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Abstract Intheearly 1990s, Bezdek and Kuperberg used a relatively simple argument
to show a surprising result: The maximum packing density of circular cylinders of
infinite length in R is exactly 7/+/12, the planar packing density of the circle. This
paper modifies their method to prove a bound on the packing density of finite length
circular cylinders. In fact, the maximum packing density for unit radius cylinders of
length 7 in R3 is bounded above by 7/+/12 + 10/1.
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1 Introduction

The problem of computing upper bounds for the packing density of a specific body
in R3 can be difficult. Some known or partially understood non-trivial classes of
objects are based on spheres [6], bi-infinite circular cylinders [2], truncated thombic
dodecahedra [1] and tetrahedra [5]. This paper proves an upper bound for the packing
density of congruent capped circular cylinders in R3. The methods can be used to
prove non-trivial upper bounds for packings by congruent circular cylinders and related
objects, as well as the sharp bound for half-infinite circular cylinders.

1.1 Synopsis

The density bound of Bezdek and Kuperberg [2] for bi-infinite cylinders is proved in
three steps. Given a packing of R3 by congruent bi-infinite cylinders, first decompose
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space into regions closer to the axis of a particular cylinder than to any other. Such
a region contains the associated cylinder, so density may be determined with respect
to a generic region. Finally, this region can be sliced perpendicular to the particular
axis and the area of these slices estimated: This area is always large compared to the
cross-section of the cylinder.

In the case of a packing of R3 by congruent finite-length cylinders, this method
fails. The ends of a cylinder may force some slice of a region to have small area.
For example, if a cylinder were to abut another, a region in the decomposition might
not even wholly contain a cylinder. To overcome this, one shows that these potentially
small area slices are always associated to a small neighborhood of the end of a cylinder.
For a packing by cylinders of a relatively high aspect ratio, neighborhoods of the end
of a cylinder are relatively rare. By quantifying the rarity of cylinder ends in a packing,
and bounding the error contributed by any particular cylinder end, the upper density
bound is obtained.

1.2 Objects Considered

Define a t-cylinder to be a closed solid circular cylinder in R? with unit radius and
length 7. Define a capped t-cylinder (Fig. 1) to be a closed set in R3 composed of a
t-cylinder with solid unit hemispherical caps. A capped ¢-cylinder C decomposes into
the 7-cylinder body C? and two caps C! and C2 The axis of the capped z-cylinder C
is the line segment of length ¢ forming the axis of C°. The capped ¢-cylinder C is also
the set of points at most 1 unit from its axis.

1.3 Packings and Densities

A packing of X € R> by capped t-cylinders is a countable family € = {C;}ic; of
congruent capped ¢-cylinders C; with mutually disjoint interiors and C; € X. For a
packing € of R>, the restriction of € to X C R is defined to be a packing of R> by
capped ¢-cylinders {C; : C; € X}. Let B(R) be the closed ball of radius R centered
at 0. In general, let B, (R) be the closed ball of radius R centered at x. The density
o(€, R, R') of a packing € of R3 by capped z-cylinders with R < R’ is defined
as

N Vol(C,)
p(€.R.R) = > wisdy:
CiCB(R)

Fig. 1 A capped z-cylinder with
body €9, axis a and caps c!
and C2
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The upper density p™ of a packing € of R> by capped z-cylinders is defined as

o (%) =limsup p(¢, R, R).

R— o0

In general, a packing of X € R3 by a convex body K is a countable family
K = {K,}ics of congruent copies of K with mutually disjoint interiors and K; € X.
Restrictions and densities of packings by K are defined in an analogous fashion to
those of packings by capped 7-cylinders.

1.4 Comparison to Existing Bounds

The only existing bound for circular cylinders and capped cylinders of finite length
are given by Fejes T6th and Kuperberg [4], which may be stated as follows.

Theorem 1 (Fejes Téth and Kuperberg) Fix a packing € of R> by capped t-cylinders.
Then

3t+4
(29—-1612) (25-16v2)
3t 3 +4 5

p(€) <

Theorem 2 (Fejes Téth and Kuperberg) Fix a packing € of R> by t-cylinders. Then

t
(29-16v/2) | 4 (25-16V2)
I

p(%) <

These bounds arise as special cases of a general bound for outer parallel bodies and are
explicitly computed in [4] as important cases. For ¢-cylinders, the bound is non-trivial
for lengths greater than 8.735... and gives an asymptotic density bound of 0.941....
The bound for capped ¢-cylinders is similar, giving Blichfeldt’s bound of 0.842... for
spheres [3] at length 0 and rapidly approaching 0.941....

The new bounds presented in this paper are non-trivial, i.e. less than 1, for
t-cylinders of length greater than 105.147... and capped ¢-cylinders of length
96.653.... Both bounds are asymptotic to the known sharp bound of 7/+/12 for
infinite cylinders. The new bounds for cylinders improve the existing bound for
t-cylinders of length greater than 252.751... and capped ¢-cylinders of length greater
than 250.751..., both very close to where the bounds of Fejes Téth and Kuperberg flat-
tens out. In this sense, the new and existing bounds are complementary, as illustrated
in Figs. 2 and 3.

2 The Main Results

Let 1ty = %(% + 1)3 = 48.3266786... for the remainder of the paper. This value
comes out of the error analysis in Sect. 5.
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Fig. 2 Plot of upper bounds on density of unit radius #-cylinders relative to their length. Blue Kuperberg
and Fejes Toth, Purple New bound, Yellow Conjectured bound
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Fig. 3 Plot of upper bounds on density of unit radius capped ¢-cylinders relative to their length. Blue
Kuperberg and Fejes Toth, Purple New bound, Yellow Conjectured bound

Theorem 3 Fixt > 2tg. Fix R > 2/+/3. Fixa packing € of R? by capped t-cylinders.
Then
t+3

p(€, R —2/v3,R) < .
21— 21) + 219+ 4

This is the content of Sects. 3, 4, and 5. Note that this upper bound is superseded
by the trivial bound of 1 when ¢ < 21.

Corollary 1 Fixt > 2tq. The upper density of a packing € of R> by capped t-cylinders

satisfies the inequality

4
t+3
+ 3
P (E) < .
M2 —210) + 219 + §
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Fig. 4 Nesting capped
(t — 2)-cylinders in 7-cylinders

Proof Let Vg and Wg be subsets of the index set 7, with Vg = {i : C; € B(R)} and
Wg={i: Ci € B(R —2/V/3)}. By definition,

e Vol(Cy) Vol(C;)
p T (€) = limsup (ZVol(B(R)) + 2 Vol(B(R)))'
Wg VW

R—o0 R

As R grows, the term ZVR Wi Vol(C;)/ Vol(B(R)) tends to 0. Further analysis of
the right-hand side yields

pH(€) =limsup p(€, R — 2/\/5, R).

R—o00
By Theorem 3, the stated inequality holds. O

Lemma 1 Given a packing of t-cylinders with density p where t is at least 2, there is

_2
a packing of capped (t — 2)-cylinders with packing density (t%) .

Proof From the given packing of ¢-cylinders, construct a packing by capped (¢ — 2)-
cylinders by nesting as illustrated in Fig. 4. By comparing volumes, this packing of
capped (t — 2)-cylinders has the required density. O

Corollary 2 Fixt > 2ty + 2. The upper density of a packing % of R> by t-cylinders
satisfies the inequality
t

+
p(Z) < .
L2 —2 - 219) + 210) + 4

Proof Assume there exists a packing by 7-cylinders exceeding the stated bound. Then
Lemma 1 gives a packing of capped (# — 2)-cylinders with density greater than

2 4
=3 t 1=2+3

toN2G g o)+ Qu)+E 2 -2 200) + (210) + £

This contradicts the density bound of Theorem 3 for capped (r — 2)-cylinders. O
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Note that this method of iterating packings loosens the bound. In this case, it
becomes less than 1 only for cylinders of length greater than 105.147... which is
itself slightly greater than 2¢y + 2.

3 Set Up

For the remainder of the paper, fix the notation ¢ to be the restriction of % to
B(R — 2/+/3), indexed by I*. To bound the density p(€*, R —2/+/3, R) for a fixed
packing € and a fixed R > 2/+/3, decompose B(R) into regions D; with disjoint
interiors such that C; € D; for all i in I*. For such a packing ¢* with fixed R, define
the Dirichlet cell D; of a capped ¢-cylinder C; to be the set of points in B(R) no further
from the axis a; of C; than from any other axis a; of C;.

For any point x on axis a;, define a plane P, normal to a; and containing x. Define
the Dirichlet slice d, be the set D; N P,. For a fixed Dirichlet slice d,, define S, (r)
to be the circle of radius r centered at x in the plane P,. Important circles are S, (1),
which coincides with the cross section of the boundary of the cylinder, and S, (2/ «/5),
which circumscribes the regular hexagon in which S, (1) is inscribed. An end of the
capped t-cylinder C; refers to an endpoint of the axis a;.

Define the slab L; to be the closed region of R3 bounded by the normal planes
to a; through the endpoints of @; and containing C? (Fig. 5). The Dirichlet cell D;
decomposes into the region D? = D; N L; containing C? and complementary regions
Dil and Dl.2 containing the caps Ci1 and Cl.2 respectively (Fig. 6).

Fig. 5 A capped cylinder C and
the slab L

Fig. 6 Decomposing a Dirichlet
cell
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Fig. 7 Parabolic spline
associated with point x and
segment a ;

—

a;

Aside from a few degenerate cases, the set of points equidistant from a point x
and line segment a in the affine hull of x and a forms a parabolic spline (Fig. 7).
A parabolic spline is a parabolic arc extending in a C! fashion to rays at the points
equidistant to both the point x and an endpoint of the line segment a. Call the points
where the parabolic arc meets the rays the Type I points of the curve. A parabolic
spline cylinder is a surface that is the cylinder over a parabolic spline.

4 Qualified Points

Definition 1 Fix a packing % of R? by capped ¢-cylinders. Fix R > 2/+/3 and restrict
to €. A point x on an axis is qualified if the Dirichlet slice d, has area greater than
4/ 12, the area of the regular hexagon in which S, (1) is inscribed.

Proposition 1 Fix a packing € of R? by capped t-cylinders. Fix R > 2//3 and
restrict to €*. Let x be a point on an axis a;, where i is a fixed element of 1" If
B, (4//3) contains no ends of C*, then x is qualified.

The proof of this proposition is a modification of the Main Lemma of [2]. A series
of lemmas allow for the truncation and rearrangement of the Dirichlet slice. The goal
is to construct from dy a subset d;}* of P, with the following properties:

d¥* contains Sy (1).

— The boundary of d}* is composed of line segments and parabolic arcs with apexes
touching S, (1).

— The non-analytic points of the boundary of d}* lie on Sy (2/ V3).

The area of d;* is no greater than the area of d,.

Then the computations of [2, Sect. 6] apply.
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Lemma 2 [fa point x satisfies the conditions of Proposition 1, then the Dirichlet slice
dy is a bounded convex planar region, the boundary of which is a simple closed curve
consisting of a finite union of parabolic arcs, line segments and circular arcs.

Proof Without loss of generality, fix a point x on a;. For each j # i in I'*, let d’ be
the set of points in Py no further from a; than from a;. The Dirichlet slice dy is the
intersection of B(R) with d/ for all j # i in I* The boundary of d/ is the set of
points in Py that are equidistant from a; and a;. As P, is perpendicular to a; at x, the
boundary of d/ is also the set of points in Py equidistant from x and a;.

This is the intersection of the plane P, with the set of points in R? equidistant from x
and a;. The set of points in R? equidistant from x and a j is a parabolic spline cylinder
perpendicular to the affine hull of x and a;. Therefore the set of points equidistant
from x and a; in Py is also a parabolic spline, with x on the convex side.

In the degenerate cases where x is in the affine hull of a; or P, is parallel to a;, the
sets of points equidistant from x and a; in Py is a union of lines or is empty.

The region d, is clearly bounded as it is contained in B(R). The point x lies in the
convex side of the parabolic spline so each region d” is convex. The set B(R) contains
x and is convex, so d, is convex. This is a finite intersection of regions bounded by
parabolic arcs, lines and a circle, so the rest of the lemma follows. O

To apply the results of [2], the non-analytic points of the boundary of the Dirichlet
slice d, must be controlled. From the construction of d, as a finite intersection, the
non-analytic points of the boundary of d, fall into three non-disjoint classes of points:
the Type I points of a parabolic spline that forms a boundary arc of d,, Type II points
defined to be points on the boundary of d, that are also on the boundary of B(R), and
Type III points, defined to be points on the boundary of d, that are equidistant from
three or more axes. Type III points are the points on the boundary of d, where the
parabolic spline boundaries of various d/ intersect.

Lemma 3 [f a point x satisfies the conditions of Proposition 1, then no non-analytic
points of the boundary of d, are in int (Conv(Sx (2/«/5))), where the interior is with
respect to the subspace topology of Py and Conv(-) is the convex hull.

Proof 1t is enough to show there are no Type I, Type II, or Type III points in
int(Conv(Sx(2/+/3))). By hypothesis, B, (4/+/3) contains no ends. The Type I points
are equidistant from x and an end. As there are no ends contained in B, (4/ \/3), there
are no Type I points in int (ConV(Sx (2/\/3))).

By hypothesis, x is in B(R — 2/+/3). Therefore there are no points on the
boundary of B(R) in int(Conv(Sy(2/+/3))) and therefore no Type II points in
int(Conv(Sy (2/+/3))).

As a Type III point is equidistant from three or more axes, at some distance ¢, it
is the center of a ball tangent to three unit balls. This is because a capped ¢-cylinder
contains a unit ball which meets the ball of radius € centered at the Type III point. These
balls do not overlap as the interiors of the capped ¢-cylinders have empty intersection.
Lemma 3 of [8] states that if a ball of radius ¢ intersects three non-overlapping unit
balls in R3, then £ > 2/4/3 — 1. It follows that there are no Type III points in
int(Conv(Sy (2/+/3))). o
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Fig. 8 The hyperplane Q
separates int(C; N L;) from
int(C j NL;)

Lemma 4 Fix a packing €. Then for all i # j and i, j € I% there is a support-
ing hyperplane Q of int(C;) that is parallel to a; and separating int(C; N L;) from
int(C; N L;).

Proof Extend C; N L; to an infinite cylinder C; where C 7N L; and C; have disjoint
interiors. The sets C; N L; and C; are convex, so the Minkowski hyperplane separation
theorem gives the existence of a hyperplane separating int(C; N L;) and int(C;). This
hyperplane is parallel to the axis a; by construction. Take Q to be the parallel translation
to a supporting hyperplane of int(C; ) that still separates int(C; N L;) fromint(C; N L;).
See Fig. 8 for an example. O

Lemma 5 Fix a packing €. Fix a point x on the axis a; of C; such that By(4/+/3)
contains no ends. Let y and 7 be points on the circle Sy (2/\/5). If each of y and 7 is
equidistant from C; and C j, then the angle yxz is no greater than 2 arccos(v/3—1) :=
ag, which is approximately 85.88°.

Proof By hypothesis, B, (4/+/3) contains no ends, including the end of the axis ;.
Therefore any points of C; that are notin L; are at a distance greater than 4/ V/3 from
x. The points of C; and C; that y and z are equidistant from must be in the slab L;,
so it is enough to consider y and z equidistant from C; and C; N L;.

By construction, the hyperplane Q separates all points of C; N L; from x. Let k be
the line of intersection between P, and Q. As y and z are at a distance of 2/+/3 — 1
from both C; N L; and C;, they are at most that distance from Q. They are also at
most that distance from k. The largest possible angle yxz occurs when y and z are on
the x side of k in P,, each at exactly the distance 2/ /3 — 1 from k as illustrated in
Fig. 9. This angle is exactly 2 arccos(+v/3 — 1) := aq. O

The following lemma is proved in [2].

Lemma 6 Let y and z be points on Sy(2/+/3) such that 60° < yxz < ag. For
every parabola p passing through y and z and having S,(1) on its convex side,
let xypzx denote the region bounded by segments xy, xz, and the parabola p.
Let po denote the parabola passing through y and z and tangent to Sx(1) at its
apex.

Area(xypozx) < Area(xypzx).
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Fig. 9 An extremal
configuration for the angle o aj

—

|

4.1 Truncating and Rearranging

Consider the Dirichlet slice d, of a point x satisfying the conditions of Proposition 1.
The following steps produce a region with no greater area than that of d,.

Step 1 The boundary of d intersects Sy (2/+/3) in a finite number of points. Label
them yi, ¥2, ... Vu, Yus-1 = ¥1 in clockwise order. Intersect d with S (2/«/5) and
call the new region dj.

By Lemma 3, this is a region bounded by arcs of Sy (2/+/3), parabolic arcs and line
segments, with non-analytic points on Sy (2/~/3).

Step2Fori = 1,2, ..., nif y;xy;+1 > 60° andif the boundary of d; between y; and
yi+1 is acircular arc of Sy (2/ «/5), then introduce additional vertices z;,, z;,, . . . Zj, On
the circular arc y;y;4+1 so that the polygonal arc y;z; z;, . .. 2;, Yi+1 does not inter-
sect Sy(1). Relabel the set of vertices in clockwise order to vy, va, ... Vp, Upntl
=vy.

Step 3 If vixv;11 < 60° then truncate d; along the line segment v;v; 4| keeping
the part of d which contains S, (1). This does not increase area by construction.
If vixviy+1 > 60° then v;v;4; is a parabolic arc. Replace it by the parabolic arc
through v; and v; 41 touching Sy (1) at its apex. This does not increase area by Lemma
5. This new region d;* has no greater area than d,, contains S, (1), and bounded
by line segments and parabolic arcs touching S, (1) at their apexes, with all non-
analytic points of the boundary on S, (2/+/3). If consecutive non-analytic points on
the boundary have interior angle no greater than 60°, they are joined by line seg-
ments. If they have interior angle between 60° and «, they are joined by a parabolic
arc.

The following lemma is a consequence of [2, Sect. 6], which determines the mini-
mum area of such a region.

Lemma 7 The region d* has area at least ~/12.
Proposition 1 follows.
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5 Decomposition of B(R) and Density Calculation
5.1 Decomposition

Fix a packing %. Fix R > 2/+/3 and restrict to €* Let the set A be the union
of the axes a; over I* Let du be the 1-dimensional Hausdorff measure on A.
Let X be the subset of qualified points of A. Let Y be the subset of A given by
{x € A: Bx(%) contains no ends}. Let Z be the subset of A given by {x € A :

Bx(%) contains an end}. Notice thatY € X C A from Proposition landZ = A—-Y
by definition.

The sets are A, X, Y, and Z are measurable. The set A is just a finite disjoint union
of lines in R3. The area of the Dirichlet slice d, is piecewise continuous on A, so X
is a Borel subset of A. Similarly the conditions defining ¥ and Z make them Borel
subsets of A. The ball B(R) is of finite volume, so /* has some finite cardinality
n.

Decompose B(R) into the regions {D? i {Dil}l’.‘: | and {Dl.2 *_,- Further decom-
pose the regions { D?}:?:l into Dirichlet slices d,, where x is an element of A.

5.2 Density Computation

From the definition of density,

> Vol(C)) + > . VoI (C}) + 34 Vol(CF)

R—-2/Vv3,R) =
p(E. 3R >+ Vol(D}) + 3 1 Vol(D}) + 3 Vol(D7)

as Cij C Dij, and Vol(ClQ) = tmr, and Vol(Cil) = Vol(Ciz) = %n, it follows that

ntmw +n%7r
Vol(D) +n3m’

p(€.R—2/\3,R) < 5 (1)
I*

Finally, p(%, R — 2/+/3, R) is explicitly bounded by the following lemma.

Lemma 8 Fort > 21,

> Vol(D?) > n(v/12(t — 2tp) + 7 (2tg)).
I*

Proof The sum I*VOI(D?) may be written as an integral of the area of the Dirichlet
slices d,, over A

> Vol(D?) = [ Area(dy)dp.
I* A
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Using the area estimates from Proposition 1, there is an inequality

/Area(dx)du 2/v12d,u +/71d,u.
A X

A-X

As +/12 > 7 and the integration is over a region A with ;t(A) < oo, passing to the
subset Y C X gives

/«/12du+/nd,u z/led,u+/nd,u = / v12d,u+/rrdu.
X A-X Y A-Y A-Z z
The measure of Z is the measure of the subset of A that is contained in all the
balls of radius 4/+/3 about all the ends of all the cylinders in the packing. This is
bounded from above by considering the volume of cylinders contained in balls of

radius 4/+/3 + 1. If the cylinders completely filled the ball, they would contain at
most axis length %(% + 1)3 = 1y. As each cylinder has two ends, there are at worst

2n disjoint balls to consider. Therefore 2nty > u(Z).
Provided ¢ > 21, it follows that

/ V12du +/ mdu > (nt — 2nto)V/12 + 2n(to)m.

A-Z VA

By combining inequality (1) with Lemma 8 and simplifying, the inequality

t+3
Y2 —219) + (219) + 4

holds for an arbitrary packing € of R? by capped congruent ¢-cylinders.

6 Conclusions, Applications, Further Questions
6.1 A Rule of Thumb, A Dominating Hyperbola

For ¢+ > 0, the upper bounds for the density of packings by capped and uncapped
t-cylinders are dominated by curves of the form ;—1—2 + N/t. Numerically, one finds

a useful rule of thumb:
Theorem 4 The upper density p™ of a packing € of R® by capped t-cylinders satisfies

10
) £ —— + —.
=Rt
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Table 1 Examples

Item Length (mm) Diameter (mm) t Density <
Broomstick 1,371.6 254 108 0.9956. ..
20’ PVC pipe 6,096 38.1 320 0.9353...
Capellini 300 1 600 0.9219...
Carbon nanotube - - 2.64 x 108 [10] 0.9069. ..

Theorem 5 The upper density p* of a packing € of R? by t-cylinders satisfies

10
H#) £ ——+ —.
a )_m t

6.2 Examples

While the requirement that ¢ be greater than 2ty for a non-trivial upper bound is
inconvenient, the upper bound converges rapidly to 7/+/12 = 0.9069... and is
nontrivial for tangible objects, as illustrated in Table 1.

6.3 Some Further Results

There are other conclusions to be drawn. For example: Consider the density of a
packing ¢ = {C;}ic; of R by congruent unit radius circular cylinders C;, possibly
of infinite length. The upper density ¥+ of such a packing may be written

. Vol(C;NB
y ¥ (%) = lim sup 3. ¥R
r—>00 1

and coincides with p* (%) when the lengths of C; are uniformly bounded.

Theorem 6 The upper density y of half-infinite cylinders is exactly w/+/12.

Proof The lower bound is given by the obvious packing ¢” with parallel axes (Fig.
10) and y+(%¢") = m/~/12. Since a packing € (c0) of R? by half-infinite cylinders
also gives a packing € (¢) of R3 by z-cylinders, the inequality
t
L2 —2 - 210) + (210) + 4

> pT(E ) =y (€ 1) =yt (€ (0))
holds for all t > 21. O

Theorem 7 Given a packing ¢ = {C;}ie; by non-congruent capped unit cylinders
with lengths constrained to be between 2ty and some uniform upper bound M, the
density satisfies the inequality
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Fig. 10 Packing cylinders with
high density

t+%

pt (@) <

V21— 210) + 210) + 4

where t is the average cylinder length given by liminf,_ « u(a;)/|J|, where J is the
set{i el :C; C B(r)}.

Proof None of the qualification conditions require a uniform length ¢. Inequality 1
may be considered with respect to the total length of A rather than nt. O

It may be easier to compute a bound using the following

Corollary 3 Given a packing € = {C;}ic; by non-congruent capped unit cylinders
with lengths constrained to be between 2ty and some uniform upper bound M, the
density satisfies the inequality

t+3

+ 3
pT(€) = ,
Y21 —210) + (210) + 3

where t is the infimum of cylinder length.

Proof The stated bound is a decreasing function in 7, so this follows from the previous
theorem. o

6.4 Questions and Remarks

Similar but much weaker results can be obtained for the packing density of curved
tubes by realizing them as containers for cylinders. Better bounds on tubes would
come from better bounds on #-cylinders for ¢ small. There is the conjecture of Wilker
[11], where the expected packing density of congruent unit radius circular cylinders
of any length is exactly the planar packing density of the circle, but that is certainly
beyond the techniques of this paper. A more tractable extension of this might be to
parametrize the densities for capped 7-cylinders from the sphere to the infinite cylinder
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by controlling the ends. In this paper, the analysis assumes anything in a neighborhood
of an end packs with density 1, whereas it is expected that the ends and nearby sections
of tubes would pack with density closer to r/+/18. 1In [9], it is conjectured that the
densest packing is obtained from extending a dense sphere packing, giving a density
bound of

1+ %

T = —
PACAG) N R

The structure of high density cylinder packings is also unclear. For infinite circular
cylinders, there are nonparallel packings with positive density [7]. In the case of
finite length ¢-cylinders, there exist nonparallel packings with density close to 77 /+/12,
obtained by laminating large uniform cubes packed with parallel cylinders, shrinking
the cylinders and perturbing their axes. It is unclear how or if the alignment of cylinders
is correlated with density. Finally, as the upper bound presented is not sharp, it is
still not useable to control the defects of packings achieving the maximal density. A
conjecture is that, for a packing of R3 by z-cylinders to achieve a density of 7 /+/12,
the packing must contain arbitrarily large regions of 7-cylinders with axes arbitrarily
close to parallel.
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