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Abstract Let R be a real closed field and D ⊂ R an ordered domain. We describe
an algorithm that given as input a polynomial P ∈ D[X1, . . . , Xk] and a finite set,
A = {p1, . . . , pm}, of points contained in V = Zer(P, Rk) described by real uni-
variate representations, computes a roadmap of V containing A. The complexity of
the algorithm, measured by the number of arithmetic operations in D, is bounded

by
( ∑m

i=1 DO(log2(k))

i + 1
)
(klog(k)d)O(k log2(k)), where d = deg(P) and Di is the

degree of the real univariate representation describing the point pi . The best pre-
vious algorithm for this problem had complexity card (A)O(1)d O(k3/2) (Basu et al.,
ArXiv, 2012), where it is assumed that the degrees of the polynomials appearing in
the representations of the points in A are bounded by d O(k). As an application of our
result we prove that for any real algebraic subset V of R

k defined by a polynomial
of degree d, any connected component C of V contained in the unit ball, and any
two points of C , there exists a semi-algebraic path connecting them in C , of length at
most (klog(k)d)O(k log(k)), consisting of at most (klog(k)d)O(k log(k)) curve segments of
degrees bounded by (klog(k)d)O(k log(k)). While it was known previously, by a result
of D’Acunto and Kurdyka (Bull Lond Math Soc 38(6):951–965, 2006), that there
always exists a path of length (O(d))k−1 connecting two such points, there was no
upper bound on the complexity of such a path.
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1 Introduction

Let R be a fixed real closed field and D ⊂ R an ordered domain. We will denote by C
the algebraic closure of R. We consider in this paper the algorithmic problem of given
a polynomial P ∈ D[X1, . . . , Xk], determining the number of semi-algebraically
connected components of the set, Zer(P, Rk), of zeros of P in Rk . Moreover, given
two points x, y ∈ Zer(P, Rk), described by real univariate representations (see below
for precise definition), we would like to decide if x, y belong to the same semi-
algebraically connected component of Zer(P, Rk), and if so, to compute a semi-
algebraic path with image contained in Zer(P, Rk), connecting them. We measure the
complexity of an algorithm by the number of arithmetic operations performed in the
ring D.

The problem of designing an efficient algorithm for solving the problem described
in the previous paragraph is very well studied in algorithmic semi-algebraic geometry.
It follows from Collins’ algorithm [6] for computing cylindrical algebraic decompo-
sition [6] that this problem can be solved with complexity d2O(k)

, where d = deg(P)

[20]. Notice that this complexity is doubly exponential in k. Singly exponential algo-
rithms for solving this problem were introduced by Canny in [5], and successively
completed and refined in [1,10–14,22], the best complexity bound being d O(k2) [1].
However, these results remained unsatisfactory from the complexity point of view for
the following reason. It is a classical result due to Oleı̆nik and Petrovskiı̆ [17], Thom
[21] and Milnor[16] that the number of semi-algebraically connected components of
a real algebraic variety in Rk defined by polynomials of degree at most d (in fact, the
sum of all the Betti numbers of the variety) is bounded by d(2d − 1)k−1 = O(d)k .
Indeed, the Morse-theoretic proof of this fact had inspired the so called “critical point”
method, that is at the base of many algorithms in semi-algebraic geometry. The best
algorithms using the critical point method often have complexity d O(k) when applied
to real algebraic varieties in Rk defined by polynomials of degree d. It is the case
for testing emptiness, computing at least one point in every connected component,
optimizing a polynomial and computing the Euler–Poincaré characteristic (see for
example [2]). In contrast, for counting the number of semi-algebraically connected
components and computing semi-algebraic paths, the best complexity bound remained
d O(k2).

All known singly exponential algorithms for deciding connectivity of a semi-
algebraic set S rely on computing a certain one dimensional semi-algebraic subset,
which is referred to as a roadmap of S. The definition of a roadmap of an arbitrary
semi-algebraic set S (not just a real variety) is as follows.

Definition 1.1 A roadmap for S is a semi-algebraic set M of dimension at most one
contained in S such that M satisfies the following conditions:
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• RM1 For every semi-algebraically connected component D of S, D ∩ M is non-
empty and semi-algebraically connected.

• RM2 For every x ∈ R and for every semi-algebraically connected component D′
of Sx = S ∩ π−1

1 ({x}), D′ ∩ M �= ∅, where π1 : Rk → R is the projection on the
first coordinate.

Once roadmaps are computed with singly exponential complexity, questions about
connectivity are reduced to the same questions in a finite graph, and can be answered
with complexity no greater than polynomial in the size of the roadmap itself.

All known algorithms for computing roadmaps follow a certain paradigm which
can be roughly described as follows. Given a semi-algebraic set V ⊂ Rk (might be
assumed to satisfy certain additional properties, such as being a bounded, non-singular
hypersurface), one defines

(1) a certain semi-algebraic subset V 0 ⊂ V , with dimension of V 0 bounded by p < k,
(2) a finite subset of points of N ⊂ Rp.

The set V 0 and the finite set N are not arbitrary but must satisfy certain intricate
conditions. A crucial mathematical result is then proved: for any semi-algebraically
connected component C of V , C ∩ (V 0 ∪ VN ) is non-empty and semi-algebraically
connected, where VN = V ∩ π−1

[1,p](N ), with π[1,p] : Rk → Rp the projection on
the first p coordinates (see, for example, Proposition 15.7 in [2] for the special case
when p = 1, Theorem 14 in [8], Proposition 3 in [3], or Proposition 3.4 of the current
paper).

The actual algorithm then proceeds by reducing the problem of computing a
roadmap of V to computing roadmaps of V 0 and of the fibers VN , each such roadmap
containing a well chosen set of points including the intersection of V 0 and the fibers
VN . The roadmaps of fibers are then computed using a recursive call to the same
algorithm and the remaining problem is to compute a roadmap of V 0.

In the classical algorithm (see, for example, Chap. 15, [2]), p = 1, and thus V 0

has dimension at most one, and is already a roadmap of itself. The complexity of
this algorithm for computing the roadmap of an algebraic set V ⊂ Rk , defined by a
polynomial of degree d in k variables, is d O(k2) . The exponent O(k2) remained a very
difficult obstacle to overcome for many years, and the first progress was reported only
very recently.

A fully general deterministic Baby-step Giant-step algorithm with complexity
d O(k3/2) for computing the roadmap of an algebraic set V ⊂ Rk , defined by a poly-
nomial of degree d in k variables, is given in [3]. Its recursive scheme is similar to
the one introduced in [8] where a probabilistic algorithm of complexity d O(k3/2) for
computing roadmaps of smooth bounded hypersurfaces of degree d in k variables is
given. In [3], the parameter p is chosen to be ≈√

k, the roadmaps of the fibers are
computed recursively using the same algorithm, while that of V 0 is computed using
the classical algorithm. The main reason for having such an unbalanced approach, and
not using recursion to compute a roadmap of V 0 as well, is that the good properties
of V under which the mathematical connectivity result is proved, are not inherited
by V 0. This difficulty is avoided by making a call to the classical roadmap for V 0.
The classical roadmap algorithm can be modified so that its complexity is d O(pk) for
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special algebraic sets of dimension at most p. Having an unbalanced approach where
the dimension p of V 0 is much smaller (roughly p = √

k) compared to the dimension
of the various fibers (roughly k − √

k), the complexity of the algorithm in [3] can be
bounded by d O(

√
kk).

It is reasonable to hope that a more balanced algorithm in which p ≈ k/2, and
where the roadmaps of both V 0 and the VN are computed recursively using the same
algorithm, by a divide-and-conquer method, can compute a roadmap with a complexity
d Õ(k) where we denote by Õ(k) any function of k of the form k logO(1)(k).

We prove the following theorem which is the main result of this paper (definitions
of real univariate representations are given in Sect. 7.2).

Theorem 1.2 Let R be a real closed field and D ⊂ R an ordered domain. The following
holds.

• There exists an algorithm that takes as input:
(1) a polynomial P ∈ D[X1, . . . , Xk], with deg(P) ≤ d;
(2) a finite set, A, of real univariate representations whose associated set of points,

A = {p1, . . . , pm}, is contained in V = Zer(P, Rk), and such that the degree
of the real univariate representation representing pi is bounded by Di for
1 ≤ i ≤ m;

and computes a roadmap of V containing A. The complexity of the algorithm is
bounded by

(
1 +

m∑

i=1

DO(log2(k))

i

)(
klog(k)d

)O(k log2(k))
.

The size of the output is bounded by (card(A) + 1)(klog(k)d)O(k log(k)), while the
degrees of the polynomials appearing in the descriptions of the curve segments and
points in the output are bounded by

(
max

1≤i≤m
Di

)O(log(k))(
klog(k)d

)O(k log(k))
.

• There exists an algorithm that takes as input a polynomial P ∈ D[X1, . . . , Xk],
with deg(P) ≤ d, and computes the number of semi-algebraically connected com-
ponents of V = Zer(P, Rk), with complexity bounded by

(
klog(k)d

)O(k log2(k))
.

• There exists an algorithm that takes as input:
(1) a polynomial P ∈ D[X1, . . . , Xk], with deg(P) ≤ d;
(2) two real univariate representations whose associated points are contained in

V = Zer(P, Rk), and whose degrees are bounded by D1 and D2 respectively;
and decides whether the two points belong to the same semi-algebraically con-
nected component of V , and if so computes a description of a semi-algebraic path
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connecting them with image contained in V . The complexity of the algorithm is
bounded by

(
DO(log2(k))

1 + DO(log2(k))

2 + 1
)(

klog(k)d
)O(k log2(k))

.

The size of the output as well as the degrees of the polynomials appearing in the
descriptions of the curve segments and points in the output are bounded by

max(1, D1, D2)
O(log(k))

(
klog(k)d

)O(k log(k))
.

In fact we prove the following more technical result.
We need the following definition.

Definition 1.3 A semi-algebraic set S ⊂ Rk is strongly of dimension ≤ � if for every
y ∈ R�, Sy = {x ∈ S | π[1,�](x) = y} is finite (possibly empty), where π[1,�] denotes
the projection to the first � coordinates. (Note that the notion of being strongly of
dimension ≤ � is not invariant under arbitrary change of coordinates. However, if a
semi-algebraic set S ⊂ Rk is strongly of dimension ≤ �, then any semi-algebraic
subset of S is strongly of dimension ≤ �.)

Theorem 1.4 Let R be a real closed field and D ⊂ R an ordered domain. Then the
following holds. There exists an algorithm that takes as input:

(1) a polynomial P ∈ D[X1, . . . , Xk], with deg(P) ≤ d such that V = Zer(P, Rk)

is bounded and strongly of dimension ≤ k′,
(2) a finite set, A, of real univariate representations whose associated set of points,

A = {p1, . . . , pm}, is contained in V , and such that the degree of the real uni-
variate representation representing pi is bounded by Di for 1 ≤ i ≤ m;

and computes a roadmap of V containing A. The complexity of the algorithm is
bounded by

(
1 +

m∑

i=1

DO(log2(k′))
i

)(
klog(k′)d

)O(k log2(k′))
.

The size of the output is bounded by (card(A) + 1)(klog(k′)d)O(k log(k′)), while the
degrees of the polynomials appearing in the descriptions of the curve segments and
points in the output are bounded by

(
max

1≤i≤m
Di

)O(log(k′))(
klog(k′)d

)O(k log(k′))
.

The bounds on the complexity of the roadmap given in Theorem 1.2 give an upper
bound on the length of a semi-algebraic curve required to connect two points in the
same connected component of a real algebraic variety in R

k . In [7], the authors proved
that the geodesic diameter of any connected component C of a real algebraic variety
in R

k defined by a polynomial of degree d and contained inside the unit ball in R
k , is
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bounded by (O(d))k−1. This result guarantees the existence of a semi-algebraic path
connecting any two points in C of length bounded by (O(d))k−1. Unfortunately, the
complexity of this path (namely, the number and degrees of the polynomials needed to
define it) is not uniformly bounded as a function of k and d. We obtain a path of length
bounded by (klog(k)d)O(k log(k)), but moreover with uniformly bounded complexity.
We have the following theorem.

Theorem 1.5 Let V ⊂ R
k be a real algebraic variety defined by a polynomial of

degree at most d, and let C be a connected component of V contained in the unit
ball centered at the origin. Then any two points x, y ∈ C can be connected inside C
by a semi-algebraic path of length at most (klog(k)d)O(k log(k)) consisting of at most
(klog(k)d)O(k log(k)) curve segments of degrees bounded by (klog(k)d)O(k log(k)).

Note that the algebraic case dealt with in this paper is usually the main building
block in designing roadmap algorithms for more general semi-algebraic sets (see for
example Chapter 16 in [2]). We believe that with extra effort, the improvement in the
algebraic case reported here could lead to a corresponding improvement in the general
semi-algebraic setting.

We prove Theorem 1.2 by giving a divide-and-conquer algorithm for computing a
roadmap based on two recursive calls to subvarieties whose dimensions are at most
half the dimension on the given variety V (see Algorithms 6 and 9 in Sect. 7 below).

Such a divide-and-conquer roadmap algorithm would be quite simple if it was the
case that the sub-varieties of V obtained by iterating the following two operations in
any order:

(1) taking the sub-variety consisting of the set of critical points of G, for some poly-
nomial G ∈ D[X1, . . . , Xk], restricted to the fibers, Vy = V ∩ π−1({y}), where
π is a projection map to a subset of the coordinates (see Definition 2.3 below for
a precise definition of critical points of G restricted to the fibers of V );

(2) fixing a subset of coordinates (i.e., taking fibers of V );

had good properties, e.g. the number of critical points of G remains finite as the
parameters vary.

Suppose for simplicity that k − 1 is a power of 2. Then, the following simple algo-
rithm for constructing a roadmap would work, namely, in the very first step consider
the projection map, π , to the first p/2 coordinates, where p = dim(V ) = k − 1. For
every y ∈ Rp/2, let Vy = V ∩ π−1({y}) be the corresponding fiber and let V 0

y ⊂ Vy

be the set of critical points of G restricted to Vy and V 0 = ⋃
y∈R p/2 V 0

y . Let M ⊂ V

be the set of G-critical points of V , and M0 the (assumed finite) G-critical points of
V 0. Let N = π(M ∪ M0). It can be proved that a roadmap of V can be obtained by
taking the union of

• a roadmap of V 0 containing V 0
N ,

• and roadmaps of Vy , containing the points of V 0 above for y ∈ N .

Both V 0 and the Vy , y ∈ N , are of dimension p/2. If p/2 = 1, then the roadmaps
of V 0 and the Vy , y ∈ N , coincide with themselves. Otherwise, these roadmaps can
then be computed by recursive calls to the same algorithm.
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The description given above, which we are using as a guide, is flawed in a funda-
mental way. We know of no way to ensure that all the intermediate varieties that occur
in the course of the algorithm have good properties even if the original variety V has
them.

In order to get around this difficulty we use perturbation techniques, in the spirit
of several other prior works on computing roadmaps. The main difficulty is to ensure
that good properties are preserved for the variety V 0 as we go down in the recursion.

In the divide-and-conquer scheme pursued in this paper, it is imperative, for com-
plexity reasons, that V 0 and the fibers Vy have the same dimension (namely, 1

2 dim(V )).
So we cannot resort to the classical roadmap algorithm for V 0 any more and we need
to ensure good properties for V 0 (which is no more an hypersurface even if V is) as
well.

While the general principle—that of making perturbations to reach an ideal
situation—is similar to that used in [3] for the Baby-step Giant-step algorithm for
computing roadmaps, there are many new ideas involved which we list below.

We start the construction with an algebraic hypersurface V , defined as the zero set
of one single polynomial P .

(1) We make a deformation P̃ of P using an infinitesimal, and consider the algebraic
set Ṽ defined by P̃ with coefficients in a new field R̃ consisting of algebraic
Puiseux series (with coefficients in R) in this infinitesimal.

(2) Instead of considering critical points of the projection map onto a fixed coordinate,
we consider critical points of a well chosen fixed polynomial G. This is done to
ensure more genericity. Geometrically, we sweep using the level surfaces of the
polynomial G.

(3) For every y ∈ R̃p/2, let Ṽ 0
y ⊂ Ṽy be the set of critical points of G restricted to Ṽy

and Ṽ 0 = ⋃
y∈R̃ p/2 Ṽ 0

y . The closed semi-algebraic set Ṽ 0 is naturally described
as the projection of some variety involving extra variables. This causes a problem,
since we need an explicit description of Ṽ 0 in order to be able to make a recursive
call. We are able to express Ṽ 0 as the union of several pieces (charts), each
described as a basic constructible set of the form

∧

P∈P
(P = 0) ∧ (Q �= 0) .

(4) The preceding decomposition of Ṽ 0 into open charts is not very easy to use, so
we modify the description using instead closed sets (by shrinking slightly the
constructible sets). We are able to cover (an approximation of) Ṽ 0 by basic semi-
algebraic sets of the form

∧

P∈P
(P = 0) ∧ (Q ≥ 0).

(5) This necessitates that in our recursive calls we accept as inputs not just vari-
eties, but basic semi-algebraic sets of a certain special form having only a few
inequalities in their definitions.
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(6) The Morse-theoretical connectivity results needed to prove the correctness of the
new algorithms have to be extended to take into account the two new features
mentioned above. The first new feature is that instead of considering projection
map to a fixed coordinate, we are using the polynomial G as the “Morse function”.
Secondly, instead of varieties we need to deal with more general semi-algebraic
sets. We define a new variant of the notion of “pseudo-critical values” introduced
in [2] which is applicable to the semi-algebraic case and which takes into account
the polynomial G, and prove the required Morse theoretical lemmas in this new
setting.

(7) The covering mentioned in (4) above means that we are replacing each semi-
algebraic set, by several basic semi-algebraic sets, the union of whose limits
coincides with the given set. In order that the union of the limits of the roadmaps
computed for each of the new sets gives a roadmap of the original one, we need
to make sure that the roadmaps of the new sets contain certain carefully chosen
points. Very roughly speaking these points will correspond to a finite number of
pairs of closest points realizing the locally minimal distance between any two
semi-algebraically connected components of the new sets.

(8) The construction involves a perturbation using four infinitesimals at each level of
the recursion. Since there will be at most O(log(k′)) levels, at the end we will
be doing computations in a ring with O(log(k′)) infinitesimals. At the end of the
algorithm we will need to compute descriptions of the limits of the semi-algebraic
curves computed in the previous steps of the algorithm. We show that these limits
can be computed within the claimed complexity bound. For this the fact that we
have only O(log(k′)) infinitesimals, and not more, is crucial.

The rest of the paper is organized as follows. In Sect. 2, we state some basic results
of Morse theory for non-singular varieties of higher codimension, including definitions
of critical points on basic semi-algebraic sets and their properties.

In Sect. 3, we prove the connectivity results that we will require. We introduce a
set of axioms (to be satisfied by a basic semi-algebraic set S and certain subsets of
S) and prove an abstract connectivity result (Proposition 3.4) which forms the basis
of the roadmap algorithm in this paper. The main differences between Proposition
3.4 and a similar result in [3, Proposition 3] are that Proposition 3.4 applies to basic
semi-algebraic sets (not just to algebraic hypersurfaces), and that there is an auxiliary
polynomial G which plays the role of the X1-coordinate in [3].

In Sect. 5, we discuss certain specific infinitesimal deformations that we will use
in order to ensure that the properties defined in Sect. 3 hold. In Sect. 4, we explain a
deformation technique to reach general position and prove that the set of G-critical
points is finite for a certain well chosen polynomial G. The techniques used in this
section are adapted from [15]. In Sect. 4.2, we define a new notion of pseudo-critical
values for semi-algebraic sets with respect to a given polynomial G and state their
connectivity properties, generalizing to this new context results from [2]. In Sect. 5,
we discuss how the deformations are used to ensure the connectivity properties defined
in Sect. 3.

Section 6 is devoted to a description of the set of G-critical points using minors of
certain Jacobian matrices and the properties of the set of G-critical points.
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Section 7 is devoted to the description of the Divide and Conquer Roadmap Algo-
rithm. We first define the tree that is computed, explain how it gives a roadmap, and
finally describe the Divide and Conquer Algorithm first for the bounded case (Algo-
rithm 8), and then in general (Algorithm 9).

In the Annex (Sect. 8), we include certain technical proofs of propositions on critical
and pseudo-critical values stated in Sects. 2.2 and 4.2 and used in the paper.

2 Critical Points of Algebraic and Basic Semi-algebraic Sets

In this section we define critical points of a polynomial first on an algebraic set and
then on a basic semi-algebraic set and discuss their properties.

2.1 Critical Points of Algebraic Sets

Definition 2.1 Let G ∈ R[X1, . . . , Xk] and P = {P1, . . . , Pm} ⊂ R[X1, . . . , Xk] be
a finite family of polynomials.

We say that x ∈ Zer(P, Rk) is a G-critical point of Zer(P, Rk), if there exists
λ = (λ0, . . . , λm) ∈ Rm+1 satisfying the system of equations CritEq(P, G)

Pj = 0, j = 1, . . . , m,

m∑

j=1

λ j
∂ Pj

∂ Xi
− λ0

∂G

∂ Xi
= 0, i = 1, . . . , k, (1)

m∑

j=0

λ2
j − 1 = 0.

The set Crit(P, G) ⊂ Rk is the set of G-critical points of Zer(P, Rk), i.e., the projec-
tion on Rk of Zer

(
CritEq(P, G), Rk+m+1

)
. Note that geometrically, in the case the

polynomials P define a non-singular complete intersection, Crit(P, G) is the set of
points x ∈ Zer(P, Rk), such that the tangent space at x of Zer(P, Rk) is orthogonal to
grad(G)(x). In case Zer(P, Rk) is singular, then the set of G-critical points includes
the set of singular points of Zer(P, Rk), which is clear from (1).

2.2 Critical Points of Basic Semi-algebraic Sets

Notation 2.2 Given two finite families of polynomials P,Q ⊂ R[X1, . . . , Xk], we
denote by Bas(P,Q) the basic semi-algebraic set defined by

Bas(P,Q) =
{

x ∈ Rk |
∧

P∈P
P(x) = 0 ∧

∧

Q∈Q
Q(x) ≥ 0

}
.

Definition 2.3 Let G ∈ R[X1, . . . , Xk]. We define Crit(P,Q, G), the set of G-
critical points of Bas(P,Q), by

Crit(P,Q, G) = Bas(P,Q) ∩
( ⋃

Q′⊂Q
Crit(P ∪ Q′, G)

)
.
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Definition 2.4 We say that the pair P,Q is in general position with respect to
G ∈ R[X1, . . . , Xk] if Zer(P, Rk) is bounded, and for any subset Q′ ⊂ Q,

Crit(P ∪ Q′, G) ⊂ Rk is empty or finite.

Remark 2.5 Note that in this case Zer(P, Rk) has only a finite number of singular
points; moreover if card(P) = k, Zer(P, Rk) is finite (possibly empty).

The properties of G-critical points used later in the paper are now given in the
following two Morse-theoretic lemmas. The proofs, which are slight variants of the
classical proofs, are included in the Annex (Sect. 8).

Notation 2.6 Let T ⊂ Rk , G a function Rk −→ R, and suppose that a ∈ R. We
denote

TG=a = {x ∈ T | G(x) = a},
TG≤a = {x ∈ T | G(x) ≤ a},
TG<a = {x ∈ T | G(x) < a}.

Let P,Q ⊂ R[X1, . . . , Xk], S = Bas(P,Q), S bounded, and M = Crit(P,Q, G).

Lemma 2.7 Suppose that b �∈ D = G(M). Let C be a semi-algebraically connected
component of SG≤b. If a < b and (a, b]∩D is empty, then CG≤a is semi-algebraically
connected.

Now assume that P,Q are in general position with respect to G (cf. Definition 2.4).

Lemma 2.8 Let C be a semi-algebraically connected component of SG≤b such that
CG=b is not empty.

(1) If dim(C) = 0, C is a point contained in M.
(2) If dim(C) �= 0, then CG<b is non-empty. Let B1, . . . , Br be the semi-algebraically

connected components of CG<b. Then
(a) for each i, 1 ≤ i ≤ r , B̄i ∩ M �= ∅;
(b) if there exist i, j, 1 ≤ i < j ≤ r such that B̄i ∩ B̄ j �= ∅, then B̄i ∩ B̄ j ⊂ M;
(c)

⋃r
i=1 B̄i = C, and hence

⋃r
i=1 B̄i is semi-algebraically connected.

3 Axiomatics for Connectivity

In this subsection we identify a set of properties, to be satisfied by a basic semi-
algebraic set Bas(P,Q), a polynomial G, and certain finite subsets of points contained
in Bas(P,Q), and prove a key connectivity result (Proposition 3.4 below) for such a
situation, which plays a key role in our recursive algorithm later. In Sect. 5 we will
explain how to use a perturbation technique to reach the ideal situation described here.

Notation 3.1 Let π[1,�] be the projection map from Rk to R� forgetting the last k − �

coordinates. For every T ⊂ Rk and A ⊂ R�, we denote TA = T ∩ π−1
[1,�](A). For

w ∈ R�, we denote Tw = T ∩ π−1
[1,�]({w}).

123



288 Discrete Comput Geom (2014) 52:278–343

Definition 3.2 Let 1 ≤ � < k, G ∈ R[X1, . . . , Xk], and let P,Q ⊂ R[X1, . . . , Xk]
be in general position with respect to G. Let S = Bas(P,Q), and suppose that S is
bounded.

We say that a tuple (S,M,�, S0,D0,M0) is special if it satisfies the following
Properties 1, 2, 3, and 4.

(1) M = Crit(P,Q, G) is the finite set of critical points of G on S.
(2) S0 ⊂ S is a semi-algebraic set strongly of dimension ≤ � such that for every

w ∈ R�, S0
w meets every semi-algebraically connected component of Sw, and for

each semi-algebraically connected component C of Sw, S0
w contains a minimizer

of G over C .
(3) D0 ⊂ R is a finite set of values satisfying for every interval [a, b] ⊂ R and c ∈

[a, b], with {c} ⊃ D0 ∩ [a, b], if D is a semi-algebraically connected component
of S0

a≤G≤b, then DG=c is a semi-algebraically connected component of S0
G=c.

(4) M0 ⊂ S0 is a finite set of points satisfying the following properties:
(a) G(M0)=D0,
(b) M0 meets every semi-algebraically connected component of S0

G=a for all
a ∈ D0.

Definition 3.3 For a semi-algebraic subset S ⊂ T , we say that S has good connectivity
property with respect to T , if the intersection of S with every semi-algebraically
connected component of T is non-empty and semi-algebraically connected.

With the definition introduced above we have the following key result which gen-
eralizes Proposition 3 in [3] (see also Theorem 14 in [8]).

Proposition 3.4 Let (S,M, �,S0,D0,M0) be a special tuple. Then, for every finite
N ⊃ π[1,�](M ∪ M0), the semi-algebraic set S0 ∪ SN has good connectivity property
with respect to S.

In the proof of Proposition 3.4 we will use the following notation.

Notation 3.5 If S ⊂ Rk is semi-algebraic set and x ∈ S, then we denote by Cc(x, S)

the semi-algebraically connected component of S containing x .

Notation 3.6 Given a real closed field R and a variable ε, we denote by R〈ε〉 the real
closed field of algebraic Puiseux series (see [2]). In the ordered field R〈ε〉, ε is positive
and infinitesimal, i.e., smaller than any positive element of R. We denote by limε the
mapping which sends a bounded Puiseux series to its constant term.

Notation 3.7 If R′ is a real closed extension of a real closed field R, and S ⊂ Rk is
a semi-algebraic set defined by a first-order formula with coefficients in R, then we
will denote by Ext

(
S, R′) ⊂ R′k the semi-algebraic subset of R′k defined by the same

formula. It is well known that Ext
(
S, R′) does not depend on the choice of the formula

defining S (see [2] for example).

Proof of Proposition 3.4 Let S1 = Sπ[1,�](M∪M0). We are going to prove that S0 ∪ S1

has good connectivity property with respect to S, which implies the proposition.
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For a in R, we say that property GCP(a) holds if (S0∪S1)G≤a has good connectivity
property with respect to S.

We prove that for all a in R, GCP(a) holds. Since S is assumed to be bounded, the
proposition follows immediately from this claim, since it is clear that the proposition
follows from GCP(a) for any a ≥ maxx∈S G(x).

The proof uses two intermediate results:

Step 1 For every a ∈ D ∪ D0, and for every b ∈ R with (a, b] ∩ (D ∪ D′) = ∅,
GCP(a) implies GCP(b).

Step 2 For every b ∈ D ∪ D′, if GCP(a) holds for all a < b, then GCP(b) holds.

The combination of Steps 1 and 2 implies by an easy induction that the property
GCP(a) holds for all a in R, since for a < minx∈S(G(x)), the property GCP(a) holds
vacuously. So the proposition follows from Steps 1 and 2.

We now prove the two steps.

Step 1 We suppose that a ∈ D ∪ D′ and GCP(a) holds, take b ∈ R, a < b with
(a, b]∩(D ∪ D′) = ∅, and prove that GCP(b)holds. Let C be a semi-algebraically con-
nected component of SG≤b. We have to prove that C ∩ (S0 ∪ S1) is semi-algebraically
connected.

Since (a, b] ∩ (D ∪ D′) = ∅, it follows that Ma<G≤b = ∅, and it follows from
Lemma 2.7 that CG≤a is a semi-algebraically connected component of SG≤a . Now,
using property GCP(a), we see that CG≤a ∩ (S0 ∪ S1) is non-empty and semi-
algebraically connected.

Let x ∈ C ∩ (S0 ∪ S1). We prove that x can be semi-algebraically connected to a
point in CG≤a ∩ S0 by a semi-algebraic path in C ∩ (S0 ∪ S1), which is enough to
prove that C ∩ (S0 ∪ S1) is semi-algebraically connected.

There are three cases to consider.

Case 1 x ∈ S1. In this case, consider Cc(x, Sπ[1,�](x)) = Cc(x, S1
π[1,�](x)). Then, by

Definition 3.2, Part (2), there exists x ′ ∈ Cc(x, Sπ[1,q](x))∩S0 such that x ′ is a minimizer
of G over Cc(x, Sπ[1,�](x)) i.e.,

G(x ′) = min
x ′′∈Cc(x,Sπ[1,�](x))

G(x ′′).

In particular, x ′ ∈ Cc(x, S0
G≤b) ⊂ C . Connecting x to x ′ by a semi-algebraic path

inside Cc(x, S1
π[1,�](x)) we reduce either to Cases 2 or 3 below.

Case 2 x ∈ S0, G(x) ≤ a. In this case there is nothing to prove.

Case 3 x ∈ S0, G(x) > a. By Definition 3.2, Part (3) applied to Cc(x, S0
a≤G≤b)

we have that a ∈ G(Cc(x, S0
a≤G≤b)) and Cc(x, S0

a≤G≤b)G=a is non-empty. Hence,

there exists a semi-algebraic path connecting x to a point in Cc(x; S0
a≤G≤b)G=a inside

Cc(x, S0
a≤G≤b). Since Cc(x, S0

a≤G≤b) ⊂ S0 and Cc(x, S0
a≤G≤b) ⊂ C , it follows that

Cc(x, S0
a≤G≤b) ⊂ C ∩ S0 and we are done.
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This finishes the proof of Step 1.

Step 2 We suppose that b ∈ D ∪ D′, and GCP(a) holds for all a < b, and prove that
GCP(b) holds.

Let C be a semi-algebraically connected component of SG≤b.
If dim(C) = 0, C is a point belonging to M ⊂ (S0 ∪ S1) by Lemma 2.8. So

C ∩ (S0 ∪ S1) is semi-algebraically connected.
Hence, we can assume that dim(C) > 0. If CG=b = ∅ there is nothing to prove.

Suppose that CG=b is non-empty, so that CG<b is non-empty by Lemma 2.8.
Our aim is to prove that C ∩ (S0 ∪ S1) is semi-algebraically connected. We do this

in two steps. We prove the following statements:

(a) if B is a semi-algebraically connected component of CG<b, then B̄ ∩ (S0 ∪ S1)

is non-empty and semi-algebraically connected, and
(b) using (a) C ∩ (S0 ∪ S1) is semi-algebraically connected.

Proof of (a) We prove that if B is a semi-algebraically connected component of VG<b,
then B̄ ∩ (S0 ∪ S1) is non-empty and semi-algebraically connected.

Since B̄ contains a point of M it follows that B̄ ∩ (S0 ∪ S1) is not empty.
Note that if B̄ ∩ (S0 ∪ S1) = B ∩ (S0 ∪ S1), then there exists a with

max
({

G(x) | x ∈ B ∩ (
S0 ∪ S1)}) < a < b,

such that B ∩ (S0 ∪ S1) = (B ∩ (S0 ∪ S1))G≤a , and using Lemma 2.7, BG≤a is
semi-algebraically connected. So B ∩ (S0 ∪ S1) is semi-algebraically connected since
GCP(a) holds.

We now suppose that (B̄\B)∩(S0∪S1) is non-empty. Taking x ∈ (B̄\B)∩(S0∪S1),
we are going to show that x can be connected to a point z in B ∩ S0 by a semi-algebraic
path γ inside B̄ ∩ (S0 ∪ S1). Notice that G(x) = b.

We first prove that we can assume without loss of generality that x ∈ S0. Otherwise,
since x ∈ S0 ∪ S1, we must have that x ∈ Sw with w = π[1,�](x) and Sw ⊂ S1. Let
A = Cc(x, Sw ∩ B̄). We now prove that A ∩ S0

w �= ∅. Using the curve section
lemma, choose a semi-algebraic path γ : [0, ε] → Ext(B̄, R 〈ε〉) such that γ (0) = x ,
limε γ (ε) = x and γ ((0, ε]) ⊂ Ext(B, R 〈ε〉). Let wε = π[1,�](γ (ε)) and

Aε = Cc(γ (ε), Ext
(
B, R 〈ε〉)wε

)
.

Note that x ∈ limε Aε ⊂ A.
By the Tarski–Seidenberg transfer principle [2], Ext(B, R 〈ε〉) is a semi-

algebraically connected component of Ext(SG<a, R 〈ε〉) which implies that Aε is a
semi-algebraically connected component of Ext(S, R 〈ε〉)wε . By Definition 3.2, Part
(2), and the Tarski–Seidenberg transfer principle,

Ext
(
S0, R 〈ε〉 )

wε
∩ Aε �= ∅.

Then since Ext(S0, R 〈ε〉)wε ∩ Aε is bounded over R,

lim
ε

(Ext(S0, R 〈ε〉)wε ∩ Aε)

is a non-empty subset of S0
w ∩ A.
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Now connect x to a point in x ′ ∈ S0
w by a semi-algebraic path whose image is

contained in A ⊂ B̄w ⊂ (B̄ \ B) ∩ (S0 ∪ S1) such that x ′ is a minimizer of G on A.
If G(x ′) < b, take z = x ′. Otherwise, replacing x by x ′ if necessary we can assume
that x ∈ S0 as announced.

There are four cases—namely,

(1) x ∈ M ∪ M0;
(2) x �∈ M ∪ M0 and Cc

(
x, S0

G=b

)
B̄;

(3) x �∈ M ∪ M0, Cc
(
x, S0

G=b

) ⊂ B̄ and b ∈ D0;
(4) x �∈ M ∪ M0, Cc

(
x, S0

G=b

) ⊂ B̄ and b �∈ D0;

that we consider now.

(1) x ∈ M ∪ M0:
Define w = π[1,�](x), and note that Sy ⊂ (S0 ∪ S1). Since x ∈ B̄, and B is
bounded, w ∈ π[1,�](B̄) = ¯π[1,�](B). Now let ε > 0 be an infinitesimal. By
applying the curve selection lemma to the set B and x ∈ B̄, we obtain that
there exists xε ∈ Ext (B, R〈ε〉) with limε xε = x , G(xε) < G(x) and x ∈
limε Ext(S, R〈ε〉)wε , where wε = π[1,�] (xε). By Definition 3.2, Part (2), and the
Tarski–Seidenberg transfer principle, we have that Ext(S0, R〈ε〉)wε is non-empty,
and contains a minimizer of G over Cc

(
xε, Ext (S, R〈ε〉)wε

)
. Let

x ′
ε ∈ Ext

(
S0, R〈ε〉)wε ∩ Cc(xε, Ext(B, R 〈ε〉)wε

)

be such a minimizer and let x ′ = limε x ′
ε. Notice that G (xε) < G(x). Since

limε xε = x and limε Cc(xε, Ext(B, R 〈ε〉)wε ) is semi-algebraically connected,

lim
ε

Cc
(
xε, Ext(B, R 〈ε〉)wε

) ⊂ Cc
(
x, B̄w

)
.

Now choose a semi-algebraic path γ1 connecting x to x ′ inside Cc(x, B̄w) (and
hence inside S0 ∪ S1 since Cc(x, B̄w) ⊂ Sw ⊂ S0 ∪ S1), and a semi-algebraic
path γ2(ε) joining x ′ to x ′

ε inside Ext(S0, R〈ε〉). The concatenation of γ1, γ2(ε)

gives a semi-algebraic path γ having the required property, after replacing ε in
γ2(ε) by a small enough positive element of t ∈ R. Now take z = γ2(t).

(2) x �∈ M ∪ M0 and Cc(x, S0
G=b)B̄:

There exists x ′ ∈ Cc(x, S0
G=b), x ′ �∈ B̄ and a semi-algebraic path γ : [0, 1] →

Cc(x, S0
G=b), with γ (0) = x, γ (1) = x ′. Since x ′ �∈ B̄, it follows from Lemma

2.8 (2) that for t1 = max{0 ≤ t < 1|γ (t) ∈ B̄}, γ (t1) ∈ M. We can now connect
x to a point in z ∈ B ∩ S0 by a semi-algebraic path inside B̄ ∩ (S0 ∪ S1) using
what has been already proved in Case (1) above.

(3) x �∈ M ∪ M0, Cc(x, S0
G=b) ⊂ B̄ and b ∈ D0:

Since b ∈ D0, by Definition 3.2, Part (4b) there exists x ′ ∈ Cc(x, S0
G=b) ∩ M0.

Thus, there exists a semi-algebraic path connecting x to x ′ ∈ M0 with image
contained in B̄ ∩ (S0 ∪ S1). We can now connect x ′ to a point in z ∈ B ∩ S0 by a
semi-algebraic path inside B̄ ∩ (S0 ∪ S1) using what has been already proved in
Case (1) above.
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(4) x �∈ M ∪ M0, Cc(x, S0
G=b) ⊂ B̄ and b �∈ D0:

Since b �∈ D0, for all a < b such that [a, b] ∩ D0 = ∅, Cc(x, S0
a≤G≤b)G=b =

Cc(x, S0
G=b) and Cc(x, S0

a≤G≤b)G=a �= ∅ by Definition 3.2, Part (3). Let

x ′ ∈ Cc(x, S0
a≤G≤b)G=a . We can choose a semi-algebraic path γ : [0, 1] →

Cc(x, S0
a≤G≤b) with γ (0)= x, γ (1)= x ′. Let t1 =max{0≤ t <1 | γ (t)∈ S0

G=b}.
Then either γ (t1) ∈ M and we can connect γ (t1) to a point in B ∩ (S0 ∪ S1) by
a semi-algebraic path inside B̄ ∩ (S0 ∪ S1) using Case (1); otherwise, by Lemma
2.8 (2b), for all small enough r > 0, Bk(γ (t1), r) ∩ CG<b is non-empty and
contained in B. Then, there exists t2 ∈ (t1, 1] such that z = γ (t2) ∈ B ∩ S0, and
the semi-algebraic path γ |[0,t2] gives us the required path in this case.

Taking x and x ′ in B̄ ∩ (S0 ∪ S1), they can be connected to points z and z′ in B ∩ S0
by semi-algebraic paths γ and γ ′ inside B̄ ∩ (S0 ∪ S1) such that, without loss of
generality, G(z) = G(z′) = a. Using GCP(a), we conclude that GCP(b) holds.
Proof of (b). We have to prove that C ∩ (S0 ∪ S1) is semi-algebraically connected.

Let x and x ′ be in C ∩ (S0 ∪ S1). We prove that it is possible to connect them by a
semi-algebraic path inside C ∩ (S0 ∪ S1).

Since we suppose that dim(C) > 0, CG<b is non-empty by Lemma 2.8 (2c). Using
Lemma 2.8 (2c), let Bi (resp. B j ) be a semi-algebraically connected component of
C<b such that x ∈ B̄i (resp. x ′ ∈ B̄ j ).

If i = j , x and x ′ both lie in B̄i ∩ (S0 ∪ S1) which is semi-algebraically con-
nected by (a). Hence, they can be connected by a semi-algebraically connected path in
B̄i ∩ (S0 ∪ S1) ⊂ C ∩ (S0 ∪ S1).

So let us suppose that i �= j . Note that:

– by Lemma 2.8 (2a), B̄i ∩ M and B̄ j ∩ M are not empty,
– by (a) B̄i ∩ (S0 ∪ S1) and B̄ j ∩ (S0 ∪ S1) are semi-algebraically connected,
– by definition of S0 ∪ S1, M ⊂ S0 ∪ S1.

Then one can connect x (resp. x ′) to a point in B̄i ∩ M (resp. B̄ j ∩ M) so that one
can suppose without loss of generality that x ∈ B̄i ∩ M and x ′ ∈ B̄ j ∩ M.

Let γ : [0, 1] → C be a semi-algebraic path that connects x to x ′, and let I =
γ −1(C ∩ M) and H = [0, 1] \ I .

Since M is finite, we can assume without loss of generality that I is a finite set of
points, and H is a union of a finite number of open intervals.

Since γ (I ) ⊂ M ⊂ S0 ∪ S1, it suffices to prove that if t and t ′ are the end points
of an interval in H , then γ (t) and γ (t ′) are connected by a semi-algebraic path inside
C ∩ (S0 ∪ S1).

Notice that γ ((t, t ′)) ∩ M = ∅ so that γ (t) and γ (t ′) belong to the same B̄� by
Lemma 2.8 (2b) . Hence, γ (t), γ (t ′) both belong to B̄� ∩ (S0 ∪ S1), and we know that
B̄� ∩ (S0 ∪ S1) is semi-algebraically connected by (a). Consequently, γ (t) and γ (t ′)
can be connected by a semi-algebraic path in B̄� ∩ (S0 ∪ S1) ⊂ C ∩ (S0 ∪ S1). ��

4 Good Rank Property

In this section, we introduce matrices having the “good rank property” and derive two
geometric consequences of this property which will be important for us later.
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Notation 4.1 Let m ≥ 0, B = (bi, j )0≤i≤m,1≤ j≤k ∈ R(m+1)×k such that every j × j
sub-matrix of B with 1 ≤ j ≤ m + 1 has rank j . We say that the matrix B has good
rank property.

4.1 A Deformation of Several Equations to General Position

Our first application of matrices having good rank property is to use such a matrix to
define a deformation of a finite set of polynomials with the property of being in general
position which is what we describe now (see Proposition 4.4 below). We discuss first
how to deform a given system of equation, following an idea introduced in [15], so
that the number of critical points of a certain well chosen polynomial G is guaranteed
to be finite.

Notation 4.2 Let Q ∈ R[X1, . . . , Xk], b = (b0, b1, . . . , bk) ∈ Rk+1, and d ≥ 0. Let
ζ be a new variable. We denote

Def(Q, ζ, b, d) = (1 − ζ )Q2 − ζ
(
b0 + b1 Xd

1 + · · · + bk Xd
k

)
. (2)

In the special case when b = (1, . . . , 1) and d = 2 deg(Q)+2, we denote

Def(Q, ζ ) = Def(Q, ζ, b, d). (3)

Notation 4.3 Let m ≥ 0, B = (bi, j )0≤i≤m,0≤ j≤k ∈ R(m+1)×(k+1), a matrix having
good rank property and b0 = (1, 2, . . . , k). For i = 0, . . . , m, let bi = (bi,0, . . . , bi,k)

denote the i-th row of B.
Let P = {P1, . . . , Pm} ⊂ R[X1, . . . , Xk], and ζ̄ = (ζ1, . . . , ζm) new variables.
For any d ≥ 0, we denote by Def(P, ζ̄ , B, d) the polynomials

Def(P1, ζ1, b1, d), . . . , Def(Pm, ζm, bm, d), (4)

and denote

Gd = b0,0 +
k∑

j=1

b0, j Xd
j . (5)

The following proposition and its proof are similar to results in [15]. We include it
here for the sake of completeness.

Proposition 4.4 Suppose that B = (bi, j )0≤i≤m,0≤ j≤k ∈ R(m+1)×k has good rank
property. Let 0 ≤ � ≤ k, and d > 2 max1≤i≤m deg(Pi ). Then for each w ∈ R�,
and ζ̄ = (ζ1, . . . , ζm) ∈ (R \ {0})m, Def(P, ζ̄ , B, d)(w, ·) is in general position with
respect to Gd(w, ·).
Proof Fix w ∈ R�, and ζ̄ ∈ (R \ {0})m . We prove that Crit

(
Def(P, ζ̄ , B, d)(w, ·), G

)

is finite (possibly empty).
Consider the following system of bi-homogeneous equations defining a sub-variety

W ⊂ P
k−�
C × P

m
C :
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(Def(Pi , ζi , bi , d)(w, ·))h = 0, i = 1, . . . , m,

m∑

i=1

λi
∂ (Def(Pi , ζi , bi , d)(w, ·))h

∂ X j
= λ0

∂Gd(w, ·)h

∂ X j
, j = � + 1, . . . , k.

(6)

Let π : P
k−�
C × P

m
C −→ P

m
C be the projection map to the second factor.

It follows from the definition of Crit
(
Def(P, ζ̄ , B, d)(w, ·), Gd

)
that this set is

contained in the real affine part of π(W ), and thus in order to prove that

Crit
(
Def(P, ζ̄ , B, d)(y, ·), Gd

)

is finite (possibly empty), it suffices to show that the complex projective variety π(W )

is a finite number of points (possibly empty). So, we prove that the projective variety
π(W ) ⊂ P

m
C has an empty intersection with the hyperplane at infinity defined by

X0 = 0.
Substituting X0 = 0 in the system (6), we get

ζi
(
bi,�+1 Xd

�+1 + · · · + bi,k Xd
k

) = 0, i = 1, . . . , m, (7)

d
( m∑

i=1

ζiλi bi, j − λ0b0, j

)
Xd−1

j = 0, j = � + 1, . . . , k. (8)

There are two cases to consider.

Case 1 m ≥ k − �: In this case, since the matrix of coefficients in the first set of
equations

⎛

⎝
b1,�+1 · · b1,k

· · · ·
bm,�+1 · · bm,k

⎞

⎠

has rank k − � which follows from the given property of the matrix B, we get
that X�+1 = · · · = Xk = 0, which is impossible.

Case 2 m < k − �: Consider the second set of equations involving the Lagrangian
variables λ0, . . . , λm . Since the matrix B has the property that every
(m + 1) × (m + 1) sub-matrix has rank (m + 1), we have for every choice
J ⊂ [� + 1, k], card(J ) = m + 1, the system of equations

p∑

i=1

ζiλi bi, j − λ0b0, j = 0, j ∈ J,

has an empty solution in P
m
C , and hence at least k−m−� amongst the variables

X�+1, . . . , Xk must be equal to 0. Suppose that Xm+�+1 = · · · = Xk = 0.
Now, from the property that the all m × m sub-matrices of B have full rank
we obtain that the only solution to system (7) with Xm+�+1 = · · · = Xk = 0
is the one with X�+1 = · · · = Xk = 0, which is impossible.
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This proves that in both cases the projective variety π(W ) ⊂ P
m
C has an empty inter-

section with the hyperplane at infinity defined by X0 = 0, and hence π(W ) is a finite
number of points which finishes the proof. ��

4.2 (B, G)-Pseudo-critical Values

We now describe a second application of matrices with the good rank property. Given
a finite family of polynomials P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk], a matrix B =
(bi, j )1≤i≤s,0≤ j≤k ∈ Rs×(k+1) having good rank property (see Notation 4.3), and a
polynomial G ∈ R[X1, . . . , Xk], we define a finite set D(P, B, G) ⊂ R which we
call the (B, G)-pseudo-critical values of the family P .

These (B, G)-pseudo-critical values are used to ensure good connectivity properties
in the case of basic closed semi-algebraic sets.

Definition 4.5 Let P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk], B = (bi, j )1≤i≤s,0≤ j≤k

∈ Rs×(k+1) a matrix having good rank property (see Notation 4.3), and let
G ∈ R[X1, . . . , Xk]. We denote for 1 ≤ i ≤ s,

Hi = bi,0 +
k∑

j=1

bi, j Xd
j ,

where d is the least even number greater than maxP∈P deg(P). For I ⊂ [1, s], and
σ ∈ {−1, 1}I , we denote

P̃I,σ,B = {Pi + γ σ(i)Hi | i ∈ I }.

We say that c ∈ R is a (B, G)-pseudo-critical value of P if there exists I ⊂ [1, s]
with card(I ) ≤ k, σ ∈ {−1, 1}I , (x, λ) ∈ R〈γ 〉k × R〈γ 〉(card(I )+1) bounded over R,
such that

c = lim
γ

G(x),

and (x, λ) ∈ Zer
(
CritEq(P̃I,σ,B, G), R〈γ 〉k+card(I )+1

)
(see Definition 2.1, (1)). We

denote set of all (B, G)-pseudo-critical values of P by D(P, B, G).

The property of (B, G)-pseudo-critical values used in the paper is the following
result. Its proof is postponed to the Annex (Sect. 8).

Proposition 4.6 Let P,Q ⊂ R[X1, . . . , Xk], B = (bi, j )1≤i≤card(P)+card(Q),0≤ j≤k ∈
R(card(P)+card(Q))×(k+1), a matrix having good rank property, and G ∈ R[X1, . . . ,

Xk], where d is the least even number greater than maxP∈P deg(P). Suppose that
S = Bas(P,Q) is bounded. Then

(1) the set D = D(P ∪ Q, B, G) is finite;
(2) for any interval [a, b] ⊂ R and c ∈ [a, b], with {c} ⊃ D ∩ [a, b], if D is a semi-

algebraically connected component of Sa≤G≤b, then DG=c is a semi-algebraically
connected component of SG=c.
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5 Deformation to the Special Case

Our aim in this section is to associate to a basic semi-algebraic set S = Bas(P,Q) a
deformation S̃ of S, and a special tuple (S̃,M̃, �, S̃0,D0,M0) (cf. Definition 3.2).

Notation 5.1 We fix for the remainder of this section:

(1) p ∈ N, 1 ≤ p ≤ k;
(2) two finite sets of polynomials P ⊂ R[X1, . . . , Xk], Q = {Q1, . . . , Qq} ⊂

R[X1, . . . , Xk];
(3) d = maxP∈P∪Q deg(P);
(4) G = G2d+2=1 + ∑k

i=1 i X2d+2
i .

5.1 Deformation of Bas(P,Q) to Bas(P̃, Q̃)

Notation 5.2 Let HN ,k = (hi j )0≤i≤N ,0≤ j≤k be an (N + 1) × (k + 1) matrix with
integer entries defined by hi, j = j i+1 and for each i, 0 ≤ i ≤ N , 0 ≤ j ≤ k.

Notice that the matrix HN ,k has good rank property (see Notation 4.1), since every
submatrix of HN ,k is a generalized Vandermonde matrix (see for example [18], page
43).

Notation 5.3 Given a finite list of variables ζ = (ζ1, . . . , ζt ), we denote by R〈ζ 〉 =
R〈ζ1, . . . , ζt 〉 the field R〈ζ1〉 · · · 〈ζt 〉 and for any ξ ∈ R〈ζ1, . . . , ζt 〉 bounded over
R〈ζ1, . . . , ζi 〉, i < t , we denote by limζi+1(ξ) the element (limζi+1 ◦ · · · ◦ limζt )(ξ)

of R〈ζ1, . . . , ζi 〉. For an element f = ∑
α cαζ α ∈ D[ζ1, . . . , ζt ], we will denote by

oζ ( f ) = α0 ∈ N
t such that ζ α0 is the largest element of supp( f ) = {ζ α | cα �= 0} in

the unique ordering of the real closed field R〈ζ 〉. For α, β ∈ N
t , we denote α ≥ β if

ζ α ≥ ζ β .

We now define families P̃ and Q̃ such that Bas(P̃, Q̃) is a deformation of
Bas(P,Q).

Notation 5.4 Let

Hi = hi,0 +
k∑

j=1

hi j X2d+2
j ,

where d = maxP∈P∪Q deg(P), and the hi j ’s are the entries in the matrix Hk−p+q,k ,
and let

P

1 = (1 − ζ )

∑

P∈P
P2 + ζ

(
X2d+2

p+1 + · · · + X2d+2
k + X2

p+1 + · · · + X2
k

)
,

P

i = ∂ P


1

∂ X p+i
, 2 ≤ i ≤ k − p,

P
 = {
P


1 , . . . , P

k−p

}
.
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For 1 ≤ i ≤ k − p, let

P̃i = (1 − ε) P

i − εHi ,

and for 1 ≤ j ≤ q, let

Q̃ j = (1 − δ)Q j + δHk−p+ j .

Finally, define

P̃ = {
P̃1, . . . , P̃k−p

}
,

Q̃ = {
Q̃1, . . . , Q̃q

}
.

Proposition 5.5 Suppose that Bas(P,Q) is bounded, and that for each y ∈ Rp,
Zer(P, Rk)y is a finite number of points (possibly empty). Let Bas(P̃, Q̃) ⊂
R〈ζ, ε, δ〉k . Then

Bas(P,Q) = lim
ζ

(
Bas

(
P̃, Q̃

))
.

Proof It is clear that limζ (Bas(P̃, Q̃)) ⊂ Bas(P,Q). We now prove that Bas(P,Q) ⊂
limζ (Bas(P̃, Q̃)). Let x = (y, z) ∈ Bas(P,Q), where y ∈ Rp and z ∈ Rk−p. For
each (of the finitely many) z ∈ Rk−p such that x = (y, z) ∈ Bas(P,Q), there exists a
bounded semi-algebraically connected component Cz of the non-singular hypersurface
Zer(P


1 (y, ·), R〈ζ 〉k−p) such that limζ (Cz) = z.
Now, the system P
(y, ·) has only simple zeros in R〈ζ 〉k−p (see [2], Proposition

12.44) and contains the non-empty set of X p+1-extremal points of Cz . Let z′ ∈ R〈ζ 〉k−p

be an X p+1-extremal point of Cz . Then since z′ is a simple zero of the system P
(y, ·),
there must exist z′′ ∈ Zer(P̃, R〈ζ, ε, δ〉k−p) such that limε(z′′) = z′. Moreover, it is
clear that x ′′ = (y, z′′) ∈ Bas(P̃, Q̃), and that limζ (x ′′) = x , which finishes the proof.

��

5.2 General Position and Definition of M̃

Suppose now that Zer(P, Rk) is strongly of dimension ≤ p, and let S = Bas(P,Q) ⊂
Rk . Let

S̃ = Bas
(
P̃, Q̃

) ⊂ R〈ζ, ε, δ〉k

following Notation 5.4.

Proposition 5.6 For every � ≤ p and for every w ∈ R〈ζ, ε, δ〉�, P̃(w,−), Q̃(w,−)

is in general position with respect to G(w,−).

Proof Follows from Definition 2.4 and Proposition 4.4 noting that ε, δ �= 0 in
R〈ζ, ε, δ〉. ��
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Corollary 5.7 The set M̃ = Cr(P̃, Q̃, G) is finite.

Corollary 5.8 Zer(P, Rk) and Bas(P̃, Q̃) are strongly of dimension ≤ p.

Proof Applying Proposition 5.6 with � = p, and noting that card(P) = k − p,
we get that for every w ∈ R〈ζ, ε, δ〉p , Zer(P̃, R〈ζ, ε, δ〉k)w is finite (possibly
empty) by Remark 2.5. It then follows from Definition 1.3 that, Zer(P̃, R〈ζ, ε, δ〉k) is
strongly of dimension ≤ p. The same then holds for Bas(P̃, Q̃), since Bas(P̃, Q̃) ⊂
Zer(P̃, R〈ζ, ε, δ〉k). ��

5.3 Definition of Ã

Since we have replaced Bas(P,Q) by Bas(P̃, Q̃), we need to associate to any given
finite set of points A ⊂ Bas(P,Q), a corresponding finite set of points Ã ⊂ Bas(P̃, Q̃)

whose limits contain A, and which moreover ensures certain connectivity properties
(see Proposition 5.13).

In our constructions we will often require to choose a finite subset of a given
semi-algebraic set S which meets every semi-algebraically connected component of
S. Since the relevant connectivity properties of the constructions will not depend on
how these points are chosen it is convenient to have the following notation. Later in the
descriptions of our algorithms we will specify precisely how these points are chosen.

Notation 5.9 For any closed and bounded semi-algebraic subset S ⊂ Rk , we denote
by Samp(S) some finite subset of S which meets every semi-algebraically connected
component of S.

Notation 5.10 We associate to two closed and bounded semi-algebraic sets S1, S2 ⊂
Rk a finite set of points MinDist(S1, S2) ⊂ S1 defined as follows. Let M be the set of
local minimizers of the polynomial function F(X, Y ) = ∑k

i=1(Xi − Yi )
2 on the set

S1 × S2 and let π1, π2 : Rk × Rk −→ Rk be the projections on the first and second
components respectively. Let

MinDi(S1, S2) = π1(Samp(M)) ∪ π2(Samp(M))

using Notation 5.9.

Proposition 5.11 Let T ⊂ R〈ζ 〉k be a closed semi-algebraic set bounded over R, and
x ∈ limζ (T ). Then MinDi(T, {x}) �= ∅, and x ∈ limζ (MinDi(T, {x})).
Proof Let C be the semi-algebraically connected component of limζ (T ) containing
x . Then, there exists semi-algebraically connected components C1, . . . , Cm of T such
that C = ⋃m

i=1 limζ (Ci ). Hence, there exists i, 1 ≤ i ≤ m, such that x ∈ limζ (Ci ).
Since Ci is bounded over R, the subset Mi,x ⊂ Ci of points which achieve the minimum
distance from x to Ci is non-empty. Every semi-algebraically connected component
of Mi,x is a semi-algebraically connected component of the set Mx ⊂ T of points
which achieve the minimum distance from x to T . Hence, Mi,x contains one point, x̃ ,
which is included in MinDi(T, {x}). It is now clear that MinDi(T, {x}) �= ∅, and that
x = limζ (x̃) ∈ limζ (MinDi(T, {x}) �= ∅). ��
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Proposition 5.12 Let T1, T2 ⊂ R〈ζ 〉k be closed semi-algebraic sets bounded over
R. Then, for every C̃, D̃ semi-algebraically connected components of T1 and T2
respectively, such that limζ (C̃) ∩ limζ (D̃) is non-empty, limζ (C̃ ∩ MinDi(T1, T2)) ∩
limζ (D̃∩MinDi(T1, T2)) is non-empty, and meets every semi-algebraically connected
component of limζ (C̃) ∩ limζ (D̃).

Proof Let M denote the semi-algebraic subset of R〈ζ 〉k ×R〈ζ 〉k consisting of the local
minimizers of the polynomial function F(X, Y ) = ∑k

i=1(Xi −Yi )
2 on T1 × T2. Also,

note that the function F is proportional to the square of the distance to the diagonal
� ⊂ R〈ζ 〉k × R〈ζ 〉k .

Let B be a semi-algebraically connected component of limζ (C̃)∩ limζ (D̃). Notice
that (B × B) ∩ � is a semi-algebraically connected component of (limζ (C̃) ×
limζ (D̃)) ∩ �. Let (ũ0, ṽ0) ∈ C̃ × D̃ such that limζ (ũ0) = limζ (ṽ0) ∈ B. Notice
that limζ (F(ũ0, ṽ0)) = F(limζ (ũ0), limζ (ṽ0)) = 0, and hence F(ũ0, ṽ0) is infinites-
imally small. Let

U = {(
ũ, ṽ

) ∈ C̃ × D̃ | F
(
ũ, ṽ

)
< F

(
ũ0, ṽ0

)}
.

Since the image under limζ of a bounded, semi-algebraically connected set is semi-
algebraically connected (see Proposition 12.43 in [2]), for any semi-algebraically
connected component V of U , limζ (V ) is either contained in (B × B) ∩ � or disjoint
from (B×B)∩�. Denote by U ′ the union of semi-algebraically connected components
V of U such that limζ (V ) ⊂ (B × B) ∩ �, and denote by Ū ′ ⊂ C̃ × D̃ the closure of
U ′. If U ′ is empty then (ũ0, ṽ0) is a local minimizer of F on C̃ × D̃ and we are done.
Otherwise, the minimum of F on Ū ′ is strictly smaller than F(ũ0, ṽ0), and it must be
realized at a point of U ′, since F(ũ, ṽ) = F(ũ0, ṽ0) for all (ũ, ṽ) ∈ Ū ′ \ U ′, and we
are done. ��

We now let A ⊂ S be a fixed finite set of points contained in S.
Let (using Notation 5.10)

Ã = MinDi
(
S̃,A

) ∪ MinDi
(
S̃, S̃

)
.

Proposition 5.13 The finite set Ã ⊂ S̃ has the following properties.

(1) limζ (Ã) ⊃ A;
(2) for every pair of semi-algebraically connected components C̃, D̃ of S̃ such that

limζ (C̃)∩ limζ (D̃) is non-empty, limζ (C̃ ∩ Ã)∩ limζ (D̃ ∩ Ã) is non-empty, and
meets every semi-algebraically connected component of limζ (C̃) ∩ limζ (D̃);

(3) Ã meets every semi-algebraically connected component of S̃.

Proof Part (1) follows from Proposition 5.11 after observing that MinDist(S̃, Ã) =⋃
x∈A MinDi(S̃, {x}) (see Notation 5.10), and the fact that Ã contains MinDist(S̃,A).
Part (2) follows directly from Proposition 5.12 with T1 = T2 = S̃ and the fact that

Ã contains MinDi(S̃, S̃).
Part (3) is a special case of Part (2), with T1 = T2 = S̃, and C̃ = D̃. ��
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Corollary 5.14 Let x, x ′ ∈ S̃ such that limζ (x ′) ∈ Cc(limζ (x), S). Then there exist
elements x̃0 = x, . . . , x̃2n+1 = x ′ of S̃ such that

(1) for all i = 1, . . . , n, limζt (x̃2i−1) = limζ (x̃2i ),
(2) for all i = 0, . . . , n, x̃2i+1 ∈ Cc(x̃2i , S̃),
(3) for all i = 1, . . . , 2n, x̃i ∈ Ã.

Proof Follows clearly from Part (2) of Proposition 5.13. ��

5.4 Definition of S̃0

We want to consider G-critical points parametrized by R�.

Notation 5.15 Let G ∈ R[X1, . . . , Xk] and P = {P1, . . . , Pm} ⊂ R[X1, . . . , Xk] be
a finite family of polynomials.

Let 0 ≤ � ≤ k and consider the system of equations CritEq�(P, G)

Pj = 0, j = 1, . . . , m,

m∑

j=1

λ j
∂ Pj

∂ Xi
− λ0

∂G

∂ Xi
= 0, i = � + 1, . . . , k,

m∑

j=0

λ2
j − 1 = 0.

The set Crit�(P, G) ⊂ Rk is the projection to Rk of

Zer
(
CritEq�(P, G), Rk × Rmax(m,k)+1).

Note that for every w ∈ R�,

Crit�(P, G)w = Crit(P(w, ·), G(w, ·)).

We now fix �, 1 ≤ � < p.

Notation 5.16 Let Q̃′ ⊂ Q̃. Define

S̃0(Q̃′) = Cr�
(
P̃ ∪ Q̃′, G

) ∩ S̃,

S̃0 =
⋃

Q̃′⊂Q̃

S̃0(Q̃′).

Proposition 5.17 For each w ∈ R〈ζ, ε, δ〉�:

(1) S̃0
w is a finite set;

(2) S̃0
w meets every semi-algebraically connected component of S̃w, and contains for

every semi-algebraically connected component C of S̃w a minimizer of G over C.
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Proof Part (1) is immediate from Proposition 5.6.
Part (2) follows from the fact that for each semi-algebraically connected component

C of S̃w, there exists some Q̃′ such that the minimizer of G over C is a local minimizer
x ∈ (

Zer(P̃ ∪ Q̃′, R〈ζ, ε, δ〉))w of G over
(
Zer(P̃ ∪ Q̃′, R〈ζ, ε, δ〉))w, and then x

clearly belongs to Cr�(P̃ ∪ Q̃′, G) ∩ S̃. Since S̃w is closed and bounded, every semi-
algebraically connected component C of S̃w must contain a minimizer of G over C ,
and hence S̃0

w meets every semi-algebraically connected component of S̃w. ��

5.5 Definition of D0, M0

Notation 5.18 Let

S̃ = Bas
(
P̃, Q̃

)
,

F =
∏

Q̃′⊂Q̃

F
(
Q̃′),

where

F
(
Q̃′) =

∑

P∈CrEq�(P̃∪Q̃′,G)

P2.

We denote (see Definition 4.5)

D0 = D
({F} ∪ Q̃,Hcard(Q)+1,2k−p+card(Q)+1, G

)
(9)

considering the polynomials in {F} ∪ Q̃ as elements of

R [ζ, ε, δ]
[
X1, . . . , Xk, λ0, . . . , λk−p+card(Q)

]
.

Let M0 = Samp
(⋃

c∈D0 S̃G=c
)

be a finite set of points meeting every semi-
algebraically connected component of

⋃
c∈D0 S̃G=c.

Lemma 5.19 The sets D0 and M0 have the following properties:

(1) for every interval [a, b] ⊂ R〈ζ, ε, δ〉 and c ∈ [a, b], with {c} ⊃ D0 ∩ [a, b], if
D is a semi-algebraically connected component of (S̃0)a≤G≤b, then DG=c is a
semi-algebraically connected component of (S̃0)G=c;

(2) M0 meets every semi-algebraically connected component of (S̃0)G=a for all
a ∈ D0.

Proof Part (1): notice that D0 is the finite set of (B, G)-pseudo-critical values of the
family {F} ∪ Q̃, for the matrix B = Hcard(Q)+1,2k−p+card(Q)+1 which has the good
rank property. Hence, using Part (2) of Proposition 4.6 we have that for every interval
[a, b] ⊂ R〈ζ, ε, δ〉 and c ∈ [a, b], with {c} ⊃ D0 ∩[a, b], if D is a semi-algebraically
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connected component of (Bas({F}, Q̃))a≤G≤b, then DG=c is a semi-algebraically
connected component of (Bas({F}, Q̃))G=c.

To finish the proof of Part (1) observe that S̃0 is the image of Bas({F}, Q̃) ⊂
R〈ζ, ε, δ〉k × R〈ζ, ε, δ〉k−p+card(Q)+1 under projection to R〈ζ, ε, δ〉k , and the fibers
of this projection are intersections of linear subspaces with the unit sphere in
R〈ζ, ε, δ〉k−p+card(Q)+1, and the polynomial G is independent of the λ’s. Hence, the
semi-algebraically connected components of (S̃0)a≤G≤b and (S̃0)G=c are in corre-
spondence with those of (Bas({F}, Q̃))a≤G≤b and (Bas({F}, Q̃))G=c, respectively.

Part (2) is clear from the definition of M0. ��
Remark 5.20 Note that the elements of D0 are the (B, G)-pseudo-critical values of
the family {F} ∪ Q̃, for the matrix B = Hcard(Q)+1,2k−p+card(Q)+1, and thus satisfy
the properties of Proposition 4.6 with respect to the level sets of the polynomial G
restricted to Bas({F}, Q̃) ⊂ R〈ζ, ε, δ〉k × R〈ζ, ε, δ〉k−p+card(Q)+1. Part (1) of Lemma
5.19 implies that the same properties also hold for S̃0 with respect to the values
D0 (recall that S̃0 is defined in Notation 5.16 as the projection of Bas({F}, Q̃) to
R〈ζ, ε, δ〉k).

5.6 Definition of N , S̃1, and B

We will use the two following propositions which use the definitions given above.

Proposition 5.21 The tuple (S̃,M̃, �, S̃0,D0,M0) is special (cf. Definition 3.2).

Proof Follows from Lemma 5.19 and Definition 3.2. ��
We denote N = π[1,�](M̃ ∪ M0 ∪ Ã), S̃1 = S̃N and B = (S̃0)N . Note that

S̃0 ∩ S̃1 = B.

Proposition 5.22 The semi-algebraic set S̃0 ∪ S̃1 has good connectivity property with
respect to S̃.

Proof Follows from Propositions 5.21 and 3.4. ��

6 Critical Points and Minors

In the previous section, S̃0 is described as the image of a projection applied to the
basic semi-algebraic set Bas({F}, Q̃) (see Remark 5.20). This means that we cannot
hope to compute a roadmap of S̃0 by a divide-and-conquer algorithm directly since
the input to such an algorithm should be a basic semi-algebraic set. In this section, we
give an alternative description of S̃0 (see Proposition 6.4 below) as a (limit of) union
of basic semi-algebraic sets which allows us to get past this problem.

6.1 Description of Critical Points

In the case when P = {P1, . . . , Pm}, m < k, is in general position with respect to
G ∈ R[X1, . . . , Xk], we can describe Crit(P, G) ⊂ Rk as follows.
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Define the Jacobian matrix

Jac =

⎛

⎜⎜
⎝

∂G
∂ X1

∂ P1
∂ X1

· · · ∂ Pm
∂ X1

...
...

...

∂G
∂ Xk

∂ P1
∂ Xk

· · · ∂ Pm
∂ Xk

⎞

⎟⎟
⎠

whose rows are indexed by [1, k] and columns by [0, m].
For J ⊂ [1, k] and J ′ ⊂ [0, m], let Jac(J, J ′) the matrix obtained from Jac by

extracting the rows numbered by elements of J , and the columns numbered by elements
of J ′.

We use the following convenient notation in what follows. For any finite set X , and
any integer r ≥ 0, we will denote by

(X
r

)
the set of all subsets of X of cardinality r .

For each 0 ≤ r ≤ m, and each J ∈ ([1,k]
r

)
, J ′ ∈ ([0,m]

r

)
, let

jac(J, J ′) = det(Jac(J, J ′)).

For every i ∈ [1, k] \ J , and i ′ ∈ [0, m] \ J ′, let

Eq(J, J ′) = P ∪
⋃

i∈[1,k]\J,i ′∈[0,m]\J ′
jac(J ∪ {i}, J ′ ∪ {i ′}),

and

Cons(J, J ′) = {
x ∈ Zer

(
Eq(J, J ′), Rk) | jac(J, J ′)(x) �= 0

}
.

Proposition 6.1 If P = {P1, . . . , Pm} is in general position with respect to G ∈
R[X1, . . . , Xk], the finite variety Crit(P, G) is the union of the various

Cons(J, J ′), 0 ≤ r ≤ m, J ∈
([1, k]

r

)
, J ′ ∈

([0, m]
r

)
.

Proof We first prove that Crit(P, G) is contained in the union of the various
Cons(J, J ′), 0 ≤ r ≤ m, J ∈ ([1,k]

r

)
, J ′ ∈ ([0,m]

r

)
. It follows from Definition 2.1

that each x ∈ Crit(P, G) is contained in the projection to Rk of the set of solutions to
the system of equations, CritEq(P, G) (cf. (1)).

Substituting X = x in the above system, we obtain the following system of homo-
geneous linear equations in λ = (λ0, . . . , λm).

λ0
∂G

∂ Xi
(x) +

m∑

j=1

λ j
∂ Pj

∂ Xi
(x) = 0, i = 1, . . . , k. (10)

Let the rank of the matrix of coefficients of the above system be rx . Then rx ≤ m,
since there must exist a λ = (λ0, . . . , λm) satisfying (10) and λ �= (0, . . . , 0) since it
has to satisfy also the equation
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m∑

j=0

λ2
j − 1 = 0.

Then there exists J ⊂ ([1,k]
rx

)
, J ′ ⊂ ([0,m]

rx

)
such that the rx × rx sub-matrix of the

matrix of coefficients with rows indexed by J and columns indexed by J ′ has full rank
and hence jac(J, J ′)(x) �= 0. Then clearly for every i ∈ [1, k]\ J , and i ′ ∈ [0, m]\ J ′,

jac(J ∪ {i}, J ′ ∪ {i ′})(x) = 0.

Hence, x ∈ Cons(J, J ′) using the definition of the set Cons(J, J ′). This
completes the proof that Crit(P, G) is contained in union of the various
Cons(J, J ′), 0 ≤ r ≤ m, J ∈ ([1,k]

r

)
, J ′ ∈ ([0,m]

r

)
.

To prove the reverse inclusion fix, r , 0 ≤ r ≤ m, J ∈ ([1,k]
r

)
, J ′ ∈ ([0,m]

r

)
,

and let x ∈ Cons(J, J ′). Then jac(J, J ′)(x) �= 0, and for each i ∈ [1, k] \ J and
i ′ ∈ [0, m] \ J ′, jac(J ∪ { j}, J ′ ∪ {i ′})(x) = 0. We now show that there exists
λ = (λ0, . . . , λm) such that (x, λ) satisfy the system of equations (1). It follows from
Cramer’s rule that for each i ∈ J , the equation

λ0
∂G

∂ Xi
(x) +

m∑

j=1

λ j
∂ Pj

∂ Xi
(x) = 0

is satisfied after making the substitution

λ j = −
∑

j ′∈J ′\{ j}

jac(J, J ′ \ { j} ∪ { j ′})(x)

jac(J, J ′)(x)
λ j ′ (11)

for each j ∈ J ′.
Moreover, substituting the expressions in (11) in the equations indexed by i ∈

[1, k] \ J in (1), clearing the denominator jac(J, J ′)(x), we have that the coefficient
of λi ′ for i ′ ∈ [0, m] \ J ′ equals jac(J ∪ {i}, J ′ ∪ {i ′})(x), and hence equal to 0.
Thus, the equations indexed by i ∈ [1, k] \ J in (1) are satisfied as well. Finally since
r ≤ m < m + 1, we can assume that there exists λ = (λ0, . . . , λm) ∈ R〈ζ, ε, δ〉m+1

with not all coordinates equal to 0, such that (x, λ) satisfy all but the last equation in (1),
and it follows that there exists λ such that (x, λ) satisfy (1), and hence x ∈ Crit(P, G).
This proves the reverse inclusion. ��

6.2 Description of S̃0 Using Minors

Notation 6.2 Following Notations 5.1 and 5.4:

(1) Let � < p ≤ k, Q̃′ ⊂ Q̃ and P̃ ∪ Q̃′ = {F1, . . . , Fm}.
(2) Define the matrix

Jac(�, Q̃′) =

⎛

⎜⎜
⎝

∂G
∂ X�+1

∂ F1
∂ X�+1

· · · ∂ Fm
∂ X�+1

...
...

...
∂G
∂ Xk

∂ F1
∂ Xk

· · · ∂ Fm
∂ Xk

⎞

⎟⎟
⎠
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whose rows are indexed by [� + 1, k] and columns by [0, m].
For each α = (Q̃′, r, J, J ′) with Q̃′ ⊂ Q̃, 0 ≤ r ≤ m, J ∈ ([�+1,k]

r

)
, J ′ ∈ ([0,m]

r

)

denote by

jac(α) = det(Jac(�, Q̃′)(J, J ′)).

Moreover, for each i ∈ [� + 1, k] \ J , i ′ ∈ [0, m] \ J ′, let

jac(α, i, i ′) = det(Jac(�, Q̃′)(J ∪ {i}, J ′ ∪ {i ′})).

Let

P0(α) = P̃ ∪ Q̃′ ∪
⋃

i∈[�+1,k]\J,i ′∈[0,m]\J ′
{jac(α, i, i ′)}, (12)

Q0(α) = Q̃ ∪ {jac(α)2 − γ } (13)

where γ is a new variable.
(3) Define

S0(α) = Bas
(
P0(α),Q0(α)

) ⊂ R〈ζ, ε, δ, γ 〉k .

Notation 6.3 Fixing P̃, Q̃, � with 0 ≤ � < p ≤ k, we denote by I(P̃, Q̃, �) the set of

quadruples α = (Q̃′, r, J, J ′) with Q̃′ ⊂ Q̃, 0 ≤ r ≤ m, J ∈ ([�+1,k]
r

)
, J ′ ∈ ([0,m]

r

)
.

Proposition 6.4

S̃0 = limγ

( ⋃
α∈I(P̃,Q̃,�)

S0(α)
)
.

Proof We first prove that

S̃0 =
⋃

α∈I(P̃,Q̃,�)

{
x ∈ Bas

(
P0(α), Q̃

) | jac(α)(x) �= 0
}
. (14)

Using Notation 5.16, notice that for each Q̃′ ⊂ Q̃, S̃0(Q̃′) is the set of G-critical
points of Zer(P̃ ∪ Q̃′(w, ·), R〈ζ, ε, δ〉k) contained in S̃, as w varies over R〈ζ, ε, δ〉�,
and S̃0 = ⋃

Q̃′⊂Q̃ S̃0(Q̃′). It follows from Proposition 6.1 that for each Q̃′ ⊂ Q̃,

S̃0(Q̃′) = {
x ∈ Bas

(
P0(α), Q̃

) | jac(α)(x) �= 0
}
, (15)

and this proves (14).
Noticing that all the sets {x ∈ Bas(P0(α), Q̃) | jac(α)(x) �= 0} ⊂ R〈ζ, ε, δ〉k are

bounded, it follows from the definition of S0(α) that

lim
γ

S0(α) = {x ∈ Bas(P0(α), Q̃) | jac(α)(x) �= 0}, (16)
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using [2], Proposition 11.56.
Also, since S̃0 is closed it follows from (15) that

S̃0 =
⋃

α∈I(P̃,Q̃,�)

{x ∈ Bas(P0(α), Q̃) | jac(α)(x) �= 0}.

The proposition now follows from (16). ��
Remark 6.5 Note that if the description of S does not involve any inequality, this is
the first time that an inequality appears in the construction.

6.2.1 Definition of A(α)

Since we have covered S̃0 by the (limit of the) union of the S0(α), we need to choose
a finite set of points ensuring connectivity properties.

Notation 6.6 For each α ∈ I(P̃, Q̃, �), we denote (using Notation 5.10)

A(α) = MinDi(S0(α),B) ∪
( ⋃

β∈I(P̃,Q̃,�)

MinDi
(
S0(α), S0(β)

))
.

We have the following property of the finite sets A(α), α ∈ I(P̃, Q̃, �).

Proposition 6.7 For every α, β in I(P̃, Q̃, �) the following are true.

(1)
⋃

α∈I(P̃,Q̃,�)
limγ (A(α)) ⊃ B.

(2) For C and D semi-algebraically connected components (not necessarily distinct)
of S0(α) and S0(β) such that limγ (C)∩ limγ (D) is non-empty, limγ (C ∩A(α))∩
limγ (D ∩ A(β)) is non-empty, and meets every semi-algebraically connected
component of limγ (C) ∩ limγ (D).

(3) A(α) meets every semi-algebraically connected component of S0(α).

Proof Part (1) follows from Proposition 5.11.
Part (2) follows from Proposition 5.12.
Part (3) is a special case of Part (2). ��

7 Divide and Conquer Algorithm

7.1 Description of the Tree Tree(V,A), and its Associated Roadmap

We first describe the tree which is going to be constructed in the algorithm, using the
definitions in the two former sections. We then prove that the (limits of the) union of
the leaves of the tree give a roadmap.

Since new infinitesimals will be added at each level of the tree, we need the following
notation.
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Notation 7.1 We consider an ordered domain D contained in a real closed field R. We
denote by Dt the polynomial ring D[η] and we denote by Rt the real closed field R〈η〉
where η = (η1, . . . , ηt ) and ηi = (ζi , εi , δi , γi ). By convention R0 = R and D0 = D.

7.1.1 Description of the Tree Tree(V,A)

We start with a bounded real algebraic variety V = Zer(P, Rk), strongly of dimension
≤ k′ (assumed to be a power of 2 for simplicity), and suppose that A ⊂ V is a finite set
of points meeting every semi-algebraically connected component of V . The algorithm
constructs a rooted tree, which we denote by Tree(V,A).

More precisely, the root, r, of Tree(V,A) has level 0, contains the empty string
s(r), the real algebraic variety Bas(r) = V , and the finite set of points A(r) = A. A
node n of the tree Tree(V,A) at level t �= 0 contains a string s(n) ∈ {0, 1}t , a basic
semi-algebraic set Bas(n) = {w(n)} × Bas(P(n),Q(n)) ⊂ Rk

t , such that Bas(n) is
strongly of dimension ≤ k′/2t , w(n) ∈ RFix(n)

t , defining

Fix(n) =
t∑

i=1

s(n)i k
′/2i ,

and a finite number of points A(n) ⊂ Bas(n) meeting every semi-algebraically con-
nected components of Bas(n). A node n of the tree Tree(V,A) of level t �= 0 is either
a left child, if the last bit of s(n) is 0, or a right child if the last bit of s(n) is 1.

If the level of the node n is < log(k′), we construct the left children and right
children of n as follows. We replace Bas(n) by a semi-algebraic set B̃as(n) = {w(n)}×
Bas(P̃(n), Q̃(n)) ⊂ Rk

t (see Notation 5.4) such that

(1) limζt (B̃as(n)) = Bas(n) (using Proposition 5.5), and

(2) B̃as(n) is strongly of dimension ≤ k′/2t (using Corollary 5.8).

We define semi-algebraic subsets B̃as(n)0, B̃as(n)1 of B̃as(n), with B̃as(n)1 strongly
of dimension ≤ k′/2t+1, by the method described in Sect. 5, with p = k′/2t , � =
p/2 = k′/2t+1.

We define N (n), Ã(n), and B(n) as in Sect. 5. For every w ∈ N (n) we have a right
child m of the node n, with

s(m) = s(n)1,

w(m) = (w(n), w),

Bas(m) = Ext
(
B̃as(n)w(m), Rt

)
,

A(m) = ( ˜A(n) ∪ B(n)
)
w(m)

.

(17)

Recall that B̃as(n)0 ⊂ Rt 〈ζt+1, εt+1, δt+1〉k is defined as an image of a cer-
tain semi-algebraic set under a projection along Lagrangian variables. We are
able to identify (by the method of Sect. 6.2, using Notation 6.3) a finite family
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(Bas(n)0(α))α∈I(n) (with I(n) = I(P̃(n), Q̃(n), k′/2t+1) of basic semi-algebraic
subsets of Ext

(
B̃as(n)0, Rt+1

)
, with each

Bas(n)0(α) := {w(n)} × Bas
(
P0(α),Q0(α)

) ⊂ Rk
t+1,

such that

⋃

α∈I(n)

lim
γt+1

(
Bas(n)0(α)

) = B̃as(n)0

using Proposition 6.4.
For each α ∈ I(n) we include a left child node n(α), with

s(n(α)) = s(n)0,

w(n(α)) = w(n),

Bas(n(α)) = Bas(n)0(α),

A(n(α)) = A(α) (using the definition in Sect. 6.2.1).

If the level of the node n is log(k′), then n is a leaf of Tree(V,A). Note that the
basic semi-algebraic set Bas(n) contained in a leaf n is strongly of dimension ≤ 1.

Definition 7.2 We denote by Leav(V,A) the set of leaf nodes of Tree(V,A). When
n is a node in Tree(V,A), we denote by

(1) Leav(n) the set of leaves of the subtree of Tree(V,A) rooted at n,
(2) Leav1(n) the set of leaves l of the subtree of Tree(V,A) rooted at n with s(l)

consisting of s(n) followed only by 1,
(3) Leav0(n) the set of leaves l of the subtree of Tree(V,A) rooted at n with s(l)

consisting of s(n) followed only by 0.

Note that for every node n of level t of Tree(V,A) we have

A(n) ⊂
⋃

l∈Leav1
(n)

lim
ζt+1

(A(l)), (18)

B(n) ⊂
⋃

l∈Leav1
(n)

lim
γt+1

(A(l)). (19)

A useful fact is the following.

Proposition 7.3 Suppose that A1,A2 are finite subsets of V , and A = A1 ∪ A2.
Then

⋃

l∈Leav(V,A1)∪Leav(V,A2)

Bas(l) =
⋃

l∈Leav(V,A)

Bas(l).

Proof We prove by induction on the level t the two following statements.
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(1) For each node m of Tree(V,A1) (respectively Tree(V,A∈)) with level(m) = t ,
there exists a node m′ of Tree(V,A) with level t such that

(
w(m′), s(m′), P̃(m′), Q̃(m′)

) = (
w(m), s(m), P̃(m), Q̃(m)

)
,

A(m′) ⊃ A(m).
(20)

(2) For each node m of Tree(V,A) with level(m) = t , either there exists a node m1
of Tree(V,A1) with level t such that

(
w(m1), s(m1), P̃(m1), Q̃(m1)

) = (
w(m), s(m), P̃(m), Q̃(m)

)
,

A(m1) = A(m),
(21)

or there exists a node m2 of Tree(V,A∈) with level t such that

(
w(m2), s(m2), P̃(m2), Q̃(m2)

) = (
w(m), s(m), P̃(m), Q̃(m)

)
,

A(m2) = A(m),
(22)

or there exists a node m1 of Tree(V,A1) and a node m2 of Tree(V,A2), both with
level t such that

(
w(m1), s(m1), P̃(m1), Q̃(m1)

) = (
w(m2), s(m2), P̃(m2), Q̃(m2)

)

= (
w(m), s(m), P̃(m), Q̃(m)

)
, (23)

A(m1) ∪ A(m2) = A(m).

The base case is when t = 0, and in this case the claim is obviously true. We now
prove the inductive step from t − 1 to t .

(1) Suppose that the node m is a child of n. Since level(n) = t − 1, by induction
hypothesis there exists a node n′ in Tree(V,A) with level t − 1 such that

(
w(n′), s(n′), P̃(n′), Q̃(n′)

) = (
w(n), s(n), P̃(n), Q̃(n)

)
,

A(n′) ⊃ A(n).

The existence of a child m′ of the node n′ satisfying (20) is now clear from the
definition of Tree(V,A) (following the description given in Sect. 7.1.1). This
completes the induction in this case.

(2) Suppose again that the node m is a child of n. Since level(n) = t −1, by induction
hypothesis there exists either a node n1 of Tree(V,A1) with level t − 1 such that

(
w(n1), s(n1), P̃(n1), Q̃(n1)

) = (
w(n), s(n), P̃(n), Q̃(n)

)
,

A(n1) = A(n),
(24)

or there exists a node n2 of Tree(V,A2) with level t − 1 such that
(
w(n2), s(n2), P̃(n2), Q̃(n2)

) = (
w(n), s(n), P̃(n), Q̃(n)

)
,

A(n2) = A(n),
(25)
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or there exists a node n1 of Tree(V,A1) and a node n2 of Tree(V,A2) both with
level t − 1 such that

(
w(n1), s(n1), P̃(n1), Q̃(n1)

) = (
w(n2), s(n2), P̃(n2), Q̃(n2)

)

= (
w(n), s(n), P̃(n), Q̃(n)

)
, (26)

A(n1) ∪ A(n2) = A(n).

It follows from the description of Tree(V,A1) given in Sect. 7.1.1 that (21) implies
that there exists a child m1 of the node n1 satisfying (24). Similarly, it is clear
that (22) implies that there exists a child m2 of the node n2 satisfying (25). Now
suppose that (23) hold. If m is a left child of n, then clearly there exists a child
m1 of the node n1, and a child m2 of the node n2 satisfying (26). If m is a right
child of n, then there are several cases.
(a) Case w(m) ∈ π[1,Fix(m)](A(n1)∩A(n2)): In this case there exists a child m1

of the node n1, and a child m2 of the node n2 satisfying (23).
(b) Case w(m) ∈ π[1,Fix(m)](A(n1) \ A(n1) ∩ A(n2)): In this case there exists a

child m1 of the node n1 satisfying (21).
(c) Case w(m) ∈ π[1,Fix(m)](A(n2) \ A(n1) ∩ A(n2)): In this case there exists a

child m2 of the node n2 satisfying (22).
This completes the induction in this case.

The proposition follows by applying the result proved above to the leaf nodes of the
trees Tree(V,A1), Tree(V,A2) and Tree(V,A). ��

7.1.2 Roadmap Associated to Tree(V,A)

We now prove that the union of the (limits of the) sets contained in the leaves of
Tree(V,A) form a roadmap. Most of this section is devoted to the proof of the following
theorem, which is the key result needed to prove the correctness of our algorithms.

Theorem 7.4 The semi-algebraic set

DCRM(V,A) :=
⋃

l∈Leav(V,A)

lim
ζ1

(Bas(l))

contains A, and is a roadmap of V .

Theorem 7.4 will follow from the following more general proposition.

Proposition 7.5 Let n be a node in Tree(V,A) of level t . Then the semi-algebraic set

DCRM(Bas(n),A(n)) :=
⋃

l∈Leav(n)

lim
ζt+1

(Bas(l))

contains A(n), and is a roadmap of Bas(n).

123



Discrete Comput Geom (2014) 52:278–343 311

Fig. 1 Tree of leaves 1111
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Several intermediate results will be used in the proof of Proposition 7.5 and Theorem
7.4.

The following relation defined on elements of {0, 1}t will be used to define a notion
of “neighbor” amongst the leaf nodes of Tree(V,A) which in turn will be used to
prove the existence of connecting paths in the roadmap of V defined by Tree(V,A)

having some extra structure.

Definition 7.6 We define a symmetric and reflexive relation Nt on elements of {0, 1}t

by induction on t as follows.

(1) If t = 1, 0N11.
(2) For all s, s′ ∈ {0, 1}t , s Nt s′ implies that 0s Nt+10s′, and 1s Nt+11s.
(3) Finally, 01t−1 Nt 1t for all t ≥ 1.

Remark 7.7 The relation Nt defined in Definition 7.6 induces the structure of a tree
on the set {0, 1}t . This tree in the case t = 4 is displayed in Fig. 1. The edges in the
tree correspond to pairs of elements s, t ∈ {0, 1}4, with s N4t .

The following proposition which uses the relation defined in Definition 7.6 above
will be used to prove the existence of connecting paths in the roadmap. These con-
necting paths will have a certain special structure—and this structure will be defined
using the relation defined in Definition 7.6.

Proposition 7.8 Let n be a node of Tree(V,A) with level(n) = t , l, l′ ∈ Leav(n), and
x ∈ A(l), x ′ ∈ A(l′), such that limζt+1(x) ∈ Cc(limζt+1(x ′), Bas(n)). Then there exist
l = l0, . . . , lN = l′ ∈ Leav(n), and for each i, 0 ≤ i ≤ N, x2i , x2i+1 ∈ A(li ) such
that

(1) x0 = x, x2N+1 = x ′;
(2) for all i = 1, . . . , N , limζt+1(x2i−1) = limζt+1(x2i );
(3) for all i = 0, . . . , N, x2i+1 ∈ Cc(x2i , Bas(li));
(4) for all i = 0, . . . , N − 1, s(li )Nlog(k′)s(li+1).

The proof of Proposition 7.8 will use the following lemma.

Lemma 7.9 Let m1,m2 be two distinct children of a node n of Tree(V,A) with
level(n) = t , and for i = 1, 2, let Bi be a semi-algebraically connected com-
ponent of Bas(mi ). Suppose that limγt+1(B1) ∩ limγt+1(B2) �= ∅. Then there exist
l1 ∈ Leav(m1), l2 ∈ Leav(m2), and x1 ∈ A(l1), x2 ∈ A(l2), such that
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lim
ζt+1

(x1) = lim
ζt+1

(x2),

lim
ζt+2

(xi ) ∈ Bi for i = 1, 2,

and

s(l1)Nlog(k′)s(l2).

Proof There are four cases to consider.

(1) m1 is a left child and m2 a right child of n. Let m1 = n(α) for some α ∈ I(n).
Since B(n) = B̃as(n)0 ∩ B̃as(n)1, and limγt+1(B2)∩ limγt+1(B1) �= ∅, there exists
a point x ∈ limγt+1(B2)∩ limγt+1(B1) ⊂ B(n). Moreover x ∈ limγt+1(A(α)∩ B1)

by definition of A(α) (see Notation 50), since B(n) = B̃as(n)0 ∩ B̃as(n)1 is finite.
Moreover x ∈ B(n)∩ limγt+1(B2) ⊂ B(n)∩ limγt+1(Bas(m2)) ⊂ limγt+1(A(m2))

using (17).
Using (19), there exist for i = 1, 2, li ∈ Leav(mi ), and xi ∈ A(li ), with

limγt+1(xi ) = x . Then limζt+1(xi ) = limζt+1(x), and limζt+2(xi ) ∈ Bi and

s(li ) = s(mi )1 · · · 1. (27)

Since in this case, s(m1) = s(n)0, and s(m2) = s(n)1, it follows from Definition
7.6 and (27) that s(l1)Nlog(k′)s(l2).

(2) m1 is a right child and m2 a left child of n. This case is similar to the one above
with the roles of m1 and m2 reversed.

(3) Both m1,m2 are right children of n. In this case, Bas(m1) ∩ Bas(m2) = ∅,
and hence limγt+1(Bas(m1)) ∩ limγt+1(Bas(m2)) = ∅, since the descriptions of
Bas(m1) and Bas(m2) do not depend on γt+1. Thus, there is nothing to prove in
this case.

(4) Both m1,m2 are left children of n. In this case there exist α1, α2 ∈ I(n) such that
for i = 1, 2, mi = n(αi ). In this case there exists for i = 1, 2, x ′

i ∈ A(αi ) such that
limγt+1(x ′

1) = limγt+1(x ′
2) ∈ limγt+1(B1) ∩ limγt+1(B2) (using Proposition 6.7).

Moreover, using (18), there exist for i = 1, 2, li ∈ Leav1(mi ), and xi ∈ A(li )
such that x ′

i = limζt+2(xi ). Notice that, for i = 1, 2, s(li ) = s(mi )1 · · · 1. It is now
easy to check that s(l1) = s(l2), and that the tuple (x1, l1, x2, l2) then satisfies the
required properties. ��

Proof of Proposition 7.8 The proof of the proposition is by induction on t = level(n).
The base case is when n is a leaf node, in which case the statement clearly holds.
Otherwise, suppose that the proposition is true for all nodes having level greater than
t .

Using Corollary 5.14, we can assume without loss of generality that

lim
γt+1

(x) ∈ Cc
(

lim
γt+1

(x ′), B̃as(n)
)
.

Since by Proposition 5.22, B̃as(n)0 ∪ B̃as(n)1 has good connectivity property
with respect to B̃as(n), and since
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⋃

l child of n

lim
γt+1

(A(l)) ⊂ B̃as(n)0 ∪ B̃as(n)1,

it follows that limγt+1(x ′) ∈ Cc(limγt+1(x), B̃as(n)0 ∪ B̃as(n)1). So there exists a
sequence m = m0, . . . ,mn = m′ of children of n, for each i, 0 ≤ i ≤ n, a semi-
algebraically connected component Bi of Bas(mi ), with

B0 = Cc
(

lim
ζt+2

(x), Bas(m0)
)
, Bn = Cc

(
lim
ζt+2

(x ′), Bas(mn)
)
,

and for each i, 0 ≤ i ≤ n − 1, limγt+1(Bi ) ∩ limγt+1(Bi+1) �= ∅.
Applying Lemma 7.9 we have that for each i, 0 ≤ i ≤ n, there exist l2i , l2i+1 ∈

Leav(mi ), and for each j, 1 ≤ j ≤ 2n, x̄ j ∈ A(l j ) such that for each i, 0 ≤ i ≤ n−1,

lim
ζt+1

(x̄2i+1) = lim
ζt+1

(x̄2i+2),

lim
ζt+2

(x̄2i ), lim
ζt+2

(x̄2i+1) ∈ Bi ,

and

s(li )Nlog(k′)s(li+1). (28)

Let also

x̄0 = x,

x̄2n+1 = x ′,
l0 = l,

l2n+1 = l′.

We now apply the induction hypothesis to each of the pairs x̄2i , x̄2i+1, 0 ≤ i ≤ n, and
use (28) to complete the induction. ��
Proposition 7.10 Let n be a node of the tree Tree(V,A), with level(n) = t , and
Leav(n) be the set of leaves of the sub-tree of Tree(V,A) rooted at n. For any two
leaves l and l′ in Leav(n) and any two points x ∈ limζt+1(Bas(l)), x ′ ∈ limζt+1(Bas(l′))
such that x ′ ∈ Cc(x, Bas(n)), there exists a semi-algebraic path Γ connecting x to x ′
such that:

(1) Γ is a concatenation of semi-algebraic paths Γ0, . . . , Γm, where each Γi ⊂
limζt+1(Bas(li )), for some li ∈ Leav(n);

(2) for each i, 0 ≤ i ≤ m − 1, s(li )Nlog(k′)s(li+1).

Proof Immediate consequence of Proposition 7.8. ��
The following two propositions will be used in the proof of Proposition 7.5.

123



314 Discrete Comput Geom (2014) 52:278–343

Proposition 7.11 Let n be a node of the tree Tree(V,A) with level(n) = t , and let
Leav0(n) be the set of leaves m of the subtree of Tree(V,A) rooted at n such that s(m)

contains no 1 to the right of s(n). Then the semi-algebraic set

L =
⋃

m∈Leav0(n)

lim
ζt+1

(Bas(m))

is such that for all x ∈ Rt , L(w(n),x) meets every semi-algebraically connected com-
ponent of Bas(n)(w(n),x).

Proof The proof is by induction on t = level(n). If n is a leaf node with |s(n)| = 0,
then Leav0(n) = {n} and there is nothing to prove. Now assume that the proposition
is true for all n′, with level(n′) > t .

Note that the left children of n are precisely those children m of n with s(m) =
(s(n), 0), and these are in 1–1 correspondence with α ∈ I(n). Denote by n(α) the left
child of n corresponding to α ∈ I(n) .

We denote (with a slight abuse of notation) Ext
(
B̃as(n)0, Rt+1

)
by B̃as(n)0 and

Ext
(
B̃as(n), Rt+1

)
by B̃as(n), and make the following claims.

1. For each w ∈ R�
t+1, where � = k′/2t+1, B̃as(n)0

(w(n),w) meets every semi-

algebraically connected component of B̃as(n)(w(n),w) (Proposition 5.17). It fol-
lows immediately (since � ≥ 1) that for each x ′ ∈ Rt+1, B̃as(n)0

(w(n),x ′) meets

every semi-algebraically connected component of B̃as(n)(w(n),x ′).
2. Also, limζt+1(B̃as(n)) = Bas(n) ⊂ Rk

t (Proposition 5.5). It follows that for any
x ∈ Rt , and C a semi-algebraically connected component of Bas(n)(w(n),x), there
exists x ′ ∈ Rt+1 with limζt+1(x ′) = x , and a semi-algebraically connected com-
ponent D of B̃as(n)(w(n),x ′) such that limζt+1(D) ⊂ C .

3. Using Claim 1. there exists a semi-algebraically connected component D0 of
B̃as(n)0

(w(n),x ′) which is contained in D.

Now since

B̃as(n)0 =
⋃

α∈I(n)

lim
γt+1

Bas(n(α))

there exists a left child n(α) of n and a semi-algebraically connected component Dn(α)

of Bas(n(α)) such that limγt+1(Dn(α)) ⊂ D0.
Noting that being the left child of n, level(n(α)) > level(n), and noting that the

fact s(n(α)) = s(n)0 implies that Fix(n(α)) = Fix(n), we can apply the induction
hypothesis to obtain that L ′

(w(n),x ′) meets Dn(α), where

L ′ =
⋃

m∈Leav0
(n(α))

lim
ζt+2

(Bas(m)).

Now limζt+1(L ′) ⊂ L , which implies that limζt+1(L ′
(w(n),x ′)) ⊂ L(w(n),x). Moreover,

L ′
(w(n),x) ∩ Dn(α) �= ∅, limγt+1(Dn(α)) ⊂ D0 ⊂ D, and limζt+1(D) ⊂ C . Together

they imply that L(w(n),x) ∩ C �= ∅. ��
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Corollary 7.12 DCRM(Bas(n),A(n)) meets every semi-algebraically connected
component of Bas(n).

We are now ready for the proof of Proposition 7.5, and as an immediate consequence
Theorem 7.4.

Proof of Proposition 7.5 The fact that A(n) is contained in the set

DCRM(Bas(n),A(n)) =
⋃

l∈Leav(n)

lim
ζt+1

(Bas(l))

follows from (18). The roadmap property RM1 follows from Proposition 7.10 and
Corollary 7.12. The property RM2 follows from Proposition 7.11. ��
Proof of Theorem 7.4 Follows immediately from Proposition 7.5, setting n = r, and
observing that A = A(r) by construction, and that Fix(r) = 0. ��

7.2 Preliminary Definitions and Algorithms

In this subsection we introduce certain notation, definitions and algorithms that will be
used in Algorithm 5 (Divide) in the next subsection. Recall that in the description of
the tree Tree(V,A), at each node n of Tree(V,A), some coordinates have been fixed
and the basic semi-algebraic set Bas(n) is contained in the fiber over the point w(n)

consisting of the fixed coordinates. We now explain how we represent algebraically
the points that fix the fibers in our construction, and also the necessary algorithms to
compute these points. We refer the reader to [2] for any missing detail.

A root of a univariate polynomials is going to be described by a Thom encoding.

Notation 7.13 Let P be a univariate polynomial of degree p in D[X ]. We denote
by Der(P) the list P, P ′, . . . , P(p). Let P ∈ D[X ] and σ ∈ {0, 1,−1}Der(P) a sign
condition on the set Der(P) of derivatives of P . The Thom encoding of a root x of P
in R is equal to σ if the sign condition taken by the set Der(P) at x coincides with σ .
Note that two different roots of P have different Thom encodings (see [2] Proposition
2.28).

Because we need to fix successively blocks of coordinates of decreasing size, tri-
angular Thom encodings appear naturally.

Definition 7.14 A triangular system of polynomials with variables T = (T1, . . . , Tt )

is a tuple T =(F1, . . . , Ft ) where

Fi ∈ D[T1, . . . , Ti ], 1 ≤ i ≤ t,

such that Zer(T , Rt) is finite. A triangular Thom encoding specifying

θ = (θ1, . . . , θt ) ∈ Rt
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is a pair (T , τ ) where T is a triangular system of polynomials, and τ = τ1, . . . , τt

is a list of Thom encodings, such that τi is the Thom encoding of the real root θi of
Fi (θ1, . . . , θi−1, Ti ) for i = 1, . . . , t .

Moreover, we need to describe points in the corresponding fibers, which is done
using real univariate representations.

Definition 7.15 A k-real univariate representation u over a triangular Thom encod-
ing T , τ specifying θ ∈ Rt is of the form

u = ( f (T, U ), σ, F(T, U )),

where f (T, U ), F(T, U ) = ( f0(T, U ), . . . , fk(T, U )) is a k+2-tuple of polynomials
in D[T, U ] such that f (θ, U ) and f0(θ, U ) are co-prime, and σ is the Thom encoding
of a real root x of f (θ, U ). The point associated to u is the point

( f1(θ, x)

f0(θ, x)
, . . . ,

fk(θ, x)

f0(θ, x)

)
∈ Rk .

For 1 ≤ p ≤ k, we call the real univariate representation u≤p = ( f (T, U ), σ,

F≤p(T, U )) where F≤p(T, U ) = ( f0(T, U ), . . . , f p(T, U )), over the initial real tri-
angular Thom encoding T , τ to be the projection of u to the first p coordinates. Geo-
metrically this corresponds to forgetting the last k − p coordinates of the associated
point.

We now give a few auxiliary algorithms. The first one computes the limit of a Thom
Encoding and is used in the determination of the (B, G)-pseudo-critical values needed
in our construction.

In the following algorithm ε̄ = (ε1, . . . , εt ) is a tuple of infinitesimals.

Algorithm 1. [Limit of a Thom Encoding]

• Input: a Thom encoding ( fε̄, σε̄) , fε̄ ∈ D [ε̄, U ], representing xε̄ ∈ Rt〈 ¯ ε〉
bounded over R.

• Output: a Thom encoding ( f,σ ) , f ∈ D[U ], representing

x = lim
ε1

(xε̄) ∈ R.

• Complexity and degree bounds: If D1 (resp. D2) is a bound on the degree of fε̄
with respect to U (resp. ε̄) the number of arithmetic operations in D is bounded
by DO(1)

1 DO(t)
2 . Moreover, the degrees in U of the polynomials appearing in the

output are still bounded by D1.
• Procedure:
• Step 1. Replace fε̄ by ε̄−oε̄ ( fε̄ ) fε̄ (see Notation 5.3). Denote by f (T ) the polynomial

obtained by substituting successively εt by 0, and then εt−1 by 0, and so on, and
finally ε1 by 0, in fε̄.

• Step 2. Compute the set � of Thom encodings of roots of f (T ) using Algorithm
10.11 (Sign Determination) from [2].
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• Step 3. Identify the Thom encoding σ using Algorithm 10.13 (Univariate Sign
Determination) from [2], by checking whether a ball of infinitesimal radius δ (1 �
δ � ε̄ > 0) around the point x represented by the real univariate representation
f, σ contains xε̄.

Proof of correctness Follows immediately from the correctness of Algorithm 10.11
(Sign Determination) and Algorithm 10.13 (Univariate Sign Determination) in [2]. ��
Proof of complexity and degree bounds Follows from the complexity of Algorithm
10.11 (Sign Determination) and Algorithm 10.13 (Univariate Sign Determination) in
[2]. The fact that the degree in U of the polynomials in the output are bounded by D1
is clear. ��
Remark 7.16 Our algorithms use several algorithms from [2] such as Algorithm 12.16
(Bounded Algebraic Sampling), Algorithm 14.9 (Global Optimization), Algorithm
15.2 (Curve Segments), and Algorithm 11.19 (Restricted Elimination) with one impor-
tant modification. Each of these algorithms described in [2] has an associated structure
which is an ordered domain in which all computations (i.e., arithmetic operations and
sign evaluations) take place. In the calls to these algorithms in this paper, this ordered
domain will be of the form Dt [θ ], where θ ∈ Rm

t is specified by a triangular Thom
encoding (T , τ ) and involves 4t infinitesimals (see Notation 7.1). Each element of
Dt [θ ] is represented by some polynomial in Dt [T ] = D[η, T1, . . . , Tm] and arith-
metic operations are performed as ordinary polynomial arithmetic in the ring Dt [T ].
For the evaluation of the sign of an element in Dt [θ ] represented by a polynomial
f ∈ Dt [T ] we also use an algorithm from [2], namely Algorithm 12.10 (Triangular
Sign Determination) with input f, T , τ .

Suppose that the degree of the output (and of the intermediate computations) of a
particular algorithm in [2] is bounded by some function f (d, k, s) of the degrees d,
the number of variables k, and the number of polynomials s. If d ′, k′, s′ is a bound on
the degrees, number of variables and number of the input polynomials (considered as
polynomials with coefficients in Dt [θ ]) in a call to that algorithm in this paper, then
the degree bound of the output (and intermediate computations) is f (d ′, k′, s′) in the
ring Dt [θ ].

But we want to evaluate the complexity in the ring D. Denoting by N a bound on
the degrees in T, η of the input polynomials, we have the following:

• the degrees in T, η of the output (and of the intermediate computations) are bounded
by O(N f (d ′, k′, s′)),

• if the complexity of a particular algorithm in [2] is bounded by some function
F(d, k, s), then the number of arithmetic operations and sign evaluations in Dt [θ ]
of the call to that algorithm in this paper is bounded by F(d ′, k′, s′) , while the cost
of the call to that algorithm in this paper, i.e., the number of arithmetic operations
and sign evaluations in D, is bounded by N O(m+t)F(d ′, k′, s′).

These statements do not follow immediately from the complexity results on the algo-
rithms given in [2]. It is necessary to inspect the algorithms in [2] carefully, noticing
that they are all based on linear algebra subroutines and determinant computations.

123



318 Discrete Comput Geom (2014) 52:278–343

We now describe an algorithm for computing the (B, G)-pseudo-critical values of
a family of polynomials (cf. Definition 4.5), using Notation 7.1.

Algorithm 2. [(B, G)-pseudo-critical values over a Triangular Thom Encoding]

• Input:
(1) a triangular Thom encoding (T , τ ) with T ⊂ Dt [T ], fixing a point θ ∈ Rm,

m ≤ t ;
(2) a family of polynomials P = {P1, . . . , Ps} ⊂ Dt [T, X1, . . . , Xk] such that

Zer(P(θ, ·), Rk) is bounded;
(3) a matrix B = (bi, j )1≤i≤s,0≤ j≤k ∈ N

s×(k+1)
>0 having good rank property;

(4) a polynomial G ∈ Dt [X1, . . . , Xk].
• Output: a set of Thom encodings ( f, σ ) over (T , τ ) specifying a finite subset of

R containing the (B, G)-pseudo-critical values of Zer(P(θ, ·), Rk
t ).

• Complexity and degree bounds: sk DO(t+m)d O(k) arithmetic operations in D,
where D is a bound on the degree of T with respect to T, η, and d is a bound on the
degrees of the polynomials in P and of G. The degrees in T, η of the polynomials
appearing in the Thom encodings over (T ,τ ) output are bounded by O(d)k D,
while the degree in the new variable U is bounded by O(d)k .

• Procedure:
• Step 1. For each I ⊂ [1, s] with card(I ) ≤ k, σ ∈ {−1, 1}I , compute using

Algorithm 12.16 (Bounded Algebraic Sampling) from [2] with ring Dt [θ, γ ]
and input CritEq(P̃I,B, G) (see Definition 4.5 for the definition of P̃I,B) a set
of real univariate representations over (T , τ ) with associated points meeting
every semi-algebraically connected component of Zer(CritEq(P̃I,B, G) ∪ {G −
Z}, Rt〈γ 〉k+card(I )+2).

• Step 2. For each real univariate representation

( f, g0, g1, . . . , gk, gλ0 , . . . , gλcard(I ) , gZ ), σ

over (T , τ ) output in the previous step, where

f, g0, g1, . . . , gk, gλ0 , . . . , gλcard(I ) , gZ ∈ Dt [T, γ, U ],

eliminating U from the equations

f (T, U ), Zg0(T, U ) − gZ (T, U )

obtain a Thom encoding (A(T, γ, Z), α) over (T ,τ ) describing a point a ∈ Rt〈γ 〉.
• Step 3. Compute a Thom encoding describing limγ (a) using Algorithm 1 (Limit

of a Thom Encoding).
• Step 4. Output the set of all real univariate representations computed in Step 3.

Proof of correctness The correctness of Algorithm 2 is a consequence of the correct-
ness of Algorithm 12.16 (Bounded Algebraic Sampling) and Algorithm 12.14 (Limit
of bounded points) from [2] given the definition of (B, G)-pseudo-critical values (see
Definition 4.5). ��
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Proof of complexity and degree bounds It follows from the complexity of Algorithm
12.16 (Bounded Algebraic Sampling) and Algorithm 12.14 (Limits of bounded points)
from [2] and from Remark 7.16, that the complexity is bounded by

sk DO(m+t)d O(k).

Moreover, it follows from the complexity analysis of Algorithm 12.16 (Bounded Alge-
braic Sampling) from [2], and that of Algorithm 1 (Limit of a Thom Encoding), that
the degrees in T, η of the polynomials appearing in the Thom encodings over (T ,τ )

output is bounded by O(d)k D, and the degree in U is bounded by O(d)k . ��
As mentioned earlier, we will need to compute certain well chosen finite sets of

points which correspond to points that minimize locally the distance between pairs of
semi-algebraically connected components of some basic semi-algebraic set described
in the input. For technical reasons, we need such an algorithm in two different versions.
In the first algorithm (Algorithm 3) the input is a basic semi-algebraic set and a point,
while in the second algorithm (Algorithm 4) the input is a pair of basic semi-algebraic
sets.

We use again Notation 7.1.

Algorithm 3. [Closest Point over a Triangular Thom Encoding]

• Input: A triangular Thom encoding (T , τ ), T ⊂ Dt [T ], fixing a point θ ∈ Rm,
finite subsets P,Q ⊂ Dt [T, X1, . . . , Xk] with Bas(P(θ, ·),Q(θ, ·)) bounded, and
a real univariate representation u = (g, σ, G) over (T , τ ) with associated point x .

• Output: A finite set of real univariate representations over (T , τ ) with associated
points MinDi(Bas(P(θ, ·),Q(θ, ·)), {x}).

• Complexity and degree bounds: Let card(Q) ≤ t , degX (P,Q) ≤ d,
degη,T (T ) ≤ D, degη,T,U (u) ≤ D, and degη,T (P,Q) ≤ d D. Then the num-
ber of arithmetic operations in D is bounded by d O(k) DO(m+t). The degrees in
T, η of the polynomials appearing in the Thom encodings over (T ,τ ) output are
bounded by O(d)k D, while the degree in the new variable U is bounded by O(d)k .

• Procedure:
• Step 1. Let S ⊂ Rk × Rk be the semi-algebraic sets defined by

S := Bas(P(θ, ·),Q(θ, ·)) × {x},

where, with G = (g0, . . . , gk), the point x associated to u is defined by

k∑

i=1

(g0(T, U )Yi − gi (T, U ))2.

• Step 2. Let F = ∑
1≤i≤k(Xi −Yi )

2. Apply Algorithm 14.9 (Global Optimization)
from [2] with ring D[θ, θg], where (θ, θg) is associated to the triangular Thom
encoding ((T , g), (τ, σ )), and the pair (S, F) as input, and project the set of real
univariate representations over ((T , g), (τ, σ )) that are output, to the first k coor-
dinates.
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• Step 3. For each univariate representation w = (h(T, U, V ), σh, H(T, U, V ))

output in Step 2, use Algorithm 12.16 (Bounded Algebraic Sampling) from [2] with
ring D[θ ] and the polynomials {g, h} to obtain a set of real univariate representations
v = (e(T, T ′), σe, E = (e0,eU , eV )). Substitute the rational functions eU

e0
,

eV
e0

for
U, V in the real univariate representation w, and output the resulting real univariate
representation over (T , τ ).

Proof of correctness The correctness of Algorithm 3 is a consequence of the cor-
rectness of Algorithm 14.9 (Global Optimization), and of Algorithm 12.16 (Bounded
Algebraic Sampling) from [2]. The degree bounds follow from the complexity analysis
of the above algorithms. ��
Proof of complexity and degree bounds It follows from the complexity analysis of
Algorithm 14.9 (Global Optimization) from [2], and Remark 7.16, that the complex-
ity of Step 2 is bounded by d O(k) DO(m+t). Moreover, the degrees in η, T, U, V of
the polynomials appearing in the real univariate representation w are bounded by
Dd O(k). The cardinality of the set of real univariate representations output is bounded
by 2t d O(k). It follows from the complexity of Algorithm 12.16 (Bounded Algebraic
Sampling) from [2] and Remark 7.16 that the degrees in η, T, T ′ of the e, E are
bounded by DO(1)d O(k), and that the complexity of Step 3 is bounded by d O(k) DO(t).

��
Algorithm 4. [Closest Pairs over a Triangular Thom Encoding]

• Input: A triangular Thom encoding (T , τ ),T ⊂ Dt [T ], fixing a point θ ∈ Rm
t

and finite subsets P1,Q1,P2,Q2 ⊂ Dt [T, X1, . . . , Xk] such that Bas(P1(θ, ·),
Q1(θ, ·)) and Bas(P2(θ, ·),Q2(θ, ·)) are bounded.

• Output: A finite set of real univariate representations over (T , τ ) with associated
points

MinDi(Bas(P1(θ, ·),Q1(θ, ·)), Bas(P2(θ, ·),Q2(θ, ·))).

• Complexity and degree bounds: Suppose that
(1) card(Q1), card(Q2) ≤ t,
(2) degX (P1,Q1,P2,Q2) ≤ d,
(3) degη,T (T ) ≤ D,
(4) and degη,T (P1,Q1,P2,Q2) ≤ d D.

Then the number of arithmetic operations in D is bounded by d O(k) DO(m+t). The
degrees in T, η of the polynomials appearing in the Thom encodings over (T ,τ )

output are bounded by O(d)k D, while the degree in the new variable U is bounded
by O(d)k .

• Procedure:
• Step 1. Let S ⊂ Rk × Rk be the semi-algebraic sets defined by

S = Bas(P1(θ, ·),Q1(θ, ·)) × Bas(P2(θ, ·),Q2(θ, ·)).

• Step 2. Let F = ∑
1≤i≤k(Xi −Yi )

2. Apply Algorithm 14.9 (Global Optimization)
from [2] to the pair (S, F) with ring Dt [θ ] and project the output set of real uni-
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variate representations over (T , τ ) to the first k-coordinates as well as to the last
k-coordinates.

Proof of correctness The correctness of Algorithm 4 is a consequence of the correct-
ness of Algorithm 14.9 (Global Optimization) from [2]. ��
Proof of complexity and degree bounds It follows from the complexity of Algorithm
14.9 (Global Optimization) from [2] and Remark 7.16 that the complexity of Step 2 is
bounded by d O(k) DO(m+t). The degree bounds follow from the complexity analysis
of the Algorithm 14.9 (Global Optimization) from [2]. ��

7.3 The Divide Algorithm

We now describe Algorithm 5 (Divide) which will be used later to create the left and
right children of a node of the tree, Tree(V,A), described in Sect. 7.1.1 above.
Algorithm 5. [Divide]

• Input: A tuple (s, (T , τ ),P,Q, A) satisfying the following.
(1) s ∈ {0, 1}t .
(2) (T , τ ) is a triangular Thom encoding fixing θ ∈ R|fix(s)|

t , where T is a tri-
angular system with variables Tfix(s) = (Ti1 , . . . , Ti|fix(s)|), i j ∈ fix(s) = {i |
si = 1}.

(3) P ⊂ Dt [Tfix(s), XFix(s)+1, . . . , Xk] is a finite set of polynomials, where
Fix(s) = ∑t

i=1 si k′/2i , and Q ⊂ Dt [Tfix(s), XFix(s)+1, . . . , Xk] is a set of
t − card(fix(s)) polynomials, defining a semi-algebraic set

Bas(P(θ, ·),Q(θ, ·)) ⊂ Rk−Fix(s)
t

(cf. Notation 7.1).
(4) A is a finite set of real univariate representations over T , with associated points

A ⊂ S = Bas(P(θ, ·),Q(θ, ·)), meeting every semi-algebraically connected
component of S.

(5) Zer(P(θ, ·), Rk−Fix(s)
t ) is strongly of dimension ≤ p = k′/2t , if t �= 0. More

precisely, for every z ∈ Rp
t , Zer(P(θ, ·), Rk−Fix(s)

t )z is a finite set (possibly
empty).

• Output:
A tuple (P̃, Q̃, Ã, N , B, (P0(α),Q0(α), A(α))

α∈I(P̃,Q̃,p/2)
) where:

(1) P̃ ⊂ Dt
[
ζt+1, εt+1

] [Tfix(s), XFix(s)+1, . . . Xk], is a finite set of polynomials

with card(P̃) = k − Fix(s) − p.
(2) Q̃ ⊂ Dt

[
ζt+1, εt+1, δt+1

] [Tfix(s), X XFix(s)+1, . . . Xk] is a finite set of polyno-

mials with card(Q̃) = card(Q) = t − card(fix(s)).
(3) Ã is a set of real univariate representations over (T , τ ) whose set of associated

points is Ã ⊂ S̃ = Bas(P̃(θ, ·), Q̃(θ, ·)).
(4) N is a set of real univariate representations, u = (h, σ, H), over (T , τ ) with

associated points N ⊂ Rp/2
t+1(and new variable Tt+1).
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(5) B = ⋃
u∈N B(u), where for each u = (h, σ, H) ∈ N output in (4),

B(u) is a set of real univariate representations over ((T , h), (τ, σ )) describ-
ing θ ′ = (θ, xσ ) ∈ RFix(s)+1

t whose set of associated points is B(u) ⊂
Bas(P̃u(θ ′, ·), Q̃u(θ ′, ·)). We denote the set of associated points of B by B.

(6) For every α ∈ I(P̃, Q̃, p/2) (see Notation 6.3),

P0(α),Q0(α) ⊂ Dt+1
[
Tfix(s), XFix(s)+1, . . . Xk

]

are finite subsets with card(Q0(α)) = card(Q) + 1, and A(α) is a set of real
univariate representations over T , whose set of associated points is A(α) ⊂
S0(α) = Bas(P0(α)(θ, ·),Q0(α)(θ, ·)).

The tuple (P̃, Q̃, Ã, N , B, (P0(α),Q0(α), A(α))
α∈I(P̃,Q̃,p/2)

) satisfies the fol-
lowing properties. Let

S̃0 = lim
γt+1

( ⋃

α∈I(P̃,Q̃,p/2)

S0(α)
)
,

S̃1 = S̃N .

(1) limζt (S̃) = S.
(2) S̃0 ∪ S̃1 has good connectivity properties with respect to S̃.
(3) S̃0 and S̃N are both strongly of dimension ≤ p/2.
(4) Ã = MinDi(S̃,A) ∪ MinDi(S̃, S̃), N ⊃ π[Fix(s)+1,Fix(s)+p/2]

(
Ã

)
.

(5) B = S̃0 ∩ S̃1.
(6) A(α) = MinDi(S0(α),B) ∪ ( ⋃

β∈I(P̃,Q̃,�)
MinDi(S0(α), S0(β))

)
.

(7) For every α ∈ I, A(α) ⊂ S0(α) meets every semi-algebraically con-
nected component of S0(α), and for every α, β in I, and C (resp. D)
semi-algebraically connected component of S0(α) (resp. S0(β)) such that
limγt+1(C)∩limγt+1(D) is non-empty, limγt+1(C ∩A(α))∩limγt+1(D∩A(β))

is non-empty, and meets every semi-algebraically connected component of
limγt+1(C) ∩ limγt+1(D).

• Complexity and degree bounds: In order to simplify the complexity analysis,
we are going to make the following assumptions which are going to be satisfied
for each call to this algorithm in Algorithm 6 (Divide and Conquer Roadmap
Algorithm for Bounded Algebraic Sets). Let the triangular system T in the
input be T = (F1, . . . , F|fix(s)|), where for each h, 1 ≤ h ≤ card(fix(s)),
Fh ∈ Dt [Ti1, . . . , Tih ]. Also denote η = (ζ1, ε1, δ1, γ1 . . . , ζt , εt , δt , γt ) and
ηt+1 = (ζt+1, εt+1, δt+1, γt+1) (as in Notation 7.1). Let c > 0 be a constant.
We assume that:
(1) degX (P,Q) ≤ (2k)t d;
(2) degTfix(s)

(P,Q), degη(P,Q), degTfix(s)
(Fh), degη(Fh) are all bounded by

Dt ((2k)t d)ckt ;
(3) The degrees in η, Tfix(s) of the polynomials (belonging to Dt [Tfix(s), Tt+1])

appearing in the univariate representations A are bounded by
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Dt((2k)t d
)ckt

,

while the degrees in Tt+1 are bounded by D.
With the above assumption on the input parameters, the output tuple (P̃, Q̃, Ã, N ,

B, (P0(α),Q0(α), A(α))
α∈I(P̃,Q̃,p/2)

) satisfies the following, for c large enough.
(1)

degX

(
P̃, Q̃

) ≤ 2(2k)t d,

degTfix(s)

(
P̃, Q̃

) ≤ 2Dt((2k)t d
)ckt

,

degη

(
P̃, Q̃

) ≤ 2Dt((2k)t d
)ckt

,

degηt+1

(
P̃, Q̃

) = 1.

(2)

degX

(
P0(α),Q0(α)

) ≤ (2k)t dk,

degTfix(s)

(
P0(α),Q0(α)

) ≤ Dt+1((2k)t+1d
)ck(t+1)

,

degη

(
P0(α),Q0(α)

) ≤ Dt+1((2k)t+1d
)ck(t+1)

.

(3) The univariate representations in Ã, N , B, A(α) have degrees in the new vari-
able Tt+1, as well as in ηt+1, bounded by D((2k)t+1d)ck , and have degrees
at most Dt+1((2k)t+1d)ck(t+1) in the variables η, Tfix(s). The cardinalities of
the sets Ã, N , B, A(α) are all bounded by (card(A) + 1)((2k)t+1d)ck .

The complexity of the algorithm is bounded by

(card(A) + 1)DO(t2)(kt d)O(t2).

• Procedure:
• Step 1. Define P̃ and Q̃ as in Notation 5.4.
• Step 2. Compute M̃ as follows. For each subset Q̃′ ⊂ Q̃ and P̃ ∪ Q̃′ =

{F1, . . . , Fm}, compute, using Algorithm 12.16 (Bounded Algebraic Sampling)
from [2] in the ring Dt [θ ], a finite set of real univariate representations, M̃(Q̃′)
over (T , τ ) whose associated points are the real solutions to the system

CritEqp/2
(
P̃(θ, ·) ∪ Q̃′(θ, ·), G

)

and projecting the real univariate representations to the first k coordinates.
Let

M̃ =
⋃

Q̃′⊂Q̃

M̃
(
Q̃′).

Note that the associated set of points, M̃ of M̃ , is the finite set of critical points of
G on Bas(P̃(θ, ·), Q̃(θ, ·)).

123



324 Discrete Comput Geom (2014) 52:278–343

• Step 3. Compute a set, D0, of Thom encodings over (T , τ ) as follows.
Let

F =
∏

Q̃′⊂Q̃

F
(
Q̃′),

where

F
(
Q̃′) =

∑

P∈CrEq�(P̃∪Q̃′,G)

P2.

Compute using Algorithm 2 ((B, G)-pseudo-critical values over a Triangular Thom
Encoding), a set, D0, of Thom encodings over (T , τ ), whose set of associated
values, D0, contain the (B, G)-pseudo-critical values of the set {F(θ, ·)}∪Q̃(θ, ·),
with B = Hcard(Q)+1,k−Fix(s)+card(P̃)+card(Q̃)+2 (see Notation 5.2).

• Step 4. Compute M0 as follows. For each (h, τh) ∈ D0, use Algorithm 12.16
(Bounded Algebraic Sampling) from [2] in the ring Dt [θ ′] (where θ ′ is specified
by T ∪{h(Tfix(s), U )}, (τ, τh)) with input the set of polynomials P̃ ∪ Q̃∪{G −U },
to obtain real univariate representations ( f, σ f , F), where f ∈ Dt+1[Tfix(s), U, V ].
Use Algorithm 12.16 (Bounded Algebraic Sampling) from [2] in the ring Dt [θ ]
again with input {h, f } to obtain a real univariate representation u = (e, τe, E)

over (T , τ ) with e ∈ Dt+1[Tfix(s), Tt+1]. Substitute the rational functions, in E
corresponding to U, V into the polynomials in F to obtain Fu . Output the resulting
set of real univariate representations (e, τe, Fu) over (T , τ ).

• Step 5. Compute N as follows. First compute Ã by applying Algorithm 3 (Closest
Point over a Triangular Thom Encoding) with input ((T , τ ), (P̃, Q̃), u) for each
u ∈ A and Algorithm 4 (Closest Pairs over a Triangular Thom Encoding) with
input ((T , τ ), (P̃, Q̃), (P̃, Q̃)). Keeping the first p/2 coordinates of these real
univariate representations, obtain a set of real univariate representations, N , over
(T , τ ), with associated set of points N = π[Fix(s)+1,Fix(s)+p/2](M̃ ∪ M0 ∪ Ã)

(identifying those which are equal). For each w ∈ N , with corresponding real
univariate representation ( f, σ, F), let (Tw, τw) denote the real triangular Thom
encoding ((T , f ), (τ, σ )).

• Step 6. Compute B as follows. For each univariate representation u =
(e, τe, E) ∈ N , substitute the rational functions in u, for the block of variables
XFix(s)+1, . . . , XFix(s)+p/2, in the polynomials F ,Q̃ to obtain Fu, Q̃u . Now apply
Algorithm 12.16 (Bounded Algebraic Sampling) from [2] in the ring Dt [θ ′′] (where
θ ′′ is specified by ((T , e), (τ, τe))) with input the polynomials Fu, Q̃u , and project
to the coordinates XFix(s)+p/2+1, . . . , Xk to obtain B(u).

• Step 7. For every α = (Q̃′, r, J, J ′) ∈ I(P̃, Q̃, p/2), compute

P0(α) := P̃ ∪ Q̃′ ∪
⋃

i∈[Fix(s)+p/2+1,k]\fix(s)

{jac(α, i)},

Q0(α) := Q̃ ∪ {
jac(α, i)2 − γ

}
.

(see Notation 6.2).
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• Step 8. Compute A(α) by applying for each β ∈ I(P̃, Q̃, p/2), Algorithm 3
(Closest Point over a Triangular Thom Encoding) with input

(
(T , τ ),P0(α),Q0(α), u

)

for each u ∈ B computed in Step 6, and Algorithm 4 (Closest Pairs over a Triangular
Thom Encoding) with input

(
(T , τ ),P0(α),Q0(α),P0(β),Q0(β)

)
.

Proof of correctness The correctness of the algorithm follows from the correctness of
the various algorithms called inside the algorithm, and Propositions 5.5, 5.11, 5.12,
5.21, and 6.1. ��

Proof of complexity and degree bounds We first prove that the bounds stated in (1),
(2), and (3) are true.

1. It is clear from Step 1 and Notation 5.4 that the degrees of the polynomials in P̃
(respectively, Q̃) are at most twice the degrees of the polynomials in P (respectively,
Q). It follows from the assumptions on the input that degX (P̃), degX (Q̃) ≤ 2(2k)t d,
and degTfix(s)

(P̃), degTfix(s)
(Q̃), degη(P̃), degη(Q̃) ≤ 2Dt ((2k)t d)ckt . It also follows

from Notation 5.4 that degηt+1
(P̃), degηt+1

(Q̃) = 1. This proves Part (1) of the com-
plexity estimate of the output.

2. Part (2) is an easy consequence of the degree bounds on P̃ and Q̃ proved above
in (1), and the definitions of P0(α) and Q0(α).

3. We now bound the degrees of the univariate representations in M̃ ,D0, M0, Ã, N .
They have degrees in the new variable, as well as in ηt+1, bounded by ((2k)t+1d)ck ,
and have degrees at most Dt ((2k)t+1d)ck(t+1) in the variables Tfix(s), η.

i. The univariate representations in M̃ are obtained by applying Algorithm 12.16
(Bounded Algebraic Sampling) from [2] to the set of equations in CritEqp/2(P̃ ∪
Q̃′, G), for each subset Q̃′ ⊂ Q̃, and then projecting the real univariate representations
to the first k coordinates. The number of variables (including the Lagrangian variables
λi ’s) is at most 2k. The degrees in X of the polynomials in CritEq�(P̃ ∪ Q̃′, G) are
bounded by the degrees in X of the polynomials in P̃ and Q̃ which are at most 2(2k)t d
(using the bounds in (1)), and the degrees in the Lagrangian variables are all equal to
1. The degrees in Tfix(s) and η in CritEqp/2(P̃ ∪ Q̃′, G) are bounded by their degrees

in P̃ and Q̃ which are at most 2Dt ((2k)t d)ckt (using the bounds in (1)). Finally, the
degrees in ηt+1 of the polynomials in CritEqp/2(P̃ ∪ Q̃′, G) are at most 1. Now using
the complexity analysis of Algorithm 12.16 (Bounded Algebraic Sampling) from [2],
we get the following bounds.

• The degrees in the new variable Tt+1 and the new infinitesimals ηt+1 are bounded
by

(
2(2k)t d

)2c1k
,
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where c1 > 0 is a constant; choosing c to be sufficiently large compared to c1,

(
2(2k)t d

)2c1k ≤ (
(2k)t+1d

)ck
.

• The degrees in Tfix(s) and η are bounded by

2Dt+1((2k)t d
)ckt(2(2k)t d

)2c1k ≤ Dt+1((2k)t+1d
)ck(t+1)

,

given the choice of c.

ii. The real Thom encodings, u ∈ D0 over T , are computed using Algorithm 2
((B, G)-pseudo-critical values over a Triangular Thom Encoding), with the polyno-
mial

F =
∏

Q̃′⊂Q̃

F
(
Q̃′), (29)

as input, where

F(Q̃′) =
∑

P∈CrEq�(P̃∪Q̃′,G)

P2.

The number of polynomials, F(Q̃′), appearing in the product in (29) is bounded by

2card(Q̃) ≤ 2t ≤ k. Using the facts noted about the degrees in the various variables of
the polynomials in P̃ ,Q̃ we obtain that the degree in X of F is bounded by 2t+1(2k)t d.
The degrees in the Lagrangian variables are bounded by 2t . The degrees in the variables
Tfix(s), and η are bounded by 2t+1 Dt ((2k)t d)ckt . Finally, the degree in ηt+1 in F is at
most 2t . The number of variables is at most 2k.

Using the complexity analysis of Algorithm 2 ((B, G)-pseudo-critical values over
a Triangular Thom Encoding) we get the following bounds.

• The degree in the new variable U is bounded by

(
2t+1(2k)t d

)2c2k

where c2 > 0 is a constant, while the degree in ηt+1 is bounded by

2t(2t+1(2k)t d
)2c2k;

choosing c to be sufficiently large compared to c2, and noting that 2t ≤ k,

2t(2t+1(2k)t d
)2c2k ≤ (

(2k)t+1d
)ck

.

• The degrees in Tfix(s) and η are bounded by

2t+1 Dt((2k)t d
)ckt(2t+1(2k)t d

)2c2k ≤ Dt+1((2k)t+1d
)ck(t+1)

,

given the choice of c.
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iii. In Step 4 (computation of M0), the degrees of the polynomials in the real
univariate representation ( f, σ f , F) computed are bounded as follows.

• The degrees in the new variable V and ηt+1 are bounded by

(
2(2k)t d

)c1(k+1)

using the complexity of Algorithm 12.16 (Bounded Algebraic Sampling) from [2].
• The degrees in Tfix(s), and η are bounded by

2Dt((2k)t d
)ckt(2(2k)t d

)c1(k+1)
.

Using again the complexity analysis of Algorithm 12.16 (Bounded Algebraic Sam-
pling) from [2] we obtain that the degrees of the polynomials in u in the various
variables are bounded as follows.

• The degrees in the new variable Tt+1 and in ηt+1 are bounded by

(
max

(
2 · 2t(2t+1(2k)t d

)2c2k
, 2

(
2(2k)t d

)c1(k+1)))2c1 ≤ (
(2k)t+1d

)ck

using the complexity of Algorithm 12.16 (Bounded Algebraic Sampling) from [2]
and the degree bounds in U and V of the polynomials D0 and f , and choosing c
sufficiently large.

• The degrees in Tfix(s) and η are bounded by the maximum of the degrees in Tfix(s),
and η in the polynomials D0 and f multiplied by ((2k)t+1d)ck . It follows that these
degrees are bounded by

Dt((2k)t+1d
)ck(t+1)

.

iv. Using the complexity of Algorithm 4 (Closest Pairs over a Triangular Thom
Encoding), and Algorithm 3 (Closest Point over a Triangular Thom Encoding) and
the degree estimates of P̃ and Q̃ and of the univariate representations in A, we obtain
that the degrees in the univariate representations in Ã are bounded as follows.

• The degrees in the new variable Tt+1 and ηt+1 are bounded by

D
(
2(2k)t d

)2c1k
,

where c1 > 0 is a constant; and given the choice of c, we have that

(
2(2k)t d

)2c1k ≤ (
(2k)t+1d

)ck
.

• The degrees in Tfix(s) and η are bounded by

2Dt+1((2k)t d
)ckt(2(2k)t d

)2c1k ≤ Dt+1((2k)t+1d
)ck(t+1)

,

given the choice of c.
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• Finally, the cardinality of Ã is bounded by (card(A) + 1)((2k)t+1d)ck using the
complexity analysis of Algorithm 4 (Closest Pairs over a Triangular Thom Encod-
ing) and Algorithm 3 (Closest Point over a Triangular Thom Encoding).

Together, (i), (ii), (iii), and (iv) above imply that the univariate representations in
M̃ ,D0, M0, Ã, N have degrees in the new variable, as well as in Tt+1, ηt+1, bounded
by D((2k)t+1d)ck , and have degrees at most Dt+1((2k)t+1d)ck(t+1) in Tfix(s), η. More-
over, the cardinalities of M̃ , D0, M0 are bounded by ((2k)t+1d)ck (taking into account
that the number of polynomials in the call to Algorithm 2 ((B, G)-pseudo-critical val-
ues over a Triangular Thom Encoding) in Step 3 is bounded by t +1). The cardinalities
of Ã, N are bounded by (card(A) + 1)((2k)t+1d)ck .

Using the bound on the degrees of F and the univariate representations in N obtained
above, and the degree estimates of the output of Algorithm 12.16 (Bounded Algebraic
Sampling) in [2], we get that the degrees of the polynomials appearing in B in the new
variable are bounded by

(
2(2k)t d

)2c1k ≤ (
(2k)t+1d

)ck
,

while the degrees in Tfix(s), η are bounded by

Dt+1((2k)t+1d
)ck(t+1)(2(2k)t d

)(
2(2k)t d

)2c1k ≤ Dt+1((2k)t+1d
)ck(t+1)

.

Finally, the degrees in Tt+1, ηt+1 are bounded by

D
(
2(2k)t d

)2c1k(2(2k)t d
)2c1k ≤ D

(
(2k)t+1d

)ck
.

The cardinality of B is bounded by (card(A) + 1)((2k)t+1d)ck .
The degree estimates, as well as the estimates on the cardinality of A(α) are now a

consequence of the bounds on the degrees of P0(α), Q0(α) and B, and the cardinality
of B proved above, and the complexity of Algorithm 4 (Closest Pairs over a Triangular
Thom encoding), and Algorithm 3 (Closest Point over a Triangular Thom encoding)).
This proves Part (3) of the complexity of the output.

It follows from the complexity estimates of the algorithms used in various steps of
Algorithm 5, namely Algorithm 12.16 (Bounded Algebraic Sampling) in [2], Algo-
rithm 14.9 (Global Optimization) in [2], Algorithm 2 ((B, G)-pseudo-critical values
over a Triangular Thom Encoding), Algorithm 4 (Closest Pairs over a Triangular Thom
Encoding), and Algorithm 3 (Closest Point over a Triangular Thom Encoding)), and
Remark 7.16, as well as the degree estimates proved above, that the complexity of the
whole algorithm is bounded by (card(A) + 1)DO(t2)(kt d)O(t2k). ��
Remark 7.17 Notice that we never reduce any intermediate polynomial obtained in
the computation, modulo T , and that (T , τ ) is used only if the sign of an element of
Dt [θ ], represented by a polynomial, is required. As a result the degrees in the T ’s and
also in the infinitesimals occurring in T grow. We analyzed this growth carefully in
the complexity analysis of Algorithm 5 (Divide). This is a point of difference between
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the algorithm presented in the current paper, and that in [3]. In the Baby-step Giant-
step algorithm presented in [3] a process of pseudo-reduction was necessary since the
degree growth in T would have spoiled the overall complexity of the algorithm. This
phenomenon does not occur here because the number of different blocks of variables
(and hence the size of the triangular systems) in the algorithm of this paper is much
smaller (O(log(k))) compared to O(

√
k) in the Baby-step Giant-step algorithm) and

hence we can tolerate the growth in degree in the current paper without resorting
to reducing in each step. This is fortunate, since pseudo-reduction is not anymore
an option for us, as the growth in the degrees in the various infinitesimals in this
divide-and-conquer approach would reach d O(k2), and will be unacceptably large.

7.4 Computation of the Tree Tree(V,A)

In this subsection we describe an algorithm computing the tree Tree(V,A), using in
a recursive way Algorithm 5 (Divide) and analyze the complexity of this algorithm.

The description of the algorithm will use the following notation.

Notation 7.18 A node n of level t = level(n) is a tuple

(s(n), T (n), W (n),P(n),Q(n), A(n)),

where
(1) s(n) ∈ {0, 1}t ;
(2) T (n), τ (n), W (n) is a block triangular system fixing a point θ(n) ∈ Rcard(fix(n))

t ,
and w(n) ∈ RFix(n)

t , where

fix(n) = {i | s(n)i = 1},

Fix(n) =
t∑

i=1

s(n)i k
′/2i ;

(3) P(n) ⊂ Rt[Tfix(n), XFix(n)+1, . . . , Xk];
(4) Q(n) ⊂ Rt[Tfix(n), XFix(n)+1, . . . , Xk], card(Q(n)) = t − card(fix(n));
(5) A(n) is a set of real univariate representations over T (n), with associated points

A(n) ⊂ Bas(P(n)(θ(n), ·),Q(n)(θ(n), ·)).
Algorithm 6. [Computation of the tree Tree(V,A)]

• Input: A polynomial P ∈ D[X1, . . . , Xk] such that V = Zer(P, Rk) is bounded
and strongly of dimension ≤ k′, and a set A of real univariate representations with
associated set of points A ⊂ Zer(P, Rk).

• Output: The tree Tree(V,A).
• Complexity and degree bounds: Let d = deg(P) and suppose that the degrees of

the polynomials appearing in the real univariate representations in A are bounded
by D. The complexity is bounded by

(card(A) + 1)DO(log2(k′))(klog(k′)d)O(k log2(k′).
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For each leaf node n of the tree Tree(V,A) output by the algorithm, the degrees in
TFix(n), as well as in the variables η’s, of the polynomials in T (n), as well as those
in P(n) and Q(n), are all bounded by

Dlog(k′)+1(klog(k′)d)O(k log(k′)).

The degrees in XFix(n)+1, . . . , Xk of P(n) and Q(n) are bounded by

(O(k))log(k′)d.

• Procedure:
• Step 1. Initialize r to be the node with

(1) s(r) := ();
(2) T (r), τ (r), W (r) is empty;
(3) P(r) := {P};
(4) Q(r) := ∅;
(5) A(r) := A.

Initialize the set Nodes := {r}.
• Step 2. Repeat until level(n) = log(k′) for all n ∈ Nodes;

– Select n ∈ Nodes, such that level(n) < log(k′).
– Remove n from Nodes.
– Call Algorithm 5 (Divide) with input (s(n), T (n), τ (n),P(n),Q(n), A(n)).

• For each α output by Algorithm 5 (Divide) add a node m to Nodes with
(1) s(m) := (s(n), 0);
(2) (T (m), τ (m)) := (T (n), τ (n)); W (m) := W (n);
(3) P(m) := P0(α) ⊂ Rt+1[Tfix(m), XFix(m)+1, . . . , Xk];
(4) Q(m) := Q0(α) ⊂ Rt+1[Tfix(m), XFix(m)+1, . . . , Xk];
(5) A(m) := A(α).

• For each real univariate representation uw = ( fw, Fw), τ , in N , repre-
senting a point w ∈ N , with fw,, Fw ⊂ Dt [Tfix(n), Tt+1], output by the
algorithm, add a node m to Nodes with
(1) s(m) := (s(n), 1);
(2) (T (m), τ (m)) := (T (n), fw), (τ (n), τ ); W (m) := (W (n), uw);
(3) P(m) := P(n)w ⊂ Rt[Tfix(m), XFix(m)+1, . . . , Xk];
(4) Q(m) := Q(n)w ⊂ Rt[Tfix(m), XFix(m)+1, . . . , Xk];
(5) A(m) := Ã(n)w ∪ B(n)w.

• Denote by A(m) (respectively, B(m), Ã(m)) the set of points associated
to A(m) (respectively, B(m), Ã(m)).

Proof of correctness The correctness of the algorithm follows from Theorem 7.4 and
the correctness of Algorithm 5. ��
Proof of complexity and degree bounds We first observe that for each call to Algo-
rithm 5 (Divide) in Algorithm 6 the input satisfies the estimates used in the complexity
analysis of Algorithm 5 (Divide). This is obvious when Algorithm 5 (Divide) is called
with n = r, and in the other cases it follows inductively from the bound on the degrees
proved in the complexity analysis of Algorithm 5 (Divide).
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Using the complexity analysis of Algorithm 5 (Divide) the number of right children
of any node n of level t in the tree created by the algorithm is bounded by the cardinal-
ity of N (n), which in turn is bounded by (card(A(n)) + 1)((2k)t+1d)ck . The number
of left children of n is bounded by k × card(I(P(n),Q(n), k′/2level(n))) = O(1)k .
Thus, the total number of children of a node n of level t is bounded by (card
(A(n))+1)((2k)t+1d)ck .

Now let m,m′ be two distinct right children of n. Then clearly A(m)∩A(m′) = ∅,
and using the complexity analysis of Algorithm 5 (Divide) we have

∑

m right child of n

card(A(m)) ≤ card(B(n)) + card
(
Ã(n)

)

≤ 2(card(A(n)) + 1)
(
(2k)t+1d

)ck
.

Moreover, for each left child m of n, card(A(m)) ≤ card(A(n))((2k)t+1d)ck again
using the complexity analysis of Algorithm 5 (Divide). But since there are only O(1)k

left children of n we obtain that

∑

m child of n

(card(A(m)) + 1) ≤ 3(card(A(n)) + 1)
(
(2k)t+1d

)ck

≤ (card(A(n)) + 1)
(
(2k)t+1d

)c′k (30)

for some c′ > 0.
We now prove by induction on t , with base case t = 0, that

∑

level(n)=t

(
card(A(n)) + 1) ≤ (card(A) + 1)((2k)t+1d

)c′′k(t+1) (31)

for some c′′ > 0.
For the base case,

card(A(r)) + 1 ≤ (card(A) + 1)(2kd)c′′k .

For the inductive step (from t − 1 to t) we have

∑

level(m)=t

(card(A(m)) + 1) =
∑

level(n)=t−1

∑

m child of n

(card(A(m)) + 1)

≤
∑

level(n)=t−1

(card(A(n)) + 1)((2k)t d)c′k(using (30))

≤ (card(A) + 1)((2k)t d)c′′kt ((2k)t d)c′k

(using the induction hypothesis)

≤ (card(A) + 1)((2k)t+1d)c′′k(t+1),

taking c′′ large compared to c′.
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Using the complexity analysis of Algorithm 5 (Divide) and (31), we now obtain
that the total cost of the calls to Algorithm 5 (Divide) for all nodes of the tree at level
t is bounded by

(card(A) + 1)
(
(2k)t+1d

)c′′k(t+1)
DO(t2)(kt d)O(t2k)

= (card(A) + 1)DO(t2)(kt d)O(t2k).

Since the tree has depth log(k′) the total cost of the calls to Algorithm 5 (Divide) is
bounded by

(card(A) + 1)DO(log2(k′))(klog(k′)d
)O(k log2(k′))

.

From the complexity analysis of Algorithm 5 (Divide) we also get that for each n ∈
Leav, the degrees in TFix(n), and the variables η’s, of the polynomials in T (n), as well
as those in P(n) and Q(n), are all bounded by

Dlog(k′)+1(klog(k′)d
)O(k log(k′))

.

The degrees in XFix(n)+1, . . . , Xk of P(n) and Q(n) are bounded by O(k)log(k′)d. ��

Remark 7.19 Note that in the above analysis of the degrees in the variables T ’s and the
infinitesimals η’s of the polynomials in P(n),Q(n) depends on s(n). It is instructive
to work out the actual bound on the degrees in the following three cases (in the special
case where A = ∅):

1. s(n) = 0t : In this case, the polynomials in P(n),Q(n) do not have any T ′s in
them, and the degrees in η is bounded by O(k)t d. It is not difficult to see that the
complexity of Algorithm 5 (Divide) at such a node is bounded by d O(k)kO(kt) =
d O(k)kO(k log(k′)).

2. s(n) = 1t : In this case, the degrees of the polynomials in P(n),Q(n) in T ’s and
η’s are bounded by O(d)k′/2t−1

. As a consequence, it is not difficult to see that the
complexity of Algorithm 5 (Divide) at such a node is bounded by d O(k)kO(k log(k′)).

If these were the only types of nodes in the tree computed by Algorithm 6 then
we would obtain an algorithm with complexity d O(k log(k′))kO(k log2(k′)). In fact the
complexity is worse and this is caused by paths in the tree which are away from the
extreme left and right ones. For example consider a node n with level t , and with
s(n) = 0101 . . .. The polynomials in P(n),Q(n) will depend on T2, T4, . . . while
since Free(m) ≥ k

2 for each node m along the path from the root to n, the degrees in
each of the T2i can only be bounded by (ki d)O(ki), and is thus (kt d)O(kt) in the worst
case. As a result the complexity of the call to Algorithm 5 (Divide) at the node n can
only be bounded by (klog(k′)d)O(k log2(k′)), and this dominates the complexity of all
calls to Algorithm 5 (Divide) in Algorithm 6.
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7.5 Divide and Conquer Roadmap

We are going to construct the roadmap of V from the tree Tree(V,A), by taking
limits of the basic semi-algebraic sets associated to the leaves, which are strongly of
dimension ≤ 1. Theorem 7.4 then guarantees the correctness of the algorithm. Thus,
we need to know how to compute limits of points and curve segments, and this what
we explain below.

In the following ε̄ = (ε1, . . . , εt ) is a tuple of infinitesimals.

Algorithm 7 [Limit of a Bounded Point]

• Input:
(1) A Thom encoding ( fε̄, σε̄) , fε̄ ∈ D [ε̄, U ], representing xε̄ ∈ R〈ε̄〉 bounded

over R.
(2) A real univariate representation (gε̄, τε̄, G ε̄) over ( fε̄, σε̄), where gε̄, G ε̄ ⊂

D[ε̄, U, V ], representing a point zε̄ ∈ R〈ε̄〉p bounded over R.
• Output: a real univariate representation (g, τ, G) representing

z = lim
ε1

(zε̄) ∈ Rp.

• Complexity and degree bounds: If D is a bound on the degrees of the polynomials
in fε̄, gε̄ and Gε with respect to U, V and ε̄, then the degrees of the polynomi-
als appearing in the output are bounded by DO(1), and the number of arithmetic
operations in D is bounded by pO(1) DO(t).

• Procedure:
• Step 1. Using Algorithm 12.16 (Bounded Algebraic Sampling) from [2] in the

ring D [ε̄] with input { fε̄, gε̄} obtain a set of univariate representation u =
(h ε̄, H = (h0, hU , hV )). For each such u, substitute the rational function hU

h0
for U

in fε̄ and its derivatives with respect to U . Similarly, substitute the rational func-
tions hU

h0
,

hV
h0

for U, V in gε̄ and its derivatives with respect to V to obtain fε̄,u, gε̄,u

and Der ( fε̄)u ,Der (gε̄)u .
• Step 2. Using Algorithm 10.13 (Univariate Sign Determination) from [2] with input

hε, Der (hε) and Der ( fε̄)u ,Der (gε̄)u , determine a real univariate representation
u = (

h ε̄, τ
′̄
ε, E = (h0, hU , hV )

)
whose associated point is (u ε̄, vε̄) where u ε̄ is

associated to the Thom encoding ( fε̄, σε̄) and vε̄ is associated to the Thom encoding
(gε̄, τε̄) over ( fε̄, σε̄). Substitute the rational functions hU

h0
,

hV
h0

for U, V in G ε̄,
to obtain G ε̄,u and replace (gε̄, τε̄, G ε̄) by the new real univariate representation(
e, τe, G ε̄,u

)
, where e ∈ D [ε̄,T ].

• Step 3. Replace (see Notation 5.3) gε̄ by ε̄−oε̄ (gε̄ )gε̄. Denote by g(T ) the polynomial
obtained by substituting successively εt by 0, and then εt−1 by 0, and so on, and
finally ε1 by 0, in gε̄. Similarly denote by G(T ) the polynomials obtained by
substituting successively εt by 0, and then εt−1 by 0, and so on, and finally ε1 by
0, in G ε̄.

• Step 4. Compute the set � of Thom encodings of roots of g(T ) using Algorithm
10.13 (Univariate Sign Determination) from [2]. Denoting by μσ the multiplicity
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of the root of g(T ) with Thom encoding σ , define Gσ as the (μσ −1)-st derivative
of G with respect to T .

• Step 5. Identify the Thom encoding σ and Gσ representing z using Algorithm
11.13 (Univariate Sign Determination) from [2], by checking whether a ball of
infinitesimal radius δ (1 � δ � ε̄ > 0) around the point z represented by the real
univariate representation g, σ, Gσ contains zε̄.

Proof of correctness The correctness of the algorithm follows from the correctness
of Algorithm 12.16 (Bounded Algebraic Sampling) and Algorithm 10.13 (Univariate
Sign Determination) from [2]. ��
Proof of complexity and degree bounds Using the complexity analysis of Algorithm
12.16 (Bounded Algebraic Sampling) from [2] the number of arithmetic operations in
the ring D [ε̄] is bounded by pO(1) DO(1). The degrees in T, ε̄ of the polynomials in
H , as well as fε̄,u, gε̄,u , are also bounded by DO(1). From the complexity analysis of
Algorithm 10.13 (Univariate Sign Determination) from [2], the number of arithmetic
operations in D [ε̄] in Step 2 is bounded by DO(1). It also follows that the number of
arithmetic operations in D of these two steps is bounded by DO(t). From the bound
on the degrees in ε̄ it follows that the complexity of Step 3 is bounded by pO(1) DO(t).
Since the degrees do not increase in Step 3, it follows again from the complexity
analysis of Algorithm 10.13 (Univariate Sign Determination) from [2] that the number
of arithmetic operations in D in Steps 4 and 5 is bounded by pO(1) DO(t). Thus, the total
complexity is bounded by pO(1) DO(t), and the degrees of the polynomials appearing
in the output are bounded by DO(1). ��
Definition 7.20 Let (g1, τ1), (g2, τ2) be Thom encodings above a Thom encoding
(h, σ ). We denote by z ∈ R the point specified by (h, σ ), and by (z, a), (z, b) the
points specified by (g1, τ1) and (g2, τ2).

A curve segment representation(u, ρ) on (g1, τ1), (g2, τ2) over (h, σ ) is:

• a parametrized univariate representation with parameters (X≤i ), i.e.,

u = ( f (Z , X, U ), f0(Z , X, U ), f1(Z , X, U ), . . . , fk(Z , X, U )) ⊂ D[Z , X, U ],

• a sign condition ρ on Der( f ) such that for every x ∈ (a, b) there exists a real root
u(x) of f (z, x, U ) with Thom encoding ρ and f0(z, x, u(x)) �= 0.

The curve segment associated to u, ρ is the semi-algebraic function υ which maps a
point x of (a, b) to the point of Rk defined by

υ(x) =
(

x,
f1(z, x, u(x))

f0(z, x, u(x))
, . . . ,

fk(z, x, u(x))

f0(z, x, u(x))

)
.

It is a continuous injective semi-algebraic function.

In the following algorithms we will need to compute descriptions of the limits
of certain curve segments. These limits are computed using a slight modification of
Algorithm (Limit of a Curve) from [3].
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Algorithm 8. [Divide and Conquer Roadmap Algorithm for Bounded Algebraic Sets]

• Input: A polynomial P ∈ D[X1, . . . , Xk] such that Zer(P, Rk) is bounded, and
a set A = {u1, . . . , um} of real univariate representations with associated set of
points A ⊂ Zer(P, Rk).

• Output: A roadmap, DCRM(Zer(P, Rk),A), of Zer(P, Rk) containing A.
• Complexity and degree bounds: Let d = deg(P) and suppose that the degrees of

the polynomials appearing in the real univariate representation in A with associated
point pi be bounded by Di . The complexity is bounded by

(
1 +

m∑

i=1

DO(log2(k′))
i

)(
klog(k′)d

)O(k log(k′)2
.

Moreover, the degrees of the polynomials appearing in the descriptions of the curve
segments and points in the output are bounded by

(
max

1≤i≤k
Di

)O(log(k′))(
klog(k′)d

)O(k log(k′))
.

• Procedure:
• Step 1. For each i, 1 ≤ i ≤ m, call Algorithm 6 with input P and {ui }, and denote

by Leav the collection of the leaves of Tree(V, {ui }), i = 1, . . . , m.
• Step 2. Define

Γ :=
⋃

n∈Leav
Bas(n)).

Compute limζ1(Γ ) as follows.
(1) For each n ∈ Leav, let

F(n) :=
∑

f ∈T (n)

f 2 ∈ Dlog(k′)
[
Tfix(n)

]
.

(2) Compute using Algorithm 12.16 (Bounded Algebraic Sampling) from [2]
in the ring Dlog(k′)[θ(n)] and F(n) as input, and compute a real univariate

representation un = (hn, σn, Hn) whose associated point w(n) ∈ RFix(n)

log(k′).
(3) For every Q′ ⊂ Q(n), apply Algorithm 15.2 (Curve Segments) from [2] with

input the Thom encoding (hn, σn,) specifying cn ∈ Rlog(k′) and the polynomial

G(n) =
∑

g∈P(n)un ∪Q′
un

g2 ∈ Dlog(k′)
[
U, XFix(n)+1, . . . , Xk

]
.

with parameter XFix(n)+1 to obtain a set, Γn, of curve segments with associated

sets contained in {w(n)} × Rk−Fix(n)

log(k′) . Subdivide the interval of definition of
each curve segment into pieces above which the sign of Q(n) remains fixed
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on the curve segment, and retain only those contained Bas(P(n),Q(n)) using
Algorithm 11.19 (Restricted Elimination) from [2].

(4) Now apply Algorithm (Limit of a Curve) from [3] to the curve segments output
in Step 3, with the following modifications:we use Algorithm 7 (Limit of a
Bounded Point) instead of the corresponding algorithm in [3] and replace the
various instances of substituting ε by 0 by substituting successively ηt by 0,
and then ηt−1 by 0, and so on, and finally η1 by 0.

Proof of correctness Follows from the correctness of Algorithms 6, 7, Algorithm
(Limit of a Curve) from [3], and Proposition 7.3. ��
Proof of complexity and degree bounds The complexity of Step 1 is

(
1 +

m∑

i=1

DO(log2(k′))
i

)(
klog(k′)d

)O(k log2(k′))

by the complexity of Algorithm 6. Now using the complexity analysis of Algorithm
12.16 (Bounded Algebraic Sampling) from [2], as well as those of Algorithm 15.2
(Curve Segments) from [2], and Algorithm 11.19 (Restricted Elimination) from [2],
the number of arithmetic operations in D[η] in Steps 2(i), 2(ii), and 2(iii) is bounded
by

(
1 +

m∑

i=1

DO(log(k′))
i

)(
klog(k′)d

)O(k log(k′))
.

So using the fact that the degrees in η are bounded by DO(log(k′))
i (klog(k′)d)O(k log(k′))

in the complexity analysis of Algorithm 6, the number of arithmetic operations in D
is bounded by

(
1 +

m∑

i=1

DO(log2(k′))
i

)(
klog(k′)d

)O(k log2(k′))
.

Note also that the degrees (in the parameters as well as in η) of the polyno-
mials used to describe the curve segments output in Step 2(iii) are bounded by

DO(log(k′))
i (klog(k′)d)O(k log(k′)). Finally using the complexity analysis of Algorithm

(Limit of a Curve) from [3], as well as that of Algorithm 7 (Limit of a Bounded Point),
we get that the complexity of Step 2(iv) is bounded by

(
1 +

m∑

i=1

DO(log2(k′))
i

)(
klog(k′)d

)O(k log2(k′))

as well. Thus, the total complexity is bounded by

(
1 +

m∑

i=1

DO(log2(k′))
i

)(
klog(k′)d

)O(k log2(k′))
.
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Moreover, it follows from above and the complexity of Algorithm (Limit of a Curve)
from [3], and Algorithm 7 (Limit of a Bounded Point), that the degrees of the poly-
nomials appearing in the descriptions of the curve segments and points in the output
are bounded by (max1≤i≤k Di )

O(log(k′))(klog(k′)d)O(k log(k′)). ��
We are now in a position to describe a divide-and-conquer algorithm for computing

a roadmap of a general (i.e., possibly unbounded) algebraic set. The procedure of
passing from the bounded case to the unbounded one is the same as that used in [1]
as well as in [3]. We include it here for the sake of completeness.

We first need a notation.

Notation 7.21 Let F ∈ D[X ] be given by F = ap X p + · · · + aq Xq . We denote

c(P) =
⎛

⎝
p∑

i=q

∣∣∣ ai
aq

∣∣∣

⎞

⎠

−1

.

Algorithm 9. [Divide and Conquer Roadmap Algorithm for General Algebraic Sets]

• Input: A polynomial P ∈ D[X1, . . . , Xk] such that Zer(P, Rk) is bounded and
strongly of dimension ≤ k′, and a set A = {u1, . . . , um} of real univariate repre-
sentations with associated set of points A ⊂ Zer(P, Rk).

• Output: A roadmap, DCRM(Zer(P, Rk),A), of Zer(P, Rk) containing A.
• Complexity and degree bounds: Let d = deg(P), and suppose that the degrees of

the polynomials appearing in the real univariate representation in A with associated
point pi are bounded by Di . The complexity is bounded by

(
1 +

m∑

i=1

DO(log2(k′))
i

)(
klog(k′)d

)O(k log(k′)2
.

The degrees of the polynomials appearing in the descriptions of the curve segments
and points in the output are bounded by

( max
1≤i≤k

Di )
O(log(k′))(klog(k′)d

)O(k log(k′))
.

• Procedure:
• Step 1. Introduce new variables Xk+1 and ε and replace P by the polynomial

Pε = P2 +
(
ε2

( k+1∑

i=1

X2
i

)
− 1

)2
.

• Step 2. Replace A by Aε, the set of real univariate representations representing the
elements Aε of Zer(Pε, R〈ε〉k) above the points represented by A using Algorithm
12.16 (Bounded Algebraic Sampling) [2].
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• Step 3. Call Algorithm 8 (Divide and Conquer Roadmap Algorithm for Bounded
Algebraic Sets) with input Pε, A, performing arithmetic operations in the domain
D [ε]. The algorithm outputs a roadmap

DCRM
(
Zer

(
Pε, R〈ε〉k+1),Aε

)

composed of points and curves whose description involves ε.
• Step 4. Denote by L the set of polynomials in D [ε] whose signs have been deter-

mined in the preceding computation and take

a = min
F∈L

c(F)

using Notation 7.21.
Replace ε by a in the polynomial Pε to get a polynomial Pa . Replace ε by a in the
output roadmap to obtain a roadmap which when projected to Rk gives a roadmap
of Zer(P, Rk)∩ B̄k

(
0, 1

a

)
(where B̄k(x, r) is the k-dimensional closed ball of center

x and radius r ) containing the finite set of points A.
• Step 5. In order to extend the roadmap outside B̄k

(
0, 1

a

)
collect all the points

(y1, . . . , yk, yk+1) ∈ R〈ε〉k+1 in the roadmap

DCRM
(
Zer

(
Pε, R〈ε〉k+1),Aε

)
,

which satisfies ε2(y2
1 +· · ·+ y2

k+1) = 1. Each such point is described by a real uni-
variate representation involving ε. Add to the roadmap the curve segment obtained
by first forgetting the last coordinate and then treating ε as a parameter which varies
over (0, a] to get a roadmap DCRM(Zer(P, Rk),A).

Proof of correctness The correctness follows from the correctness of Algorithm 8
(Divide and Conquer Roadmap Algorithm for Bounded Algebraic Sets), taking into
account that a bounded algebraic set is always strongly of dimension ≤ k − 1. ��
Proof of complexity and degree bounds It is clear that the complexity is dominated
by that of the third step. The degree bounds on the polynomials in the output follow
from those of Algorithm 8 (Divide and Conquer Roadmap Algorithm for Bounded
Algebraic Sets). ��

7.6 Proofs of Theorems 1.4, 1.2 and 1.5

Proof of Theorem 1.4 Clear from the the proofs of correctness, complexity and degree
bounds of Algorithm 8 (Divide and Conquer Roadmap Algorithm for Bounded Alge-
braic Sets). ��
Proof of Theorem 1.2 Clear from the proofs of correctness, complexity and degree
bounds of Algorithm 9 (Divide and Conquer Roadmap Algorithm for General Alge-
braic Sets). ��
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Proof of Theorem 1.5 Using Theorem 1.2, we have that x, y can be connected by a
semi-algebraic path, consisting of at most (klog(k)d)O(k log(k)) curve segments, and
each curve segment has degree bounded by (klog(k)d)O(k log(k)). It is clear that a curve
segment of degree bounded by D meets a generic hyperplane in at most O(D2) points.
It now follows immediately from the Cauchy–Crofton formula [19] that the length of
each curve segment appearing in the path is bounded by (klog(k)d)O(k log(k)), and finally
that the total length of the path is also bounded by (klog(k)d)O(k log(k)). ��

8 Annex: Auxiliary Proofs

The main purpose of this Annex is to prove Lemmas 2.7, 2.8 and Proposition 4.6
which were stated earlier in the paper. We first prove an auxiliary proposition that will
be needed in the proofs of Lemma 2.8 and Proposition 4.6.

Proposition 8.1 Let P,Q ⊂ R[X1, . . . , Xk] be a finite set of polynomials and let
G ∈ R[X1, . . . , Xk]. Suppose that [a, b] ⊂ R is such that G(Crit(P,Q, G)) ∩ (a, b)

is empty. Let S = Bas(P,Q) be bounded. Then for any c ∈ (a, b) the semi-algebraic
set Sa<G<b is homeomorphic to SG=c × (a, b) by a fiber preserving homeomorphism.
In particular, for each semi-algebraically connected component C of Sa<G<b, CG=c

is non-empty and semi-algebraically connected.

Proof The condition that G(Crit(P,Q, G)) ∩ [a, b] is empty implies that Sa<G<b is
a Whitney-stratified set with strata Zer(P ∪ Q′, R

k)a<G<b ∩ S, Q′ ⊂ Q, where the
dimension of Zer(P ∪ Q′, R

k)a<G<b is equal to k − (card(P ∪ Q′) if non-empty.
The proposition now follows from a basic result in stratified Morse theory (see for
example, Theorem SMT Part A in [9]). ��

8.1 Proof of Properties of G-Critical Values

Proof of Lemma 2.7 Let x and y be two points of CG≤a and γ : [0, 1] → C be
a semi-algebraic path connecting x to y inside C . We want to prove that there is a
semi-algebraic path connecting x to y inside CG≤a .

If Im(γ ) ⊂ CG≤a there is nothing to prove. If Im(γ ) �⊂ CG≤a ,

∃c ∈ R,∀a < d < c, Im(γ ) ∩ SG=d �= ∅.

Let ε be a positive infinitesimal. Then

Ext(γ ([0, 1]), R〈ε〉) ∩ Ext (S, R〈ε〉)G=a+ε �= ∅

using [2, Proposition 3.17].
Since

{
u ∈ [0, 1] ⊂ R〈ε〉 | Ext(γ, R 〈ε〉)(u) ∈ Ext (S, R〈ε〉)G<a+ε

}
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and
{
u ∈ [0, 1] ⊂ R〈ε〉 | Ext(γ, R 〈ε〉)(u) ∈ Ext (S, R〈ε〉)[a+ε≤G≤b]

}

are semi-algebraic subsets of [0, 1] ⊂ R〈ε〉 there exists by [2, Corollary 2.79] a
finite partition P of [0, 1] ⊂ R〈ε〉 such that for each open interval (u, v) of P,
Ext(γ, R 〈ε〉)(u, v) is either contained in

Ext (S, R〈ε〉)G<a+ε ,

or in

Ext (S, R〈ε〉)[a+ε≤G≤b] ,

with γ (u) and γ (v) in CG=a+ε.
If Ext(γ, R 〈ε〉)(u, v) is contained in Ext(S, R〈ε〉)[a+ε≤G≤b], we can replace γ by

a semi-algebraic path γ ′[a,b] connecting γ (u) to γ (v) inside CG<a+ε. Note that there
is no critical point of G in Ext (S, R〈ε〉)[a+ε≤G≤b] by [2, Proposition 3.17].

By Proposition 8.1, if D is a semi-algebraically connected component of

Ext(S, R 〈ε〉)a+ε≤G≤b,

DG=a+ε is a semi-algebraically connected component of Ext(S, R 〈ε〉)G=a+ε.
Construct a semi-algebraic path γ ′ from x to x ′ inside CG≤a+ε, obtained by con-

catenating pieces of γ inside Ext (S, R〈ε〉)G<a+ε and the paths γ ′
(u,v) connecting

γ (u) to γ (v) for (u, v) such that Ext(γ, R 〈ε〉)(u, v) ⊂ Ext (S, R〈ε〉)a+ε≤G≤b. Note
that such a semi-algebraically connected path γ ′ is closed and bounded. Applying
[2, Proposition 12.43], limε(γ

′([0, 1])) is semi-algebraically connected, contains x
and x ′ and is contained in limε(CG≤a+ε) = CG≤a . This is enough to prove the
lemma. ��
Proof of Lemma 2.8 We are going to prove the lemma assuming R = R. The general
case follows from a standard transfer argument that we omit.

Part (1) follows immediately from Proposition 8.1. We now prove Part (2). Since
M is finite, there is a point x ∈ CG=b which is not a critical point of G on S. Let
Px = {P ∈ P ∪Q | P(x) = 0}. Then, since x is not a G-critical point of Zer(Px , Rk),
it follows that Tx Zer(Px , Rk) is not tangent to the level surface of G defined by
G = b, and hence for ε > 0 infinitesimal, Bk (x, ε)G<b ∩ Tx Zer(Px , R〈ε〉k) is not
empty (where Bk(x, r) is the k-dimensional open ball of center x and radius r ), and
hence Bk (x, ε)G<b ∩ Zer(Px , R〈ε〉k) is not empty either. Let y ∈ Bk (x, ε)G<b ∩
Zer(Px , R〈ε〉k). Then, since limε y = x and y ∈ Zer(Px , R〈ε〉k), we have that for
each polynomial P ∈ P ∪ Q, P(x) and P(y) have the same signs, and hence y ∈ S.
Moreover, since S is closed and limε y = x ∈ C , we have that y ∈ Ext (C, R〈ε〉).
Now using the transfer principle it follows CG<b is non-empty.

Parts (2a) and (2b) are immediate consequences of Proposition 8.1.
We prove (2c). Clearly,

⋃r
i=1 B̄i ⊂ C . Suppose that x ∈ A = C \ ⋃r

i=1 B̄i . For
r > 0 and small enough, Bk(x, r) ∩ CG<b = ∅ . Note that G(b) = b, since otherwise
x belongs to CG<b, and thus to one of the Bi ’s.
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Applying Proposition 8.1, we deduce from the fact that Bk(x, r) ∩ CG<b =
Bk(x, r)G<b ∩ C = ∅ that x is a G-critical point of Zer(Px , Rk). In other words
x ∈ M. But since by assumption M is finite, this implies that A is a finite set and
is thus closed. Since C is semi-algebraically connected and

⋃r
i=1 B̄i is closed and

non-empty, A must be empty. ��

8.2 Proof of Properties of (B, G)-Pseudo-critical Values

Proof of Proposition 4.6 We are going to prove the proposition assuming R = R.
The general case follows from a standard transfer argument that we omit. Let F =
{F1, . . . , Fs}, where P = {F1, . . . , Fm},Q = {Fm+1, . . . , Fs}.
(1) It follows from the good rank property of the matrix B and Proposition 4.4 that for

any I ⊂ [1, s], σ ∈ {−1, 1}I , the algebraic sets Zer(F̃I,σ,B, R〈γ 〉k) have at most
isolated singularities. It now follows from the semi-algebraic Sard’s theorem [4],
that the set of critical values of G restricted to the various Zer(F̃I,σ,B, R〈γ 〉k) is
a finite set. This proves that the set D(P ∪ Q, B, G) is finite.

(2) Let

F̃ =
m⋃

i=1

{±Fi + γ Hi } ∪
s⋃

i=m+1

{Fi + γ Hi }

and S̃ = Bas(∅, F̃) ⊂ R〈γ 〉k . Clearly, Ext (S, R〈γ 〉) ⊂ S̃, and since S is bounded,
there exists a unique semi-algebraically connected component, D̃ of S̃a≤G≤b, such
that D̃ is bounded over R, Ext (D, R〈γ 〉) ⊂ D̃, and limγ D̃ = D. It is also clear
from the definition of S̃ and the fact that c ∈ R, that Ext (DG=c, R〈γ 〉) ⊂ D̃G=c,
and DG=c = limγ (D̃G=c). Since, D̃ is bounded over R, in order to prove that
DG=c is non-empty and semi-algebraically connected, it suffices to prove (using
Proposition 12.43 in [2]) that D̃G=c is non-empty and semi-algebraically con-
nected. Since limγ (Crit(F̃I,σ,B, G))∩ [a, b] \ {c} is empty for all I ⊂ [1, s]
and σ ∈ {−1, 1}I , it follows that for all I ⊂ [1, s] and σ ∈ {−1, 1}I ,
(Crit(F̃I,σ,B, G)) ∩ [a, b] belongs to the interval [c − δ, c + δ] (respectively,
[a, a + δ] if c = a, and [b − δ, b] if c = b), where δ > 0 is a new infinitesimal.
We claim that Ext(D̃, R〈γ, δ〉)c−δ≤G≤c+δ in case c �= a, b (respectively,
Ext(D̃, R〈γ, δ〉)a≤G≤a+δ if c = a, and Ext

(
D̃, R〈γ, δ〉)b−δ≤G≤b if c = b) is

non-empty and semi-algebraically connected. We prove the statement only in
case c �= a, b; the proof in the other two cases being very similar.

Let x, y be any two points in Ext(D̃, R〈γ, δ〉)c−δ≤G≤c+δ .
We show that there exists a semi-algebraic path connecting x to y lying

within Ext(D̃, R〈γ, δ〉)c−δ≤G≤c+δ . Since D̃ itself is semi-algebraically con-
nected, there exists a semi-algebraic path, γ : [0, 1] → Ext(D̃, R〈γ, δ〉),
with γ (0) = x, γ (1) = y, and γ (t) ∈ Ext(D̃, R〈γ, δ〉), 0 ≤ t ≤ 1. If
γ (t) ∈ Ext(D̃, R〈γ, δ〉)c−δ≤G≤c+δ for all t ∈ [0, 1], we are done. Otherwise,
the semi-algebraic path γ is the union of a finite number of closed connected
pieces γi lying either in Ext(D̃, R〈γ, δ〉)a≤G≤c−δ , Ext(D̃, R〈γ, δ〉)c−δ≤G≤c+δ , or
Ext(D̃, R〈γ, δ〉)c+δ≤G≤b.
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By Lemma 2.7 the semi-algebraically connected components of

Ext
(
D̃, R〈γ, δ〉)G=c−δ

(resp. Ext(D̃, R〈γ, δ〉)G=c+δ) are in 1–1 correspondence with the semi-
algebraically connected components of

Ext(D̃, R〈γ, δ〉)a≤G≤c−δ

(resp. Ext(D̃, R〈γ, δ〉)c+δ≤G≤b) containing them. In particular, notice that since
D is non-empty being a semi-algebraically connected component of the semi-
algebraic set Sa≤G≤b, D̃ is also non-empty, and hence at least one of the sets

Ext
(
D̃, R〈γ, δ〉)a≤G≤c−δ

,

Ext
(
D̃, R〈γ, δ〉)c−δ≤G≤c+δ

,

Ext
(
D̃, R〈γ, δ〉)c+δ≤G≤b

is not empty. Thus, Ext(D̃, R〈γ, δ〉)c−δ≤G≤c+δ �= ∅. But, since

lim
γ

(
Ext

(
D̃, R〈γ, δ〉)c−δ≤G≤c+δ

)
= Dc,

this proves that Dc is not empty.
We can now replace using Proposition 8.1 each of the γi lying in

Ext
(
D̃, R〈γ, δ〉)a≤G≤c−δ

(resp. Ext(D̃, R〈γ, δ〉)c+δ≤G≤b) with endpoints in Ext(D̃, R〈γ, δ〉)G=c−δ (resp.
Ext(D̃, R〈γ, δ〉)G=c+δ) by another segment with the same endpoints but lying
completely in Ext(D̃, R〈γ, δ〉)G=c−δ(resp. Ext(D̃, R〈γ, δ〉)G=c+δ). We thus
obtain a new semi-algebraic path γ ′ connecting x to y and lying inside
Ext(D̃, R〈γ, δ〉)c−δ≤G≤c+δ. This proves that Ext(D̃, R〈γ, δ〉)c−δ≤G≤c+δ is semi-
algebraically connected and hence so is D̃c = limδ D̃c−δ≤G≤c+δ (by Proposition
12.43 in [2]). ��
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