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Abstract In this paper we introduce a new method based on perfect graphs that can
be used to prove bounds on the number of guards necessary to guard a rectilinear art
gallery in terms of the number of vertices, area and perimeter, respectively. Using this
method, we prove that a polyomino with perimeter l ≥ 6 can be guarded by at most
� l

6� guards. Moreover, we give a new proof for the rectilinear art gallery theorem,
stating that any rectilinear art gallery with n vertices can be guarded by at most � n

4 �
guards. Finally, we give a new proof that at most �m+1

3 � guards are necessary to guard
an m-polyomino, even if the polyomino contains holes.

Keywords Rectilinear art gallery problem · Perfect graphs · Packing number ·
Polyominoes

1 Introduction

A well known problem in computational geometry is the art gallery problem that was
posed by Victor Klee in 1973. The task is to position a minimum number of point
guards (sometimes called watchmen) in a polygon such that they can together see
every point of the polygon. Chvátal [2] proved that � n

3 � guards are always sufficient
where n is the number of vertices of the polygon. Later, a simpler proof was found by
Fisk [3].

A special case is the rectilinear (or orthogonal) art gallery problem, where the edges
of the polygon are either horizontal or vertical. Kahn et al. [8] first showed that � n

4 �
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guards are sufficient in this case. Alternative proofs of this result were found by Győri
[5], Lubiw [10] and O’Rourke [11].

In this paper we introduce a new method based on perfect graphs that can be used
to bound the number of guards necessary to guard rectilinear art galleries in terms
of vertices and to guard polyominoes in terms of area and perimeter, respectively. A
polyomino is the union of a finite number of lattice squares. Unless otherwise stated
the polyominoes and art galleries considered in this paper do not contain holes.

The bounds in terms of vertices and area are already known. One new result of our
paper is the following theorem.

Theorem 1 The minimum number of guards necessary to guard a polyomino is at
most max

{
1,

⌊ l
6

⌋}
where l denotes the perimeter of the polyomino.

This variant of the art gallery problem was proposed by Jäger [7], who originally
conjectured the statement of Theorem 1.

Section 3 contains a new proof of the rectilinear art gallery theorem based on
properties of perfect graphs, which are recalled in Sect. 2. Section 4 contains the proof
of Theorem 1. Section 5 gives a new proof for the recent area bound of Bield et al. [1]
for guarding polyominoes.

2 Preliminaries

In this section we introduce the idea of our method based on maximal rectangles within
an art gallery and their connection to guards and perfect graphs.

Let R be the set of all maximal axis-parallel rectangles that are inside the gallery. A
rectangle R is maximal if it is inside the gallery and there is no other rectangle R′ �= R
inside the gallery with R ⊂ R′.

We have to specify which points inside a gallery can be seen from a point v ∈ R
2.

In the original setting a point v covers (or sees) a point w if the line segment vw is
part of the gallery. An alternative model of visibility is the so called r -visibility. Two
points v and w are r-visible if the minimum axis-parallel rectangle containing v and
w is completely inside the gallery. Note that r -visibility implies visibility.

An r-star is a polygon P such that there exists a point v with P ={w |v and w are
r -visible}. Note that this implies that P is the union of all maximal rectangles R ∈ R
such that v ∈ R. One method to find an upper bound on the number of guards is to
find a set of r -stars covering the gallery.

Our approach is slightly different. Instead of looking for a minimum number of
guards that cover the gallery we want to find a minimum number of guards τ(R)

such that each maximal rectangle R ∈ R contains at least one of them. Such a set of
guards or points is a transversal of R and τ(R) is the transversal number of R. It is
obvious that such a set of guards covers the gallery. There are galleries such that τ(R)

is greater than the minimum number of r -stars necessary to cover the gallery (see Fig.
1). Nevertheless, transversals yield upper bounds for the number of guards necessary
to guard a gallery.

To bound τ(R) from above we investigate the intersection graph of R with vertex
set R and edges between pairs of rectangles with nonempty intersection. A clique cover
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Fig. 1 A gallery where the
transversal number τ(R) is 3
(a), but where 2 r -stars are
sufficient to cover the gallery (b)

(a) (b)

of a graph G is a set of cliques C1, . . . , Ck in G such that every vertex v ∈ V (G)

lies in at least one of these cliques. For a guard p let Rp ⊆ R be the set of maximal
rectangles that contain p. Since all rectangles in Rp have p in common, they form
a clique in the intersection graph GR. On the other hand, consider a clique C ⊆ R
in GR, that is, any pair of rectangles R, R′ ∈ C has a non-empty intersection. By
Helly’s theorem [6] there exists a point q that is contained in all rectangles in C . We
conclude that every transversal of R corresponds to a clique cover of GR of the same
size and vice versa. Due to this fact we denote the minimum size of a clique cover of
a graph G by τ(G).

Next we prove that in the case of rectilinear galleries τ(GR) equals the maximum
size of an independent set of GR. In order to do this, we introduce some notation
and known results from graph theory. For a graph G let a vertex coloring of G be a
function c : V (G) → N such that no two adjacent vertices receive the same color, that
is, c(v) �= c(w) for all {v,w} ∈ E(G). The chromatic number χ(G) is the smallest
number of colors needed to color the vertices of G. The vertices of the same color
form an independent set in G. Thus a coloring of G with k colors is equivalent to a
partitioning of V (G) into k independent sets.

The clique number ω(G) of G is the number of vertices in a maximum clique in
G. Since every vertex in a clique receives a different color, we have χ(G) ≥ ω(G).
A graph G is perfect if for every induced subgraph G ′ of G, the clique number equals
the chromatic number, that is, ω(G ′) = χ(G ′).

We denote the maximum size of an independent set in a graph G by α(G). It is easy
to see that every clique in G corresponds to an independent set in the complement Ḡ
of G and every vertex coloring of a graph G corresponds to a clique cover in Ḡ. Thus

α(G) = ω(Ḡ) ≤ χ(Ḡ) = τ(G). (1)

By the Weak Perfect Graph Theorem [9], the complement of a perfect graph is itself
perfect. This immediately implies that for a perfect graph G the equation

α(G) = τ(G) (2)

holds.
Now we consider again the set R of maximal rectangles and its intersection graph

GR. Shearer [13] proved the following lemma.

Lemma 2 (Shearer [13]) The intersection graph of maximal rectangles in a rectilinear
polygon without holes is perfect.

By (2), we obtain α(GR) = τ(GR), that is, the minimum size of a clique cover
equals the maximum size of an independent set in GR. A maximum independent set in
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GR corresponds to a set of pairwise disjoint rectangles P ⊆ R (also called a packing
of R) of maximum size.

Proposition 3 Let R be the set of maximal rectangles in a rectilinear gallery M. The
maximum size of a packing of R is an upper bound for the number of guards necessary
to cover M.

Note that the number of maximum rectangles inside a gallery M is polynomially
bounded in the number of vertices of M . Thus the intersection graph G of maximal
rectangles in M has polynomial size. Grötschel et al. [4] described a polynomial time
algorithm to compute a minimum size vertex coloring in perfect graphs. Applying
this algorithm on Ḡ we get a clique covering C of G of size α(G) which is equal to
τ(G) by Proposition 2. Finally, we can place for every clique C of C a guard in the
non-empty intersection of the rectangles in C . In summary, there exists a polynomial
time algorithm to compute the positions of τ(G) guards covering the gallery.

3 The Rectilinear Art Gallery Theorem

A well known result is the following rectilinear art gallery theorem stated and first
proved by Kahn et al. [8].

Theorem 4 (Kahn et al. [8]) A rectilinear art gallery with n vertices can be guarded
by � n

4 � guards.

Many alternative proofs of Theorem 4 and stronger versions of the theorem (in
which the galleries might contain holes and the guards have to be placed on vertices)
are known; see for example Győri [5], Lubiw [10] and O’Rourke [11].

Our method yields a new proof of the theorem using packings of maximal rectangles.

Proof By Proposition 3 the minimum number of guards that are sufficient to guard the
gallery is bounded by the maximum size a setP of pairwise disjoint maximal rectangles
that are inside the gallery. To complete the proof we show that every maximal rectangle
contains at least 4 vertices of the gallery.

Let R ∈ P and (a, b) ∈ R
2 be the lower left corner of R. Let {(a, y) | b′ ≤

y ≤ b′′} be the bottommost wall segment that is part of the left side of R and let
{(x, b) | a′ ≤ x ≤ a′′} be the leftmost wall segment that is part of the lower side
of R. Due to the maximality of R such segments with b′ < b′′ and a′ < a′′ exist.
If (a, b′) = (a′, b) = (a, b) then (a, b) is a vertex of the gallery. Otherwise, at least
one of (a, b′) and (a′, b) is distinct from (a, b) and is thus a vertex of the gallery. By
analogous arguments for the other three corners of R we obtain that each rectangle
R ∈ P contains at least 4 vertices of the gallery.

As the rectangles in P are pairwise disjoint, no vertex is in more than one of them
and hence |P| ≤ � n

4 �. �

4 Bounding the Number of Guards in Terms of the Perimeter

In this section we prove Theorem 1 using the concept of maximum rectangle packings.
To this end consider a polyomino M , which might contain holes.
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(a) (b)

Fig. 2 a A polyomino with a maximum number of disjoint maximal rectangles. b The corresponding
bipartite graph G

In order to give a bound in terms of the perimeter l of M , we split up the boundary
of M into segments of length 1, where a segment is a set {(x, b)|a < x < a + 1} or
{(a, y)|b < y < b + 1} for some a, b ∈ Z. As all vertices have integral coordinates,
either all points or none of the points of a segment belongs to the boundary of the
polygon. A wall segment is a segment that is part of the boundary. Let W be the set of
all wall segments. Hence the perimeter l of M is equal to |W |.

Now let P ⊆ R be a maximum size packing. If l = 4, then |P| = 1. Our goal is
to show |P| ≤ l

6 for l ≥ 6. Removing ∪R∈P R from M separates the polyomino into
disjoint connected regions. Let Q be the set of the closures of the maximal connected
regions of M\ ∪R∈P R.

Consider the bipartite graph G with vertex set P ∪ Q and edge set E where the
edges E are the pairs of regions {R, Q}, R ∈ P, Q ∈ Q, that intersect (see Fig. 2).
Note that such regions Q and such a graph G can be constructed for any rectilinear
gallery and not only for polyominoes. For v ∈ V (G), we denote by dG(v) = |{w ∈
V (G)|{v,w} ∈ E(G)}| the degree of v in G.

Using this bipartite graph we count the number of wall segments that are contained
in each region in V (G). First we consider the maximal rectangles.

Lemma 5 Each maximal rectangle in a polyomino contains at least 4 wall segments.

Proof A maximal rectangle contains a wall segment in each direction. Otherwise, we
can enlarge the rectangle in a direction that does not contain such a segment which is
a contradiction to its maximality. �

If one guard is sufficient to cover the gallery, Theorem 1 holds. Thus we assume
that we need at least 2 guards. By Proposition 3, we have |P| ≥ 2. In addition, note
that each wall segment belongs to exactly one region of P ∪ Q.
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Lemma 6 If Q and G are defined as above, then each region Q ∈ Q contains at least
dG(Q) wall segments.

Proof Let Q ∈ Q, d = dG(Q) and let p be a point on the border of Q. We traverse
the border of Q counterclockwise, starting at p, until we reach p again. During this
traversal we pass the borders of the d rectangles R1, . . . , Rd (in this order) that are
adjacent to Q, that is, {Q, R j } ∈ E(G) and hence Q ∩ R j �= ∅. For simplicity let
Rd+1 = R1. Since any two consecutive rectangles R j and R j+1 are disjoint, there is at
least one wall segment on the path between these rectangles and these wall segments
are in Q due to its maximality. We conclude that there are at least d wall segments in
Q. �
Lemma 7 If P and G are defined as above and if R ∈ P is a vertex of degree 1 in G,
then there are at least 5 wall segments in R.

Proof First observe that R contains at least two squares as otherwise it is not maximal.
Say the northern and the southern edge of R have length at least 2, that is, they contain
at least two segments. By Lemma 5, there are 4 wall segments on the border of R, one
in each direction. Note that R has only one neighbor in G. Hence either all segments
of the northern edge or all segments of the southern edge of R are wall segments. Thus
this edge contains at least 2 wall segments. �

Now we give a lower bound for the number of wall segments in terms of |P|.
Lemma 8 A polyomino (with possible holes) with a maximum size packing P of
maximal rectangles contains at least 6|P| wall segments.

Proof Let G and Q be defined as above and denote by σ : P ∪ Q → N the number
of wall segments contained in each region. As G is bipartite, each edge is incident to
one vertex of Q and we obtain

∑

v∈Q
dG(v) = |E(G)|. (3)

Let L be the set of all rectangles in P that have degree 1 in G. Then every rectangle
in L is incident to one edge of G and every rectangle of P\L is incident to at least
two edges of G. Since all these edges are disjoint we conclude

|E(G)| ≥ 2|P| − |L|. (4)

Therefore the number of wall segments satisfies

∑

v∈P∪Q
σ(v) = ∑

v∈P
σ(v) + ∑

v∈Q
σ(v)

≥ ∑

v∈P
σ(v) + ∑

v∈Q
dG(v) (Lemma 6)

= ∑

v∈P
σ(v) + |E(G)| (by (3))
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Fig. 3 A gallery where l
6

guards are necessary

Fig. 4 A gallery with one hole in which the intersection graph of the maximal rectangles is not perfect

≥ 5|L| + 4(|P| − |L|) + |E(G)| (Lemmas 5 and 7)

≥ 5|L| + 4(|P| − |L|) + 2|P| − |L| (by (4))

= 6|P|. �
Theorem 1 now immediately follows from Lemma 8 and Proposition 3. Figure 3

shows the well known “comb” example, proving that the bound of Theorem 1 is tight.
Note that Lemma 8 is true for packings of maximal rectangles in any polyomino,

even if the polyomino contains holes. We were not able to prove that the packing
number is also an upper bound for the number of guards necessary to guard a gallery
with holes. However, we feel that this is still true in the general case.

Conjecture 9 In any rectilinear gallery which might contain holes the maximum size
of a packing of maximal rectangles is an upper bound on the number of guards required
to guard the gallery.

If this conjecture is true, then by the above observations Theorem 1 is also true
for polyominoes with holes. Note that in rectilinear polygons with holes the intersec-
tion graph of the maximal rectangles is not necessarily perfect. However, this is no
contradiction to our conjecture.

Figure 4 shows a gallery with one hole in which the intersection graph of the
maximal rectangles is not perfect because it contains an induced cycle of length 5.
Nevertheless, there is a packing of size 3, which is the minimum number of guards
necessary to guard the gallery.

5 Guarding m-Polyominoes

A polyomino that is the union of m squares is called an m-polyomino. Note that an
m-polyomino and can have holes. Recently Biedl et al. [1] proved the following bound
in terms of the area of a polyomino:

Theorem 10 (Biedl et al. [1]) At most �m+1
3 � guards are necessary to guard an m-

polyomino.
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(a) (b) (c) (d) (e)

Fig. 5 The transformation for the proof of Theorem 10 for polyominoes with holes. a Original polyomino
with holes. b The new gallery M after inserting additional walls. c The gallery M ′. d M ′ with packing P ′
of maximal rectangles. e The corresponding maximal rectangles in the gallery M

In this section we show that our bound on the number of guards in terms of the
perimeter implies this bound in terms of the area.

First consider the case that the gallery does not contain a hole. Let P,Q and G be
defined as above. Again, we assume that |P| ≥ 2. Let a(P) be the area of a polygon
P ∈ P ∪ Q.

Lemma 11 For all R ∈ P and Q ∈ Q we have a(R) ≥ 2 and a(Q) ≥ dG(Q) − 1.

Proof Observe that every maximal rectangle contains at least two unit squares, that
is, a(R) ≥ 2 for all R ∈ P . By Lemma 6, each region Q ∈ Q contains at least dG(Q)

wall segments. Moreover, it contains at least dG(Q) segments in its boundary that are
not wall segments, one for each neighbor of Q in G. Thus the perimeter of Q is at
least 2dG(Q). The area of a connected polyomino with perimeter 2k is at least k − 1.
As Q itself is a connected polyomino the claim follows directly. �

The graph G is connected and thus

|E(G)| ≥ |V (G)| − 1 = |Q| + |P| − 1. (5)

We conclude using Lemma 11

m = ∑

R∈P
a(R) + ∑

Q∈Q
a(Q) ≥ 2|P| + ∑

Q∈Q
(dG(Q) − 1) (Lemma 11)

≥ 2|P| − |Q| + |E(G)| (by (3))

≥ 3|P| − 1. (by (5))

By Proposition 3, |P| is an upper bound for the number of guards necessary to
guard the gallery. This proves Lemma 10 in the case that the gallery has no holes.

If there are holes we add additional walls to make the gallery hole-free. This can
be done by connecting holes to other holes or to the exterior with new walls (see e.g.
[12]) such that the interior of the gallery is a connected region with no hole. For an
example see Fig. 5a, b. By this procedure we increase the number of walls and more
guards might be necessary, but the area of the gallery does not change.
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Denote by M the new gallery and let M̊ be the interior of M , that is, all points of
M that are not on a wall. We “shrink” the gallery by setting

M ′ = {
(x, y) ∈ R

2| max
p/∈M̊

||p − (x, y)||1 ≥ ε
}

for a fixed ε > 0 (Fig. 5c). The new M ′ does not contain any holes and there exists an
obvious one-to-one correspondence between the maximum rectangles in M and M ′.
Let P ′ be a maximal packing of maximum rectangles in M ′ and define Q′ and G ′ as
above (Fig. 5d). Let P and Q be the sets we obtain by replacing the regions in P ′ and
Q′ by their corresponding regions in M and let G be the corresponding graph with
vertex set P ∪ Q (Fig. 5e). Some of the rectangles in P might share the same walls
and vertices of M , but the interiors of the regions P ∪ Q are pairwise disjoint. Hence,
we apply Lemma 5 and the method for hole-free polyominoes on P,Q and G. We
conclude that at most �m+1

3 � guards are sufficient to guard M and thus �m+1
3 � guards

are also sufficient to guard the original polyomino with holes. This proves Lemma 10
in the general case.
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