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Abstract In 1996 Sabitov proved that the volume V of an arbitrary simplicial poly-
hedron P in the 3-dimensional Euclidean space R

3 satisfies a monic (with respect to
V ) polynomial relation F(V, �) = 0, where � denotes the set of the squares of edge
lengths of P . In 2011 the author proved the same assertion for polyhedra in R

4. In this
paper, we prove that the same result is true in arbitrary dimension n ≥ 3. Moreover,
we show that this is true not only for simplicial polyhedra, but for all polyhedra with
triangular 2-faces. As a corollary, we obtain the proof in arbitrary dimension of the
well-known Bellows Conjecture posed by Connelly in 1978. This conjecture claims
that the volume of any flexible polyhedron is constant. Moreover, we obtain the fol-
lowing stronger result. If Pt , t ∈ [0, 1], is a continuous deformation of a polyhedron
such that the combinatorial type of Pt does not change and every 2-face of Pt remains
congruent to the corresponding face of P0, then the volume of Pt is constant. We also
obtain non-trivial estimates for the oriented volumes of complex simplicial polyhedra
in C

n from their orthogonal edge lengths.
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1 Introduction

It is well known that the area of a triangle can be computed from its side lengths by
Heron’s formula

A2 = 1

16

(
2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4).

However, it is impossible to compute the area of a polygon with at least four sides
from its side lengths, since any such polygon can be flexed so that its area changes,
while its side lengths remain constant. The situation changes in dimension 3.

Theorem 1.1 (Sabitov [14,15]) For any combinatorial type of simplicial polyhedra
in the 3-dimensional Euclidean space, there exists a polynomial relation

V 2N + a1(�)V
2N−2 + · · · + aN (�) = 0 (1)

between the volume V of a polyhedron of the given combinatorial type and the set
� of the squares of its edge lengths. This relation is monic with respect to V , and
the coefficients ai (�) are polynomials with rational coefficients in the squares of edge
lengths of the polyhedron.

This theorem shows that the volume of a simplicial polyhedron is determined by its
combinatorial type and edge lengths up to finitely many possibilities. The polynomial
in the left-hand side of (1) is called a Sabitov polynomial for polyhedra of the given
combinatorial type. It is convenient to assume that the relation (1) contains only even
powers of V , since we shall mean under V the oriented volume, which changes its
sign whenever we reverse the orientation. Nevertheless, this is not a restriction. Indeed,
if we had a monic polynomial relation F(V, �) = 0 containing both even and odd
powers of V , then F(V, �)F(−V, �) = 0 would be the required relation that contains
only even powers of V .

Theorem 1.1 was improved by Connelly et al. [5]. They proved that for W = 12V ,
there is a monic relation

W 2N + b1(�)W
2N−2 + · · · + bN (�) = 0

such that bi are polynomials with integral coefficients. In 2011 the author [8] proved
that the assertion of Theorem 1.1 holds as well for simplicial polyhedra in the 4-
dimensional Euclidean space. The main result of the present paper is the generalization
of Theorem 1.1 to polyhedra in the Euclidean space of an arbitrary dimension. We shall
prove the strong version of this theorem, i. e., the analogue of the result by Connelly
et al. mentioned above.

Notice that the polyhedron is not supposed to be convex, and is not supposed to
have the topological type of a sphere. Indeed, the polyhedron is not even supposed
to be non-self-intersected and non-degenerate. To formulate our result rigorously, we
need to give a definition of a possibly self-intersected and degenerate polyhedron.
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First, we recall some basic definitions concerning simplicial complexes. An abstract
simplicial complex on a vertex set V is a set K of subsets of V such that ∅ ∈ K , and
τ ∈ K implies σ ∈ K whenever σ ⊂ τ ⊂ V . (We use ⊂ for non-strict inclu-
sion.) By definition, dim σ is the cardinality of σ – 1. To simplify the terminology,
n-dimensional simplices will be called n-simplices. The geometric realization of a
simplicial complex K will be denoted by |K |.

A simplicial complex K is called a k-dimensional pseudo-manifold if every simplex
of K is contained in a k-simplex, and every (k−1)-simplex of K is contained in exactly
two k-simplices. K is called strongly connected if every two of its k-simplices can be
connected by a sequence of k-simplices such that every two consecutive k-simplices
have a common (k−1)-face. A pseudo-manifold is said to be oriented if its k-simplices
are endowed with consistent orientations. When we consider oriented simplices, the
notationσ = {v0, . . . , vk} will mean that the simplexσ is endowed with the orientation
given by the ordering v0, . . . , vk of its vertices.

Definition 1.2 Let K be an oriented (n −1)-dimensional strongly connected pseudo-
manifold. A simplicial polyhedron (or a polyhedral surface) of combinatorial type K
is a mapping P : |K | → R

n such that the restriction of P to every simplex of |K | is
linear. A polyhedron P is called embedded if P is injective.

Notice that we do not require the restriction of P to a simplex of |K | to be non-
degenerate. For instance, P may map the whole simplex to a point.

Intuitively, we mean under a simplicial polyhedron in R
n the region bounded by

an embedded polyhedral surface P(|K |). The oriented volume of this region will be
denoted by V (P) and will be called the oriented volume of P .

However, non-embedded polyhedra are also useful in many problems especially
concerning rigidity and flexibility. If P : |K | → R

n is a non-embedded polyhedral
surface, we may also try to consider some “region bounded by it”. Though this region is
not well defined as a subset of R

n , its oriented volume is well defined. The definition
is as follows. For a point x ∈ R

n \ P(|K |), consider a curve connecting a point
x with infinity, and denote by λ(x) the algebraic intersection index of this curve
and the singular surface P(|K |). Then λ is an almost everywhere defined piecewise
constant function on R

n with compact support. By definition, a generalized oriented
volume V (P) of a polyhedron P : |K | → R

n is equal to
∫
Rn λ(x) dV , where dV =

dx1, . . . , dxn is the standard volume element in R
n .

If O ∈ R
n is an arbitrary point, the generalized oriented volume V (P) can be

equivalently defined by

V (P) =
q∑

i=1

V
(
O, P

(
v
(i)
1

)
, . . . , P

(
v(i)n

))
,

where {v(i)1 , . . . , v
(i)
n }, i = 1, . . . , q, are all pairwise distinct positively oriented

(n − 1)-simplices of K , and V (p0, . . . , pn) stands for the oriented volume of the
simplex with vertices p0, . . . , pn . It can be easily checked that V (P) is independent
of the choice of O .

The main result of this paper is as follows.
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Theorem 1.3 Suppose, n ≥ 3. Let K be an (n − 1)-dimensional oriented strongly
connected pseudo-manifold. Then there exists a monic polynomial relation

W 2N + b1(�)W
2N−2 + · · · + bN (�) = 0

that holds for all polyhedra P : |K | → R
n of combinatorial type K . Here W =

2[ n
2 ] n! V (P), and bi (�) are polynomials with integral coefficients in the squares of

edge lengths of P.

The most important application of Sabitov’s theorem concerns flexible polyhedra.
A flex of a simplicial polyhedron P : |K | → R

n is a continuous family of polyhedra
Pt : |K | → R

n of the same combinatorial type such that P0 = P , the edge lengths
of Pt are constant, and P0 cannot be taken to P1 by an isometry of R

n . A polyhedron is
called flexible if it admits a flex, and is called rigid if it does not admit a flex. In 1897,
Bricard [1] constructed his famous self-intersected flexible octahedra in R

3. The first
example of an embedded flexible polyhedron in R

3 was constructed by Connelly [3];
the simplest known example belongs to Steffen. First examples of four-dimensional
(self-intersected) flexible polyhedra were constructed by Walz (cf. [13]) and Stachel
[16]. Examples of flexible polyhedra of all dimensions has been recently obtained by
the author [9]. All these examples are flexible cross-polytopes. Moreover, in [9] the
author has obtained a classification of all flexible cross-polytopes of all dimensions.
The problem on existence of embedded flexible polyhedra in R

n , n > 3, remains open.
The Bellows Conjecture due to Connelly [4] claims that the generalized oriented

volume of any flexible polyhedron remains constant under the flex. It follows from
Theorem 1.1 that the volume of a simplicial polyhedron in R

3 with the given combi-
natorial type and edge lengths can take only finitely many values, which implies that
the volume cannot change continuously. Notice that it is very important here that the
polynomial relation (1) is monic with respect to V . Otherwise, it could happen that
for some particular values of the edge lengths, all coefficients of (1) would vanish,
hence, this relation would impose no restriction on V .

Corollary 1.4 (Sabitov [14]) The Bellows Conjecture holds for flexible polyhedra
in R

3.

In the same way, Theorem 1.3 implies

Corollary 1.5 The Bellows Conjecture holds for flexible polyhedra in R
n, n ≥ 3.

Sometimes it is convenient to work with a more general definition of a simplicial
polyhedron in R

n , than Definition 1.2. Consider an (abstract) simplex �M of large
dimension M . Let (C∗(�M ), ∂) be the simplicial chain complex of �M with integral
coefficients. This means that Ck(�

M ) is the free Abelian group generated by oriented
k-faces of �M , and ∂ : Ck(�

M ) → Ck−1(�
M ) is the boundary operator. A chain

Z ∈ Ck(�
M ) is called a cycle if ∂Z = 0. The support of a chain Z is the subcomplex

supp(Z) ⊂ �M consisting of all k-simplices that enter Z with non-zero coefficients,
and all their faces.

Definition 1.6 A simplicial polyhedron is a pair (Z , P), where Z is an (n − 1)-cycle
and P : | supp(Z)| → R

n is a mapping whose restriction to every simplex of | supp(Z)|
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is linear. We say that the polyhedron (Z , P) has combinatorial type Z . Edges of the
polyhedron (Z , P) are the images of edges of | supp(Z)| under P .

The generalized oriented volume VZ (P) of a polyhedron (Z , P) is defined by∫
Rn λ(x) dV , where λ(x) is the algebraic intersection index of a curve from x to

infinity and the singular cycle P(Z). Equivalently, for an arbitrary point O ∈ R
n ,

VZ (P) =
q∑

i=1

ci V
(
O, P

(
v
(i)
1

)
, . . . , P

(
v(i)n

))
,

where Z = ∑q
i=1 ci {v(i)1 , . . . , v

(i)
n }, ci ∈ Z.

Theorem 1.7 Suppose, n ≥ 3. Let Z be an (n − 1)-cycle. Then there exists a monic
polynomial relation

W 2N + b1(�)W
2N−2 + · · · + bN (�) = 0

that holds for all polyhedra P : | supp(Z)| → R
n of combinatorial type Z. Here

W = 2[ n
2 ] n! VZ (P), and bi (�) are polynomials with integral coefficients in the squares

of edge lengths of P.

Obviously, Definition 1.2 is contained in Definition 1.6. Indeed, every polyhedron
of combinatorial type K for an oriented (n − 1)-dimensional pseudo-manifold K is
a polyhedron of combinatorial type [K ], where [K ] is the fundamental cycle of K .
Hence Theorem 1.3 follows from Theorem 1.7.

In fact, an analogue of Theorem 1.3 holds for a wider class of polyhedra than sim-
plicial polyhedra, namely, for all polyhedra with triangular 2-faces. To formulate this
result rigorously, we need to give a rigorous definition of a not necessarily simplicial
polyhedron. We prefer to use the following standard geometric definition, which does
not include any degenerate or self-intersected examples (cf. [6]). (Actually, a more
general definition in spirit of Definitions 1.2 and 1.6 could also be given, but it would
make our considerations less clear.)

An n-polyhedron is a subset P ⊂ R
n with connected interior that can be obtained

as the union of finitely many n-dimensional convex polytopes. (We only require the
existence of such convex polytopes. No particular convex polytopes are supposed to
be chosen.)

The point figure pf(p) of a point p ∈ P is the set consisting of all points q ∈ R
n

such that the point (1 − ε)p + εq belongs to P for all sufficiently small positive ε.
For each point p ∈ P , consider the set of all points q ∈ P such that pf(q) = pf(p)
and choose the connected component of this set containing p. The closure of this
connected component is called a face of P . In particular, P is a face of itself. All other
faces of P are called proper. It is easy to check that

• P has finitely many faces each of which is a k-polyhedron in a certain k-plane in R
n .

• The boundary of every face is the union of faces of smaller dimensions.
• If F1 and F2 are distinct faces of the same dimension, then the intersection F1 ∩ F2

either is empty or is the union of faces of smaller dimensions.
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Fig. 1 Polyhedron with an
edge (E F) contained in the
relative interior of a face
(ABC D)

A

B C

D

E F

Notice that it is possible that the relative interiors of faces are not disjoint, see Fig. 1.
Zero-dimensional and one-dimensional faces are called vertices and edges respec-
tively.

Let F be the set of all faces of P . We introduce a partial ordering on F in the
following way. We put F1 < F2 if and only if there is a sequence of faces G1 =
F1,G2, . . . ,Gk = F2, k ≥ 2, such that dim Gi+1 = dim Gi + 1 and Gi ⊂ ∂Gi+1.
Notice that F1 	< F2 if the relative interior of F1 is contained in the relative interior
of F2. The poset F is called the face poset of P . We shall say that P has combinatorial
type F .

Theorem 1.8 Suppose, n ≥ 3. Let F be a finite poset that can be realized as the face
poset of an n-polyhedron with triangular 2-faces. Then there exists a monic polynomial
relation

W 2N + b1(�)W
2N−2 + · · · + bN (�) = 0 (2)

that holds for all n-polyhedra P of combinatorial type F . Here W is the volume of P
multiplied by 2[ n

2 ]n!, and bi (�) are polynomials with integral coefficients in the squares
of edge lengths of P.

For non-simplicial polyhedra, the Bellows Conjecture says that for each defor-
mation Pt , t ∈ [0, 1], such that the combinatorial type of Pt does not change and all
proper faces of Pt remain congruent to the corresponding faces of P0, the volume of Pt

is constant. Theorem 1.8 allows us to prove the following result, which is stronger then
the Bellows Conjecture.

Corollary 1.9 Let Pt , t ∈ [0, 1], be a continuous deformation of an n-polyhedron
such that the combinatorial type of Pt does not change and all 2-dimensional faces
of Pt remain congruent to the corresponding faces of P0. Then the volume of Pt is
constant.

Let us discuss main ideas of our proofs of Theorems 1.3, 1.7, and 1.8. Until now
there existed two different proofs of Theorem 1.1 (i. e. Theorem 1.3 in dimension 3),
Sabitov’s original proof (see [14,15]) and the proof due to Connelly et al. [5]. Both
proofs use the same induction on certain parameters of the polyhedron (genus, number
of vertices, etc.). In the proof due to Sabitov, the induction step is based on a special
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procedure for elimination of diagonal lengths of the polyhedron by means of resultants.
In the proof due to Connelly et al. this complicated elimination procedure is replaced
with the usage of theory of places. A place is a mapping ϕ : E → F ∪{∞} that satisfies
certain special conditions, where E and F are fields (cf. Sect. 3). Theory of places
is applied as follows. For E we take the field of rational functions in the coordinates
of vertices of the polyhedron. Now a relation of the form (1) exists if and only if
every place of E that is finite on the squares of edge lengths of the polyhedron is also
finite on its volume. In [8], the author generalized both proofs to dimension 4. The
induction became more delicate, and an additional result of algebraic geometry was
used.

In the present paper our approach is different. Instead of proceeding by induc-
tion on some parameters of the polyhedron, we study more carefully the proper-
ties of places of the field E . Namely, for every place ϕ, we study the graph con-
sisting of all edges and diagonals of the polyhedron whose squares of lengths have
finite ϕ-values. We prove that the clique simplicial complex of this graph collapses
on a subcomplex of dimension not greater than n

2 . This implies that the (n − 1)-
dimensional homology group of this complex vanishes, which allows us to prove
Theorems 1.7 and 1.8. Notice that our proof is quite elementary modulo theory of
places. In particular, unlike the proof in [8], it does not use any results of algebraic
geometry.

This paper is organized as follows. In Sect. 2 we give a convenient alge-
braic reformulation of Theorem 1.7 (Theorem 2.1). The same reformulation was
used by Connelly et al. in dimension 3, and by the author in dimension 4 (see
[5,8]). In Sects. 3 and 4 we recall two main tools of our proof, theory of places
and the Cayley–Menger determinants respectively. In Sect. 5 we give the scheme
of proof of Theorem 2.1. We formulate a lemma, which we call Main Lemma,
and derive Theorem 2.1 from this lemma. The proof of Main Lemma is con-
tained in Sects. 6 and 7. In Sect. 8 we apply Theorem 1.7 to obtain estimates
for the volumes of polyhedra in C

n . Section 9 is devoted to non-simplicial poly-
hedra with triangular 2-faces, and contains the proofs of Theorem 1.8 and Corol-
lary 1.9.

2 Algebraic Reformulation

In this paper, a ring is always a commutative ring with unity.
Let Z be an (n−1)-cycle, and let K be its support. LetV be the vertex set of K , and let

m be the cardinality of V . A polyhedron P : |K | → R
n is uniquely determined by the

images P(v) of the vertices v ∈ V . We denote by xv,1, . . . , xv,n the coordinates of the
point P(v). Now it is convenient to regard xv,i , v ∈ V , i = 1, . . . , n, as independent
variables, and to interpret them as coordinates on the space of all polyhedra P of
combinatorial type K . We denote by xV the set of mn variables xv,i and by Z[xV ] the
ring of polynomials in these variables. For any two vertices u, v ∈ V , we define the
universal square of the distance between u and v to be the element �uv ∈ Z[xV ] given
by

123



202 Discrete Comput Geom (2014) 52:195–220

�uv =
n∑

i=1

(xu,i − xv,i )
2.

We shall say that �uv is the universal square of the edge length if {u, v} ∈ K , and the
universal square of the diagonal length if {u, v} /∈ K . Let RK be the subring of Z[xV ]
generated by all �uv such that {u, v} ∈ K .

The universal oriented volume VZ ∈ Q[xV ] is defined by

VZ = 1

n!
q∑

i=1

ci

∣∣
∣∣∣∣∣∣

x
v
(i)
1 ,1

· · · x
v
(i)
n ,1

...
. . .

...

x
v
(i)
1 ,n

· · · x
v
(i)
n ,n

∣∣
∣∣∣∣∣∣

,

where Z = ∑q
i=1 ci

{
v
(i)
1 , . . . , v

(i)
n

}
, ci ∈ Z.

We put WZ = 2[ n
2 ] n! VZ . Then WZ ∈ Z[xV ].

Polyhedra P : |K | → R
n are in one-to-one correspondence with specialization

homomorphisms Z[xV ] → R. Any such specialization homomorphism takes the uni-
versal squares of edge and diagonal lengths �uv , and the universal oriented volume VZ

to the squares of edge and diagonal lengths, and the oriented volume of the corre-
sponding polyhedron (Z , P).

A polynomial relation among the polynomials �uv , {u, v} ∈ K , and WK holds
in Z[xV ] if and only if it holds after substituting any real values for the variables xv,i .
Hence Theorem 1.7 is equivalent to the following one.

Theorem 2.1 Let Z be an (n − 1)-cycle and let K be its support, n ≥ 3. Then the
element WZ is integral over the ring RK .

Denote by Q(xV ) the field of rational functions in the variables xv,i . It will be
useful for us to consider points z ∈ Q(xV )n not necessarily coinciding with the
vertices v ∈ V . We shall conveniently define the coordinates of z by xz,1, . . . , xz,2.
Here xz,i are elements of Q(xV ), which are not supposed to be independent variables.
The square of the distance �yz ∈ Q(xV ) between two points y, z ∈ Q(xV )n is given
by the same formula

�yz =
n∑

i=1

(xy,i − xz,i )
2. (3)

3 Places

The main tool of our proof is theory of places. In dimension 3, it was used by Connelly
et al. to simplify Sabitov’s proof of Theorem 1.1. Let us recall necessary facts on places
and valuations (cf. [10, Chapter 1], [13, Sect. 41.7]).

Let E be a field. A place of E is a mapping ϕ : E → F ∪ {∞} to a field F , with an
extra element ∞, such that ϕ(1) = 1, ϕ(a +b) = ϕ(a)+ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b)
whenever the right-hand sides are defined. Here we assume that 1/0 = ∞, 1/∞ = 0,
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c ± ∞ = ∞ for all c ∈ F , and c · ∞ = ∞ for all c ∈ F ∪ {∞}, except for 0. The
expressions ∞ ± ∞, ∞ · 0, 0/0, and ∞/∞ are undefined. Elements c ∈ F are said
to be finite.

By definition, the valuation ring of ϕ is the subring o ⊂ E consisting of all a ∈ E
such that ϕ(a) 	= ∞. Let E∗ be the multiplicative group of the field E , and let U be
the group of units of o. We put 
 = E∗/U . Let γ1, γ2 be elements of 
 corresponding
to cosets a1U and a2U respectively. It is easy to see that if γ1 	= γ2, then ϕ(a1/a2)

is either 0 or ∞. We put γ1 < γ2 if ϕ(a1/a2) = 0, and γ1 > γ2 if ϕ(a1/a2) = ∞. It
is easy to see that < is a well-defined ordering on the group 
, in particular, γ1 < γ2
implies αγ1 < αγ2 for any α ∈ 
. We add to the ordered group 
 an extra element 0,
and put 0 · γ = 0 and 0 < γ for all γ ∈ 
.

For any element a ∈ E∗, let |a|ϕ be the coset aU ∈ 
. We put |0|ϕ = 0. The
mapping E → 
 ∪ {0} given by a �→ |a|ϕ is called the valuation corresponding to
the place ϕ, and satisfies the following properties:

• |a|ϕ = 0 if and only if a = 0.
• |ab|ϕ = |a|ϕ · |b|ϕ .
• |a + b|ϕ ≤ max(|a|ϕ, |b|ϕ).
• |a|ϕ < 1 iff ϕ(a) = 0, |a|ϕ = 1 iff ϕ(a) ∈ F \ {0}, and |a|ϕ > 1 iff ϕ(a) = ∞.

The most important for us fact on places is as follows.

Lemma 3.1 (cf. [10, p. 12]) Let R be a ring contained in a field E, and let a be an
element of E. Then a is integral over R if and only if every place ϕ of E that is finite
on R is finite on a.

4 Cayley–Menger Determinants

Proposition 4.1 (Cayley [2], Menger [11,12], cf. [13]) Let v0, v1, . . . , vn be points
in a Euclidean space and let �viv j be the square of the distance between vi and v j .
Then the n-dimensional volume V of the simplex with vertices v0, v1, . . . , vn satisfy
the equation

V 2 = (−1)n+1

2n(n!)2 CM(v0, . . . , vn), (4)

where

CM(v0, . . . , vn) =

∣
∣∣∣∣∣
∣∣∣∣∣∣
∣

0 1 1 1 · · · 1
1 0 �v0v1 �v0v2 · · · �v0vn

1 �v0v1 0 �v1v2 · · · �v1vn

1 �v0v2 �v1v2 0 · · · �v2vn
...

...
...

...
. . .

...

1 �v0vn �v1vn �v2vn · · · 0

∣
∣∣∣∣∣
∣∣∣∣∣∣
∣

. (5)

The determinant CM(v0, . . . , vn) is called the Cayley–Menger determinant of the
points v0, . . . , vn .
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Corollary 4.2 The Cayley–Menger determinant of any affinely dependent set of points
vanishes. In particular, the Cayley–Menger determinant of any n + 2 points in R

n

vanishes.

The relation CM(v0, . . . , vk) = 0 for affinely dependent points v0, . . . , vk is called
the Cayley–Menger relation.

If v0, . . . , vn ∈ R
n , formula (4) is a polynomial relation among polynomials in the

coordinates of the points v0, . . . , vn , hence this formula holds as well for universal
n-dimensional points v0, . . . , vn , where we substitute for �viv j the universal squares
of distances and for V the universal oriented volume of the n-simplex with vertices
v0, . . . , vn . Notice, that in our notation introduced in Sect. 2 this universal oriented vol-
ume is denoted by V∂�, where � = {v0, . . . , vn}. Now consider W∂� = 2[ n

2 ] n! V∂�.
If n is even, we have W∂� = −CM(v0, . . . , vn). Hence W∂� is integral over the ring
R� generated by all universal squares of edge lengths �viv j . If n is odd, we have

W∂� = 1
2 CM(v0, . . . , vn). But the determinant of a symmetric matrix of odd order

with zero diagonal is a polynomial in the matrix entries with even coefficients. Hence
1
2 CM(v0, . . . , vn) is the polynomial in �viv j with integral coefficients. Therefore W∂�

is integral over R�. Thus the claim of Theorem 2.1 holds if Z = ∂�.
In fact, it follows easily from formula (4) that kV∂� is not integral over R� if k ∈ Z,

0 < k < 2[ n
2 ] n!. Hence the multiple 2[ n

2 ] n! in Theorems 1.3, 1.7, and 1.8 cannot be
decreased.

Notice also that Corollary 4.2 holds for points over any field E , where the squares
of the distances �viv j are defined by (3).

5 Scheme of Proof of Theorem 2.1

We shall apply Lemma 3.1 to prove Theorem 2.1. So we take for E, R, and a the
field Q(xV ), the ring RK , and the element WZ respectively. Theorem 2.1 will follow,
if we prove that every place ϕ of Q(xV ) that is finite on RK is finite on WZ .

Let ϕ : Q(xV ) → F ∪ {∞} be a place, and let | · |ϕ be the corresponding valuation
on Q(xV ). Let Gϕ be the graph on the vertex set V such that {u, v} is an edge of Gϕ

if and only if ϕ(�uv) is finite. Let Kϕ be the clique simplicial complex of Gϕ (or the
full subcomplex spanned by Gϕ). This means that a simplex σ ⊂ V belongs to Kϕ if
and only if all edges of σ are edges of Gϕ .

Let L be a simplicial complex. A pair (σ, τ ) of simplices of L is called a free pair
if

• τ ⊂ σ , and dim τ = dim σ − 1.
• σ is maximal in L , i. e., σ is strictly contained in no simplex of L .
• τ is a free face of σ , i. e., τ is strictly contained in no simplex of L distinct from σ .

Removing a free pair (σ, τ ) from L , we obtain another simplicial complex L1, which
is called an elementary collapse of L . A sequence of elementary collapses is called a
collapse. If L collapses on J , then L is homotopy equivalent to J .

Main Lemma For any place ϕ : Q(xV ) → F ∪ {∞}, the simplicial complex Kϕ
collapses on a subcomplex of dimension less than or equal to

[ n
2

]
.
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Corollary 5.1 Hk(Kϕ) = 0 for k > n
2 . In particular, Hn−1(Kϕ) = 0 if n ≥ 3.

The proof of Main Lemma will be given in Sects. 6 and 7. Now we shall prove that
Theorem 2.1 follows from Main Lemma.

Proof of Theorem 2.1 To prove that WZ is integral over RK , we need to show that
every place ϕ : Q(xV ) → F ∪{∞} that is finite on RK is also finite on WZ . Since ϕ is
finite on all �uv such that {u, v} is an edge of K , we see that K ⊂ Kϕ . By Corollary 5.1,
we have Hn−1(Kϕ) = 0. Hence there exists a chain Y ∈ Cn(Kϕ) such that ∂Y = Z .
Suppose, Y = ∑k

i=1 ci�i , where ci ∈ Z and�i are oriented n-simplices of Kϕ . Then

WZ =
k∑

i=1

ci W∂�i .

The Cayley–Menger formula implies that W∂�i is integral over the ring R�i generated
by all �uv such that u, v ∈ �i (cf. Sect. 4). Since �i ∈ Kϕ , we see that ϕ is finite
on R�i . Hence ϕ is finite on every W∂�i . Therefore ϕ is finite on WZ . ��

6 Orderings �

We denote the set of all k-simplices of Kϕ by K k
ϕ . Suppose that for every k, 0 ≤ k ≤

dim Kϕ , we have chosen a (strict) total ordering � on the set K k
ϕ . (It is convenient

to denote the orderings on different sets K k
ϕ by the same symbol �.) Later we shall

construct the orderings � that will satisfy certain special conditions. To formulate
these conditions we need to introduce some notation.

A facet of a simplex is a codimension 1 face of it. For each σ ∈ Kϕ such that
dim σ > 0, we denote by μ(σ) the maximal facet of σ with respect to �.

Suppose σ ∈ Kϕ , σ 	= ∅. Denote by Vσ the set consisting of all vertices v /∈ σ

such that σ ∪ {v} ∈ Kϕ and μ(σ ∪ {v}) = σ . For each vertex v ∈ Vσ , we denote by
Vσ (v) the subset of Vσ consisting of all vertices u such that σ ∪ {v} � σ ∪ {u}.

The first condition imposed on � is as follows.

(i) If σ1, σ2 ∈ Kϕ , dim σ1 = dim σ2 > 0, and μ(σ1) � μ(σ2), then σ1 � σ2.
Other conditions will be slightly different in the cases of odd and even n. If n is
odd, the ordering � must satisfy the following condition:
(ii)′ Suppose that σ ∈ Kϕ , σ 	= ∅, v ∈ Vσ , and Vσ (v) 	= ∅. Then there is a vertex
u ∈ Vσ (v) such that

ϕ
(�w1w2

�uv

)
	= ∞

for all w1, w2 ∈ Vσ (v) ∪ {v}.
If n is even, condition (ii)′ is replaced with the following two conditions:
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(ii)′′ Suppose that σ ∈ Kϕ , dim σ > 0, v ∈ Vσ , and Vσ (v) 	= ∅. Then there is a
vertex u ∈ Vσ (v) such that

ϕ
(�w1w2

�uv

)
	= ∞

for all w1, w2 ∈ Vσ (v) ∪ {v}.
(iii)′′ Let {u, v} and {u, w} be edges of Kϕ such that {u} � {v}, {u} � {w}, and
{u, v} � {u, w}. Then |xu,1 − xv,1|ϕ ≥ |xu,1 − xw,1|ϕ .

Notice that condition (ii)′′ almost coincide with condition (ii)′. The only difference
is that in (ii)′′ we assume that dim σ > 0.

6.1 Construction of �

Now we shall construct the orderings � on the sets K k
ϕ satisfying conditions (i), (ii)′

for odd n and conditions (i), (ii)′′, (iii)′′ for even n.
First, we choose an arbitrary total ordering � on the set K 0

ϕ of vertices of Kϕ .
Second, suppose that n is even and construct the ordering � on the set K 1

ϕ of
edges of Kϕ . Let {u1, v1} and {u2, v2} be any edges of Kϕ such that {u1} � {v1} and
{u2} � {v2}. We put {u1, v1} � {u2, v2} whenever {u1} � {u2}. Then condition (i) is
satisfied. Now for every u, we need to order all edges {u, v} such that {u} � {v}. We
put {u, v1} � {u, v2} whenever {u} � {v1}, {v2}, and |xu,1 − xv1,1|ϕ > |xu,1 − xv2,1|ϕ .
The edges {u, v} with the same maximal vertex u and the same value of |xu,1 − xv,1|ϕ
are ordered arbitrarily. Then condition (iii)′′ is satisfied.

Further, we proceed by induction on dimension. Suppose that we have already
determined the ordering � on the set K k−1

ϕ and construct the ordering � on the set K k
ϕ .

We assume that k ≥ 1 if n is odd, and k ≥ 2 if n is even, since the case k = 1 for n
even has been considered separately above.

For k-simplices σ1, σ2 ∈ Kϕ , we put σ1 � σ2 whenever μ(σ1) � μ(σ2). Then
condition (i) is satisfied. Now, for each (k − 1)-simplex ρ ∈ Kϕ , we need to order
k-simplices σ ∈ Kϕ such thatμ(σ) = ρ. Each such k-simplex σ has the form ρ∪{v},
where v ∈ Vρ . Let r be the cardinality of Vρ . We shall successively denote the vertices
of Vρ by v1, . . . , vr in the following way. Suppose that the vertices v1, . . . , vi−1 have
already been chosen, i < r . (If i = r , the unique vertex in Vρ \ {v1, . . . , vr−1} is cer-
tainly taken for vr .) Consider all values |�w1w2 |ϕ , wherew1, w2 ∈ Vρ \{v1, . . . , vi−1},
and choose the maximum of them. Let the maximum be attained at a pair (w0

1, w
0
2).

Then we take for vi the vertex w0
1. Now we put ρ ∪ {vi } � ρ ∪ {v j } whenever i < j .

Let us check that the ordering � constructed by the above inductive procedure
satisfies condition (ii)′ or condition (ii)′′ (depending on the evenness of n). Suppose
that v = vi in the above notation for the vertices in Vρ . Then Vρ(v) ∪ {v} = Vρ \
{v1, . . . , vi−1}. Take for u the vertexw0

2. Then for anyw1, w2 ∈ Vρ(v)∪{v}, we have
|�w1w2 |ϕ ≤ |�uv|ϕ , i. e., ϕ(�w1w2/�uv) 	= ∞.

The following proposition is the main fact on the ordering �.

Proposition 6.1 Let σ and τ be simplices of Kϕ such that dim σ = dim τ > n
2 and

μ(σ) = μ(τ). Then σ ∪ τ ∈ Kϕ .
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Proof We may assume that σ � τ . Suppose, dim σ = dim τ = k. We put σk = σ , and
successively put σi = μ(σi+1), i = k − 1, . . . , 1, 0. Condition (i) easily implies that
σi is the maximal i-dimensional face of σ with respect to �. We denote the vertices
of σ by v0, . . . , vk so that σi = {v0, . . . , vi }, i = 0, . . . , k. We denote by uk the vertex
of τ opposite to the facet μ(τ) = σk−1; then τ = {v0, . . . , vk−1, uk}. Since σ � τ ,
we have uk ∈ Vσk−1(vk). We need to prove that ϕ(�ukvk ) 	= ∞. If we prove this, we
will obtain that ϕ is finite on all squares of edge lengths of the simplex σ ∪ τ , hence,
σ ∪ τ ∈ Kϕ . We consider two cases.

Case 1: n is odd. Let n = 2r − 1. For i = 1, . . . , k − 1, consider condition (ii)′
for the simplex σi = σi−1 ∪ {vi }. The set Vσi−1(vi ) is non-empty, since it contains the
vertex vi+1. Hence property (ii)′ implies that there is a vertex ui ∈ Vσi−1(vi ) such that

ϕ
(�w1w2

�uivi

)
	= ∞ (6)

for all w1, w2 ∈ Vσi−1(vi ) ∪ {vi } (Notice that two vertices ui and u j may coincide to
each other or a vertex ui may coincide to one of the vertices v j , j > i).

Let us prove that u j , v j ∈ Vσi−1(vi ) whenever 1 ≤ i < j ≤ k. Let w be either u j

or v j . Since w ∈ Vσ j−1 , we see that σ j−1 ∪ {w} ∈ Kϕ and μ(σ j−1 ∪ {w}) = σ j−1.
Condition (i) easily implies that μ(σi−1 ∪ {w}) = σi−1 and μ(σi ∪ {w}) = σi . Hence
w ∈ Vσi−1 and σi � σi−1 ∪ {w}. Therefore w ∈ Vσi−1(vi ). Thus (6) implies that

ϕ
(�u jv j

�uivi

)
	= ∞, ϕ

(�uiv j

�uivi

)
	= ∞, ϕ

(�ui u j

�uivi

)
	= ∞ (7)

whenever 1 ≤ i < j ≤ k.
Besides, ϕ is finite on �viv j and �vi u j whenever 0 ≤ i < j ≤ k, since {vi , v j } and

{vi , u j } are edges of Kϕ .

Assume that ϕ(�ukvk ) = ∞. By (7), we have ϕ
( �ui vi
�ukvk

) 	= 0 whenever 0 < i < k.

Hence, ϕ(�uivi ) = ∞ for i = 1, . . . , k.
Since k > n

2 , we have k ≥ r . Consider the Cayley–Menger relation for the n + 2
points u1, . . . , ur , v0, v1, . . . , vr . We have

∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣

0 1 1 · · · 1 1 1 1 · · · 1
1 0 �u1u2 · · · �u1ur �u1v0 �u1v1 �u1v2 · · · �u1vr

1 �u1u2 0 · · · �u2ur �u2v0 �u2v1 �u2v2 · · · �u2vr
...

...
...

. . .
...

...
...

...
. . .

...

1 �u1ur �u2ur · · · 0 �urv0 �urv1 �urv2 · · · �urvr

1 �u1v0 �u2v0 · · · �urv0 0 �v0v1 �v0v2 · · · �v0vr

1 �u1v1 �u2v1 · · · �urv1 �v0v1 0 �v1v2 · · · �v1vr

1 �u1v2 �u2v2 · · · �urv2 �v0v2 �v1v2 0 · · · �v2vr
...

...
...

. . .
...

...
...

...
. . .

...

1 �u1vr �u2vr · · · �urvr �v0vr �v1vr �v2vr · · · 0

∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣

= 0.
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For i = 1, . . . , r , we divide both the (i + 1)st row and the (i + 1)st column of this
determinant by �uivi . To simplify formulae, we put hi = �uivi . We obtain

∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣

0 1
h1

1
h2

· · · 1
hr

1 1 1 · · · 1
1

h1
0

�u1u2
h1h2

· · · �u1ur
h1hr

�u1v0
h1

1
�u1v2

h1
· · · �u1vr

h1
1

h2

�u1u2
h1h2

0 · · · �u2ur
h2hr

�u2v0
h2

�u2v1
h2

1 · · · �u2vr
h2

...
...

...
. . .

...
...

...
...

. . .
...

1
hr

�u1ur
h1hr

�u2ur
h2hr

· · · 0
�ur v0

hr

�ur v1
hr

�ur v2
hr

· · · 1

1
�u1v0

h1

�u2v0
h2

· · · �ur v0
hr

0 �v0v1 �v0v2 · · · �v0vr

1 1
�u2v1

h2
· · · �ur v1

hr
�v0v1 0 �v1v2 · · · �v1vr

1
�u1v2

h1
1 · · · �ur v2

hr
�v0v2 �v1v2 0 · · · �v2vr

...
...

...
. . .

...
...

...
...

. . .
...

1
�u1vr

h1

�u2vr
h2

· · · 1 �v0vr �v1vr �v2vr · · · 0

∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣

= 0. (8)

Now we apply the place ϕ to all entries of the determinant. Since ϕ(hi ) = ∞, we
have ϕ

( 1
hi

) = 0. Inequalities (7) imply that ϕ is finite on all entries of the determinant.
Besides, we have

ϕ
(�ui u j

hi h j

)
= ϕ

(�ui u j

�uivi

)
ϕ
( 1

�u jv j

)
= 0, 1 ≤ i < j ≤ r,

ϕ
(�u jvi

h j

)
= ϕ(�u jvi )

ϕ(�u jv j )
= 0, 0 ≤ i < j ≤ r.

Hence we obtain

0
1

1
. . .0

1
1

1 0
. . .

1

= 0,

where ∗ stand for finite elements of F . This is impossible, since the left-hand side is
equal to ±1. This contradiction proves that ϕ(�ukvk ) 	= ∞. Hence σ ∪ τ ∈ Kϕ .

Case 2: n is even. Let n = 2r − 2. As in the previous case, condition (ii)′′ implies
that there exist vertices ui ∈ Vσi−1(vi ), i = 2, . . . , k − 1, such that inequalities (7)
hold whenever 2 ≤ i < j ≤ k. (However, we cannot find a vertex u1 with a similar
property.) Besides, ϕ is finite on �viv j and �vi u j whenever i < j .

Now we introduce a new point z = (xz,1, . . . , xz,n), xz,i ∈ Q(xV ). If ϕ(�v0v1) 	= 0,
we put z = v0, i. e., xz,i = xv0,i .
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Suppose ϕ(�v0v1) = 0. Then we put

xz,1 = xv0,1 + a,

xz,i = xv0,i , i 	= 1,

where

a =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

xv0,1 − xv1,1
if |xv0,1 − xv1,1|ϕ > 1 and char F 	= 2,

xv1,1 − xv0,1 if |xv0,1 − xv1,1|ϕ = 1 and char F 	= 2,

1 if |xv0,1 − xv1,1|ϕ < 1 or char F = 2.

Lemma 6.2 We have ϕ(�zv1) 	= 0, and ϕ(�zw) 	= ∞ for w = v1, . . . , vr , u2, . . . , ur .

Proof If ϕ(�v0v1) 	= 0, the assertion of the lemma holds, since z = v0 and {v0, w} are
edges of Kϕ , w = v1, . . . , vr , u2, . . . , ur .

Suppose, ϕ(�v0v1) = 0, w ∈ {v1, . . . , vr , u2, . . . , ur }. We have {v0} � {v1}. It
follows easily from condition (i) that {v0} � {w}, and if w 	= v1, {v0, v1} � {v0, w}.
By condition (iii)′′, we obtain that |xv0,1 − xw,1|ϕ ≤ |xv0,1 − xv1,1|ϕ .

We have

�zw = �v0w + 2a(xv0,1 − xw,1)+ a2.

Suppose |xv0,1 − xv1,1|ϕ > 1 and char F 	= 2. Then ϕ(a) = 0. Hence

ϕ(�zw) = ϕ(�v0w)+ 2ϕ
( xv0,1 − xw,1

xv0,1 − xv1,1

)
	= ∞.

Besides, ϕ(�zv1) = 2 	= 0.
Suppose |xv0,1 − xv1,1|ϕ = 1 and char F 	= 2. Then |xv0,1 − xw,1|ϕ ≤ 1. Hence

ϕ(xv0,1 − xv1,1) is neither 0 nor ∞, and ϕ(xv0,1 − xw,1) 	= ∞. Therefore,

ϕ(�zw) = ϕ
(
�v0w + 2(xv1,1 − xv0,1)(xv0,1 − xw,1)+ (xv1,1 − xv0,1)

2) 	= ∞,

ϕ(�zv1) = −ϕ(xv0,1 − xv1,1)
2 	= 0.

Suppose either |xv0,1 − xv1,1|ϕ < 1 or char F = 2. Then ϕ(2(xv0,1 − xw,1)) = 0.
Hence ϕ(�zw) = ϕ(�v0w)+ 1 	= ∞, and ϕ(�zv1) = 1 	= 0. ��

Suppose that ϕ(�ukvk ) = ∞. Then it follows from (7) that ϕ(�uivi ) = ∞, i =
2, . . . , k − 1.

Since k > n
2 , we have k ≥ r . Consider the Cayley–Menger relation for the n + 2

points u2, . . . , ur , z, v1, . . . , vr . Dividing both the i th row and the i th column of this
Cayley–Menger determinant by hi = �uivi , i = 2, . . . , r , we obtain the following
analogue of Eq. (8).
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∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣

0 1
h2

· · · 1
hr

1 1 1 · · · 1
1

h2
0 · · · �u2ur

h2hr

�zu2
h2

�u2v1
h2

1 · · · �u2vr
h2

...
...

. . .
...

...
...

...
. . .

...

1
hr

�u2ur
h2hr

· · · 0 �zur
hr

�ur v1
hr

�ur v2
hr

· · · 1

1
�zu2
h2

· · · �zur
hr

0 �zv1 �zv2 · · · �zvr

1
�u2v1

h2
· · · �ur v1

hr
�zv1 0 �v1v2 · · · �v1vr

1 1 · · · �ur v2
hr

�zv2 �v1v2 0 · · · �v2vr

...
...

. . .
...

...
...

...
. . .

...

1
�u2vr

h2
· · · 1 �zvr �v1vr �v2vr · · · 0

∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣

= 0.

Now we subtract the (r + 2)nd row from the (r + 1)st row, and subtract the (r + 2)nd
column from the (r + 1)st column. We obtain

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣

0 1
h2

· · · 1
hr

0 1 1 · · · 1
1

h2
0 · · · �u2ur

h2hr
p2

�u2v1
h2

1 · · · �u2vr
h2

...
...

. . .
...

...
...

...
. . .

...

1
hr

�u2ur
h2hr

· · · 0 pr
�ur v1

hr

�ur v2
hr

· · · 1

0 p2 · · · pr −2�zv1 �zv1 q2 · · · qr

1
�u2v1

h2
· · · �ur v1

hr
�zv1 0 �v1v2 · · · �v1vr

1 1 · · · �ur v2
hr

q2 �v1v2 0 · · · �v2vr

...
...

. . .
...

...
...

...
. . .

...

1
�u2vr

h2
· · · 1 qr �v1vr �v2vr · · · 0

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣

= 0, (9)

where pi = �zui −�ui v1
hi

, qi = �zvi − �v1vi . It easily follows from Lemma 6.2 that
ϕ(pi ) = 0 and ϕ(qi ) 	= ∞, i = 2, . . . , r . As in the case of odd n, we also obtain that
ϕ is finite on all entries of the determinant in the left-hand side of (9), and ϕ is 0 on
1
hi

,
�ui u j
hi h j

, and
�u j vi

h j
whenever i < j .

Denote by A the matrix in the left-hand side of (9). Let B be the matrix A with the
(r + 1)st row and the (r + 1)st column deleted. Let A0 be the matrix obtained from
A by replacing the central entry −2�zv1 with 0. Then (9) can be rewritten as

�zv1 det B − 1

2
det A0 = 0. (10)

Now we apply ϕ to the both sides of this equation. First, ϕ(�zv1) 	= 0 by Lemma 6.2.
Second, ϕ(B) is a symmetric 2r ×2r -matrix with finite entries such that the upper-left
r × r -submatrix of ϕ(B) vanishes, and the upper-right r × r -submatrix of ϕ(B) is
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upper unitriangular. Hence ϕ(det(B)) = ±1. Finally, A0 is a symmetric (2r + 1)
×(2r + 1)-matrix with zero diagonal. Hence 1

2 det A0 is a polynomial with integral
coefficients in the entries of A0 such that it contains exactly one of every two summands
corresponding to mutually inverse permutations in S2r+1 without fixed points. Hence
ϕ( 1

2 det A0) is the same polynomial in the entries of ϕ(A0). All entries of ϕ(A0) are
finite, and the upper-left (r + 1) × (r + 1)-submatrix of ϕ(A0) vanishes. Therefore,
ϕ( 1

2 det A0) = 0, which contradicts Eq. (10).
Thus ϕ(�ukvk ) 	= ∞. Therefore σ ∪ τ ∈ Kϕ . ��

7 Proof of Main Lemma

Let d be the dimension of Kϕ . We apply to Kϕ the following sequence of elementary
collapses. Let

σ d
1 � σ d

2 � · · · � σ d
sd

be all d-simplices of Kϕ . We successively collapse the pairs (σ d
1 , μ(σ

d
1 )), (σ

d
2 , μ(σ

d
2 )),

. . ., (σ d
sd
, μ(σ d

sd
)). Let Kd−1 be the simplicial complex obtained from Kϕ by all these

collapses. Let

σ d−1
1 � σ d−1

2 � · · · � σ d−1
sd−1

be all (d −1)-simplices of Kd−1. We successively collapse the pairs (σ d−1
1 , μ(σ d−1

1 )),
(σ d−1

2 , μ(σ d−1
2 )), . . ., (σ d−1

sd−1
, μ(σ d−1

sd−1
)). Further we similarly successively collapse

all (d − 2)-simplices of the obtained simplicial complex Kd−2, then all (d − 3)-
simplices of the obtained simplicial complex Kd−3, and so on, until the dimension of
the complex becomes less than or equal to

[ n
2

]
.

We need to prove that all these collapses are well defined. Assume the converse. Let
σ k be the first simplex in the described sequence such that the pair (σ k, μ(σ k)) cannot
be collapsed, i. e., is not free in the subcomplex L ⊂ Kϕ obtained by all previous
collapses. We have k > n

2 .
Since (σ k, μ(σ k)) is not a free pair in L and dim L = k, we see that there is a k-

simplex τ k ∈ L such that τ k 	= σ k and τ k ⊃ μ(σ k). Since τ k ∈ L , we have σ k � τ k .
Now property (i) of the ordering � easily implies thatμ(τ k) = μ(σ k). Since k > n

2 , it
follows from Propostition 6.1 that σ k ∪ τ k ∈ Kϕ . Let us prove that μ(σ k ∪ τ k) = σ k .
For l = 0, . . . , k, let ρl be the maximal with respect to � l-dimensional face of
σ k ∪ τ k . Then ρ0 ⊂ ρ1 ⊂ · · · ⊂ ρk = μ(σ k ∪ τ k). If ρ0 was not contained in σ k ,
then the maximal vertex of τ k would be strictly greater with respect to � than the
maximal vertex of σ k . Hence we would obtain that τ k � σ k , which is not true. Thus
ρ0 ⊂ σ k . Further, we shall prove that ρl ⊂ σ k , l = 1, . . . , k, by the induction on l.
Assume that ρl−1 ⊂ σ k . Since μ(σ k) = σ k ∩ τ k , we obtain that ρl−1 ⊂ σ k ∩ τ k .
Hence ρl is contained in at least one of the two simplices σ k and τ k . If ρl was not
contained in σ k , it would follow that τ k � σ k , which is not true. Thus ρl ⊂ σ k . For
l = k, we obtain that μ(σ k ∪ τ k) = σ k . We see that there is at least one simplex
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ηk+1 ∈ Kϕ such that μ(ηk+1) = σ k . Among all such simplices ηk+1 we choose the
simplex ηk+1

min that is minimal with respect to �. For each simplex ξ k+2 ∈ Kϕ such
that ξ k+2 ⊃ ηk+1

min , the face of ξ k+2 that contains σ k and is distinct from ηk+1
min is

greater than ηk+1
min with respect to �. Therefore μ(ξ k+2) 	= ηk+1

min . We obtain that no
pair (ξ k+2, ηk+1

min ) has been collapsed. Hence the pair (ηk+1
min , σ

k) has been collapsed.
Therefore σ k /∈ L . This contradiction proves that all described collapses are well
defined, which completes the proof of Main Lemma.

8 Estimates for Volumes of Complex Polyhedra

Let (Z , P) be a simplicial polyhedron in R
n , where Z is an (n −1)-cycle on the vertex

set V . Recall that the mapping P : | supp(Z)| → R
n is uniquely determined by the

images of the vertices of the polyhedron. Polyhedra of combinatorial type Z are in
one-to-one correspondence with specialization homomorphisms Z[xV ] → R.

Consider the complexification of the definition of a simplicial polyhedron.
This means that we replace the mapping P : | supp(Z)| → R

n with a mapping
P : | supp(Z)| → C

n . Such polyhedra (Z , P) will be called complex simplicial poly-
hedra of combinatorial type Z . The squares of the edge lengths �uv(P) and the oriented
volume VZ (P) are given by the same polynomials in coordinates of vertices as for
real polyhedra of the same combinatorial type. Notice that this means that �uv(P) are
the squares of the orthogonal lengths of edges of P given by

�uv(P) =
n∑

i=1

(xu,i (P)− xv,i (P))
2.

They do not coincide with the squares of the Hermitian edge lengths given by

huv(P) =
n∑

i=1

|xu,i (P)− xv,i (P)|2.

Here xu,i (P) and xv,i (P) are the coordinates of the points P(u) and P(v) respectively.
Obviously, we have |�uv(P)| ≤ huv(P). However, huv(P) may be arbitrarily large
for bounded �uv(P).

Let Z = ∑q
i=1 ci�i , where ci ∈ Z and �i are distinct oriented (n − 1)-simplices.

We put cmax = maxi=1,...,q |ci | and c� = ∑q
i=1 |ci |. Let m be the number of vertices

of supp(Z).
First, let (Z , P) be a real simplicial polyhedron. Let d be the diameter of

P(| supp(Z)|). The oriented volume VZ (P) can be easily written as the sum of c�
oriented volumes of simplices each of diameter not greater than d. The absolute value
of each such volume of a simplex does not exceed dn

n! . The diameter d does not exceed
the maximal edge length multiplied by m. Hence we have

|VZ (P)| ≤ c�mn

n!
(

max{u,v}∈supp(Z)
�uv(P)

)n/2
. (11)
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In the same way, for a complex simplicial polyhedron (Z , P), we obtain the estimate

|VZ (P)| ≤ c�mn

n!
(

max{u,v}∈supp(Z)
huv(P)

)n/2
. (12)

In fact, the constants in estimates (11) and (12) can be easily improved. We do not
want to care about them.

A natural question is as follows. Can we obtain an analogue of estimate (12) (with
some multiplicative constant CZ depending on Z ) with the squares of the Hermitian
edge lengths huv(P) replaced by the squares of the orthogonal edge lengths �uv(P)?
This question is non-trivial, since we cannot estimate the squares of the orthogonal
lengths of diagonals from the squares of the orthogonal lengths of edges. Another
explanation why this question is non-trivial is that the quotient of the set of all
complex polyhedra of the fixed combinatorial type and bounded orthogonal edge
lengths by the action of O(n,C) may be non-compact. Moreover, in dimension 2 the
answer is negative. Indeed, consider the quadrangle in C

2 with consecutive vertices
(0, 0), (1,−i), (2, 0), (1, i). The squares of the orthogonal lengths of all its edges
vanish, while the oriented area is equal to 2i .

However, we can derive from Theorem 1.7 the existence of the required estimate
in dimensions n ≥ 3.

Corollary 8.1 For any complex simplicial polyhedron (Z , P) in C
n, n ≥ 3, we have

|VZ (P)| ≤ CZ

(
max{u,v}∈supp(Z)

|�uv(P)|
)n/2

,

where the constant CZ depends on the cycle Z only.

Proof Since VZ (P) and �uv(P) are homogeneous functions in the coordinates of
vertices of P of degrees n and 2 respectively, it is sufficient to prove that |VZ (P)| is
bounded by some positive constant CZ if |�uv(P)| ≤ 1 for all {u, v} ∈ supp(Z). It
follows from Theorem 1.7 that VZ (P) is a root of an equation of the form

V 2N + a1(�)V
2N−2 + · · · + aN (�) = 0,

where ai are polynomials in the squares of the orthogonal edge lengths of the polyhe-
dron. The corollary follows, since the roots of a monic polynomial with fixed degree
and bounded coefficients are bounded. ��

Notice, however, that we cannot give any reasonable estimate for the constant CZ .
In both (11) and (12) the multiplicative constant does not exceed some polynomial
in m multiplied by cmax. The following question seems to be interesting.

Question 8.2 Does there exist an estimate of the form CZ ≤ λncmaxmsn , where the
constants λn and sn depend on the dimension n only? If yes, what is the minimal
possible value of sn?

Remark 8.3 In fact, Theorem 1.7 can be deduced from Corollary 8.1. However, we
do not know any proof of Corollary 8.1 that does not use Theorem 1.7.
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9 Polyhedra with Triangular 2-Faces

In this section we prove Theorem 1.8.
Let Fk, k = 1, . . . , n, be the subset of F consisting of all k-dimensional faces.

(Notice that the dimension of a face F ∈ F is the same for all polyhedra of combinato-
rial type F , since it coincides with the maximal length k of a chain F0 < · · · < Fk = F
in F .) The set V = F0 is the set of vertices. For each F ∈ F , we denote by VF the set
of all vertices v ∈ V such that v < F . (This does not agree with the notation used in
Sect. 6.)

In our notation, the symbol P has two meanings. First, P is a polyhedron of com-
binatorial type F . Second, P denotes the maximal element of the poset F . When
we consider different polyhedra of the same combinatorial type, this may lead to a
confusion. So we change the notation and denote the maximal element of F by Q.

If the polyhedron P is not simplicial, the coordinates xv,i of its vertices are no
longer independent. Let AF be the commutative ring with unity given by generators
xv,i , v ∈ V , i = 1, . . . , n, and all relations

∣∣
∣∣∣∣∣

xv1,i1 − xv0,i1 . . . xvk+1,i1 − xv0,i1
...

. . .
...

xv1,ik+1 − xv0,ik+1 . . . xvk+1,ik+1 − xv0,ik+1

∣∣
∣∣∣∣∣
= 0 (13)

such that v0, . . . , vk+1 ∈ VF for some F ∈ Fk , and 1 ≤ i1 < · · · < ik+1 ≤ n. In
other words, AF is the quotient of the ring Z[xV ] by the ideal a generated by the
left-hand sides of relations (13). The universal squares of the distances �uv , u, v ∈ V ,
are defined by usual formulae �uv = ∑n

i=1(xu,i −xv,i )2. Let RF ⊂ AF be the subring
generated by all �uv such that u and v are joined by an edge, i. e., there is an F ∈ F1
such that u < F and v < F .

We denote by�V the abstract simplex with the vertex set V , and we denote by�VF

the face of �V spanned by VF . By definition, the universal oriented volume of an
oriented n-face � = {v0, . . . , vn} of �V is

V� = 1

n!

∣∣∣
∣∣∣∣

xv1,1 − xv0,1 . . . xvn ,1 − xv0,1
...

. . .
...

xv1,n − xv0,n . . . xvn ,n − xv0,n

∣∣∣
∣∣∣∣
.

For each n-chain Y = ∑q
i=1 ci�i , we put VY = ∑q

i=1 ci V�i and WY = 2[ n
2 ]n!VY .

We have VY ∈ AF ⊗ Q and WY ∈ AF . Obviously, W∂X = 0 if X ∈ Cn+1(�
V ). If all

vertices v0, . . . , vn of� are contained in VF for some F ∈ Fn−1, then W� = 0 in AF .
Such simplices � will be called degenerate. The introduced notation differs from the
notation used in the previous sections. Indeed, instead of the oriented volume VZ

bounded by an (n − 1)-cycle Z , we now consider the oriented volume VY of an
n-chain Y .

Every polyhedron P of combinatorial type F yields the specialization homomor-
phism AF → R that takes xv,i to the coordinates of the vertices of P, �uv to the

123



Discrete Comput Geom (2014) 52:195–220 215

Fig. 2 Two combinatorially equivalent polyhedra

squares of the edge and diagonal lengths of P , and V� to the oriented volumes of the
corresponding geometric simplices in R

n .
Now, we want to construct an element of AF that will serve as the universal oriented

volume (multiplied by 2[ n
2 ]n!) of a polyhedron of combinatorial type F . The difficulty

consists in the fact that the volume of P is not a polynomial in the coordinates of
vertices of P . Indeed, even the volume of a convex polyhedron is not a polynomial in
the coordinates of vertices. To obtain a polynomial, we need to consider the oriented
volume. For non-convex polyhedra the situation with orientations is more delicate. For
instance, the two polyhedra in Fig. 2 are combinatorially equivalent, but they cannot
be taken to each other by an either orientation-preserving or orientation-reversing
homeomorphism that maps the faces of the first polyhedron onto the corresponding
faces of the second polyhedron.

Consider an n-polyhedron P ⊂ R
n of combinatorial type F . Choose arbitrarily

orientations OF of all positive-dimensional faces of P . (Each vertex of P is supposed
to be positively oriented.) The set of orientations OF is called an omni-orientation
of P . Now for each two faces F and G such that dim F = dim G +1 and G ⊂ ∂F , we
have the incidence coefficient εF,G which is equal to 1 if the orientation OG coincides
with the orientation of G induced by the orientation OF of F , and is equal to −1
if these two orientations of G are opposite to each other. For convenience, we put
εF,G = 0 if dim F = dim G + 1 and G 	⊂ ∂F . For any faces F and H such that
dim F = dim H + 2, we have

∑

G∈Fk−1

εF,GεG,H = 0. (14)

We shall say that the omni-oriented polyhedron P has omni-oriented combinatorial
type (F , {εF,G}).

The oriented volume V (P) depends only on the orientation of the maximal face
of P . Reversing the orientation of any other face G ∈ Fk , we simultaneously multiply
by −1 all incidence coefficients εF,G , F ∈ Fk+1, and εG,H , H ∈ Fk−1. Two sets
of numbers {εF,G} and {ε′F,G} are said to be equivalent if they can be taken to each
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other by such operations. The equivalence class E of the set {εF,G} depends only on
the orientation of P and is independent on the orientations of all other faces of P . The
pair (F , E) will be called oriented combinatorial type of the oriented polyhedron P .

For any pair (F , E) that can be obtained as the oriented combinatorial type of an
oriented polyhedron, we shall construct an element WF ,E ∈ AF , which can be inter-
preted as the universal oriented volume (multiplied by 2[ n

2 ]n!) of an oriented polyhe-
dron of oriented combinatorial type (F , E). Then we shall check that for any oriented
polyhedron P of oriented combinatorial type (F , E) the corresponding specialization
homomorphism AF → R takes WF ,E to W (P) = 2[ n

2 ]n!V (P).
To compute the volume of a polyhedron it is useful to consider its triangulation. A

convex polyhedron can be triangulated without adding new vertices. A triangulation of
a convex polyhedron yields the triangulations TF of its faces F such that TF restricts
to TG whenever G ⊂ ∂F . For non-convex polyhedra it is convenient to introduce
the following concept of generalized triangulation. Let {εF,G} be an arbitrary set of
numbers in the equivalence class E . A universal generalized triangulation of an omni-
oriented polyhedron of omni-oriented combinatorial type (F , {εF,G}) is a set of chains
YF ∈ Cdim F (�

VF ), F ∈ F , such that Yv = {v} for every vertex v ∈ V = F0, and

∂YF =
∑

G∈Fdim F−1

εF,GYG (15)

whenever dim F > 0. It is easy to show that a universal generalized triangulation
always exists. Indeed, Eqs. (14) provide that the right-hand side of (15) is a cycle.
Hence we can successively choose the chains YF by induction on the dimension of F .

We put WF ,E = WYQ . The next lemma shows that WF ,E is independent of the
choice of the universal generalized triangulation {YF }. It is easy to check that WF ,E
is also independent of the choice of the set {εF,G} in the equivalence class E .

Lemma 9.1 Let {YF } and {Y ′
F } be two universal generalized triangulations of an

omni-oriented polyhedron of omni-oriented combinatorial type (F , {εF,G}). Then
WYQ = WY ′

Q
.

Proof For each vertex v ∈ F0 = V , we have Yv = Y ′
v = {v}. It is easy to see that for an

edge e ∈ F1 with endpoints u and v, we have Ye = Y ′
e = {u, v} if e is oriented from u

to v. Now for each 2-face F ∈ F2, the 2-chain YF −Y ′
F is a cycle with support in�VF .

Therefore there exists a chain SF ∈ C3(�
VF ) such that ∂SF = YF − Y ′

F . Further,
consecutively for k = 3, . . . , n, we can construct chains SF ∈ Ck+1(�

VF ), F ∈ Fk ,
such that

∂SF = YF − Y ′
F −

∑

G∈Fk−1

εF,G SG,

since the right-hand sides of these formulae are cycles with supports in the corre-
sponding simplices �VF . Then

YQ − Y ′
Q = ∂SQ +

∑

F∈Fn−1

εQ,F SF .

123



Discrete Comput Geom (2014) 52:195–220 217

Every chain SF , F ∈ Fn−1, is a linear combination of n-simplices {v0, . . . , vn} such
that v0, . . . , vn are contained in F . Therefore WSF = 0 in AF . Besides, W∂SQ = 0.
Thus WYQ = WY ′

Q
. ��

Lemma 9.2 Let P be an oriented polyhedron of oriented combinatorial type (F , E).
Then the corresponding specialization homomorphism AF → R takes WF ,E to W (P).

Proof Consider a triangulation K of the polyhedron P such that all faces of P are
subcomplexes of K . (We do not require that the vertex set W of K coincides with V ,
hence, such triangulation always exists.) We have V ⊂ W , hence, �V ⊂ �W .

Let {YF } be a universal generalized triangulation of a polyhedron of combinatorial
type (F , {εF,G}) for a set {εF,G} in the equivalence class E . To simplify the nota-
tion, we shall denote the images of WYF under the specialization homomorphism
AF → R by WYF again. The natural embedding W ⊂ R

n provides that the ori-
ented volume VX ∈ R and the corresponding number WX is defined for every chain
X ∈ Cn(�

W ).
Let F ∈ Fk . We denote by WF the set of all vertices of K belonging to F . We denote

by X F the sum of all k-simplices of K contained in F with orientations induced by OF .
Then X F ∈ Ck(�

WF ). It is easy to see that ∂X F = ∑
G∈Fk−1

εF,G XG if k > 0. Since
X Q is the sum of all positively oriented n-simplices of K , we see that W (P) = WX Q .

Now, as in the proof of the previous lemma, we consecutively construct chains
SF ∈ Cdim F+1(�

WF ) such that

∂SF = YF − X F −
∑

G∈Fdim F−1

εF,G SG ,

and obtain that WF ,E = WYQ = WX Q = W (P). ��
Now we are ready to formulate a universal algebraic version of Theorem 1.8.

Theorem 9.3 Let (F , E) be a pair that can be obtained as the oriented combinatorial
type of an oriented n-polyhedron with triangular 2-faces. Then the element WF ,E is
integral over the ring RF .

This theorem yields a monic polynomial relation of the form (2) that holds for
all oriented polyhedra of the given oriented combinatorial type (F , E). The required
polynomial relation that holds for all polyhedra of combinatorial type F is obtained
by multiplying all such relations for different E . So Theorem 1.8 follows from Theo-
rem 9.3.

To apply Lemma 3.1 we would need to embed the ring AF into a field. Unfortu-
nately, the author does not know whether the ring AF can have zero divisors. Hence
we take the quotients of AF by prime ideals, and use the following algebraic lemma.

Lemma 9.4 Let A be a Noetherian commutative ring, let R ⊂ A be a subring, and
let W ∈ A. Suppose that the image of W in A/p is integral over R/(R ∩ p) for every
prime ideal p � A. Then W is integral over R.

For the convenience of the reader, we give the proof of this lemma. We thank
S. O. Gorchinsky for communicating this proof to us.
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Proof Since A is Noetherian, it follows that A contains finitely many minimal (with
respect to inclusion) prime ideals p1, . . . , ps , and any prime ideal p � A contains one
of the ideals pi (cf. [7, p. 47]). For every i = 1, . . . , s, the image of W in A/pi is
integral over R/(R ∩ pi ). It follows that there exists a monic polynomial fi ∈ R[t]
such that fi (W ) ∈ pi . Let f be the product of the polynomials fi . Then f is monic
and f (W ) belongs to the intersection

⋂s
i=1 pi , which coincides with the set of all

nilpotent elements of A (cf. [7, p. 71]). Hence there exists a positive integer q such
that f q(W ) = 0. The lemma follows, since f q is monic.

Let p� AF be a prime ideal. For the sake of simplicity we denote the images of the
elements xv,i , �uv , and WF ,E in A/p again by xv,i , �uv , and WF ,E respectively. Let
EF ,p be the quotient field of the ring A/p. Consider a place ϕ : EF ,p → L ∪ {∞}.
As in Sect. 5, let Kϕ ⊂ �VF be the full subcomplex spanned by all edges {u, v} such
that ϕ(�uv) 	= ∞. The proof of Theorem 9.3 is based on the following generalization
of Main Lemma.

Lemma 9.5 Let ϕ : EF ,p → L ∪{∞} be a place and let F ∈ Fk . Then the simplicial
complex Kϕ ∩�VF collapses on a subcomplex of dimension less than or equal to

[ k
2

]
.

Corollary 9.6 If k ≥ 3, then Hk−1(Kϕ ∩�VF ) = 0.

Proof of Lemma 9.5 For simplicity, we put E = EF ,p. Consider all points v ∈ V as
the points v = (xv,1, . . . , xv,n) ∈ En . Since determinants (13) vanish for the points vi

in VF , we see that all points v ∈ VF lie in a k-dimensional affine subspace � ⊂ En .
Let {e1, . . . , en} be the standard basis of En . The squares of the distances �uv are
determined with respect to the natural inner product in En such that (ei , e j ) = δi j .
Restrict this inner product to the vector subspace U ⊂ En parallel to �. Let E be
the algebraic closure of E , and let { f1, . . . , fk} be a basis of UE = U ⊗ E such that
( fi , f j ) = δi j . Choose an arbitrary point O ∈ � and consider the affine coordinate
system in �E with origin O and basis { f1, . . . , fk}. We denote the coordinates of v ∈
VF in this coordinate system by (yv,1, . . . , yv,k); then yv,i ∈ E . Since ( fi , f j ) = δi j ,
we have

�uv =
n∑

j=1

(xu, j − xv, j )
2 =

k∑

i=1

(yu,i − yv,i )
2 (16)

for every u, v ∈ VF .
Now consider independent variables zv,i , v ∈ VF , i = 1, . . . , k. We denote the set

of these variables by zF and the field of rational functions in these variables by Q(zF ).
The place ϕ extends to a place ϕ : E → L ∪ {∞}, where L is the algebraic closure
of L , and the homomorphism Z[zF ] → A/p given by zv,i �→ yv,i extends to a place
ψ : Q(zF ) → E ∪{∞}, see [10, Chapter 1, Theorem 1]. Consider the composite place

� : Q(zF )
ψ−→ E ∪ {∞} ϕ−→ L ∪ {∞},

and the full subcomplex K� ⊂ �VF spanned by all edges {u, v} such that � is finite
on the element luv = ∑k

i=1(zu,i − zv,i )2. Applying Main Lemma to the place �,
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we obtain that K� collapses on a subcomplex of dimension less than or equal to [ k
2 ].

By (16), we have ψ(luv) = �uv . Hence Kϕ ∩�VF = K�, which completes the proof
of the lemma. ��
Proof of Theorem 1.8 The ring AF is Noetherian. By Lemma 9.4, we need to prove
that WF ,E is integral over RF/(RF ∩ p) for every prime ideal p � AF . Hence we
need to prove that ϕ(WF ,E ) 	= ∞ for every place ϕ : EF ,p → L ∪ {∞} that is finite
on RF/(RF ∩ p).

Let {εF,G} be a set of numbers in the equivalence class E . We shall construct a
universal generalized triangulation {YF } of an omni-oriented polyhedron of omni-
oriented combinatorial type (F , {εF,G}) such that supp(YF ) ⊂ Kϕ ∩�VF . For every
vertex v ∈ F0 = V , we put Yv = {v}. For every edge e ∈ F1 oriented from u to v, we
put Ye = {u, v}. Every 2-face F ∈ F2 is triangular, i. e., contains exactly 3 vertices.
Let u, v, w be the vertices of F listed so that to give the orientation OF of F . Then
we put YF = {u, v, w}. Obviously, conditions (15) hold so far. If vertices u and v
are joined by an edge e ∈ F1, then �uv ∈ RF/(RF ∩ p) and hence ϕ(�uv) 	= ∞.
Therefore the supports of all chains YF , dim F ≤ 2, are contained in Kϕ .

Further, we proceed by induction on k. Let k ≥ 3. Suppose that the chains YG ,
G ∈ Fk−1, have already been constructed, and consider F ∈ Fk . The support of the
(k − 1)-cycle Z F = ∑

G∈Fk−1
εF,GYG is contained in Kϕ ∩ �VF . Hence it follows

from Corollary 9.6 that there is a k-chain YF with support contained in Kϕ ∩ �VF

such that ∂YF = Z F .
Since {YF } is a universal generalized triangulation, we have WF ,E = WYQ . The

Cayley–Menger formula implies that ϕ(W�) 	= ∞ for all n-simplices� ∈ Kϕ . Since
supp(YQ) ⊂ Kϕ , we obtain that ϕ(WF ,E ) = ϕ(WYQ ) 	= ∞. ��

If in the previous argument we additionally assume that the place ϕ is finite on the
squares of the diagonal lengths of all 2-faces of P , then we can waive the requirement
that all 2-faces of P are triangular. So we obtain that for any n-polyhedron P , there
exists a relation of the form

W 2N + b1(�, d)W 2N−2 + · · · + bN (�, d) = 0,

where bi (�, d) are polynomials with integral coefficients in the squares of the edge
lengths of P and the squares of the diagonal lengths of 2-faces of P . This implies
Corollary 1.9.
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