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Abstract Cyclic lattices are sublattices of Z
N that are preserved under the rotational

shift operator. Cyclic lattices were introduced by Micciancio (FOCS, IEEE Computer
Society, pp 356–365, 2002) and their properties were studied in the recent years by sev-
eral authors due to their importance in cryptography. In particular, Peikert and Rosen
(Theory of Cryptography, Lecture Notes in Computer Science, vol 3876. Springer,
Berlin, pp 145–166, 2006) showed that on cyclic lattices in prime dimensions, the
shortest independent vectors problem SIVP reduces to the shortest vector problem
SVP with a particularly small loss in approximation factor, as compared to general
lattices. In this paper, we further investigate geometric properties of cyclic lattices,
proving that a positive proportion of them in every dimension is well-rounded. One
implication of our main result is that SVP is equivalent to SIVP on a positive propor-
tion of cyclic lattices in every dimension. As an example, we demonstrate an explicit
construction of a family of cyclic lattices on which this equivalence holds. To con-
clude, we introduce a class of sublattices of Z

N closed under the action of subgroups
of the permutation group SN , which are a natural generalization of cyclic lattices, and
show that our results extend to all such lattices closed under the action of any N -cycle.
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1 Introduction

Define the rotational shift operator on R
N , N ≥ 2, by

rot(x1, x2, . . . , xN−1, xN ) = (xN , x1, x2, . . . , xN−1)

for every x = (x1, x2, . . . , xN−1, xN ) ∈ R
N . We will write rotk for iterated application

of rot k times for each k ∈ Z>0 (then rot0 is just the identity map, and rotk = rotN+k). It
is also easy to see that rot (and hence each iteration rotk) is a linear operator. A sublattice
� of Z

N is called cyclic if rot(�) = �, i.e. if for every x ∈ �, rot(x) ∈ �. Clearly,
Z

N itself is a cyclic lattice. In fact, cyclic lattices come from ideals in the quotient
polynomial ring Z[x]/(x N −1). Let p(x) ∈ Z[x]/(x N −1), then p(x) = ∑N−1

n=0 an xn

for some a0, . . . , aN−1 ∈ Z. Define a Z-module isomorphism ρ : Z[x]/(x N − 1) →
Z

N given by

ρ(p(x)) = (a0, . . . , aN−1) ∈ Z
N ,

then for any ideal I ⊆ Z[x]/(x N − 1), �I := ρ(I ) is a sublattice of Z
N . Notice that

for every p(x) = ∑N−1
n=0 an xn ∈ I ,

xp(x) = aN−1 + a0x + a1x2 + · · · + aN−2x N−1 ∈ I,

and so

ρ(xp(x)) = (aN−1, a0, a1, . . . , aN−2) = rot(ρ(p(x))) ∈ �I ,

and for any (a0, . . . , aN−1) ∈ �I ,

rot(a0, . . . , aN−1) = ρ
(

x
N−1∑

n=0

an xn
)

∈ �I ,

since x
∑N−1

n=0 an xn ∈ I . In other words, � ⊆ Z
N is a cyclic lattice if and only

if � = �I for some ideal I ⊆ Z[x]/(x N − 1). Cyclic lattices were introduced by
Micciancio in [16,17] in the context of cryptographic algorithms and were further
studied in [12,19], among other sources. In fact, cyclic lattices are used in the well
known NTRU cryptosystem [9,10] (also see, for instance [22,23] for some details)
and are further discussed in the context of post-quantum cryptography [3].

On the other hand, given a lattice � ⊂ R
N of rank r , we define its successive

minima by

λi = λi (�) := inf{λ ∈ R>0 : � ∩ λBN contains i linearly independent vectors},

where BN is a unit ball centered at the origin in R
N , and so

0 < λ1 ≤ · · · ≤ λr .
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Let us write ‖ ‖ for the usual Euclidean norm on R
N . There exists a collection of

linearly independent vectors x1, . . . , xr in � such that ‖xi‖ = λi for each 1 ≤ i ≤ r ;
we will refer to them as vectors corresponding to successive minima. When r ≤ 4,
there exists a basis for � consisting of vectors corresponding to successive minima,
which is a Minkowski reduced basis for �; this is not necessarily true for r ≥ 5 (see
for instance [20]), but there are many lattices in higher dimensions as well for which
it is true. Notice also that λ1 is the minimal norm of nonzero vectors in � and define
the set of minimal vectors

S(�) = {x ∈ � : ‖x‖ = λ1}.

The lattice � is called well-rounded (abbreviated WR) if λ1 = · · · = λr , which is
equivalent to saying that S(�) spans a subspace of R

N of dimension r . WR lattices are
important in discrete optimization, in particular in the investigation of sphere packing,
sphere covering, and kissing number problems (see [14]), as well as in coding theory
(see [1]). Properties of WR lattices have also been investigated in [15] in connection
with Minkowski’s conjecture and in [8] in connection with the linear Diophantine
problem of Frobenius.

Lattice-based cryptographic algorithms heavily rely on the fact that the problem
of finding λ1(�) given an arbitrary basis matrix for � is NP-hard. For most lattices,
the problem of finding all successive minima is strictly harder, however if the lattice
is WR then the two problems are the same. On the other hand, the set of WR lattices
has measure zero in the space of all lattices in a given dimension N . The advantage
of using cyclic lattices is that many of them can be constructed from a single vector
(using its rotations), and hence the size of the input for a basis matrix of the lattice
reduces from N 2 to N . While it is not clear whether the problem of finding λ1(�) still
remains NP-hard, there are reasons to expect that for many cyclic lattices this prob-
lem is the same as that of finding all successive minima, i.e. many cyclic lattices are
WR. In particular, in [19] the authors proved that in prime dimensions N , the shortest
independent vectors problem SIVP on cyclic lattices reduces to (a slight variant of)
the shortest vector problem SVP by a polynomial-time algorithm with only a factor of
2 loss in approximation factor (compare to the factor of

√
N loss on general lattices;

see Figure 1 on p. 140 of [18]). Our main result asserts that in all dimensions N ,
the problem of finding the first successive minimum is equivalent to the problem of
finding all successive minima for a positive proportion of cyclic lattices. More specif-
ically, let CN be the set of full-rank cyclic sublattices of Z

N . In this paper we discuss
some geometric properties of lattices from CN , in particular establishing the following
result.

Theorem 1.1 Let R ∈ R>0, then there exists a constant 0 < ε(N ) ≤ 1 depending
only on dimension N such that

lim inf
R→∞

#{� ∈ CN : λN (�) ≤ R, � is WR}
#{� ∈ CN : λN (�) ≤ R} ≥ ε(N ). (1)
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In other words, Theorem 1.1 asserts that WR lattices comprise a positive proportion
of lattices in CN , which is certainly not true among all sublattices of Z

N . When N = 2
a more direct argument can be applied to obtain stronger results.

Theorem 1.2 Let R ∈ R>0, then

0.261386 . . . ≤ lim inf
R→∞

#{� ∈ C2 : λ2(�) ≤ R, � is WR}
#{� ∈ C2 : λ2(�) ≤ R}

≤ lim sup
R→∞

#{� ∈ C2 : λ2(�) ≤ R, � is WR}
#{� ∈ C2 : λ2(�) ≤ R} ≤ 0.348652 . . . (2)

The paper is organized as follows. In Sect. 2 we establish some preliminary results
on distribution properties of cyclic lattices. We obtain an upper bound on the number
of cyclic lattices with bounded successive minima in Sect. 3. In Sect. 4 we give a lower
bound on the number of WR cyclic lattices with bounded successive minima, and then
use the two bounds to prove Theorem 1.1. Among WR cyclic lattices spanned by their
shortest vectors, we specifically focus on those that are in fact spanned by rotations of
a single shortest vector: for many such lattices all rotations of any shortest vector are
linearly independent, and hence SIVP on these lattices is solved by taking a solution
to SVP and all of its rotations. This observation along with our estimates implies that
SVP is in fact equivalent to the SIVP for a positive proportion of cyclic lattices in
every dimension N (see Remark 4.4 for details). In fact, we can demonstrate explicit
constructions of cyclic WR lattices in every dimension on which this equivalence holds
(see Corollary 4.5 and Remark 4.5). We then prove Theorem 1.2 in Sect. 5. Here we
follow the tactic of Sect. 4, but make the estimates more precise in dimension 2.

In Sect. 6 we extend our results to a more general class of lattices. Specifically, let
SN be the group of permutations on N ≥ 2 elements. We can define an action of SN

on R
N by

τ x =
⎛

⎜
⎝

xτ(1)
...

xτ(N )

⎞

⎟
⎠ (3)

for each τ ∈ SN and x = (x1, . . . , xN )
t ∈ R

N . We say that a lattice � ⊂ R
N

is τ -invariant (or invariant under τ ) for a fixed τ ∈ SN if τ� = �. In particular,
cyclic lattices are precisely the full-rank sublattices of Z

N invariant under the N -cycle
(1 2 . . . N ). The following statement about lattices invariant under arbitrary N -cycles
follows from our Theorem 1.1.

Corollary 1.3 Let N ≥ 2, let τ ∈ SN be an N-cycle, and let CN (τ ) be the set of all
τ -invariant full-rank sublattices of Z

N . Then

lim inf
R→∞

#{� ∈ CN (τ ) : λN (�) ≤ R, � is WR}
#{� ∈ CN (τ ) : λN (�) ≤ R} ≥ ε(N )

for the same value of ε(N ) as in (1).

We prove Corollary 1.3 in Sect. 6 and conclude with some further questions about
more general permutation invariant lattices. We are now ready to proceed.
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2 Basic Properties of Cyclic Lattices

LetGN be the set of full-rank cyclic sublattices of Z
N spanned by vectors corresponding

to their successive minima (when N ≤ 4, GN = CN ). In this section we start out by
looking at the cyclic lattices generated by rotations of a single vector. Notice that for
every a ∈ Z

N , ‖a‖ = ‖ rot(a)‖, therefore if � ⊆ Z
N is a cyclic lattice and a ∈ S(�),

then rotn(a) ∈ S(�) for every 1 ≤ n ≤ N −1 (clearly rotN (a) = a). Therefore cyclic
lattices have large sets of minimal vectors, and so it is natural to expect that they are
WR fairly often. In fact, it is clear that if a ∈ S(�) and a, rot(a), . . . , rotN−1(a) are
linearly independent, then � is WR. To state our first observation in this direction, we
need some more notation.

Let a = (a0, . . . , aN−1)
t ∈ R

N , and define a(x) = ∑N−1
n=0 an xn to be the polyno-

mial of degree ≤ N − 1 in x whose coefficient vector is a. Let also

M(a) = (a rot(a) . . . rotN−1(a))

be an N × N matrix. Consider the lattice

�(a) = spanZ{a, rot(a), . . . , rotN−1(a)} = M(a)ZN ,

and define the cyclic order of a, denoted co(a), to be the rank of �(a). This means
that precisely co(a) of the vectors a, rot(a), . . . , rotN−1(a) are linearly independent,
and so M(a) is a matrix of rank co(a). While not every�(a) is necessarily generated
by the vectors corresponding to its successive minima, lattices of the form �(a) for
a ∈ Z

N are very common among cyclic lattices.

Lemma 2.1 The vectors a, rot(a), . . . , rotN−1(a) ∈ Z
N are linearly independent if

and only if the polynomial a(x) does not have any common factors with x N − 1.

Proof In this case M(a) is an N × N circulant matrix corresponding to a vector
a ∈ Z

N . It is a well-known fact (see for instance [24]) that

det(M(a)) =
N−1∏

n=0

a(ω j ),

where ω j = e2π i j/N is an N -th root of unity. Hence det(M(a)) = 0 if and only if
a(ω j ) = 0 for some 0 ≤ j ≤ N − 1, which happens if and only if a(x) is divisible
by the minimal polynomial of ω j – that is, by some cyclotomic polynomial dividing
x N − 1. �


Remark 2.1 An immediate consequence of Lemma 2.1 is that when N is prime, the
vectors a, rot(a), . . . , rotN−1(a) ∈ Z

N are linearly independent if and only if a(x) is
not a multiple of x − 1 or

∑N−1
n=0 xn . See Section 2 of [19] for further results of this

kind.
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Let

C N
R = {x ∈ R

N : |x| := max{|x1|, . . . , |xN |} ≤ R}
for every R ∈ R>0, i.e., C N

R is a cube of side-length 2R centered at the origin in R
N .

Recall that d-th cyclotomic polynomial 
d(x) divides x N − 1 if and only if d is a
divisor of N . For each divisor d of N , define the d-th cyclotomic subspace to be

H
d = {a ∈ R
N : 
d(x) divides a(x) in R[x]}. (4)

By Lemmas 2.3 and 2.4 of [19], H
d is a subspace of R
N of dimension

dimR(H
d ) = N − deg(
d) = N − ϕ(d),

where ϕ is Euler’s ϕ-function. Then �
d := H
d ∩ Z
N is a sublattice of Z

N of rank
N − ϕ(d). Therefore

∣
∣
∣C N

R ∩
(
Z

N \
⋃

d|N
�
d

)∣
∣
∣ = ∣

∣C N
R ∩ Z

N
∣
∣ −

∑

d|N

∣
∣C N

R ∩�
d

∣
∣

≥ ∣
∣C N

R ∩ Z
N
∣
∣ −

∑

d|N

∣
∣C N−ϕ(d)

R ∩ Z
N−ϕ(d)∣∣

≥ ∣
∣C N

R ∩ Z
N
∣
∣ − ∣

∣C N−1
R ∩ Z

N−1
∣
∣
∑

d|N
ϕ(d)

= (2R + 1)N − N (2R + 1)N−1

= (2R + 1 − N )(2R + 1)N−1. (5)

The lattice�(a) ⊆ Z
N has rank N if and only if the vectors a, rot(a), . . . , rotN−1(a)

are linearly independent, which happens if and only if the polynomial a(x) is not
divisible by any cyclotomic polynomial 
d(x) for any d | N , by Lemma 2.1. How
often does this happen?

Lemma 2.2 Let R > N−1
2 , then

Prob∞,R
(

rk(�(a)) = N
) ≥ 1 − N

2R + 1
, (6)

where probability Prob∞,R(·) is with respect to the uniform distribution among all
points a in the set C N

R ∩ Z
N .

Proof By Lemma 2.1,

Prob∞,R
(

rk(�(a)) = N
) =

∣
∣C N

R ∩ (
Z

N \ ⋃
d|N �
d

)∣
∣

∣
∣C N

R ∩ ZN
∣
∣

,

and the statement of the lemma follows by (5) combined with the observation that∣
∣C N

R ∩ Z
N
∣
∣ = (2R + 1)N . �
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3 Counting Cyclic Lattices

In this section we produce a counting estimate for the number of cyclic lattices with
bounded successive minima as the bound tends to infinity. Recall that CN is the set of
all cyclic full-rank sublattices of Z

N , and for each R ∈ R>0 define

CN (R) = {� ∈ CN : λN (�) ≤ R}.

We establish the following result.

Proposition 3.1 As R → ∞,

|CN (R)| ≤ O(RN ),

where the constant in O-notation depends only on N.

To prove this proposition, we represent CN as a union of two disjoint subsets:
CN = C1

N 
 C2
N , where

C1
N = {� ∈ CN : � = �(a) for some a ∈ Z

N },

and C2
N = CN \C1

N . To produce an estimate on CN (R), we give upper bounds on
C1

N (R), C2
N (R) and add them together.

Lemma 3.2 As R → ∞,

|C1
N (R)| ≤ O(RN ),

where the constant in O-notation depends only on N.

Proof Suppose � ∈ C1
N is equal to �(a) for some a ∈ Z

N , then

a, rot(a), . . . , rotN−1(a) ∈ �

are linearly independent vectors, and so λN (�) ≤ ‖a‖. Conversely, if� ∈ C1
N satisfies

λN (�) ≤ R, then � = �(a) for some a ∈ Z
N with ‖a‖ ≤ R. Therefore

|C1
N (R)| ≤ |BN (R) ∩ Z

N |,

where BN (R) is the ball of radius R centered at the origin in R
N . The result then

follows by Theorem 2 on p. 128 of [11]. �

Let us write Z = Z[x]/(x N − 1), and define

IZ = {I ⊆ Z : |Z/I | < ∞, 
d(x)Z ⊆ I for some d | N },
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that is IZ is the set of all full-rank ideals in the ring Z containing an ideal generated
by some cyclotomic factor of x N − 1. Then � ∈ C2

N if and only if � = ρ(I ) for some
I ∈ IZ , in which case |Z/I | = det(�). For each T ∈ Z>0, define

IZ (T ) = {I ∈ IZ : |Z/I | ≤ T }.

By Minkowski Successive Minima Theorem (see, for instance Theorem 2.6.8 on p. 50
of [14]),

det(�) ≤ O(λN (�)
N ).

Suppose now that � ∈ C2
N (R), then λN (�) ≤ R, and so ρ−1(�) ∈ IZ (tN RN ) for

some dimensional constant tN . Therefore

|C2
N (R)| ≤ |IZ (tN RN )|. (7)

Lemma 3.3 As T → ∞,

|IZ (T )| ≤ O(T ).

Proof Let us write {d1, . . . , dk} for the set of all divisors of N . For each 1 ≤ i ≤ k
define Zi = Z[x]/ < 
di (x) >, and let φi : Z → Zi be the standard reduction
modulo
di (x) map, i.e. for each h(x) ∈ Z , φi (h(x)) = h(x) (mod
di (x)). Then φi

is a surjective ring homomorphism with Ker(φi ) = 
di (x)Z .
Let I ∈ IZ (T ), then 
di (x)Z ⊆ I for some 1 ≤ i ≤ k. Then the Third Iso-

morphism Theorem (see, for instance Theorem 8 on p. 246 of [7]) guarantees that
Z/I ∼= Zi/φi (I ), and so

|Zi/φi (I )| = |Z/I | ≤ T .

In other words, since all ideals of Zi are images of ideals of Z under φi , the map φi

carries the set IZ (T ) onto the set IZi (T ) for each positive integer T . On the other
hand, it is possible that images of two distinct ideals I and J in Z are the same in Zi ,
i.e.
di (x) | I − J . Hence I and J are the same in Zi for every 1 ≤ i ≤ k if and only
if x N − 1 = 
d1(x) · · ·
dk (x) | I − J , which happens if and only if I and J are the
same in Z . Therefore

|IZ (T )| ≤
k∑

i=1

|IZi (T )|.

It is known (Lemma 3 of [12]) that every ideal of each Zi has full rank. Furthermore,
by Theorem 2 of [4], |IZi (T )| ≤ O(T ) for each i . The result follows. �

Proof of Proposition 3.1 The result follows by combining Lemmas 3.2 and 3.3
with (7). �
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4 General Cyclic Lattices

The main goal of this section is to prove Theorem 1.1. Recall that CN is the set of
all cyclic full-rank sublattices of Z

N , while GN ⊂ CN is the subset consisting of all
lattices in CN which are spanned by the vectors corresponding to successive minima.
Naturally, every lattice � ∈ CN has a sublattice �1 ∈ GN which is spanned by the
vectors corresponding to successive minima of�; it is called a Minkowskian sublattice
of�. While Minkowskian sublattice may not be unique, there can only be finitely many
of them, where an upper bound on this number depends only on N . On the other hand,
the index |� : �1| of a Minkowskian sublattice is also bounded above by a constant
depending only on N , and hence a given lattice in GN can be a Minkowskian sublattice
for only finitely many lattices in CN (see [13] and subsequent works of J. Martinet
and his co-authors for more information on the index of Minkowskian sublattices).
This means that a positive proportion of lattices in CN is WR if and only if a positive
proportion of lattices in GN is WR. Here we will construct large families of WR lattices
in GN .

For a subspace V ⊆ R
N which is closed under the rotational shift operator, define

the set

DV
N = {a ∈ V : co(a) = dimR(V ), a ∈ S(�(a)), �(a) spanned by S(�(a))}, (8)

and let us write DN for DR
N

N .

Lemma 4.1 A lattice �(a) ⊂ V ⊆ R
N is of rank = dimR(V ) with a ∈ S(�(a)) if

and only if a ∈ DV
N . Moreover, �(a) = �(b) for only finitely many b ∈ DV

N with an
upper bound on their number, call it β(V ), depending only on the dimension of V ; we
will write βN for β(RN ).

Proof The first assertion is clear from the definition of DV
N . The second assertion

follows from a well known fact in the reduction theory of positive definite quadratic
forms (see, for instance, Theorems 1.1–1.2 in Chapter 12 of [5]). �


For each R ∈ R>0, let BV
N (R) be a ball of radius R centered at the origin in V , and

let

DV
N (R) = {a ∈ DV

N : ‖a‖ ≤ R} = DV
N ∩ BV

N (R).

It is easy to notice that a ∈ DV
N if and only if Ra ∈ DV

N , and hence DV
N (R) = RDV

N (1)
is a homogeneously expanding domain. Moreover, DV

N (R) is a symmetric bounded
star body, and hence is Jordan-measurable. We write DN (R) for DN ∩ BN (R), where
BN (R) is a ball of radius R centered at the origin in R

N .
Given a vector a ∈ R

N with co(a) = k, let a1, . . . , ak be some fixed ordering of
the vectors a, rot(a), . . . , rotk−1(a). Define the angle sequence {θ1, . . . , θk−1} of this
ordering as follows: for each 1 ≤ i ≤ k − 1, let θi be the angle between ai+1 and the
subspace spanned by a1, . . . , ai .
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Lemma 4.2 Let V ⊆ R
N be an L-dimensional subspace closed under the rotational

shift operator. Assume that V contains a vector a with co(a) = L such that some
ordering of its L linearly independent rotations has the corresponding angle sequence
satisfying the condition

π/3 + ε ≤ θi ≤ 2π/3 − ε (9)

for each 1 ≤ i ≤ k − 1, for some ε > 0. Then VolL(DV
N (R)) = O(RL), where the

constant in the O-notation depends on V, L, and N.

Proof Let a1, . . . , aL be the ordering of L linearly independent rotations of a with the
corresponding angle sequence as in (9). Notice that ‖a1‖ = · · · = ‖aL‖ = ‖a‖, and
so Theorem 1 of [2] guarantees that a1, . . . , aL are minimal vectors in �(a), hence
a ∈ DV

N .
Let δ > 0 and let

B(V, δ) = {x ∈ V : ‖x‖ ≤ δ}

be the closed ball of radius δ centered at the origin in V . Let t ∈ B(V, δ) and a′ = a+ t .
Let a′

1, . . . , a′
L be the rotations of a′ corresponding to the rotations a1, . . . , aL of a.

There exists a δ > 0, depending on ε, small enough so that for every t ∈ B(V, δ)
the angle sequence {θ ′

1, . . . , θ
′
k−1} of a′

1, . . . , a′
L still satisfies (9) with ε replaced

by some ε′ > 0. Then, as above, Theorem 1 of [2] guarantees that a′ ∈ DV
N , i.e.,

a + B(V, δ) ⊆ DV
N , and so DV

N must have positive L-dimensional volume. Since DV
N

is a homogeneously expanding domain, we must have

0 < VolL(DV
N (R)) = VolL(RDV

N (1)) = O(RL),

which completes the proof of the lemma. �

Remark 4.1 We will apply Lemma 4.2 to R

N . Notice that the angle sequence of
the rotations of the first standard basis vector e1 ∈ R

N satisfies the assumption of
Lemma 4.2. Hence VolN (DN (R)) = O(RN ) for every N ≥ 2, by Lemma 4.2.

Remark 4.2 There is also another way to look at the set DV
N with V as in the statement

of Lemma 4.2. For each a ∈ V , all rotations of a have to be in V , and so co(a) ≤ L .
Let

MV (a) = (a rot(a) . . . rotL−1(a)), (10)

and notice that MV (a) = M(a) when V = R
N . Define the corresponding L × L

Gram matrix

QV (a) = MV (a)t MV (a),

and let us write qi j for the entires of this matrix, then

qi j = qV
i j (a) := roti−1(a) · rot j−1(a).
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Notice that
roti−1(a) · rot j−1(a) = roti (a) · rot j (a), (11)

and so all the distinct entries qi j are represented in the first row. Furthermore,

a · roti−1(a) = a · rotN−i+1(a) (12)

for each 2 ≤ i ≤ N − 1, and hence the total number of distinct off-diagonal entries in
the matrix QV (a) is at most [N/2]; all the diagonal entries qii = ‖a‖2. Now, a ∈ DV

N
if and only if QV (a) is in the corresponding Minkowski reduction domain, which is
known to be a convex polyhedral cone in R

L(L+1)/2 with a finite number of facets
(see, for instance, Chapter 12 of [5] or [21]), and conditions (10), (11), (12) imply that
QV (a) would have to be in a specific section of this cone. On the other hand, given a
Gram matrix Q, the basis matrix M such that Q = Mt M is uniquely determined up
to an orthogonal transformation.

Lemma 4.3 Let R ∈ R>0, and define

fN (R) = #{�(a) ∈ CN : ‖a‖ = λ1(�(a)) = λN (�(a)) ≤ R}, (13)

then
O(RN ) ≤ fN (R) ≤ O(RN ), (14)

where the constants in the O-notation depend only on N.

Proof Let βN be as in Lemma 4.1, then

1

βN
#
(
Z

N ∩ DN (R)
) ≤ fN (R) ≤ #

(
Z

N ∩ DN (R)
)

(15)

by Lemma 4.1. Theorem 2 on p. 128 of [11] asserts that

#
(
Z

N ∩ DN (R)
) = VolN (DN (R))+ O(RN−1). (16)

and so (14) follows by combining (16) with Lemma 4.2 and (15). �

Remark 4.3 The boundary of the set DN (R) is Lipschitz parameterizable, however
that is not important for the application of Theorem 2 on p. 128 of [11] in the argu-
ment above, since we are only using the main term of the asymptotic formula in our
inequalities, and Lemma 4.2 implies that there exist sets C1, C2 with Lipschitz para-
meterizable boundaries (in fact, convex sets) such that RC1 ⊆ DV

N (R) ⊆ RC2 for all
R > 0.

Proof of Theorem 1.1 By the results of Lemma 4.3 and Proposition 3.1, we see that

#{� ∈ CN : λN (�) ≤ R, � is WR}
#{� ∈ CN : λN (�) ≤ R} ≥ fN (R)

|CN (R)| ≥ O(1),

where the constant in the O-notation depends only on N . The statement of Theorem 1.1
follows. �
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Now we comment on the connection of our results to the equivalence of SVP and
SIVP on a positive proportion of cyclic lattices. Let

RN = {�(a) ∈ CN : ‖a‖ = λ1(�(a)) = λN (�(a))},

and let � ∈ RN . Suppose that c, rot(c), . . . , rotN−1(c) are linearly independent for
every c ∈ S(�), then SIVP is equivalent to SVP on �. In the next lemma we prove
that this is true for a positive proportion of lattices in RN . Specifically, let

R′
N = {� ∈ RN : co(c) = N ∀ c ∈ S(�)},

and define

f ′
N (R) = #{� ∈ R′

N : λN (�) ≤ R}

for any R ∈ R>0.

Lemma 4.4 As R → ∞, we have

f ′
N (R)

fN (R)
≥ O(1),

where the constant in O-notation depends only on N.

Proof Let � ∈ RN , and suppose that c ∈ S(�) is such that co(c) < N . Then
c ∈ � ∩ H
d for some d | N . In other words, � ∈ RN \R′

N if and only if

S(�) ∩
( ⋃

d|N
H
d

)
�= ∅. (17)

Then

f ′
N (R) � #{a ∈ Z

N ∩ DN (R) : � = �(a) does not satisfy (17)},

and since (17) is given by finitely many polynomial conditions, we have f ′
N (R) �

fN (R). �

Remark 4.4 Now combining Lemma 4.4 with Theorem 1.1, we see that

#{� ∈ R′
N : λN (�) ≤ R}

#{� ∈ CN : λN (�) ≤ R} ≥ O(1) as R → ∞. (18)

By our observation above, SVP and SIVP are equivalent on R′
N , and so the two

problems are equivalent on a positive proportion of cyclic lattices.

In fact, we can use the idea in the proof of Lemma 4.2 and Remark 4.1 to explicitly
construct full-rank WR lattices of the form �(a) in R

N on which SVP and SIVP are
equivalent.
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Corollary 4.5 Let k1, . . . , kN−1 ∈ Z be nonzero integers, m = lcm(k1, . . . , kN−1),
and

a =
(

m,
m

k1
, . . . ,

m

kN−1

)t ∈ Z
N .

There exists a sufficiently large positive integer l, depending only on the dimension N,
such that whenever |k1|, . . . , |kN−1| ≥ l, the lattice �(a) ∈ R′

N .

Proof Let l be a positive integer, the choice of which is to be specified below, and let
the rest of the notation be as in the statement of the corollary. Let b = 1

m a = e1 + ε,
where

ε = (0, 1/k1, . . . , 1/kN−1).

Taking l sufficiently large, we can ensure that the angle sequence of the rotations of
the vector b satisfies condition (9) for some ε > 0, in which case �(b) is a lattice
of rank N with minimal norm equal to ‖b‖ by the same argument as in the proof of
Lemma 4.2 and Remark 4.1.

We can assume that l > 10N so that (1− N/ l)2 > 81/100. We will now show that

S(�(b)) = {±b,± rot(b), . . . ,± rotN−1(b)}. (19)

Indeed, suppose

c =
N∑

i=1

αi roti−1(b) ∈ S(�(b)),

where α1, . . . , αN ∈ Z, not all zero. Let α = max1≤i≤N |αi |, so for each 1 ≤ n ≤ N

∣
∣α1 + · · · + αn−1 + αn+1 + · · · + αN

∣
∣ ≤ Nα.

Then cn , the n-th coordinate of c, satisfies the inequalities

max{0, |αn| − Nα/ l} ≤ |cn| ≤ |αn| + Nα/ l,

and so we have

‖c‖2 ≥ α2(1 − N/ l)2.

Assume first that α > 1, then we have

‖c‖2 > 2 > 1 + (N − 1)/ l2 ≥ ‖b‖2.
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Therefore we must have α = 1. If αn = ±1 for only one n, then c = ± rotn−1(b).
Hence assume there exist 1 ≤ j < n ≤ N such that α j , αn = ±1, then

‖c‖2 ≥ 2(1 − N/ l)2 > 1 + (N − 1)/ l2 = ‖b‖2,

which establishes (19). Then �(a) = m�(b), and hence

S(�(a)) = {±a,± rot(a), . . . ,± rotN−1(a)},

meaning that each vector in S(�(a)) has cyclic order = N . Thus �(a) ∈ R′
N . �


Remark 4.5 To summarize, the main idea of Corollary 4.5 is to pick a rational vector b
from a small ball centered at e1. Then the set of minimal vectors of �(b) will consist
only of ± rotations of b due to the fact that one coordinate of b strongly dominates
others. Hence SVP and SIVP are equivalent on �(b), and �(b) is similar to some
full-rank WR cyclic sublattice of Z

N because coordinates of b are rational. Since a
ball of positive radius centered at e1 contains infinitely many rational points, infinitely
many mutually non-similar lattices with this equivalence property can be constructed
this way.

5 Cyclic Lattices in the Plane

In this section we prove Theorem 1.2. Recall that every planar cyclic lattice is spanned
by vectors corresponding to its successive minima. Furthermore, for a sublattice �
of Z

2, |S(�)| = 2 or 4, and � is WR if and only if |S(�)| = 4. If � is not WR,
then |S(�)| = 2 and the vectors corresponding to first and second successive minima
are unique (up to ± sign): this follows, for instance, from the second Theorem and
discussion after it on p. 203 of [6].

Lemma 5.1 A lattice � ∈ C2 is WR if and only if either � = �(a) for some a ∈ S(�)

or � = α
( 1 1

1 −1

)
Z

2 for some α ∈ Z>0. On the other hand, � ∈ C2 is not WR if and

only if � =
(
α β

α −β
)
Z

2 for some distinct positive integers α, β.

Proof If � = �(a) for some a ∈ S(�), then S(�) = {±a,± rot(a)} and the vectors

a, rot(a) are linearly independent. If � = α
( 1 1

1 −1

)
Z

2 for some α ∈ Z, then

S(�) =
{

±
( 1

1

)
,±

( 1
−1

)}
.

In both cases, it is clear that � is WR.
Suppose then that � is WR, then |S(�)| = 4 and S(�) contains a basis for �.

Let a ∈ S(�). First assume �(a) has rank 2, then a, rot(a) ∈ S(�) are linearly
independent, and hence form a basis for �. Therefore � = �(a). Next suppose that
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�(a) has rank 1, then a = c rot(a) for some c ∈ Z, which easily implies that a1 = a2,

and so a = α
( 1

1

)
for some α ∈ Z. Since � is WR, there must exist c ∈ S(�) such that

c �= ±a. Then rot(c) is also in S(�), and since |S(�)| = 4, we must have −c = rot(c)

and ‖c‖ = ‖a‖, meaning that c = α
( −1

1

)
. Then S(�) = {±a,±c}, and so

� = α
( 1 1

1 −1

)
Z

2.

This completes the proof of the first statement.
The second statement follows immediately from the observation that R

2 has pre-
cisely two cyclotomic subspaces:

H
1 = spanR

{( 1
1

)}
, H
2 = spanR

{( 1
−1

)}
.

�


For R ∈ R>0, let f2(R) be as in (13) for N = 2, and define

g2(R) = #{� ∈ C2 : � �= �(a) ∀ a ∈ Z
2, λ1(�) = λ2(�) ≤ R},

and

h2(R) = #{� ∈ C2 : � is not WR, λ2(�) ≤ R}.

We can now use Lemma 5.1 to estimate the functions f2(R), g2(R), h2(R).

Lemma 5.2 Let R ∈ R>0, then

0.200650 . . .× R2 − 3.742382 . . .× R ≤ f2(R) ≤ 0.267638 . . .× R2

+0.965925 . . .× R, (20)

g2(R) =
[ R√

2

]
, (21)

h2(R) =
[ R√

2

]2 −
[ R√

2

]
. (22)

Proof First assume � = �(a) for some a = ( a1
a2

) ∈ S(�). Notice that we can

assume without loss of generality that |a1| > |a2|. The condition that a, rot(a) form
a Minkowski reduced basis amounts to satisfying the following condition (see, for
instance, Note 1 on p. 257 of [5]):

a2
1 + a2

2 ≥ 4|a1a2|.
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This means that either

a2
1 + a2

2 − 4a1a2 ≥ 0, a1a2 ≥ 0, (23)

or
a2

1 + a2
2 + 4a1a2 ≥ 0, a1a2 < 0. (24)

First consider the (23) situation, then there are the following two options:

(1) a1 ≥ [(2 + √
3)a2] + 1 > a2 ≥ 0,

(2) 0 ≥ a2 > [(2 + √
3)a2] − 1 ≥ a1.

Notice that a1, a2 satisfy option (1) if and only if −a1,−a2 satisfy option (2), hence
they correspond to the same lattice �(a). Next consider the (24) situation, then there
are the following two options:

(3) a1 ≤ −[(2 + √
3)a2] − 1 < 0 < a2,

(4) a1 ≥ −[(2 + √
3)a2] + 1 > 0 > a2.

Again, a1, a2 satisfy option (3) if and only if −a1,−a2 satisfy option (4), hence they
correspond to the same lattice �(a). Notice also that for each pair a1, a2 satisfying
options (1) and (2), there is precisely one pair satisfying options (3) and (4). Hence we
will only count vectors a ∈ Z

2 with ‖a‖ ≤ R satisfying (1) and multiply this number
by 2. Therefore:

f2(R) = 2
A(R)∑

a2=1

([√
R2 − a2

2

] − [
(2 + √

3)a2
] − 1

)
, (25)

where

A(R) =
[ R

2
√

2 + √
3

]
.

Using (25), we now give quick estimates on f2(R). A higher degree of precision is
easily possible here, but we choose in favor of simplicity. Notice that

f2(R) ≥ 2R A(R)− 2(3 + √
3)

A(R)∑

a2=1

a2 − 2A(R)

= 2R A(R)− (3 + √
3)A(R)2 − (5 + √

3)A(R)

≥
(
4
√

2 + √
3 − 3 − √

3
)
R2

8 + 4
√

3
−

(
5 + √

3 + 4
√

2 + √
3
)
R

2
√

2 + √
3

= 0.200650 . . .× R2 − 3.742382 . . .× R. (26)
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On the other hand,

f2(R) ≤ 2R A(R)− (2 + √
3)A(R)(A(R)+ 1)

≤ R2
√

2 + √
3

− R2

4
+

√
2 + √

3 R

2

= 0.267638 . . .× R2 + 0.965925 . . .× R. (27)

Next suppose � ∈ C2 is WR, but not of the form � = �(a) for some a ∈ S(�),

then � = α
( 1 1

1 −1

)
Z

2 for some α ∈ Z>0, by Lemma 5.1. Now, λ1(�) ≤ R if and

only if

0 < α ≤ R√
2
,

and so α can be equal to 1, 2, . . . , [R/
√

2]. Since α identifies� uniquely, (21) follows.

Finally, assume � ∈ C2 is not WR. Then � =
(
α β

α −β
)
Z

2 for some distinct

positive integers α, β. Since � is a rectangular lattice, there are two possibilities:

(1) λ1(�) = √
2α <

√
2β = λ2(�) ≤ R,

(2) λ1(�) = √
2β <

√
2α = λ2(�) ≤ R.

Hence we can count the number of lattices satisfying (1) and multiply it by 2. Thus

h2(R) = 2
[R/

√
2]∑

β=1

(β − 1) =
[ R√

2

]2 −
[ R√

2

]
. (28)

This completes the proof. �


We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Notice that

#{� ∈ C2 : λ2(�) ≤ R, � is WR}
#{� ∈ C2 : λ2(�) ≤ R} = f2(R)+ g2(R)

f2(R)+ g2(R)+ h2(R)

and

#{� ∈ C2 : λ2(�) ≤ R, � is not WR}
#{� ∈ C2 : λ2(�) ≤ R} = h2(R)

f2(R)+ g2(R)+ h2(R)
.

The result now follows directly from Lemma 5.2. �
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6 Permutation Invariance

Let SN be the group of permutations on N ≥ 2 elements and define the action of SN

on R
N as in (3). In fact, for each τ ∈ SN define Eτ to be the N × N matrix obtained

from the N × N identity matrix IN by permuting its rows with τ ; in other words,
Eτ = (ei j )1≤i, j≤N where ei j = 1 whenever j = τ(i) and ei j = 0 otherwise. These
are the well-known permutation matrices. Then for every x ∈ R

N ,

τ x = Eτ x.

It is easy to check that the map ψ : SN → GLN (Z) given by τ �→ Eτ is a faithful
representation of SN in GLN (R), and we write ψ(SN ) for its image. Notice that the
rotational shift operator is given precisely by the N -cycle (1 2 . . . N ) ∈ SN :

rot(x) = E(1 2...N )x =

⎛

⎜
⎜
⎜
⎝

0 . . . 0 1
1 . . . 0 0
... . . .

...
...

0 . . . 1 0

⎞

⎟
⎟
⎟
⎠

x. (29)

Observe also that each matrix Eτ is orthogonal, and hence lattices� and τ� := Eτ�
are isometric. This in particular means that � is WR if and only if τ� is invariant for
every τ ∈ SN .

As in Sect. 1, we say that a lattice� ⊂ R
N is τ -invariant (or invariant under τ ) for a

fixed τ ∈ SN if Eτ� = �. It is clear that� is τ -invariant if and only if it is σ -invariant
for every permutation σ in 〈τ 〉, the cyclic group generated by τ . This observation
together with (29) readily implies that cyclic lattices are precisely the sublattices of
Z

N which are invariant under the cyclic permutation group 〈(1 2 . . . N )〉. Further notice
that if � is τ -invariant and σ -invariant for some two elements σ, τ ∈ SN , then it is
(στ)-invariant. Recall that the transposition (1 2) and N -cycle (1 2 . . . N ) together
generate SN , and hence any cyclic lattice that is also (1 2)-invariant is invariant under
the entire group SN . We can now extend our results on cyclic lattices to τ -invariant
full-rank sublattices of Z

N for any N -cycle τ .

Proof of Corollary 1.3 Let τ ∈ SN be an N -cycle, and let us write σ for the N -cycle
(1 2 . . . N ). Since all N -cycles are in the same conjugacy class, there exists g ∈ SN

such that τ = gσg−1. Then a lattice � is τ -invariant if and only if the lattice g−1�

is σ -invariant, i.e., cyclic. Since lattices � and g−1� are isometric, it follows that the
sets

{� ∈ CN : λN (�) ≤ R}, {� ∈ CN (τ ) : λN (�) ≤ R}

are in bijective correspondence, as are the sets

{� ∈ CN : λN (�) ≤ R, � is WR}, {� ∈ CN (τ ) : λN (�) ≤ R, � is WR},

for each R ∈ R>0. The statement of the corollary now follows from Theorem 1.1. �
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Since permutation invariant sublattices of Z
N are a natural generalization of cyclic

lattices, we conclude with two questions about them.

Question 1 Do permutation invariant full-rank sublattices of Z
N have some under-

lying algebraic structure? More specifically, which of them, if any, can be obtained
from ideals in some polynomial rings, analogously to the construction of cyclic lattices
from ideals in Z[x]/(x N − 1)?

To state the second question, let us introduce some more notation. Let us say that
an infinite set of lattices S in R

N is WR-dense if

#{� ∈ S : λN (�) ≤ R, � is WR}
#{� ∈ S : λN (�) ≤ R} ≥ O(1) as R → ∞.

Our results above show that τ -invariant full-rank sublattices of Z
N are WR-dense for

each N -cycle τ , which leads to the following more general question.

Question 2 For which permutations τ ∈ SN are the τ -invariant sublattices of Z
N

WR-dense?

The answer to Question 2 by means of extending the current method and studying
automorphism groups of lattices is the subject of a forthcoming paper.

Both of the above questions can also be extended to signed permutation invariant
lattices. Let JN ∼= (Z/2Z)N be the finite abelian subgroup of GLN (Z) consisting of
diagonal matrices with all diagonal entries being ±1. For a fixed g ∈ JN and τ ∈ SN ,
we will say that a lattice� ⊂ R

N is g-signed τ -invariant if gEτ� = �. Now we can
ask Questions 1 and 2 for signed permutation invariant lattices. As an example, let

g =

⎛

⎜
⎜
⎜
⎝

−1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 0 . . . 1

⎞

⎟
⎟
⎟
⎠

∈ JN , τ = (1 2 . . . N ) ∈ SN ,

then g-signed τ -invariant sublattices of Z
N are images of ideals in the quotient poly-

nomial ring Z[x]/(x N + 1) under the same map ρ as for cyclic lattices in Sect. 1;
we will call these the signed cyclic lattices. For instance, the signed cyclic lattices in
dimension 2 are of the form

( a −b
b a

)
Z

2, a, b ∈ Z.

These are orthogonal sublattices of Z
2, which come from ideals in Z[x]/(x2 + 1)

(alternatively, from ideals in Gaussian integers Z[i] under the standard Minkowski
embedding of Q(i) into the real plane), and are always WR. This observation suggests
that signed cyclic lattices in higher dimensions may also have good chances of being
WR-dense.
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