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Abstract In this article, we give new proofs for the existence and basic properties of
the circumcenter of mass defined by Adler in 1993 and Tabachnikov and Tsukerman
in 2013.

We start with definitions.

Definition 1 The power of a point x with respect to a sphere ω(o, R) in R
d is defined

as Pow(ω, x) = ‖ox‖2 − R2. Here o is the center and R is the radius of the sphere
ω(o, R).

Definition 2 Given a simplex Δ in R
d , define

Pow(Δ) =
∫

Δ

Pow(ωΔ, x)dx,

where ωΔ is the circumsphere of Δ.

Remark 1 If the sphere ω is a sphere of higher dimension passing through all vertices
of ωΔ, then the power of any point of Δ with respect to ω is the same as the power
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with respect to ωΔ. Therefore, in the definition of Pow(Δ), the circumscribed sphere
could be changed to any sphere passing through the vertices of Δ.

Note also that the value of Pow(Δ) is always negative.

Denote the vertices of Δ by v0, v1, . . . , vd ; let oΔ and RΔ be the center and the
radius of the circumsphere, respectively; and let mΔ be the centroid of Δ. Then one
has the following formulas for Pow(Δ) (see. [5]):

− Pow(Δ) = Vol(Δ)

(d + 1)(d + 2)

( d∑
i=0

i−1∑
j=0

‖vi v j‖2
)

= d + 1

d + 2
Vol(Δ)

(
R2

Δ − ‖oΔmΔ‖2),
where Vol(Δ) is the volume of Δ.

Lemma 1 Given a simplex Δ in R
d , denote by ni the unit normal to the hyperface

Δi directed in the exterior of Δ. Then

d∑
i=0

Pow(Δi )ni = 2 Vol(Δ)
−−−→oΔmΔ.

Proof Without loss of generality, assume that oΔ is the origin.
Let us use the following variant of the Gauss–Ostrogradsky theorem, also known

as the gradient theorem:

∫

Δ

grad f (x)dv =
∫

∂Δ

f (x)n(x)ds,

where dv and ds are the volume elements of total space and of the surface of the
simplex, respectively, and n(x) is the unit normal to the surface at a point x.

Apply this equation to the power of a point with respect to the circumsphere,

f (x) = ‖x‖2 − R2
Δ. Then grad f (x) = 2x. Note also that

∫
Δi

f (x)ds = Pow(Δi )

since the sphere (o, RΔ) passes through the vertices of Δi . We obtain

2 Vol(Δ)
−−−→oΔmΔ =

∫

Δ

2xdv =
∫

∂Δ

f (x)n(x)ds =
d∑

i=0

Pow(Δi )ni .

��
Corollary 1 Let C be a d-dimensional piece-wise linear simplicial cycle in R

d . Let
oi and mi be circumcenters and centroids of d-dimensional simplices Δi ∈ C, respec-
tively. Then

∑
Δi ∈C

−−→oi mi Vol(Δi ) = 0.

123



Discrete Comput Geom (2014) 51:837–841 839

For the centroid, one has
∑

Δi ∈C mi Vol(Δi ) = 0, because each point is counted
the same number of times with positive and negative sign. So, we obtain the following
corollary.

Corollary 2 (V. E. Adler, S. Tabachnikov, E. Tsukerman) Let C be a d-dimensional
piece-wise linear simplicial cycle in R

d . Suppose that oi are the circumcenters of
d-dimensional simplices Δi ∈ C. Then

∑
Δi ∈C

oi Vol(Δi ) = 0.

Following [6], we give the following definition.

Definition 3 Let K be a d-dimensional piece-wise linear simplicial chain. Let
(oi , Vol(Δi )) be the weighted point located at the circumcenter of Δi ∈ K with
the weight Vol(Δi ). The center of mass of points (oi , Vol(Δi )) of all simplices of K
is called the circumcenter of mass of K.

Remark 2 We can define the circumcenter of mass of any (d − 1)-dimensional piece-
wise linear simplicial cycle C in R

d as the circumcenter of mass of any its filling, that
is K, such that ∂K = C. Due to Corollary 2, the choice of filling for C does not matter.

It seems that Giusto Bellavitis was the first who noted the existence of the circum-
center of mass of a planar polygon in 1834 (see the book [3], pages 150–151).

In 1993, it was independently noticed by Adler in [1] for the case of triangulation
of planar polygon by diagonals and in the private correspondence of G.C. Shephard
and B. Grünbaum. They also noted that the circumcenter could be replaced by any
point on the Euler line, that is, by a fixed affine combination of the centroid and the
circumcenter (for example, the orthocenter or the center of the Euler circle).

Myakishev in [4] proved the existence of Euler (and also Nagel) line for a quadri-
lateral.

Tabachnikov and Tsukerman in [6] proved the correctness of definition of circum-
center of mass for any simplicial polytope and the existence of the Euler line in a
high-dimensional polytope.

The case of central triangulation of a tetrahedron was posed on the student contest
IMC 2009 (Problem 5).

In the planar case, we can take a polygon as a cycle. Using Lemma 1, we can give
a short proof of the following theorem proved by S. Tabachnikov and E. Tsukerman.

Theorem 1 ([6]) Let P = a1a2 · · · an be an equilateral polygon. Then its circumcen-
ter of mass coincides with centroid of the polygonal lamina.

Proof Denote by o and m the circumcenter of mass and the centroid, respectively. Note
that, for all i , the values Pow(ai ai+1) are equal to each other. Denote this quantity by
p, and let l be the length of the sides. We have Vol(P)

−→mo = 1
2

∑n
i=1 pni . Note that

this sum is equal to zero because each vector ni is the vector 1
l
−−−→ai ai+1 rotated by 90◦,

but
∑n

i=1 ai ai+1 = 0. ��
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Note that using the equation on Pow(Δ), we can generalize this theorem to a higher
dimension.

Theorem 2 Let P be a simplicial polytope in R
d such that for each face of P the sum

of squares of its edges is a constant. Then the circumcenter of mass and centroid of
solid polytope P coincide.

Proof Denote this constant by c. Note that for each facet Δi of P we have

Pow(Δi ) = Vol(Δi )
−c

(d + 1)(d + 2)
.

From Minkowski’s theorem, it follows that
∑

Δi ∈(facets of P)

Vol(Δi )ni = 0,

where ni is a unit normal to the facet Δi .
Therefore,

Vol(P)
−→mo = 1

2

∑
Δi ∈(facets of P)

Pow(Δi )ni

= −c

2(d + 1)(d + 2)

∑
Δi ∈(facets of P)

Vol(Δi )ni = 0.

Remark 3 Using another formula for Pow(Δi ), we can reformulate the requirements
on the facets of the polytope P in the following way: for each facet Δi the value
R2

Δi
− ‖oΔi mΔi ‖2 is a constant.

As the authors have mentioned in [6], if the vertices of C lie on a sphere ω, then the
circumcenter of mass coincides with center of the sphere. Indeed, there is a filling of
C with the same set of vertices as C. The circumcenters of the simplices of this filling
coincide with the center of the sphere ω.

In the same article, Tabachnikov and Tsukerman have given a definition of circum-
center of mass in the spherical geometry. Using the previous observation, we can give
another explanation of the existence of this point.

Consider the unit sphere Sd with the center at the origin o of R
d+1. By a weighted

point (x, m) we mean a pair consisting of a point x and a number m, which is natural
to interpret as vector mx in R

d+1. A set of weighted points (xi , mi ) has the centroid

at point
∑

mi xi
‖∑

mi xi ‖ and the total mass ‖∑
mi xi‖ (See [2]).

For each spherical d-simplex Δi = v0v1 . . . vd of a spherical simplicial chain C,
consider a point o′

i which is the circumcenter of the simplexΔ′
i = ov0v1 . . . vd in R

d+1.

Now we can define the weighted circumcenter as the point oi = ( o′
i

‖o′
i‖

, Vol(Δ′
i )‖o′

i‖
)

1.

1 Using simple calculation, it is easy to show that Vol(Δ′
i )‖o′

i ‖ = Vol(Δi )
2(d+1)

. So the circumcenter of mass
from [6] is the same as here.
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The (d + 1)-dimensional complex in R
d+1 formed by the simplices Δ′

i is denoted by
C′.

Corollary 3 Suppose C is a d-dimensional simplicial cycle C in Sd ⊂ R
d+1. Then its

spherical circumcenter of mass coincides with o (has zero weight).

Proof By definition, the spherical circumcenter of mass C coincides with the Euclid-
ean circumcenter of mass of C′. But its circumcenter of mass coincides with the
circumcenter of mass of ∂C′ which is the origin, because ∂C′ is inscribed in Sd .

As in Remark 2, we can define the circumcenter of mass of a (d − 1)-dimensional
spherical simplicial cycle in Sd as the circumcenter of mass of its filling.

The author thanks Sergei Tabachnikov for useful discussions and valuable advice.
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