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Abstract It is shown that N points on a real algebraic curve of degree n in R
d always

determine �n,d N 1+ 1
4 distinct distances, unless the curve is a straight line or the closed

geodesic of a flat torus. In the latter case, there are arrangements of N points which
determine �N distinct distances. The method may be applied to other quantities of
interest to obtain analogous exponent gaps. An important step in the proof involves
understanding the structural rigidity of certain frameworks on curves.

Keywords Distinct distances · Algebraic curves · Structural rigidity · Erdös distance
problem

1 Introduction

Let P ⊂ R
2 be a finite set. Consider the set

�(P) := {‖p − q‖ | p, q ∈ P}

of distances determined by P . A famous problem, posed by Erdös [8], is to determine
a sharp asymptotic lower bound on the cardinality |�(P)| of this set as a function of
the cardinality |P| of the set P .

Conjecture 1.1 (Erdős) Let P ⊂ R
2 be a finite subset. Then,

|�(P)| � |P|√
log |P| .

Recently, Guth and Katz have proven the following celebrated (almost sharp) result.
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Theorem 1.2 (Guth-Katz [9]) Let P ⊂ R
2 be a finite subset. Then,

|�(P)| � |P|
log |P| .

Remark 1.3 The exponent 1 of |P| in the lower bound is sharp; for example, a set of N
equally spaced points on a circle or a straight line determines ≤N distinct distances.

When considering the inverse problem of describing arrangements of points which
determine few distinct distances, one question which arises is whether these arrange-
ments have algebro-geometric structure. In this article, we look at whether arrange-
ments of points in R

2, and more generally, R
d which are known to lie on an algebraic

curve of fixed degree can determine too few distinct distances. We explore a link
between the algebraic geometry of the problem and the structural rigidity of certain
frameworks on the curve, and with this interpretation, we are able to show that, unless
the curve has a very specific form which we can describe explicitly, a finite set of
points lying on the curve cannot determine too few distinct distances.

Remark 1.4 Even without any additional assumptions, finite subsets of algebraic
curves cannot determine too few distances. Indeed, let Γ be an algebraic curve of
degree n in R

2. Then Γ intersects any circle which does not contain Γ in at most
2n points. Consequently, every point in P determines at least |P|−1

2n distinct distances
with the other points of P . (The author thanks the second anonymous referee for this
argument.)

1.1 Helices

We now describe a class of real analytic curves supporting finite subsets which deter-
mine few distinct distances.

Definition 1.5 (Generalized helix) Let d > 0, k, l ≥ 0 and l + 2k ≤ d. Let A be a
real invertible skew-symmetric 2k × 2k matrix, v ∈ R

2k and w ∈ R
l . A generalized

helix is a real analytic curve Γ in R
d parametrized by γ : I → R

d for a non-empty
open interval I ⊂ R which, up to rigid motions, is given by

γ (t) = (exp(At)v, tw, 0) ∈ R
2k × R

l × R
d−l−2k = R

d .

Generalized helices with l = 0 are (up to rigid motions) the geodesics of a k-
dimensional flat torus parametrized by

(u1, . . . , uk) 	→ (α1 cos u1, α1 sin u1, . . . , αk cos uk, αk sin uk) ∈ R
2k ⊂ R

d

for some α1, . . . , αk > 0. The flat torus is the embedded k-dimensional submanifold
of R

2k obtained by taking a k-fold product of circles S1 ⊂ R
2.

A generalized helix is a real algebraic curve if and only if either k = 0 and l > 0
(in other words, it is a straight line) or, alternatively, k > 0, l = 0 and the curve
is a geodesic of a k-dimensional flat torus which is closed. This means that it has a
parametrization of the form
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γ (t) = (α1 cos λ1t, α1 sin λ1t, . . . , αk cos λk t, αk sin λk t).

with each ratio λ j/λi rational; see Lemma 7.4. We will refer to such a curve as an
algebraic helix.

Remark 1.6 In R
2 (and R

3), algebraic helices are straight lines and circles.

Algebraic helices, and in fact generalized helices, support subsets which determine
few distinct distances.

Theorem 1.7 Let Γ be a generalized helix in R
d . Then, for any integer N > 0, there

exists a finite subset P of Γ such that |P| = N and the number of distinct distances
determined by P is �N.

Proof Let Γ be given by

γ (t) = (exp(At)v, tw, 0).

Let Q ⊂ R be any finite arithmetic progression of cardinality N . Then for x, y ∈ Q,

‖γ (x)− γ (y)‖2 = ‖(exp(Ax)− exp(Ay))v‖2 + (x − y)2‖w‖2

= (x − y)2
(‖ exp(Aξ)Av‖2 + ‖w‖2)

for some ξ in the interval [min{x, y},max{x, y}]. Since A is skew symmetric, exp(Aξ)
is orthogonal and

‖ exp(Aξ)Av‖2 = ‖Av‖2.

Hence

‖γ (x)− γ (y)‖ = |x − y|(‖Av‖2 + ‖w‖2)
1
2 .

Consequently, the set of pairwise distances

{‖γ (x)− γ (y)‖ | x, y ∈ Q}

determined by image P = γ (Q) of Q under γ has cardinality ≤ |Q − Q| � |Q| = N .

1.2 Main Results

Our main result is that for real algebraic curves (see Sect. 2.2 for a precise definition)
which are not generalized helices, there is an exponent gap and the set of pairwise
distances determined by a finite subset P has cardinality �|P|1+δ for some δ > 0.
We obtain δ = 1

4 in the proof below, although we do not believe this is optimal.

Theorem 1.8 Suppose that Γ ⊂ R
d is a real algebraic curve of degree m. Let P ⊂ Γ

be a finite subset. If no irreducible component of Γ is an algebraic helix, the number

of distinct distances determined by P is �m,d |P|1+ 1
4 .
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Remark 1.9 A few weeks after an initial preprint of this paper was released, Pach and
de Zeeuw [17] improved the exponent for the special case when the curve is embedded
in the plane (i.e. when d = 2) to 1 + 1

3 using a more direct algebraic argument. Their
argument is simpler and shorter than our approach for that special case but does not
seem to readily generalize to higher ambient dimensions and does not explore the link
to structural rigidity which we look at here.

The method can also be applied to quantities of interest other than the number of
pairwise distances determined by P . To illustrate this, we will also show how to obtain
an analogous result for the number of distinct areas of triangles in R

2 determined by
pairs of points in a finite set P and a fixed apex v which does not lie on Γ .

Remark 1.10 In Iosevich et al. [14], proved the analogue of Theorem 1.2 for this
quantity; they show that a finite non-collinear set of points P in the plane determines
�|P|/ log |P| distinct areas of triangles with one vertex at the origin. Areas of triangles
without the restriction that one vertex is fixed have also been studied by Pinchasi [19]
who gave an exact bound in this case.

Theorem 1.11 Suppose thatΓ ⊂ R
2 is a real algebraic curve of degree m and v ∈ R

2

is not onΓ . Let P ⊂ Γ be a finite subset. If no irreducible component ofΓ is a straight
line or an ellipse or hyperbola centred at v, the number of distinct areas of triangles

with vertices at v, p and q for pairs of points p, q ∈ P is �m |P|1+ 1
4 .

While we do not attempt to state a fully general theorem in this paper, we do prove
the analogue of these results to a large class of quantities; see Theorem 3.9.

Remark 1.12 Similarly to Remark 1.4, the number of areas of triangles is �m |P| for
any irreducible curve Γ . Taking equally spaced points on a circle centred at v or on a
straight line shows that for these two classes of curves there are finite subsets P which
determine �|P| distinct areas of triangles. Similarly, for any geometric progression Q,
taking the points P = {(q+v1, q−1+v2) | q ∈ Q} on the rectangular hyperbola given
by (X − v1)(Y − v2) = 1 gives an example of a P on this curve which determines
�|P| distinct areas of triangles. Since any affine transformation which fixes v will
preserve the number of distinct areas of triangles, it follows that for any ellipse or
hyperbola centred at v or any straight line and any integer N > 0, there are examples
of finite subsets consisting of N points which determine only �N distinct areas of
triangles.

Before we begin the proof of Theorem 1.8, it will be necessary to review some
basic results from algebraic geometry and introduce some language from the theory
of structural rigidity. We have collected these prerequisites in Sect. 2. In the final
section, we discuss some links to other results in the literature.

1.3 Outline of Proof

The proof itself turns out to be technical, even though the argument is quite elementary.
As a consequence, we give a brief and informal expository outline to help navigate
the reader. The proof itself begins in Sect. 3.
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Consider a real algebraic curve Γ ⊂ R
d . We define exactly what we mean by this

in Sect. 2.2.
The first step to prove Theorem 1.8 is to follow a method of Elekes (see Propo-

sition 3.4) to reduce the question to check whether certain planar algebraic curves
intersect a lot; if they do not, then the original curve Γ cannot support finite subsets
determining few distinct distances. This is done in Sect. 3.

Once this reduction is performed, the main general step concerns showing that the
curves constructed do not intersect too much; this is done in Sect. 4. The main novelty
in our technique involves showing that if this intersection property fails then the curve
enjoys a very restrictive structural property: loosely speaking, it is possible to move
any triangle with vertices on the curve along the curve while keeping its edge lengths
fixed (more precisely, we show that a local version of this property must hold). This
result furnishes a link between distinct distance results and the theory of structural
rigidity. So as to not disrupt the flow of the main argument, the proof of the rigidity
results is done in Sect. 5.

The argument so far applies more generally to other quantities of interest on curves,
not just Euclidean distance. While we do not explore a full generalization in this paper,
we give a satisfactory generalization of the above result to a certain class of symmetric
algebraic quantities D(p, q) between pairs of points p, q ∈ Γ . The same argument
shows that the curves which support finite subsets P determining only a few distinct
values D(p, q) as p, q vary over P enjoy an analogous structural property; it is possible
to move any triangle with vertices p, q, r on the curve along the curve, while keeping
the values of D(p, q), D(q, r) and D(r, p) fixed.

For the particular case where D is the Euclidean distance and the original distinct
distance problem, the proof of Theorem 1.8 is completed by characterizing real alge-
braic curves which have the property that triangles may be moved along them while
preserving edge lengths. This is done in Sect. 7. The key step is to show that the
property forces the norm of every derivative of (a parametrization of) the curve to be
constant; this is done by using a finite difference approximation to link the structural
rigidity of points along the curve to a statement about derivatives (see Lemma 7.2).
Finally, we use a result of D’Angelo and Tyson [3] which states that real analytic
curves with all derivatives of constant norm are necessarily generalized helices.

Due to a technical reason which arises in the proof, it is more convenient to work with
a simpler class of curves (see Definition 3.5); the reduction to this case is performed
in Sect. 6.

2 Technical Prerequisites

2.1 Preliminaries

Given a finite set P , we will denote its cardinality by |P|. We will write P2∗ for the
restricted Cartesian product,

P2∗ = {(p, q) | p, q ∈ P, p �= q}.
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If f1 and f2 are non-negative functions N → R≥0 and ν1, . . . , νr is a list of para-
meters, we will write f1 �ν1,...,νr f2 to mean that there exist n0 = n0(ν1, . . . , νr ) ∈ N

and a real function C = C(ν1, . . . , νr ) > 0 depending only on ν1, . . . , νr such that
for all n > n0, it follows that f1(n) ≤ C f2(n). We will also write f1 �ν1,...,νr f2 to
mean f2 �ν1,...,νr f1.

When f �ν1,...,νr 1, we will say that f is (ν1, . . . , νr )-bounded.

2.2 Curves

A curve Γ ⊂ R
d (without further explicit or implicit qualification) refers to a one-

dimensional smooth embedded submanifold of R
d .

For a field F and an ideal I ⊂ F[X1, . . . , Xd ] of a polynomial ring in d variables
over F, we define the (affine) zero set

ZF(I ) = {x ∈ F
d | f (x) = 0 for all f ∈ I }.

We will mostly be interested in zero sets for the case where F = C; see [2], [21]
and [12] for an introduction to algebraic geometry in this setting. In particular, we
will assume that the reader is familiar with basic notions such as irreducibility, the
dimension of ideals and singularities of zero sets but we will briefly review concepts
and results which are more advanced.

Definition 2.1 (Algebraic curve) An (affine) algebraic curve in ambient dimension
d, Γ , is the zero set in C

d of a one-dimensional ideal in C[X1, . . . , Xd ].
The ideal of Γ is the ideal

IΓ := { f ∈ C[X1, . . . , Xd ] | f (x) = 0 for all x ∈ Γ }.

For certain technical reasons which can arise in dimensions d > 2, we will restrict
to real curves whose complexification is one-dimensional according to the following
definition.

Definition 2.2 (Real algebraic curve) A real algebraic curveΓ in R
d is the non-empty

open subset in R
d of a set of the form ZC(I ) ∩ R

d such that

(1) The ideal I ⊂ C[X1, . . . , Xd ] is one-dimensional (over C).
(2) For each irreducible component C of ZC(I ), the set C ∩ R

d is a one-dimensional
smooth embedded one-dimensional submanifold of R

d away from the singularities
of ZC(I ).

Remark 2.3 With this definition, for example, although the zero set of f (X1, X2, X3)

= X2
2 + X2

3 in R
3 is a one-dimensional smooth manifold (it is the line along the

X3-axis), it is not a real algebraic curve since the complexification has dimension 2
over C

3. On the other hand, even though the zero set of f (X1, X2) = X2
1 + X2

2 in C
2

is one-dimensional, it is not a real algebraic curve since its intersection with R
2 is a

single point.
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We will frequently consider smooth parametrizations of subsets of real algebraic
curves so that we can apply analytic tools in our arguments. When there is a designated
smooth parametrization γ of Γ , we will sometimes abuse our definition slightly and
refer to the parametrization γ itself as Γ ; this will be clear from context.

Definition 2.4 (Degree) Let Γ be a real algebraic curve. The (geometric) degree of
Γ is the geometric degree of ZC(IΓ ), i.e. the number of points of intersection of the
projective closure of ZC(IΓ ) with a generic hyperplane. The ambient dimension of Γ
is the complex ambient dimension of ZC(IΓ ).

Definition 2.5 (Algebraic degree) Let ZC(I ) ⊂ C
d be the zero set of an ideal I ⊂

C[X1, . . . , Xd ]. The set { f1, . . . , fr } ⊂ C[X1, . . . , Xd ] generates the zero set ZC(I ),
if the ideal J generated by { f1, . . . , fr } has ZC(J ) = ZC(I ) (equivalently, if the
radical ideals generated by I and J coincide). For a real algebraic curve Γ ⊂ R

d ,
the algebraic degree of Γ is the minimum of max j deg f j over all sets { f1, . . . , fr }
generating Γ .

Remark 2.6 In the case where the ambient dimension is d = 2, the algebraic and
geometric degrees of an irreducible real algebraic curve coincide.

2.3 Computational Algebraic Geometry

We will now review some quantitative tools from algebraic geometry which will be
useful in deriving bounds for quantities arising in our proof.

We will utilize a refinement of Bézout’s Theorem and two standard corollaries
(proved here for completeness) to bound the number of zero-dimensional components
in intersections. The proof of this refinement appears in [13]. For a more detailed
exposition of this result, see the section on Bézout’s inequality in [23].

Theorem 2.7 (Bézout) Let I ⊂ C[X1, . . . , Xd ] be an ideal generated by { f1, . . . , fr }
with r ≥ d. Assume that deg f j ≥ deg f j+1 for j = 1, . . . , (r − 1). Then the number
of zero-dimensional components of ZC(I ) is at most

d∏

j=1

(deg f j ).

Remark 2.8 Note that only the d largest degrees appear in the product for the upper
bound of the number of zero-dimensional components.

Corollary 2.9 Let Γ ⊂ R
d be an irreducible real algebraic curve of algebraic degree

m. Then the number of singularities of Γ is (d,m)-bounded.

Proof Let Γ be generated by { f1, . . . , fr } where deg f j ≤ m for each 1 ≤ j ≤ r .
The singularities of Γ form a Zariski-closed proper subset of Γ ⊂ C

d which is the
intersection of Γ with hypersurfaces which are the zero sets of determinants of the
(d − 1)× (d − 1) minors of the Jacobian matrix of { f1, . . . , fr }. These determinants
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are polynomials of (d,m)-bounded degree. By the irreducibility of Γ , at least one of
these hypersurfaces intersects Γ in a finite number of points. By Bézout’s Theorem,
the number of singularities is therefore (d,m)-bounded.

Corollary 2.10 Let Γ ⊂ R
d be an irreducible real algebraic curve of geometric

degree n and algebraic degree m. Then n ≤ md.

Proof By Bézout’s Theorem, the number of zero-dimensional components in the inter-
section of Γ with the zero set of a linear polynomial is ≤ md .

When the ambient dimension is d > 2, we will use the theory of Gröbner bases to
obtain appropriate bounds. For an introduction to Gröbner bases, see [2]. The degree
bound we will use the following result due to Dubé.

Theorem 2.11 (Dubé [4]) Suppose that I ⊂ C[X1, . . . , Xd ] is an ideal generated
by { f1, . . . , fr }. Write m = max j deg f j . Then there exists a Gröbner basis of I

consisting of polynomials all of degree � m2d
.

If I ⊂ C[X1, . . . , Xd1 ,Y1, . . . ,Yd2 ] is an ideal such that dim ZC(I ) = r , then the
Zariski closure of the projection of ZC(I ) onto the first d1 coordinates has dimension
at most r . The ideal corresponding to this Zariski closure is precisely the ideal I ∩
C[X1, . . . , Xd1 ], up to taking radicals. Recall that if G is a Gröbner basis of I for an
elimination ordering eliminating Y1, . . . ,Yd1 , then G ∩ C[X1, . . . , Xd1 ] is a Gröbner
basis for I ∩ C[X1, . . . , Xd1 ].

We will also require a result which bounds the number of connected components of
the real algebraic curve Γ ⊂ R

d . When d = 2, we may use Harnack’s Curve Theorem
[10]. For d > 2, there is the following deeper result due to Thom [24] and Milnor
[15]; we will only state the theorem for the situation which arises in this article.

Theorem 2.12 (Thom-Milnor) Let Γ ⊂ R
d be a real algebraic curve of algebraic

degree m and ambient dimension d. The number of connected components of Γ in R
d

is at most mCd for some universal constant C > 0.

Remark 2.13 At various points in our proof, we will need to convert ordinary differ-
ential equations to a more algebraic form.

Suppose that the set { f1, . . . , fr } generates the real algebraic curveΓ with deg f j ≤
m and let Γ : I → R

d be a singularity-free real analytic parametrization of an open
subset of Γ . Write γ (τ) = (x1(τ ), . . . , xd(τ )) for real analytic xi : I → R and
ẋ = (ẋ1, . . . , ẋd). Since f j (γ (τ )) ≡ 0, it follows that

∇ f j (x1, . . . , xd) · (ẋ1, . . . , ẋd) ≡ 0.

For each 1 ≤ i ≤ d, write ẋi ∈ R
d−1 for the vector obtained by deleting ẋi from ẋ.

For each (d − 1) × (d − 1) minor M of the Jacobian J associated to { f1, . . . , fr }
whose columns do not include the i th column of J , we get an equation

M ẋi = ẋi b,

123



674 Discrete Comput Geom (2014) 51:666–701

for a certain vector b of partial derivatives with respect to xi of { f1, . . . , fr }. Hence,

det(M)ẋi = ẋi M∗b (2.1)

where M∗ is the adjugate matrix of M . Note that det M and the entries in M∗ are
polynomials in x1, . . . , xd of degree at most dm. Furthermore, not all of these equations
can be trivial on Γ since, away from a finite number of singularities, the rank of J is
(d − 1).

Consequently, any first-order differential equation of degree κ satisfied by the com-
ponents of γ on an open set is equivalent to the vanishing on Γ of a certain system of
polynomials of (d,m, κ)-bounded degree, and conversely, if these polynomials do not
vanish onΓ , then the differential equation fails to be satisfied for some singularity-free
open subset of Γ .

Similarly, using the equation

0 ≡ d

dt

(∇ f j (x) · ẋ) = ẋ · H
f j

x (ẋ)+ ∇ f j (x) · ẍ,

where H f
x is the Hessian of f at x, which allows us to express any second-order

differential equation of degree κ in the components of γ as a system of polynomials
of (d,m, κ)-bounded degree such that the differential equation is satisfied by Γ if and
only if all the polynomials vanish on Γ .

We will treat the case of rationally parametrized curves first because this case is
more elementary and we can (often) obtain a better bound. For an introduction to
rational curves, see [20].

Definition 2.14 A smooth function γ : I → R
d where I is a real open interval is

a (real) rational parametrization, if each coordinate function γ j (t) for j = 1, . . . , d
is given by a reduced rational function (in other words, the ratio of two coprime
polynomials) in t over R and the tangent vector γ̇ (t) does not vanish for t ∈ I . The
degree of γ is max j deg(γ j ).

Such functions γ are parametrizations of one-dimensional open subsets of the
intersection of complex curves with R

d of bounded algebraic degree. Indeed, let γ :
I → R

d be a rational parametrization of degree m and write γ j (t) = f j (t)/g j (t) for
coprime polynomials f j , g j of degree bounded by m. By considering a Gröbner basis
for an elimination ordering for t of the ideal generated by {g j X j − f j | 1 ≤ j ≤ d} in
C[X1, . . . , Xd , t] and eliminating t , it follows that such a rational parametrization γ
defines the complex parametrization of an open subset of an algebraic curve in C

d . By
analytic continuation, γ must parametrize an open subset of an irreducible component
of this curve. Invoking Dubé’s bound, the algebraic degree of this irreducible curve
over C is at most �m2d

.

Remark 2.15 In the special case where the ambient dimension d = 2, we can obtain
a better bound for the degree of the implicit algebraic equation by considering instead
the resultant eliminating t of {g1 X1 − f1, g2 X2 − f2}. This is a polynomial of degree
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at most m in C[X1, X2], so γ parametrizes the open subset of the intersection with
R

2 of an irreducible algebraic curve of (geometric or algebraic) degree at most m.

2.4 Combinatorial Geometry

We will require a variation of the Szemerédi-Trotter Theorem (which bounds the
number of incidences between a set of points in the plane and a set of lines in terms
of the number of points and lines) in our proof.

Definition 2.16 (Admissible) Let Γ be a finite collection of curves in R
2 and C be

a positive integer. The collection Γ is C-admissible, if the following two conditions
hold:

(1) Any two distinct curves Γ1, Γ2 ∈ Γ meet in at most C points of R
2.

(2) Any two distinct points in R
2 are incident to at most C curves from Γ .

We will use the following variant due to Pach and Sharir [18].

Theorem 2.17 (Pach-Sharir) Let Γ be a finite collection of curves and Q be a finite
collection of points in R

2. If Γ is C-admissible and each curve Γ ∈ Γ does not
intersect itself, then the number of incidences, I (Γ , Q), between Γ and Q satisfies,

I (Γ , Q) = |{(Γ, q) ∈ Γ × Q | q ∈ Γ }| �C |Γ | 2
3 |Q| 2

3 + |Γ | + |Q|.

2.5 Structural Rigidity

We will introduce some definitions from the theory of structural rigidity; we have
adapted them from the standard ones to be more suited to our particular application of
algebraic curves embedded in an ambient Euclidean space. The reader may consult [1]
and [16] for some background, although we will not assume the reader has knowledge
of this area and we define the terminology used in the paper below.

Definition 2.18 (Framework) Let G = G(V, E) be a graph with vertex set V and edge
set E . Let M be a subset of R

d . A G-framework on M is a drawing of G in R
d such

that all vertices are distinct and lie on M .
If φ : V → M is an injective map, the G-framework on M with each vertex v ∈ V

corresponding to φ(v) ∈ M will be denoted by GM (φ).

Fix an ambient dimension d > 1 and a smooth function D : R
d × R

d → R which
we write as D(x, y) for x, y ∈ R

d .

Definition 2.19 (Flexible framework) Let G(V, E) be a graph and M ⊂ R
d . The

framework GM (φ) is D-flexible on M , if there exists a continuous function 
 : V ×
(−δ, δ) → M for some δ > 0 such that, writing φt (v) := 
(v, t), it is true that
φ0 = φ, there exists t0 ∈ (−δ, δ) such that φt0 �= φ and, for each pair of edges
v,w ∈ E , the edge function

t 	→ D(φt (v), φt (w))
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is constant.
We will say that GM (φ) is D-smoothly flexible on M , if for each v ∈ V , the map

t 	→ φt (v) is smooth.
The function 
 is a D-motion of GM (φ).

Informally, a D-flexible framework on M is an vertex embedding of a graph into
M which can be moved continuously while preserving the value of D along each edge
of the graph; the D-motion is the function which describes this movement.

Remark 2.20 In the structural rigidity literature, it is common to ignore motions arising
from symmetries of D (e.g. rigid motions when D is the square distance function);
for convenience, we will not do follow this convention.

We will also be interested in infinitesimal D-motions.

Definition 2.21 (Infinitesimally flexible framework) Let G(V, E) be a graph and
M ⊂ R

d be a smooth embedded submanifold of R
d . The framework GM (φ) is

D-infinitesimally flexible on M , if for each v ∈ V , there exists a tangent vector
t (v) ∈ Tφ(v)M ⊂ R

d such that for each pair of vertices v,w ∈ V ,

∇D(v,w) · (t (v), t (w)) = 0.

Informally, an infinitesimal motion is an assignment of velocity vectors to each
embedded vertex in such a way that the value of D along each edge remains constant
up to first order.

Remark 2.22 By considering the derivative at t = 0 of the edge function t 	→
D(φt (v), φt (w)) in the definition of D-flexibility, it follows that if a framework GM (φ)

on a smooth embedded submanifold M ⊂ R
d is D-smoothly flexible then it is D-

infinitesimally flexible.

The bipartite graph Km,n is the graph with vertex set V1 ∪ V2 for disjoint sets V1
and V2 with cardinalities |V1| = m, |V2| = n and edge set {uv | u ∈ V1, v ∈ V2}.

The framework KM
m,n(φ) will be written as

KM (φ(V1), φ(V2))

and referred to as an (m, n)-framework on M . Note that this is well defined up to
permutation of each vertex set V1, V2.

The complete graph KN is the graph with vertex set V such that |V | = N and edge
set {uv | u, v ∈ V }. The triangular graph T is the complete graph K3 on a set of three
vertices V . The framework T M (φ) will also be written as

TM (φ(V )).

This is well defined up to permuting V . We will say that T M (φ) is based at {x, y} for
x, y ∈ M distinct if {x, y} ⊂ φ(V ).

In the context of D-flexibility along curves, we will be interested in the following
degeneracy condition.
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Definition 2.23 (Degenerate curve) Let G be a graph. A smooth embedded curve
Γ ⊂ R

d is (D,G)-degenerate if every G-framework on Γ is D-smoothly flexible.

Informally, Γ is (D,G)-degenerate if every vertex embedding of G into Γ can be
moved smoothly along Γ while preserving the value of D along each edge.

Remark 2.24 When D is clear from context and especially when we are considering
the square distance function

D(X,Y ) = ‖X − Y‖2 := ‖X − Y‖2
Rd ,

we will often suppress reference to D in the definitions above.

3 Step 1: Reduction to a Two-Dimensional Problem

Let D : R
d × R

d → R be a real polynomial in 2d variables. We will primarily be
interested in the case where D is the square distance function, D(X,Y ) = ‖X − Y‖2,
but we will also consider more general D.

Definition 3.1 (Distance polynomial) Let D : R
d × R

d → R be a real polynomial in
2d variables and γ : I → R

d be a smooth function. Then D is a distance polynomial
for γ , if the following conditions hold:

(1) D(γ (α), γ (β)) = D(γ (β), γ (α)) for all α, β ∈ I .
(2) D(γ (α), γ (β)) = 0 if and only if α = β.

Remark 3.2 The square distance function D(X,Y ) = ‖X − Y‖2 is a distance poly-
nomial for any injective γ : I → R

d .

Let I be a non-empty open interval in R and let γ : I → R
d be an injective real

analytic parametrization of a curve Γ in R
d . Let D be a distance polynomial for γ .

Let P ⊂ Γ be a finite set of points lying on the curve. Write

�D(P) = {D(p, q) | p, q ∈ P}

for the image of P × P under D.
For each pair of points (p, q) ∈ P2∗, consider the smooth map ξpq : I → R

2 given
by

ξpq(t) = (D(γ (t), p), D(γ (t), q)).

Definition 3.3 (Elekes curves) The Elekes curve �pq is the curve in R
2 with smooth

parametrization ξpq . The set of Elekes curves corresponding to P is the set

�P = {�pq | (p, q) ∈ P2∗}.
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A key observation is the following exponent gap result for the cardinality of |�(P)|.
This follows from a method of Elekes who used it to derive a quantitative bound [5]
in his proof of Purdy’s Conjecture; the original proof of the conjecture (without a
quantitative bound) is from Elekes-Rónyai [6].

Proposition 3.4 Suppose that there exists a subset �′ ⊂ �P which is C-admissible
and consists only of curves which do not intersect themselves. If |�′| ≥ c0|P|2, then

|�D(P)| �C,c0 |P|1+ 1
4 .

Proof Each curve�pq ∈ �′ does not intersect itself, so it is incident to |P|−2 distinct
points of the Cartesian product �D(P)2 ⊂ R

2, namely the set of points

{(D(r, p), D(r, q)) | r ∈ P \ {p, q}}.

Therefore, the number of incidences I (�′,�D(P)2) satisfies

I (�′,�D(P)
2) ≥ (|P| − 2)|�′| �c0 |P|3.

Theorem 2.17 applied to �′ and �D(P)2 gives

I (�′,�D(P)
2) �C |�′| 2

3 |�D(P)| 4
3 + |�′| + |�D(P)|2.

Combining the two bounds for the number of incidences and using the trivial bound
|�′| ≤ |P|2 yields

|P|3 �C,c0 |P| 4
3 |�D(P)| 4

3 + |P|2 + |�D(P)|2

which gives the stated lower bound on �D(P).

The strategy for proving lower bounds for |�D(P)| will thus be to show that �P

contains many distinct curves (i.e. �|P|2) and that a positive proportion of the set of
distinct curves form an admissible set in the above sense.

It will be convenient to reduce matters to curves which are well behaved in the
following sense.

Definition 3.5 (Simple pair) Let D : R
2d → R be a polynomial and let Γ be a curve

which has a real analytic parametrization γ : I → R
d for some non-empty open

interval I ⊂ R. The pair [D, Γ ] is simple, if the following conditions hold:

(1) The parametrization γ is injective and singularity free.
(2) The function t 	→ γ̈ (t) does not vanish identically on I .
(3) The polynomial D is a distance polynomial for γ .
(4) For each α, β ∈ I , the map I → R

2 given by

t 	→ (D(γ (t), γ (α)), D(γ (t), γ (β)))

is injective.
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(5) The map {(α, β) ∈ I 2 | α �= β} → R given by (α, β) 	→ D(γ (α), γ (β)) is a
submersion (i.e. its differential does not vanish).

Remark 3.6 For specific choices of D and Γ , it is a technical matter to determine
whether [D, Γ ] is simple; one general strategy which appears to work widely is to
split Γ into a controlled number of pieces and deal with each separately (see, for
example, Sect. 6). While the conditions above are chosen to be general enough to
include the cases of principal interest in this paper but specific enough to make the
subsequent arguments as elementary as possible, we do not believe that this class of
[D, Γ ] is in any sense optimal or the most natural if one seeks to make a fully general
statement analogous to Theorem 1.8.

We will frequently make use of the following almost immediate consequence of
the definition; informally, it states that any line segment or V-shaped graph (i.e. the
bipartite graphs K1,1 and K2,1) with vertices on the curve can be moved along the
curve while preserving the values of D along the edges.

Lemma 3.7 Let [D, Γ ] be simple. Then Γ is (D,K1,1)-degenerate and (D,K2,1)-
degenerate.

Proof Suppose that α0, β0 ∈ I are distinct and

D(γ (α0), γ (β0)) = d.

By condition 5 in the definition of a simple pair, the Implicit Function Theorem applies
for the implicit equation

D(γ (α), γ (β)) = d, (α, β) ∈ I 2

and we deduce that there exist small open neighbourhoods U, V ⊂ I of α0, β0,
respectively, and a smooth bijection β : U → V such that β(α0) = β0 and

D(γ (α), γ (β(α))) = d for all α ∈ U.

This implies that Γ is (D,K1,1)-degenerate. Repeating the argument (and replac-
ing U and V with smaller neighbourhoods of α0, β0 if necessary) implies that it is
(D,K2,1)-degenerate.

Remark 3.8 It should be observed that the β constructed in the proof above is uniquely
determined (locally) given the requirements that β(α0) = β0 and

D(γ (α), γ (β(α))) = d.

Informally, this means that for simple [D, Γ ], given two points p, q ∈ Γ , when we
move p slightly along Γ there is exactly one way to move q along Γ in such a way
that the value of D(p, q) is preserved throughout the motion.
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Our main general result which links algebra to rigidity along curves is the following.
It states that the curve Γ enjoys an exponent gap as in the statement of Theorem 1.8
unless every triangle with vertices on the curve may be moved along the curve while
preserving the values of D along edges. Recall that T denotes the triangular graph.

Theorem 3.9 Suppose that Γ ⊂ R
d is the singularity-free subset of a real algebraic

curve of algebraic degree m and [D, Γ ] is simple.
If Γ is not (D, T )-degenerate then whenever P ⊂ Γ is a finite subset,

|�D(P)| �m,d,deg D |P|1+ 1
4 .

Furthermore, if Γ is rationally parametrized by γ : I → R
d , then the implicit

constant can be chosen to depend only on deg γ and deg D.

4 Step 2: Checking Admissibility

4.1 Exponent Gap for Rational Curves

In this section, we will deal with the conceptually easier case where the curve Γ is a
rational curve. To this end, assume that Γ is parametrized by γ : I → R

d where I is
an open interval and the components of γ (t) are real rational functions of t not all of
which are constant. Let D : R

d × R
d → R be a distance polynomial for γ .

With this setup, the components of each Elekes curve parametrization ξpq(t) are
rational functions of t, α = γ−1(p), β = γ−1(q). Under the additional assumption
that [D, Γ ] is simple (recall Definition 3.5), the parametrization ξpq is not constant
(by condition 4) and each curve�pq is now a rational plane curve which is irreducible
of degree � deg D deg γ (see Remark 2.15). We will reduce to this case where [D, Γ ]
is simple in Sect. 6.1.

By Bézout’s Theorem, any two curves �pq , �p′q ′ intersect in fewer than
(deg D deg γ )2 points, unless both curves correspond to the same algebraic curve
and have a non-empty open subset in common.

Write

ξpq(t) =
( f1(t)

g1(t)
,

f2(t)

g2(t)

)

for polynomials f1(t), f2(t), g1(t), g2(t) in t of degree � deg D deg γ with coeffi-
cients which are polynomials in α, β of degree � deg D deg γ . Define Gα,β(X,Y )
to be the resultant eliminating t of {g1 X − f1, g2Y − f2}. Then Gα,β has degree
� deg D deg γ and its coefficients are polynomials in α, β of (deg D deg γ )-bounded
degree.

The following lemma provides the aforementioned link to rigidity along the curve.
It implies that if there are many incidences between Elekes curves then there is a
flexible (2, k)-framework on Γ .
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Lemma 4.1 There exists a positive integer μ sufficiently large depending on deg γ
and deg D with the following property: Let k ≥ 2 and suppose that δ1, . . . , δk ∈ R

2 are
distinct points. Consider μ distinct pairs (γ (α1), γ (β1)), . . . , (γ (αμ), γ (βμ)) ∈ P2∗
such that allμ curves�γ(α j )γ (β j ) for j = 1, . . . , μ are incident to all δi for 1 ≤ i ≤ k.
Then there exist 1 ≤ j ≤ μ and distinct t1, . . . , tk ∈ Γ such that the (2, k)-framework

KΓ ({γ (α j ), γ (β j )}, {t1, . . . , tk})

is D-smoothly flexible on Γ .

We will write μ(deg γ, deg D) for the smallest μ for which the conclusion holds.

Proof For each point δ ∈ R
2, we obtain a polynomial Hδ(X,Y ) := G X,Y (δ) of

deg D deg γ -bounded degree such that whenever ξγ (α)γ (β)(τ ) = δ, it follows that
Hδ(α, β) = 0. By dividing by suitable polynomial factors (depending on δ) if neces-
sary, we may assume without loss of generality that each Hδ is square free.

The k polynomials Hδ j have μ common zeroes, namely the set {(α j , β j )}μj=1.
By Bézout’s Theorem, the number of zero-dimensional components of the ideal J
generated by the Hδ j is deg D deg γ -bounded. Therefore, if we choose μ sufficiently
large, depending only on deg γ and deg D, there is some (α j , β j ) which lies on a
one-dimensional component of ZC(J ).

For each 1 ≤ i ≤ k, there exists τi ∈ I such that

(D(γ (τi ), γ (α j )), D(γ (τi ), γ (β j ))) = δi . (4.1)

By Lemma 3.7, for each i , we may perturb α j and redefine τi and β j to vary smoothly
with α j while preserving (4.1). The point (α j , β j ) therefore lies on a one-dimensional
irreducible component of ZC(Hδi )whose intersection with R

2 is also one-dimensional
and (α j , β j ) may be perturbed along ZC(Hδi ) ∩ R

2. Consequently, (α j , β j ) may be
perturbed along ZC(Hδi ) ∩ R

2 simultaneously for all 1 ≤ i ≤ k.

To prove Theorem 3.9 (for rationally parametrized curves), we combine this lemma
with two structural rigidity results about triangular frameworks on Γ . The first result
essentially shows that there is a bounded k so that if even one triangular framework on
Γ based at p, q ∈ Γ is not flexible then any (2, k)-framework with {p, q} as one of
its vertex sets is not flexible. The second result states that if Γ is not T -degeneratem,
then after ignoring a small number of points of P , we may assume that for every pair
of points p, q ∈ P , there is a triangular framework based at p, q, which is not flexible.
The proofs of both propositions are deferred to Sect. 5.

Proposition 4.2 Let (p, q) ∈ P2∗ and suppose that there exists a triangular frame-
work based at {p, q} which is not infinitesimally flexible on Γ .

Then, I may be partitioned into a (deg γ, deg D)-bounded number of intervals with
non-empty interiors

I = ∪
r

Ir
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such that whenever τ1, τ2 ∈ I are distinct points and the (2, 2)-framework

KΓ ({p, q}, {γ (τ1), γ (τ2)})
is infinitesimally flexible along Γ , the points τ1 and τ2 do not lie in the same Ir .

In particular, for k sufficiently large, depending only on deg γ and deg D and any
distinct points t1, . . . , tk ∈ Γ , the (2, k)-framework

KΓ ({p, q}, {t1, . . . , tk})
is not infinitesimally flexible on Γ .

Proposition 4.3 Suppose that Γ is not (D, T )-degenerate. Then there exists P0 ⊂ P
such that |P0| �deg γ,deg D |P| and for each pair (p, q) ∈ P2∗

0 there exists a triangular
framework based at {p, q} which is not D-infinitesimally flexible on Γ .

Armed with Lemma 4.1 and the two propositions, we can now prove Theorem 3.9.

Proof of Theorem 3.9 for rationally parametrized curves Suppose that the curve Γ is
not (D, T )-degenerate. We replace P with the set P0 in the conclusion of Proposi-
tion 4.3 and lose a (deg γ, deg D)-bounded constant factor.

With this reduction, one corollary of Proposition 4.2 is that the Elekes curves, �P ,
define many distinct algebraic curves. Indeed, suppose that the curves�p1q1, . . . , �pr qr

for distinct pairs (p1, q1), . . . , (pr , qr ) ∈ P2∗ all determine the same algebraic curve
given by the irreducible polynomial G(X,Y ) of degree � deg D deg γ . Note that these
curves may potentially be different (even potentially disjoint) as real algebraic curves;
recall the definitions from Sect. 2.2.

The first coordinate of ξp j q j (γ
−1(p j )) is 0 and the first coordinate of ξp j q j (t) for

t �= γ−1(p j ) is non-zero (by condition 2 in Definition 3.1 and the injectivity condition
4 in Definition 3.5). There are only finitely many points with first coordinate 0 lying on
the zero set of G. Moreover, near the line X = 0, the zero set of G(X,Y ) is the union of
finitely many curves �1, . . . , �s whose number is (deg γ, deg D)-bounded and such
that, for each j = 1, . . . , r , the curve �p j q j contains one of the curves �i entirely.
By Proposition 4.2, there exists a positive integer k = k(deg γ, deg D) depending
only on deg γ and deg D such that for any (p, q) ∈ P2∗ and distinct t1, . . . , tk ∈ Γ ,
the (2, k)-framework K((p, q), (t1, . . . , tk)) is not D-infinitesimally flexible along
Γ . Pick k(deg γ, deg D) points on each curve �i . By Lemma 4.1, it follows that
each�i can be contained in at most μ(deg γ, deg D) of the curves �p1q1, . . . , �pr qr .
Thus, r ≤ sμ(deg γ, deg D). Therefore, the set�P contains a subset�′ consisting of
�deg γ,deg D |P|2 curves all of which determine different algebraic curves.

This set of curves�′ is not necessarily K -admissible for a (deg γ, deg D)-bounded
K since any two points of R

2 may potentially lie on several curves. To get around
this, we replace each curve �pq ∈ �′ with the curve parametrized by the restriction
ξpq |Ik to the interval Ik ⊂ I from Proposition 4.2 which contains the most points of
�D(P)×�D(P); this number of points is at least �deg γ,deg D |P| since the number
of Ik is (deg γ, deg D)-bounded. By Lemma 4.1 and Proposition 4.2, it follows that
this modified set �′ is K -admissible for a large enough (deg γ, deg D)-bounded K .

Applying Proposition 3.4 completes the proof.
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4.2 Exponent Gap for Algebraic Curves

In this section, we prove Theorem 1.8 for all algebraic curves; when the curve has a
rational parametrization, the previous section usually gives better bounds.

Consider a real algebraic curve Γ of algebraic degree m with a real analytic para-
metrization γ : I → R

2 such that [D, Γ ] is simple. We will reduce to this case in
Sect. 6.2. By considering the irreducible component ofΓ containing the most points of
P and losing a constant factor depending on m, we may assume that Γ is irreducible.
Let IX1,...,Xd ⊂ C[X1, . . . , Xd ] be a prime ideal generating Γ .

Lemma 4.4 The parametrization ξpq is injective and the Elekes curve�pq is an open
subset of an irreducible plane algebraic curve of (d,m, deg D)-bounded degree.

Proof By condition 4 in Definition 3.5, ξpq is injective. Writeγ (t) = (x1(t), . . . , xd(t))
and ξpq(t) = (A(t), B(t)) for real analytic functions x1, . . . , xd : I → R and
A, B : I → R. It follows that

A − D(x, xp) = 0 (4.2)

B − D(x, xq) = 0

where xp and xq are the coordinates of p and q, respectively.
We work in the polynomial ring R = C[A, B, xp, xq , x] of 3d + 2 variables. By

a slight abuse of notation, we will write Ix for the ideal in R given by substituting
x for (X1, . . . , Xd) in the ideal IX1,...,Xd . We will also define Ixp and Ixq similarly.
Let J ⊂ R be the ideal generated by the ideals Ixp , Ixq , Ix and the two polynomials
on the left-hand side of (4.2). Since A, B are visibly uniquely determined given x, xp

and xq it follows that dim ZC(J ) = 3.
Consider the projection π : C

3d+2 → C
2d+2 onto the first 2d + 2 coordinates.

The Zariski-closure of the projection π(ZC(J )) has dimension at most 3. The ideals
Ixp and Ixq may be viewed as ideals in C[A, B, xp, xq ] and their zero sets then each
have dimension d + 3 in C

2d+2, since each is simply the Cartesian product of the
irreducible algebraic curve Γ with a Euclidean space of dimension d + 2. Therefore,
in C

2d+2,

dim ZC(Ixp ) ∩ ZC(Ixq ) ≥ 4.

Thus, the ideal

J ′ = J ∩ C[A, B, xp, xq ]

which corresponds to the Zariski closure ofπ(ZC(J ))must contain polynomials which
do not lie in the ideal Ixp + Ixq ⊂ C[A, B, xp, xq ].

Now, consider any ordering eliminating x in R. By Dubé’s bound, there is a
Gröbner basis for J (with respect to this ordering) consisting of polynomials with
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(d,m, deg D)-bounded degrees. Since J ′ is non-zero and contains polynomials which
do not lie in Ixp +Ixq , it follows that there exists a polynomial G p,q(A, B) ∈ C[A, B]
of (d,m, deg D)-bounded degree whose coefficients are polynomials in the coordi-
nates of p and q of (d,m, deg D)-bounded degree, not all of which vanish identically
for p or q on Γ , such that whenever there exists t ∈ I such that ξpq(t) = (A, B), it
follows that G p,q(A, B) = 0. By taking the real or imaginary part of G p,q , we may
assume that G p,q(A, B) ∈ R[A, B] (for p, q ∈ Γ ⊂ R

d ). In particular, �pq is the
subset of the intersection with R

2 of an irreducible algebraic curve of (d,m, deg D)-
bounded degree; by condition 5 in Definition 3.5, it is an open subset.

By Bézout’s Theorem, it follows that two curves�pq , �p′q ′ with (p, q) �= (p′, q ′)
are either defined by the same irreducible polynomial and they intersect in a non-empty
open set or they meet in a (d,m, deg D)-bounded number of points.

Lemma 4.5 There exists a positive integerμ sufficiently large depending on m, d and
deg D with the following property: Let k ≥ 2 and suppose that δ1, . . . , δk ∈ R

2 are
distinct points. Consider μ distinct pairs (p1, q1), . . . , (pμ, qμ) ∈ P2∗ such that all
μ curves �p j q j for j = 1, . . . , μ are incident to all points δi for 1 ≤ i ≤ k. Then
there exist 1 ≤ j ≤ μ and distinct t1, . . . , tk ∈ Γ such that the (2, k)-framework

KΓ ({p j , q j }, {t1, . . . , tk})

is D-flexible on Γ .

Proof For each δ ∈ R
2, define the non-zero polynomial Hδ in the polynomial ring

R[x1, x2] of 2d variables by Hδ(x1, x2) := Gx1,x2(δ), where Gx1,x2 is the polynomial
defined in the proof of Lemma 4.4. Let Iδ ⊂ C[x1, x2] be the ideal generated by Hδ
and the ideals Ix1 , Ix2 . Then, whenever ξpq(τ ) = δ for some τ ∈ I , the point (xp, xq)

lies on a one-dimensional irreducible component of the zero set of Iδ .
Let μ be a positive integer. Consider the distinct points δ1, . . . , δk ∈ R

2 and the
distinct pairs (p1, q1), . . . , (pμ, qμ) ∈ P2∗. Suppose that for each 1 ≤ i ≤ k and
1 ≤ j ≤ μ, there exists ti j ∈ I such that ξp j ,q j (τi j ) = δi . Then for each 1 ≤ j ≤ μ,
the point (xp j , xq j ) lies on an irreducible component of the zero set of the ideal
I = Iδ1 + · · · + Iδk of dimension at most one.

By Bézout’s Theorem, the number of zero-dimensional components of ZC(I ) is
(d,m, deg D)-bounded. Thus, for sufficiently large μ, not all of the (distinct) points
(xp j , xq j ) can be zero-dimensional components.

By Lemma 3.7, whenever ξpq(τ ) = δ, we may perturb p along Γ ⊂ R
d and get a

unique perturbed q ∈ Γ (for a perturbed τ ) while preserving this equation. It therefore
follows that if some point (xp j , xq j ) lies on a one-dimensional component of ZC(I),
then we may perturb the points p j and q j along the curve Γ ⊂ R

d while preserving
ξp j ,q j (τi j ) = δi for all 1 ≤ i ≤ k for appropriately perturbed τi j .

The following analogues of Propositions 4.2 and 4.3 are proved in Sect. 5.

Proposition 4.6 Let (p, q) ∈ P2∗ and suppose that the there exists a triangular
framework based at {p, q} which is not D-infinitesimally flexible on Γ .
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Then, I may be partitioned into a (d,m, deg D)-bounded number of intervals with
non-empty interiors

I = ∪
r

Ir

such that whenever τ1, τ2 ∈ I are distinct points and the (2, 2)-framework

KΓ ({p, q}, {γ (τ1), γ (τ2)})
is D-infinitesimally flexible along Γ , the points τ1 and τ2 do not lie in the same Ir .

In particular, for k sufficiently large, depending only on d and m, and any distinct
points t1, . . . , tk ∈ Γ , the (2, k)-framework

KΓ ({p, q}, {t1, . . . , tk})
is not D-infinitesimally flexible on Γ .

Proposition 4.7 Suppose that Γ is not (D, T )-degenerate. Then there exists P0 ⊂ P
such that |P0| �d,m |P| and for each pair (p, q) ∈ P2∗

0 there exists a triangular
framwork based at {p, q} which is not D-infinitesimally flexible on Γ .

By replacing P with P0 and arguing as in the rational curves case, we obtain
Theorem 3.9 for real algebraic curves.

5 Proof of Rigidity Results

In this section, we prove Propositions 4.2, 4.3, 4.6 and 4.7.
Let Γ be a curve with injective singularity-free analytic parametrization γ : I →

R
d where I ⊂ R is an open interval. We assume in the sequel that Γ is a real algebraic

curve of algebraic degree m.
Write D = D(X,Y ) for X,Y ∈ R

d . Suppose that [D, Γ ] is simple.
It will be convenient to construct a suitable analytic function obtained by consid-

ering a suitable differential equation which captures the rigidity in our setup; this
will allow us to extract suitable bounds. We firstly perform this construction before
proceeding to prove our rigidity results.

Since [D, Γ ] is simple, any (2, 1)-framework on Γ is D-flexible. If U ⊂ I is an
open interval, τ̄ : U → I , β̄ : U → I are smooth and d1, d2 ≥ 0 is fixed such that

D(γ (τ̄ (α)), γ (α)) = d1

D(γ (τ̄ (α)), γ (β̄(α))) = d2

for all α ∈ U , then differentiating with respect to α yields

τ̄ ′γ̇ (τ̄ ) · DX (γ (τ̄ ), γ (α))+ γ̇ (α) · DY (γ (τ̄ ), γ (α)) = 0

τ̄ ′γ̇ (τ̄ ) · DX (γ (τ̄ ), γ (β̄))+ β̄ ′γ̇ (β̄) · DY (γ (τ̄ ), γ (β̄)) = 0
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where

DX = ( ∂D

∂X1
, . . . ,

∂D

∂Xd

)
, DY = ( ∂D

∂Y1
, . . . ,

∂D

∂Yd

)
.

Eliminating τ̄ ′ yields the differential equation

β̄ ′(γ̇ (β̄) · DY (γ (τ̄ ), γ (β̄))
)(
γ̇ (τ̄ ) · DX (γ (τ̄ ), γ (α))

)
(5.1)

− (
γ̇ (α) · DY (γ (τ̄ ), γ (α))

)(
γ̇ (τ̄ ) · DX (γ (τ̄ ), γ (β̄))

) = 0.

For each α, β ∈ I , define the meromorphic function Hαβ = HD
αβ on I by

Hαβ(τ ) :=
(
γ̇ (β) · DY (γ (τ ), γ (β))

)(
γ̇ (τ ) · DX (γ (τ ), γ (α))

)

(
γ̇ (α) · DY (γ (τ ), γ (α))

)(
γ̇ (τ ) · DX (γ (τ ), γ (β))

) .

Potential singularities at τ = α, β may be removed by setting

Hαβ(α) = Hαβ(β) = γ̇ (β) · DY (γ (α), γ (β))

γ̇ (α) · DX (γ (α), γ (β))

Since [D, Γ ] is simple, it follows that

Hαβ(τ ) �= 0,∞

for all α, β, τ ∈ I .
Then the differential Eq. (5.1) is equivalent to

Hα β̄(α)(τ ) = 1

β̄ ′(α)
. (5.2)

For each α, β ∈ I , the derivative H′
αβ has isolated zeroes on I or it vanishes

identically and Hαβ is constant.

Lemma 5.1 If Hαβ is constant then any triangular framework based at {γ (α), γ (β)}
is D-infinitesimally flexible on Γ . Furthermore, if Hαβ is constant for every α, β ∈ I
then Γ is T -degenerate.

Proof Suppose that Hαβ is constant. Let τ ∈ I \ {α, β}. The framework

KΓ ({γ (α), γ (β)}, {γ (τ)})

is D-infinitesimally flexible for each τ ∈ I (in fact, it is D-flexible) and there exist
aτ , bτ ∈ R such that

(aτ γ̇ (τ ), γ̇ (α)) · ∇D(γ (τ ), γ (α)) = (aτ γ̇ (τ ), bτ γ̇ (β)) · ∇D(γ (τ ), γ (β)) = 0.
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Since Hαβ(τ ) = b−1
τ , it follows that b = bτ is independent of τ . Taking τ → β, it

follows that aτ → b. Thus, for each τ ∈ I \ {α, β},

(aτ γ̇ (τ ), γ̇ (α)) · ∇D(γ (τ ), γ (α))

= (aτ γ̇ (τ ), bγ̇ (β)) · ∇D(γ (τ ), γ (β))

= (γ̇ (α), bγ̇ (β)) · ∇D(γ (α), γ (β)) = 0.

In other words, TΓ ({γ (α), γ (β), γ (τ )}) is D-infinitesimally flexible.
Now suppose that Hαβ is constant for all α, β ∈ I . Write h(α, β) for this constant.

Observe that

1

h
: I 2 → R

defines a real analytic function.
Let α0, τ0, β0 be distinct points in I and let d1 = D(γ (τ0), γ (α0)), d2 =

D(γ (τ0), γ (β0)), d3 = D(γ (α0), γ (β0)). By perturbing α0, we obtain an open neigh-
bourhood U1 ⊂ I of α0 and a smooth function β1 : U1 → I such that β1(α0) = β0
and

d3 = D(γ (α), γ (β1(α)))

for every α ∈ U1. Similarly, we obtain an open neighbourhood U2 ∈ I of α0 and
smooth functions τ : U2 → I , β2 : U2 → I such that τ(α0) = τ0, β2(α0) = β0 and

d1 = D(γ (τ (α)), γ (α))

d2 = D(γ (τ (α)), γ (β2(α))).

By (5.2),

β ′
1(α) = 1

h
(α, β1(α))

β ′
2(α) = 1

h
(α, β2(α))

for all α in a suitable small open neighbourhood U ⊂ I of α0. Since β1(α0) =
β2(α0) = β0, the Picard-Lindelöf Theorem on the uniqueness of solutions to first-
order equations implies that

β1(α) ≡ β2(α)

for α ∈ U .
Therefore, the framework TΓ ({γ (α0), γ (τ0), γ (β0)}) is D-smoothly flexible on Γ .

We now turn to the proof of Propositions 4.3 and 4.7.
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Proof of Proposition 4.3 Observe that H′
α,β(τ ) is a rational function in α, β, τ of

degree � (deg D)(deg γ ).
Suppose that Γ is not T -degenerate. Then there exists a pair of distinct points

α0, β0 ∈ I such that H′
α0β0

does not vanish identically. Let τ0 ∈ I be such that

H′
α0β0

(τ0) �= 0.

Let α ∈ I . If H′
αβα
(τα) �= 0 for some βα, τα ∈ I then the number of β ∈ I such

that H′
αβ(τα) = 0 is (deg D, deg γ )-bounded. Furthermore, there are at most finitely

many α ∈ I such that H′
αβ(τ ) = 0 for all β, τ ∈ I . Let S ⊂ I denotes the set of

such α. Then there exists a subset P0 of P \ S such that |P0| �deg D,deg γ |P \ S|,
and for each pair (γ (α), γ (β)) ∈ P2∗

0 , the function H′
αβ does not vanish identically.

Now, H′
αβ0
(τ0) vanishes for a (deg D, deg γ )-bounded number of α ∈ I so in fact |S|

is (deg D, deg γ )-bounded. Consequently |P0| �deg D,deg γ |P|.
Proof of Proposition 4.7 By Remark 2.13, the differential equation

H′
α,β(τ ) = 0

is equivalent (by clearing denominators) to a system of polynomial equations in
the R

d -coordinates of the triple (γ (α), γ (β), γ (τ )) where all the polynomials have
(d,m, deg D)-bounded degree. In particular, it defines a Zariski-closed subset � of
Γ × Γ × Γ .

Suppose that

H′
α0,β0

(τ0) �= 0

for points x0 = γ (τ0), p0 = γ (α0), q0 = γ (β0) on Γ . Then � is proper and, by
Bézout’s Theorem, has (d,m, deg D)-bounded degree.

Let p ∈ Γ . IfΓ ×{p}×Γ is not contained in� then there exists x(p) ∈ Γ such that
{(x(p), p)}×Γ is not contained in�. Since {(x(p), p)}×Γ and�may be generated
by polynomials of (d,m, deg D)-bounded degree, Bézout’s Theorem implies that they
intersect in a (d,m, deg D)-bounded number of points. Hence, for such p, the number
of q ∈ Γ such that Γ × {p} × {q} is contained in � is (d,m, deg D)-bounded.

Now, Γ × {p} × Γ can be completely contained in � for at most finitely many
p ∈ Γ . Let S denotes the set of such p. There thus exists a subset P0 of P \ S such
that |P0| �d,m |P \ S|, and for each pair (p, q) ∈ P2∗

0 ,

H′
γ−1(p)γ−1(q)

does not vanish identically on I .
Since x0×Γ ×q ′ is not completely contained in�, it intersects it in a (d,m, deg D)-

bounded number of points. But

x0 × S × q ′ = (Γ × S × Γ ) ∩ (x0 × Γ × q ′) ⊂ � ∩ (x0 × Γ × q ′)
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so |S| is (d,m, deg D)-bounded. Consequently, |P0| �d,m,deg D |P|.
Finally, we prove Propositions 4.2 and 4.6.

Proof of Proposition 4.2 and 4.6. We will firstly show that, in the case when the zeroes
of H′

αβ are isolated, there is a suitably bounded number of them.
In the case where the parametrization γ is rational, H′

αβ(τ ) is a rational function τ
of degree � deg D deg γ . Thus, it vanishes identically or has at most � deg D deg γ
zeroes.

In the case where the curve Γ is a real algebraic curve, there is an analogous bound.
By Remark 2.13, the differential equation H′

αβ(τ ) = 0 is equivalent to a system
of polynomial equations in the coordinates of γ (τ), γ (α), γ (β) with (d,m, deg D)-
bounded degrees. If H′

αβ does not vanish identically then the points γ (τ) ∈ Γ such
that H′

αβ(τ ) = 0 form a Zariski-closed proper subset of Γ consisting of finitely many
points. By Bézout’s Theorem, this subset has (d,m, deg D)-bounded cardinality with
a bound independent of α, β.

Let α, β ∈ I be such that H′
αβ does not vanish identically. Partition the interval I

into the smallest number NΓ of intervals

I = NΓ∪
r=1

Ir

such that H′
αβ(τ ) �= 0 for all τ in the interior of each Ir .

Then, for each r and τ1, τ2 ∈ Ir distinct from α, β such that τ1 < τ2, the (2, 2)-
framework

K({γ (α), γ (β)}, {γ (τ1), γ (τ2)})

is not D-infinitesimally flexible. Indeed, if it is then (5.2) implies that

Hαβ(τ1) = Hαβ(τ2).

Therefore, H′
αβ has a zero on the interval (τ1, τ2), but this cannot happen by construc-

tion.
Using the bounds on the number of zeroes of H′

αβ above, completes the proof.

6 Reduction to Simplicity for the Distance-Squared Function

We will now restrict our attention to the square distance function on R
d given by

D(x, y) = ‖x − y‖2

for x, y ∈ R
d and show how, given a general real algebraic curve Γ , we may reduce

to the situation where [D, Γ ] is simple (so that Theorem 3.9 applies).
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6.1 Rationally Parametrized Curves

Assume first thatΓ has a rational parametrization γ : I → R
d ; this case is elementary.

The case of general real algebraic curves is dealt with in the next section using more
sophisticated tools.

Without loss of generality, Γ is not a straight line and does not lie in an affine
hyperplane. Indeed, suppose this is not the case and Γ lies in a d ′-dimensional affine
subspace of R

d but does not lie in any d ′′-dimensional affine subspace for d ′′ < d ′.
The cardinality of �(P) is invariant under rigid motions, so in proving Theorem 1.8,
it is no loss of generality to assume that this affine subspace is equal to R

d ′ × {0}d−d ′

for some d ′ < d. If d ′ = 1, then Γ is the open subset of a line and there is nothing to
prove. If d ′ > 1, the subsequent discussion then applies with d ′ replacing d.

Furthermore, we may partition I into the union of N disjoint open intervals {I j }N
j=1

and a finite set of exceptional points, as

I = E ∪ N∪
j=1

I j ,

with the property that for each 1 ≤ j ≤ N , γ |I j : I j → R
d is injective with non-

vanishing first derivative and it defines a curve, Γ j , such that whenever α, β ∈ I j are
distinct points, any affine hyperplane which is orthogonal to (γ (α)− γ (β)) intersects
Γ j in at most one point. Moreover, the partitioning may be performed with deg γ -
bounded N and |E |. Indeed, since Γ does not lie in an affine hyperplane, no rational
component of γ̇ (t) is identically zero. Therefore, the set E of t ∈ I such that any
component of γ̇ (t) vanishes is deg γ -bounded. We may partition R as

R = E ′ ∪ N∪
j=1

I j

into the union of these exceptional points and a finite number of open intervals, {I j }N
j=1,

whose number is deg γ -bounded, such that on each I j none of the rational components
of γ̇ (t) vanish. Then γ |I j is certainly injective; in fact, each of its components is
strictly monotone. Furthermore, if p1, p2 ∈ Γ j are distinct points and there are two
points q1, q2 ∈ Γ j lying on an affine hyperplane orthogonal to (p2 − p1), it follows
that (p2 − p1) is orthogonal to (q2 − q1). If we express these vectors in Euclidean
coordinates,

(p2 − p1) = (a1, . . . , ad)

(q2 − q1) = (b1, . . . , bd)

then, by the strict monotonicity of each component of γ |I j (t), each a j is non-zero,
and the products a1b1, . . . , adbd are either all non-negative or all non-positive. But

0 = (p2 − p1) · (q2 − q1) =
∑

j

a j b j ,
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which forces b j = 0 for all j , i.e. q1 = q2.
By replacing P with P \ E and Γ with a curve Γ j which contains �deg γ |P| points

of P \ E , in proving Theorem 1.8, we may thus assume without loss of generality
(up to the loss of a constant factor depending only on the degree of γ ) that γ itself
is injective, each component of γ̇ (t) does not vanish and Γ has the property that
whenever α, β ∈ I are distinct points, any affine hyperplane which is orthogonal to
(γ (α)− γ (β)) intersects Γ in at most one point.

With this reduction, [D, Γ ] is simple: The injectivity condition in the definition is
satisfied because if t ∈ I satisfies

‖γ (t)− γ (α)‖ = d1

‖γ (t)− γ (β)‖ = d2

for some distinct α, β ∈ I and d1, d2 ≥ 0 then γ (t) lies on the intersection of two
hyperspheres centred at γ (α) and γ (β). Therefore, it lies on a certain affine hyperplane
which is orthogonal to the vector (γ (β)− γ (α)). So t is uniquely determined.

The submersion condition is also satisfied. Indeed, the derivative of ‖γ (t)−γ (α)‖2

with respect to t is

2γ̇ (t) · (γ (t)− γ (α))

and expressing γ̇ (t), (γ (t)− γ (α)) in Euclidean coordinates

γ̇ (t) = (a1, . . . , ad)

(γ (t)− γ (α)) = (b1, . . . , bd),

the scalar product

γ̇ (t) · (γ (t)− γ (α)) =
∑

j

a j b j

is non-zero since the strict monotonicity of each component of γ (t) implies that none
of the coordinates a j , b j are zero and the products a1b1, . . . , adbd are either all positive
or all negative.

6.2 Real Algebraic Curves

Let Γ ⊂ R
d be a real algebraic curve of (geometric) degree n and algebraic degree m

which does not lie in an affine hyperplane. By considering the irreducible component of
Γ containing the most points of P and losing a constant factor depending on n, we may
assume in proving Theorem 1.8 that Γ is irreducible. Let IX1,...,Xd ⊂ C[X1, . . . , Xd ]
be a prime ideal generating Γ which has the property that there is a generating set
{ f1, . . . , fr } for I such that deg f j ≤ m for j = 1, . . . , r .

Let S be the set of singularities which lie onΓ . By Bézout’s Theorem, the cardinality
of S is (d,m)-bounded. Consider the equivalence relation—on the non-singular points
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of Γ ⊂ R
d where p ∼ q whenever there is a continuous path from p to q along Γ

which does not cross any points of S. By the Thom-Milnor Theorem, Γ ⊂ R
d consists

of a (d,m)-bounded number of connected components. By considering the number of
points of intersection between Γ and a d-bounded number of suitably chosen affine
hyperplanes near each singularity, it then follows that the number of equivalence
classes is (d, n,m)-bounded. Since n ≤ md , the number of classes is, in fact, (d,m)-
bounded. Each class is a connected, singularity-free open subset of Γ and therefore,
by the Implicit Function Theorem, has a real analytic parametrization γ : I → R

d

for some open interval I ⊂ R which covers the entire equivalence class except for
possibly one exceptional point. By choosing the equivalence class with the most points
of P and losing a (d,m)-bounded factor, we may thus assume that Γ itself has an
analytic parametrization γ : I → R

d . We may assume, as above, that Γ does not lie
in an affine hyperplane. Then, none of the components of γ̇ vanish identically and,
by Remark 2.13, we may subdivide I appropriately into a (d,m)-bounded number of
open intervals and exceptional points, similarly to the rational curves case, and thus
reduce to the case where [‖ · ‖2, Γ ] is simple.

7 Which Curves are T -Degenerate?

Let D(X,Y ) = ‖X − Y‖2. Suppose that Γ ⊂ R
d has a real analytic singularity-free

parametrization γ : I → R
d , [D, Γ ] is simple and Γ is T -degenerate. We may

assume, without loss of generality, that γ is a unit-speed parametrization.
For each d ≥ 0 and τ ∈ I , let α(τ, d) ∈ I be the least α(τ, d) ≥ τ such that

‖γ (α(τ, d))− γ (τ)‖ = d

when such an α(τ, d) exists. We extend the definition of α(τ, d) to negative d: we
define α(τ, d) for d < 0 to be the largest α(τ, d) ≤ τ such that

‖γ (α(τ, d))− γ (τ)‖ = |d|.

Fix τ0 ∈ I . Without loss of generality, we may take τ0 = 0. There exists a suf-
ficiently small δ > 0 such that α(τ, d) is defined for all |τ |, |d| < δ. Observe that
α(τ, d) is real analytic for τ ∈ (−δ, δ) for each fixed |d| < δ.

For each fixed |τ | < δ, d 	→ α(τ, d) is continuous. Furthermore, the derivative
∂2α(τ, d) with respect to d, agrees with the continuous function

2d

γ̇ (α(τ, d)) · (
γ (α(τ, d))− γ (τ)

)

whenever d �= 0. Since

limd→0
2d

γ̇ (α(τ, d)) · (
γ (α(τ, d))− γ (τ)

) = limd→0
2d

dγ̇ (τ ) · γ̇ (τ ) = 2,
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it follows that ∂2α(τ, d) agrees with a continuous function for all |d| < δ. Moreover,
using the analytic equation

‖γ (α(τ, d))− γ (τ)‖2 − d2 = 0 (7.1)

and the Inverse Function Theorem, we may extend the function d 	→ α(τ, d) to a
continuous function on a suitably small domain containing 0 in C with these properties
remaining valid on this domain.

Thus, α(τ, d) is separately analytic and continuous on a small domain, so it is in
fact jointly analytic in τ and d. The equation (7.1) then implies that the power series
for α takes the form

α(τ, d) = τ + d + d N f (τ, d)

for some positive integer N > 1 and an analytic function f such that f (τ, 0) does not
vanish identically.

We will show that, in the degenerate case, every derivative of γ has constant norm
by approximating its value using a finite difference method. As a first step, we observe
that the assumption that every triangle may be moved along Γ while preserving the
edge lengths implies that, in fact, any vertex embedding of any complete graph into
Γ may be moved.

Lemma 7.1 The curve Γ is KN -degenerate for every N ≥ 1.

Proof We induct on N . The cases N = 1, 2, 3 are followed from our assumptions on
Γ so we assume that N ≥ 3.

Let F be a smoothly flexible KN -framework on Γ with smooth motion φt and let
p ∈ Γ be a point which is not a vertex of F . For each vertex q ∈ Γ of the framework,
write v(q) for the corresponding vertex of the underlying graph KN .

Choose any two distinct vertices q, r of F . The triangle with vertices at p, q, r
is smoothly flexible with smooth motion ψt (for t in a suitable interval), say, by the
assumption that Γ is T -degenerate. We will identify the vertices corresponding to
q and r in the triangular graph with v(q) and v(r). Write vp for the vertex in the
triangular graph corresponding to p.

The distances between p and r and between p and q remain constant throughout
the smooth motion ψt . The uniqueness in the motions ( see Remark 3.8) implies that
we may chooseψt so thatψt |{v(q),v(r)} is always equal to φt |{v(q),v(r)}. Informally, this
means that the motion of F and that of the triangle with vertices p, q, r that we are
considering match for q and r .

For each t , the distances from any vertex s ∈ Γ of F to q and r remain fixed (as φt

is a motion) and the distances from p to q, q to r and r to p also remain fixed (as ψ
is a motion), so the distance from s to p also remains fixed. Therefore, each distance
from p to a vertex of F remains fixed as t varies. Thus, φt extends to a smooth motion
of the KN+1-framework obtained by adding p to the vertices of F .

Lemma 7.2 For each k ≥ 1, the norm ‖γ (k)‖ of the k-th derivative of γ is constant.
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Proof For sufficiently small τ and d > 0, we may approximate γ (k)(τ ) by a finite
difference approximation sampled at the points α jd := α(τ, jd) for −m1 ≤ j ≤ m2
where m1,m2 are positive integers such that m1 +m2 = k. This leads to an expression
of the form

γ (k)(τ )= limd→0

∑

−m1≤ j<m2

C j
γ (α jd)−γ (α( j+1)d)

D j (τ, d)

where each C j is a constant and each denominator D j (τ, d) is the product of k (possibly
repeated) factors of the form (αnd − αn′d) for various integers −m1 ≤ n, n′ ≤ m2
such that n �= n′.

Thus,

‖γ (k)(τ )‖2 = limd→0

∑

−m1≤i, j<m2

Ci C j

(
γ (αid)−γ (α(i+1)d)

) · (
γ (α jd)−γ (α( j+1)d)

)

Di (τ, d)D j (τ, d)
.

By Lemma 7.1, the Kk+1-framework with vertices at γ (α(0, jd)) is smoothly
flexible. Consequently, each of the scalar products

Si j (d) := (
γ (αid)− γ (α(i+1)d)

) · (
γ (α jd)− γ (α( j+1)d)

)

is independent of τ for small τ .
Furthermore,

(αnd − αn′d) = d(n − n′)+ d2Gnn′(τ ),

for an analytic function Gnn′ , which implies that

δ j := limd→0
D j (τ, d)

dk

is finite, non-zero and independent of τ and d.
Therefore,

‖γ (k)(τ )‖2 = limd→0

∑

−m1≤i, j<m2

Ci C j
Si j (d)

d2kδiδ j

is independent of τ for small τ . By analytic continuation, ‖γ (k)‖2 is constant on its
entire domain.

D’Angelo and Tyson show in [3] that any smooth embedded curve in R
d such that

all its derivatives have constant norm is a generalized helix as in Definition 1.5.

Corollary 7.3 Suppose that Γ ⊂ R
d has a real analytic singularity-free parame-

trization γ : I → R
d and [‖ · ‖2, Γ ] is simple. Then, Γ is T -degenerate if and only

if it is a generalized helix.
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For the case when the curve Γ is a real algebraic curve, we only want to consider
generalized helices which are algebraic curves. The following lemma characterizes
such helices, thus completing the proof of Theorem 1.8.

Lemma 7.4 Let d > 0, l, k ≥ 0 and l + 2k = d. Let I ⊂ R be an open interval.
Suppose that γT : I → R

2k is given by

γT (t) = (α1 cos λ1t, α1 sin λ1t, . . . , αk cos λk t, αk sin λk t)

for some α1, . . . , αk, λ1, . . . , λk ∈ R \ {0} and γL : I → R
l is given by

γL(t) = tw

for some w ∈ R
l .

Then γ : I → R
d given by

γ (t) = (γT (t), γL(t)) ∈ R
2k × R

l

parametrizes an open subset of a real algebraic curve if and only if either l = 0 and
for each 1 ≤ i, j ≤ k the ratio λi

λ j
is rational or, alternatively, k = 0.

This lemma is a consequence of the following elementary observation; we prove it
here for completeness.

Lemma 7.5 Let ρ ∈ R. There exists a non-zero polynomial Qρ ∈ R[X,Y ] such that

Qρ(sin t, sin ρt) ≡ 0

if and only if ρ ∈ Q.

Proof For each pair of integers m and n, the functions sin mτ and sin nτ are algebraic
over the field R(sin τ). By considering the resultant eliminating sin τ of the minimal
polynomials, for example, it follows that there exists a non-zero polynomial Pmn ∈
R[X,Y ] such that

Pmn(sin mτ, sin nτ) ≡ 0.

If ρ = n
m ∈ Q, then defining Qρ := Pmn gives

Qρ(sin t, sin ρt) = Pmn
(
sin m

t

m
, sin n

t

m

) = 0.

Conversely, if there exists a non-zero polynomial Q ∈ R[X,Y ] such that

Q(sin τ, sin ρτ) ≡ 0
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for some ρ ∈ R, then sin ρτ is algebraic over R(sin τ) so also over C(eiτ ). Therefore,
eiτ is algebraic over C(sin ρτ) so also over C(eiρτ ). Thus, there exists a non-zero
polynomial H ∈ C[X,Y ] given by

H(X,Y ) =
∑

0≤m,n≤M

cmn XmY n

such that

H(eiτ , eiρτ ) ≡ 0.

Hence ∑

0≤m,n≤M

cmneiτ(m+ρn) ≡ 0 (7.2)

for some integer M and coefficients (cmn)0≤m,n≤M .
Let σ : {1, . . . , (M + 1)2} → {0, 1, . . . ,M}2 be any bijection. Let c be the (M +

1)2 × 1 non-zero complex column vector whose β-th entry is

cβ = cσ1(β)σ2(β).

Fix a large K > 0 and let A be the (M + 1)2 × (M + 1)2 complex matrix whose
(α, β)-th entry is

Aαβ = ei(σ1(β)+ρσ2(β))
(α−1)

K .

Then, by considering τ = 0, 1
K , . . . ,

M2

K in (7.2), it follows that

Ac = 0.

Hence A is a Vandermonde matrix with a non-trivial kernel so two of the entries in
the second row must be equal. Thus, there exist integers 0 ≤ m, n,m′, n′ ≤ M such
that (m, n) �= (m′, n′) and

ei (m+ρn)
K = ei (m

′+ρn′)
K .

Thus,

(m − m′)+ ρ(n − n′)
K

≡ 0 mod 2π

and, by choosing a sufficiently large K , we deduce that

ρ = m′ − m

n − n′ ∈ Q.
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Proof of Lemma 7.4 If k = 0 then γ parametrizes a line and this is certainly an
algebraic curve. If k > 0, l = 0 and each

λ j
λ1

= ρ j ∈ Q, then γ parametrizes an open
subset of the real algebraic curve given by the 2k − 1 polynomials

X2
j + Y 2

j − α2
j , for j = 1, . . . , k

Qρ j (α
−1
1 Y1, α

−1
j Y j ), for j = 2, . . . , k

in R[X1,Y1, X2,Y2, . . . , Xk,Yk], where Qρ is the polynomial from Lemma 7.5.
Conversely, suppose that γ parametrizes a non-empty open subset of a real algebraic

curve, Γ . For each distinct 1 ≤ i, j ≤ d, write

πi, j : R
d → R

2

for the projection onto the i-th and j-th coordinates. Then the Zariski-closure of
πi, j (Γ ) is at most one-dimensional.

Suppose for contradiction that k > 0 and l > 0. Then

π2,(2k+r)(γ (t)) = (α1 sin λ1t, twr ),

where 1 ≤ r ≤ l is chosen so that wr �= 0. Thus, π2,(2k+r)(Γ ) intersects the line
{0} × R ⊂ R

2 at infinitely many points of the form (0, wr
2πn
λ1
) for n ∈ Z. This

contradicts the fact that the Zariski-closure ofπ2,(2k+r)(Γ ) is at most one-dimensional.
If l = 0 then for each 2 ≤ j ≤ k,

π2,2 j (γ (t)) = (α1 sin(λ1t), α j sin(λ j t)).

Since this is a one-dimensional algebraic curve in R
2, it follows by Lemma 7.5 that

λ j
λ1

∈ Q.

8 Pinned Triangle Areas

To illustrate how the same method can be used for other quantites of interest, we now
prove Theorem 1.11.

We consider the case when d = 2 and

D(x, y) = (x × y)2 := (x1 y2 − x2 y1)
2

for x, y ∈ R
2. Then 1

2 |x × y| = 1
2 D(x, y)1/2 is the area of the triangle with vertices

at x , y and the origin. Note that D(x, y) = 0 if and only if x is parallel to y.

8.1 Reduction to Simplicity

Let Γ be a rational curve which does not pass through the origin with rational para-
metrization γ : I → R

2 for an open interval I . Write γ (t) = (x(t), y(t)). We assume
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that Γ is not a straight line or a hyperbola centred at the origin or else there is nothing
to prove.

Similarly to what was done in Sect. 6, by losing a constant factor depending only on
deg γ , we may assume that the rational functions x(t), ẋ(t), d

dt

( y(t)
x(t)

)
, d

dt

( ẏ(t)
ẋ(t) + y(t)

x(t)

)

do not vanish on I . Indeed, none of them vanish identically since Γ is not a straight
line or a hyperbola centred at the origin so the number of t ∈ I where any of them
vanish is deg γ -bounded. In particular, observe that these assumptions imply that γ
is injective, and given any non-zero vector v ∈ R

2, there is at most one value α ∈ I
such that γ (α) is parallel to v.

With these assumptions, we check that [D, Γ ] is simple: Suppose t ∈ I satisfies

(γ (t)× γ (α))2 = d1

(γ (t)× γ (β))2 = d2

for some distinct α, β ∈ I and d1, d2 ≥ 0. If either of d1 or d2 is 0 then t is deter-
mined uniquely (as α or β) since γ (t) is parallel to γ (α) if and only if t = α

and similarly for β. If d1, d2 > 0 then γ (t) is parallel to a vector of the form
±|d1|−1/2γ (α) ± |d2|−1/2γ (β). Since γ (α) is not parallel to γ (β), any vector of
the form ±|d1|−1/2γ (α) ± |d2|−1/2γ (β) is non-zero, so t is uniquely determined.
Thus, the injectivity condition in the definition is satisfied.

The submersion condition is also satisfied. Indeed, for α �= β,

∇(α,β)(γ (α)× γ (β))2 = (γ (α)× γ (β))
(
γ̇ (α)× γ (β), γ (α)× γ̇ (β)

)
.

Suppose for contradiction that this derivative vanishes. Since γ (α) is not parallel to
γ (β), it follows that γ (α) is parallel to γ̇ (β) and γ (β) is parallel to γ̇ (α). Setting
z(t) = ẏ(t)

ẋ(t) + y(t)
x(t) , it follows that z(α) = z(β) and so the rational function ż(t)

vanishes at some t ∈ I ; this contradicts our assumptions.
Finally, D is a distance polynomial for γ since γ (α) is parallel to γ (β) if and only

if α = β.
Therefore, we have reduced to the situation where [D, Γ ] is simple in the special

case when the curve is rationally parametrized. Similar to what was done in Sect. 6,
we also can reduce to simple [D, Γ ] in the case of a general real algebraic curve Γ in
R

2; we omit the details.

8.2 Which Curves are (D, T )-Degenerate?

By Theorem 3.9, it now follows that Γ is (D, T )-degenerate and it remains to classify
such curves to complete the proof.

We assume in this section that Γ ⊂ R
2 has a real analytic singularity-free para-

metrization γ : I → R
2, [D, Γ ] is simple and Γ is (D, T )-degenerate. Write

γ (t) = (x(t), y(t)).
Choose α, β ∈ I be such that γ (α) is not parallel to γ (β). The conclusion of

Theorem 1.11 is invariant under the action of GL2(R) so we may assume that γ (α) =
(1, 0) and γ (β) = (0, 1).
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Then, for HD
αβ defined as in Sect. 5,

HD
αβ = (γ̇ (β) · (−2yx, 2x2))(γ̇ · (0, 2y))

(γ̇ (α) · (2y2,−2xy))(γ̇ · (2x, 0))
= (γ̇ (β) · (−2y, 2x))(γ̇ · (0, 2))

(γ̇ (α) · (2y,−2x))(γ̇ · (2, 0))

is constant and equal to

− γ̇ (β) · (0, 2)

γ̇ (α) · (2, 0)
.

Therefore,

−y ẏẋ(α)ẋ(β)+ x ẏẋ(α)ẏ(β)+ yẋ ẋ(α)ẏ(β)− x ẋ ẏ(α)ẏ(β) ≡ 0

and hence

−y2 ẋ(α)ẋ(β)+ 2xyẋ(α)ẏ(β)− x2 ẏ(α)ẏ(β) = C

for some real constant C .
Thus, γ parametrizes an open subset of an ellipse or hyperbola centred at the origin

and the proof of Theorem 1.11 is complete.

9 Further Remarks

Our results may be interpreted as a statement about the expansion of D|Γ×Γ for small
(in our case, finite) subsets P ⊂ Γ . The conclusions are similar in spirit to results
such as [11] in finite fields.

In this direction, there is the rather general result of Elekes and Szabó [7]: they
consider the question of intersections

(A × B × C) ∩ V

where A, B and C are finite subsets of varieties of the same dimension, |A| = |B| = |C |
and V is a suitable variety. In the context of the problem, we are considering, they
show in particular that there exists a universal constant η > 0 such that if Γ ⊂ R

d is
a real algebraic curve, D : R

d × R
d → R is a polynomial, VD ⊂ Γ × Γ × R is the

variety

VD = {(x, y, z) ∈ Γ × Γ × R | z = D(x, y)}

and P ⊂ Γ , Q ⊂ �(P) are finite subsets with cardinality ∼N which satisfy

|(P × P × Q) ∩ VD| � N 2−η,
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then the variety VD is special in a certain sense; essentially, there is an algebraic group
acting in the background and the variety is the image of the graph of its multiplication
function.

Our results above can be phrased in a similar form, by an elementary averaging
argument: for any ε > 0, if [D, Γ ] is simple and

|(P × P × Q) ∩ VD| � N 2− 1
4 +ε,

then Γ is (D, T )-degenerate.
Nonetheless, the η obtained by following the proof in [7] directly is less than ( 1

4 −ε).
With the notation of [7], for small ε > 0,

η <
η′

2
≤ 3 − 2(α + β)

2
= α − 1

2
= 1

2(2D − 1)
− ε ≤ 1

2(2(4k)− 1)
− ε ≤ 1

14
− ε.

A few weeks after an initial preprint of this paper was released, Pach and de Zeeuw
[17] improved the exponent in Theorem 1.8 from 1 + 1

4 to 1 + 1
3 in the special

case where the ambient dimension is 2 (and the polynomial in question is the square
distance function). Their method is mostly algebraic and simpler than our argument
for that particular case; when the curve Γ is planar, there is no need to appeal to more
advanced tools from algebraic geometry such as the Thom-Milnor Theorem or the
theory of Gröbner bases.

An obstruction to improving the exponent in our argument is Proposition 3.4. In
[17], a different set of curves is considered instead of the Elekes curves considered
here; the analogue using our notation would be to consider the curves given implicitly
by

D(γ (t), p)− D(γ (s), q) = 0

for (t, s) ∈ R
2. This algebraic problem is more complicated and less directly amenable

to analytical tools, but does indicate a natural approach to consider when trying to
improve the exponent in Theorem 1.8 (and its variations) when the ambient dimension
is not necessarily 2.

This set of curves was previously also considered by Sharir, Sheffer and Solymosi
in [22] who improved the bound of Elekes from [5] for the quantitative version of
Purdy’s Conjecture from 1 + 1

4 to 1 + 1
3 . More precisely, they show that if P1 and

P2 are two sets of N points in the plane so that P1 is contained in a line L1, P2 is
contained in a line L2, and L1 and L2 are neither parallel nor orthogonal, then the

number of distinct distances determined by the pairs P1 × P2 is � N 1+ 1
3 .

In both [22] and [17], the problem considered is, in fact, a bipartite problem: there
are two curves Γ1, Γ2 and two finite subsets P1, P2 and the aim is to obtain a lower
bound on the cardinality of the set

{D(p, q) | p ∈ P1, q ∈ P2}.
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While the argument in Sect. 3 and some of the rigidity results still apply almost
verbatim (with appropriate modifications) in this bipartite setting, some of the central
rigidity ideas, for example, T -degeneracy, do not seem to carry over easily. In order
to keep the link to rigidity and the main result Theorem 3.9 as clear as possible, we
have chosen not to attempt to discuss the bipartite version of the problem here.
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