1 ∩�, . . . , An ∩�}). By the first part of this proof,
the fibers of π are contractible, hence π is a homotopy equivalence and Tm−1(F) is
homotopically equivalent to G(m − n, d − n + 1). ��
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Lemma 3.3 Let A, B, and C be three nonempty convex sets in R
d such that A∩B = ∅.

Then

H1(T1({A, B, C})) = 0.

Proof Since A ∩ B ∩ C = ∅, by Theorem 3 of [4], T1({A, B, C}) has the homotopy
type of the space C1({A, B, C}) ⊂ C1

2 of all affine configurations of three points in
the line, achieved by transversal lines to {A, B, C}. Note now that the space of affine
configuration of three points in a line,C1

2 , is S
1 and note further that since A∩B = ∅, the

space of all affine configurations of three points in the line achieved by transversal lines
to {A, B, C} is a subset S

1 − {∞}, where ∞ ∈ S
1 is the affine configuration in which

the first and the second points coincide. This implies that H1(T1({A, B, C})) = 0. ��
Lemma 3.4 Let F = {A1, . . . , Ad+1} be a separated family of closed convex sets in
R

d . Suppose that H0(Td−1(F)) = 0. Then there is ε0 > 0 with the property that if
0 < ε < ε0, then H0(Td−1(Fε)) = 0.

Proof By Theorem 1 of [4], the space of transversals Td−1(F) of a separated family of
convex sets in R

d has finitely many components and each one of them is contractible.
In fact, each component corresponds precisely to a possible order type, of d −1 points
in affine (d−1)-space, achieved by the transversal hyperplanes when they intersect the
family F . In our case, since H0(Td−1(F)) = 0, we have that Td−1(F) is contractible
and that the transversal hyperplanes intersect the family F consistently with a precise
order type 
.

Suppose now the lemma is not true, then there exist an order type 
0, different from

, and a collection of hyperplanes Hi that intersect Fεi consistently with the order
type 
0. Since we may assume that {εi } → 0 and {Hi } → H, where H is a transversal
hyperplane to F consistently with the order type 
0, we have a contradiction. ��

3.2 Transversal Lines in the Plane

A family of sets is called semipairwise disjoint if, given any three elements of F , two
of them are disjoint.

Theorem 3.1 Let F be a semipairwise disjoint family of at least 6 open convex sets
in R

2. Suppose that for every subfamily F
′ ⊂ F of size 5, T1(F

′
) = ∅ and for every

subfamily F
′ ⊂ F of size 4, T1(F

′
) is connected. Then T1(F) = ∅.

Proof Let X be the space of all lines in R
2. Hence H∗(U ) = 0 for ∗ ≥ 2 and every

open subset U ⊂ X . We are interested in applied the Topological Helly Theorem when
d = 4. Note first that H3(T1({A}) = 0 for every A ∈ F, and H2(T1({A, B}) = 0
for A = B ∈ F. By Lemma 3.3 and the fact that F is semipairwise disjoint, we
have that H1(T1(F

′
)) = 0, for any subfamily F

′ ⊂ F of size 3. By hypothesis,
H0(T1({F

′ }) = 0, for any subfamily F
′ ⊂ F of size 4, and H−1(T1({F

′ }) = 0, for
any subfamily F

′ ⊂ F of size 5. This implies, by the Topological Helly Theorem, that
T1(F) is nonempty. ��

123



Discrete Comput Geom (2014) 52:390–398 397

3.3 Transversal Lines in 3-Space

In this section we study transversal lines to families of convex sets in R
3.

Theorem 3.2 Let F be a pairwise disjoint family of at least 6 open, convex sets in R
3.

Suppose that for any subfamily F
′ ⊂ F of size 5, T1(F

′
) = ∅, and for any subfamily

F
′ ⊂ F of size 4, T1(F

′
) is connected. Then, T1(F) = ∅.

Proof Let X be the space of all lines in R
3, hence X is an open 4-dimensional manifold

and therefore H∗(U ) = 0 for ∗ ≥ 4 and every open subset U ⊂ X . We are interested in
applied the Topological Helly Theorem for d = 4. By Lemma 3.1, H3(T1({A}) = 0,

for every A ∈ F, since T1({A}) has the homotopy type of G(1, 3) = RP
2. By Lemma

3.2, H2(T1({A, B})) = 0, for every A = B ∈ F. By Lemma 3.3 and the fact that
F is pairwise disjoint, we have that H1(T1(F

′
)) = 0, for any subfamily F

′ ⊂ F
of size 3. By hypothesis, H0(T1({F

′ }) = 0, for any subfamily F
′ ⊂ F of size 4,

and H−1(T1({F
′ }) = 0, for any subfamily F

′ ⊂ F of size 5. This implies, by the
Topological Helly Theorem, that T1(F) is nonempty. ��

3.4 Transversal Hyperplanes

This section is devoted to stating and proving a theorem concerning transversal hyper-
planes to families of separated convex sets in d-space.

Theorem 3.3 Let F be a separated family of at least d + 3 closed, convex sets in R
d .

Suppose that for any subfamily F
′ ⊂ F of size d + 2, Td−1(F

′
) = ∅ and for any

subfamily F
′ ⊂ F of size d + 1, Td−1(F

′
) is connected. Then Td−1(F) = ∅.

Proof Let us first prove the theorem for a separated family of open convex sets. We
are going to use the Topological Helly Theorem. Let X be the space of all hyperplanes
of R

d . Note that H∗(U ) = 0 for ∗ ≥ d and every open subset U ⊂ X. In particular,
H∗(U ) = 0 for every ∗ ≥ d + 1.

By Lemma 3.2, for every subfamily F
′ ⊂ F of size j, 1 ≤ j ≤ d, Td−1(F

′
) is

homotopically equivalent to G(d − j, d − j + 1) and hence Hd− j+1(Td−1(F
′
)) =

Hd− j+1
( ⋂{Td−1({A}) | A ∈ F

′ }) = 0. Furthermore, by hypothesis, the same is true
for j = d + 1 and j = d + 2. Consequently, by our Topological Helly Theorem,
Td−1(F) = ∅.

By Lemma 3.4, there is ε > 0, such that Fε is a separated family of open, convex
sets in R

d and for any subfamily F
′
ε ⊂ Fε of size d +1, Td−1(F

′
ε) is connected. By the

above, this implies that Td−1(Fε)) = ∅. Hence, by completeness of the Grassmannian
spaces, Td−1(F) = ∅. ��
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