Frankl-Füredi-Kalai Inequalities on the $\boldsymbol{\gamma}$-Vectors of Flag Nestohedra

Natalie Aisbett

Received: 27 March 2012 / Revised: 27 December 2013 / Accepted: 28 December 2013 /
Published online: 15 January 2014
© Springer Science+Business Media New York 2014

Abstract

For any flag nestohedron, we define a flag simplicial complex whose f-vector is the γ-vector of the nestohedron. This proves that the γ-vector of any flag nestohedron satisfies the Frankl-Füredi-Kalai inequalities, partially solving a conjecture by Nevo and Petersen (Discrete Comput. Geom. 45:503-521, 2010). We also compare these complexes to those defined by Nevo and Petersen (Discrete Comput. Geom. 45:503-521, 2010) for particular flag nestohedra.

Keywords Building set • Flag • f-Vector • Gamma-vector • Homology sphere • h-Vector • Nestohedron • Simplicial complex

1 Introduction

For any building set \mathcal{B} there is an associated simple polytope P_{B} called the nestohedron (see Sect. 2, [10, Sect. 7] and [11, Sect. 6]). When $\mathcal{B}=\mathcal{B}(G)$ is the building set determined by a graph $G, P_{\mathcal{B}(G)}$ is the well-known graph-associahedron of G (see [1, Ex. 2.1], [11, Sects. 7 and 12], and [12]). The numbers of faces of $P_{\mathcal{B}}$ of each dimension are conveniently encapsulated in its γ-polynomial $\gamma(\mathcal{B})=\gamma\left(P_{\mathcal{B}}\right)$ defined below.

Recall that for a $(d-1)$-dimensional simplicial complex Δ, the f-polynomial is a polynomial in $\mathbb{Z}[t]$ defined as follows:

$$
f(\Delta)(t):=f_{0}+f_{1} t+\cdots+f_{d} t^{d}
$$

[^0]where $f_{i}=f_{i}(\Delta)$ is the number of $(i-1)$-dimensional faces of Δ, and $f_{0}(\Delta)=1$. The h-polynomial is given by
$$
h(\Delta)(t):=(t-1)^{d} f(\Delta)\left(\frac{1}{t-1}\right)=h_{0}+h_{1} t+\cdots+h_{d} t^{d}
$$
where $h_{i}=h_{i}(\Delta)$. When Δ is a homology sphere, $h(\Delta)$ is symmetric, i.e. $h_{i}(\Delta)=$ $h_{d-i}(\Delta)$ for all i (this is known as the Dehn-Sommerville relations); hence it can be written
$$
h(\Delta)(t)=\sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor} \gamma_{i} t^{i}(1+t)^{d-2 i},
$$
for some $\gamma_{i} \in \mathbb{Z}$. Then the γ-polynomial is given by
$$
\gamma(\Delta)(t):=\gamma_{0}+\gamma_{1} t+\cdots+\gamma_{\left\lfloor\frac{d}{2}\right\rfloor} t^{\left\lfloor\frac{d}{2}\right\rfloor}
$$
where $\gamma_{i}=\gamma_{i}(\Delta)$. The vectors of coefficients of the f-polynomial, h-polynomial and γ-polynomial are known respectively as the f-vector, h-vector and γ-vector. If P is a simple $(d+1)$-dimensional polytope then the dual simplicial complex Δ_{P} of P is the boundary complex (of dimension d) of the polytope that is polar dual to P. The f-vector, h-vector and γ-vector of P are defined via Δ_{P} as
$$
f(P)(t):=t^{d} f\left(\Delta_{P}\right)\left(t^{-1}\right),
$$
so that $f_{i}(P)$ is the number of i-dimensional faces of P, and
\[

$$
\begin{aligned}
& h(P)(t):=h\left(\Delta_{P}\right)(t), \\
& \gamma(P)(t):=\gamma\left(\Delta_{P}\right)(t) .
\end{aligned}
$$
\]

When \mathcal{B} is a building set, we denote the γ-polynomial for $P_{\mathcal{B}}$ by $\gamma(\mathcal{B})$.
Recall that a simplicial complex Δ is flag if every set of pairwise adjacent vertices is a face. Gal [7] conjectured that:

Conjecture 1.1 [7, Conjecture 2.1.7] If Δ is a flag homology sphere then $\gamma(\Delta)$ is nonnegative.

This implies that the γ-vector of any flag polytope has nonnegative entries. Gal's conjecture was proven for flag nestohedra by Volodin in [12, Theorem 9].

In [6] Frankl, Füredi and Kalai characterize the f-vectors of balanced simplicial complexes, and their defining conditions are known as the Frankl-Füredi-Kalai inequalities. Frohmader [5] showed that the f-vector of any flag simplicial complex is the f-vector of a balanced complex. Nevo and Petersen conjectured the following strengthening of Gal's conjecture:

Conjecture 1.2 [8, Conjecture 6.3] If Δ is a flag homology sphere then $\gamma(\Delta)$ satisfies the Frankl-Füredi-Kalai inequalities.

They proved this in [8] for the following classes of flag spheres:

- Δ is a Coxeter complex (including the simplicial complex dual to $P_{\mathcal{B}\left(K_{n}\right)}$),
- Δ is the simplicial complex dual to an associahedron $\left(=P_{\mathcal{B}\left(\text { Path }_{n}\right)}\right)$,
- Δ is the simplicial complex dual to a cyclohedron $\left(=P_{\mathcal{B}\left(\mathrm{Cyc}_{n}\right)}\right)$,
- Δ has $\gamma_{1}(\Delta) \leq 3$,
by showing that the γ-vector of such Δ is the f-vector of a flag simplicial complex. In [9], Conjecture 1.2 is proven for the barycentric subdivision of a simplicial sphere, by showing that the γ-vector is the f-vector of a balanced simplicial complex.

In this paper we prove Conjecture 1.2 for all flag nestohedra:
Theorem 1.3 If $P_{\mathcal{B}}$ is a flag nestohedron, there is a flag simplicial complex $\Gamma(\mathcal{B})$ such that $f(\Gamma(\mathcal{B}))=\gamma\left(P_{\mathcal{B}}\right)$. In particular, $\gamma\left(P_{\mathcal{B}}\right)$ satisfies the Frankl-Füredi-Kalai inequalities.

Our construction for $\Gamma(\mathcal{B})$ depends on the choice of a "flag ordering" for \mathcal{B} (see Sect. 3). In the special cases considered by Nevo and Petersen [8] our $\Gamma(\mathcal{B})$ does not always coincide with the complex they construct.

After completing this paper, the author proved Conjecture 1.2 in the more general context of edge subdivisions in [2]. This result was also proven independently by Volodin in [13] and [14], who had previously shown in [12] that flag nestohedra are a special case of polytopes obtainable from the cube by 2-truncations (see Theorems 2.5 and 2.6). The author and Volodin are currently working on amalgamating the two results. The result in [2] is shown to be equivalent to the result in this paper for flag nestohedra, where a flag ordering in this context corresponds to a subdivision sequence in [2].

Here is a summary of the contents of this paper. Section 2 contains preliminary definitions and results relating to building sets and nestohedra. In Sect. 3 we define the flag simplicial complex $\Gamma(\mathcal{B})$ for a building set \mathcal{B} and prove Theorem 1.3. In Sect. 4 we compare the simplicial complexes $\Gamma(\mathcal{B})$ to the flag simplicial complexes defined in [8].

2 Preliminaries

A building set \mathcal{B} on a finite set S is a set of nonempty subsets of S such that:

- For any $I, J \in \mathcal{B}$ such that $I \cap J \neq \emptyset, I \cup J \in \mathcal{B}$.
- \mathcal{B} contains the singletons $\{i\}$, for all $i \in S$.
\mathcal{B} is connected if it contains S. For any building set $\mathcal{B}, \mathcal{B}_{\text {max }}$ denotes the set of maximal elements of \mathcal{B} with respect to inclusion. The elements of $\mathcal{B}_{\text {max }}$ form a disjoint union of S, and if \mathcal{B} is connected then $\mathcal{B}_{\max }=\{S\}$. Building sets $\mathcal{B}_{1}, \mathcal{B}_{2}$ on S are equivalent, denoted $\mathcal{B}_{1} \cong \mathcal{B}_{2}$, if there is a permutation $\sigma: S \rightarrow S$ that induces a one to one correspondence $\mathcal{B}_{1} \rightarrow \mathcal{B}_{2}$.

Example 2.1 Let G be a graph with no loops or multiple edges, with n vertices labelled distinctly from [n]. Then the graphical building set $\mathcal{B}(G)$ is the set of subsets
of $[n]$ such that the induced subgraph of G is connected (see [3, 4], [11, Sects. 7 and 12] and [12]). $\mathcal{B}(G)_{\max }$ is the set of connected components of G.

Let \mathcal{B} be a building set on S and $I \subseteq S$. The restriction of \mathcal{B} to I is the building set

$$
\left.\mathcal{B}\right|_{I}:=\{J \mid J \subseteq I, \text { and } J \in \mathcal{B}\} \quad \text { on } I .
$$

The contraction of \mathcal{B} by I is the building set

$$
\mathcal{B} / I:=\{J-(J \cap I) \mid J \in \mathcal{B}, J \nsubseteq I\} \quad \text { on } S-I .
$$

We associate a polytope to a building set as follows. Let e_{1}, \ldots, e_{n} denote the standard basis vectors in \mathbb{R}^{n}. Given $I \subseteq[n]$, define the simplex $\Delta_{I}:=\operatorname{ConvexHull}\left(e_{i} \mid\right.$ $i \in I$). Let \mathcal{B} be a building set on $[n]$. The nestohedron $P_{\mathcal{B}}$ is a polytope defined in [10] and [11] as the Minkowski sum,

$$
P_{\mathcal{B}}:=\sum_{I \in \mathcal{B}} \Delta_{I} .
$$

A $(d-1)$-dimensional face of a d-dimensional polytope is called a facet. A simple polytope P is flag if any collection of pairwise intersecting facets has nonempty intersection, i.e. its dual simplicial complex is flag. We use the abbreviation flag complex in place of flag simplicial complex. A building set \mathcal{B} is flag if $P_{\mathcal{B}}$ is flag.

A minimal flag building set \mathcal{D} on a set S is a connected building set on S that is flag, such that no proper subset of its elements forms a connected flag building set on S. Minimal flag building sets are described in detail in [11, Sect. 7.2]. They correspond to plane binary trees with leaf set S. Given such a tree, the leaves are labelled 1 to n, and the corresponding minimal flag building set is the union of the set of leaf descendants of each vertex of the tree. If \mathcal{D} is a minimal flag building set then $\gamma(\mathcal{D})=1$ (see [11, Sect. 7.2]).

Let \mathcal{B} be a building set. A binary decomposition or decomposition of a nonsingleton element $B \in \mathcal{B}$ is a set $\mathcal{D} \subseteq \mathcal{B}$ that forms a minimal flag building set on B. Suppose that $B \in \mathcal{B}$ has a binary decomposition \mathcal{D}. The two maximal elements $D_{1}, D_{2} \in \mathcal{D}-\{B\}$ with respect to inclusion are the maximal components of B in \mathcal{D}. Propositions 2.2 and 2.3 give alternative characterizations of when a building set is flag.

Proposition 2.2 [1, Lemma 7.2] A building set \mathcal{B} is flag if and only if every nonsingleton $B \in \mathcal{B}$ has a binary decomposition.

Proposition 2.3 [1, Corollary 2.6] A building set \mathcal{B} is flag if and only if for every non-singleton $B \in \mathcal{B}$, there exist two elements $D_{1}, D_{2} \in \mathcal{B}$ such that $D_{1} \cap D_{2}=\emptyset$ and $D_{1} \cup D_{2}=B$.

It follows from Proposition 2.3 that a graphical building set is flag.
Lemma 2.4 [1, Lemma 2.7] Suppose \mathcal{B} is a flag building set. If $A, B \in \mathcal{B}$ and $A \subsetneq B$, then there is a decomposition of B in \mathcal{B} that contains A.

Recall the following theorems:

Theorem 2.5 [12, Lemma 6] Let \mathcal{B} and \mathcal{B}^{\prime} be connected flag building sets on S such that $\mathcal{B} \subseteq \mathcal{B}^{\prime}$. Then \mathcal{B}^{\prime} can be obtained from \mathcal{B} by successively adding elements so that at each step the set is a flag building set.

Theorem 2.6 [7, Proposition 2.4.3], [12, Proposition 3] If \mathcal{B}^{\prime} is a flag building set on S obtained from a flag building set \mathcal{B} on S by adding an element I, then

$$
\begin{aligned}
\gamma\left(\mathcal{B}^{\prime}\right) & =\gamma(\mathcal{B})+t \gamma\left(\left.\mathcal{B}^{\prime}\right|_{I}\right) \gamma\left(\mathcal{B}^{\prime} / I\right) \\
& =\gamma(\mathcal{B})+t \gamma\left(\left.\mathcal{B}\right|_{I}\right) \gamma(\mathcal{B} / I) .
\end{aligned}
$$

3 The Flag Complex $\Gamma(\mathcal{B})$ of a Flag Building Set \mathcal{B}

In [12], Corollary 5 (which is attributed to Erokhovets [4]) states that any nestohedron $P_{\mathcal{B}}$ is combinatorially equivalent to a nestohedron $P_{\mathcal{B}_{1}}$ for a connected building set \mathcal{B}_{1}. Hence to prove Theorem 1.3 we need only consider connected building sets.

Suppose that \mathcal{B} is a connected flag building set on $[n], \mathcal{D}$ is a decomposition of [n] in \mathcal{B}, and $I_{1}, I_{2}, \ldots, I_{k}$ is an ordering of $\mathcal{B}-\mathcal{D}$, such that $\mathcal{B}_{j}=\mathcal{D} \cup\left\{I_{1}, I_{2}, \ldots, I_{j}\right\}$ is a flag building set for all $0 \leq j \leq k$ (such an ordering exists by Theorem 2.5). We call the pair consisting of such a decomposition \mathcal{D} and the ordering on $\mathcal{B}-\mathcal{D}$, a flag ordering of \mathcal{B}, denoted O, or $\left(\mathcal{D}, I_{1}, \ldots, I_{k}\right)$. For any $I_{j} \in \mathcal{B}-\mathcal{D}$, we say an element in \mathcal{B}_{j-1} is earlier in the flag ordering than I_{j}, and an element in $\mathcal{B}-\mathcal{B}_{j}$ is later in the flag ordering than I_{j}.

For any $j \in[k]$, define:

$$
U_{j}:=\left\{i \mid i<j, I_{i} \nsubseteq I_{j}, \text { there is no } I \in \mathcal{B}_{i-1} \text { such that } I \backslash I_{j}=I_{i} \backslash I_{j}\right\},
$$

and

$$
V_{j}:=\left\{i \mid i<j, I_{i} \subseteq I_{j} \text {, there exists } I \in \mathcal{B}_{i-1} \text { such that } I_{i} \subsetneq I \subsetneq I_{j}\right\}
$$

If $i \in U_{j} \cup V_{j}$ then we say that I_{i} is non-degenerate with respect to I_{j}. If $I_{i} \in \mathcal{B}_{j-1}$ and $i \notin U_{j}$, then I_{i} is U-degenerate with respect to I_{j}, and if $I_{i} \notin \cup V_{j}$ then I_{i} is V-degenerate with respect to I_{j}.

Given a flag building set \mathcal{B} with flag ordering $O=\left(\mathcal{D}, I_{1}, \ldots, I_{k}\right)$ define a graph on the vertex set

$$
V_{O}=\left\{v\left(I_{1}\right), \ldots, v\left(I_{k}\right)\right\}
$$

where for any $i<j, v\left(I_{i}\right)$ is adjacent to $v\left(I_{j}\right)$ if and only if $i \in U_{j} \cup V_{j}$. Then define a flag simplicial complex $\Gamma(O)$ whose faces are the cliques in this graph. If the flag ordering is clear then we denote $\Gamma(O)$ by $\Gamma(\mathcal{B})$. For any $S \subseteq[k]$, we let $\left.\Gamma(O)\right|_{S}$ denote the induced subcomplex of $\Gamma(O)$ on the vertices $v\left(I_{i}\right)$ for all $i \in S$.

Example 3.1 Consider the flag building set \mathcal{B} (Path_{5}) on [5]. It has a flag ordering O given by

$$
\mathcal{D}=\{\{1\},\{2\},\{3\},\{4\},\{5\},[2],[3],[4],[5]\},
$$

and

$$
\begin{aligned}
& I_{1}=\{3,4\}, \quad I_{2}=\{2,3,4\}, \quad I_{3}=\{2,3\}, \\
& I_{4}=\{2,3,4,5\}, \quad I_{5}=\{3,4,5\}, \quad I_{6}=\{4,5\} .
\end{aligned}
$$

Then $\Gamma(O)$ has only two edges, namely

$$
\left\{v\left(I_{2}\right), v\left(I_{6}\right)\right\} \quad \text { and } \quad\left\{v\left(I_{3}\right), v\left(I_{4}\right)\right\} .
$$

These are edges because $I_{2}=\{2,3,4\}$ is the earliest element which has image $\{2,3\}$ in the contraction by I_{6}, and the element $I_{3}=\{2,3\}$ is a subset of $I_{2}=\{2,3,4\}$ which is in turn a subset of I_{4}.

Suppose that ($\mathcal{D}, I_{1}, \ldots, I_{k}$) is a flag ordering. Then \mathcal{D} / I_{k} is a decomposition of $[n]-I_{k}$, and we have an induced ordering of $\left(\mathcal{B} / I_{k}\right)-\left(\mathcal{D} / I_{k}\right)$, where the i th element is $I_{u_{i}}^{\prime}:=I_{u_{i}} \backslash I_{k}$ if u_{i} is the i th element of U_{k} (listed in increasing order). Then for all $i, \mathcal{D} / I_{k} \cup\left\{I_{u_{1}}^{\prime}, \ldots, I_{u_{i}}^{\prime}\right\}$ is a flag building set. Hence we can also define a flag complex $\Gamma\left(\mathcal{B} / I_{k}\right)$. We label the vertices of $\Gamma\left(\mathcal{B} / I_{k}\right)$ by $v\left(I_{u_{1}}^{\prime}\right), v\left(I_{u_{2}}^{\prime}\right), \ldots, v\left(I_{u_{\left|U_{k}\right|}^{\prime}}^{\prime}\right)$. Hence, we see that U-degenerate elements with respect to I_{j} are the elements that do not contribute to the building set \mathcal{B}_{j} / I_{j}.

Claim 3.2 Let \mathcal{B} be a connected flag building set with flag ordering $\left(\mathcal{D}, I_{1}, \ldots, I_{k}\right)$. For all $I \in \mathcal{B}$ let $I^{\prime}=I \backslash I_{k}$. Suppose $j \in U_{k}$ and $I \in \mathcal{B}_{j-1}$. Then $I \subseteq I_{j}$ if and only if $I^{\prime} \subseteq I_{j}^{\prime}$.

Proof \Rightarrow : It is clear that $I \subseteq I_{j}$ implies $I^{\prime} \subseteq I_{j}^{\prime}$.
$\Leftarrow:$ Suppose for a contradiction that $I^{\prime} \subseteq I_{j}^{\prime}$ and $I \nsubseteq I_{j}$. Then $I \cap I_{j} \neq \emptyset$ and $I \cup I_{j} \neq I_{j}$, which implies that (since \mathcal{B}_{j} is a building set) $I \cup I_{j} \in \mathcal{B}_{j-1}$. We also have that $\left(I \cup I_{j}\right)^{\prime}=I_{j}^{\prime}$, which implies that I_{j} is U-degenerate with respect to I_{k}; a contradiction.

Proposition 3.3 Let \mathcal{B} be a connected flag building set with flag ordering given by $\left(\mathcal{D}, I_{1}, \ldots, I_{k}\right)$. Then $\left.\Gamma\left(\mathcal{B} / I_{k}\right) \cong \Gamma(\mathcal{B})\right|_{U_{k}}$. The map on the vertices is given by $v\left(I_{i}^{\prime}\right) \mapsto v\left(I_{i}\right)$.
$\left.\operatorname{Proof} \Gamma(\mathcal{B})\right|_{U_{k}}$ is a flag complex with vertex set $v\left(I_{u_{1}}\right), v\left(I_{u_{2}}\right), \ldots, v\left(I_{u_{\left|U_{k}\right|} \mid}\right)$ and $\Gamma\left(\mathcal{B} / I_{k}\right)$ is a flag complex with vertex set $v\left(I_{u_{1}}^{\prime}\right), v\left(I_{u_{2}}^{\prime}\right), \ldots, v\left(I_{u_{\left|U_{k}\right|}}^{\prime}\right)$. Suppose that $i<j$ where $i, j \in U_{k}$. We need to show that $\left\{v\left(I_{j}^{\prime}\right), v\left(I_{i}^{\prime}\right)\right\} \in \Gamma\left(\mathcal{B} / I_{k}\right)$ if and only if $\left.\left\{v\left(I_{j}\right), v\left(I_{i}\right)\right\} \in \Gamma(\mathcal{B})\right|_{U_{k}}$. Note that by Claim 3.2, $I_{i} \subseteq I_{j}$ if and only if $I_{i}^{\prime} \subseteq I_{j}^{\prime}$.
(1) Suppose that $I_{i} \subseteq I_{j}$, and that $\left\{v\left(I_{i}^{\prime}\right), v\left(I_{j}^{\prime}\right)\right\} \in \Gamma\left(\mathcal{B} / I_{k}\right)$, so that there exists $I \in \mathcal{B}_{i-1}$ such that $I_{i}^{\prime} \subsetneq I^{\prime} \subsetneq I_{j}^{\prime}$. By Claim 3.2, $I \subseteq I_{j}$ and since $I_{i} \subseteq I_{j}$ this implies

Fig. 1 A picture of the sets in case (2), assuming $M \subseteq I_{i}$. Note that $I_{i} \backslash\left(M \cup I_{j} \cup I_{k}\right)=\emptyset$ by the definition of M

Fig. 2 A picture of the sets in case (2), assuming $M \nsubseteq I_{i}$. Note that $I_{i} \backslash\left(M \cup I_{j} \cup I_{k}\right)=\emptyset$ by the definition of M

$I \cup I_{i} \subseteq I_{j}$. Since $I \cap I_{i} \neq \emptyset$, we have $I \cup I_{i} \in \mathcal{B}_{i-1}$. Hence $I_{i} \subsetneq I \cup I_{i} \subsetneq I_{j}$ which implies $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in \Gamma(\mathcal{B})\right|_{U_{k}}$.

Suppose that $I_{i} \subseteq I_{j}$ and that $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in \Gamma(\mathcal{B})\right|_{U_{k}}$, so that there exists $I \in$ \mathcal{B}_{i-1} such that $I_{i} \subsetneq I \subsetneq I_{j}$. Then $I_{i}^{\prime} \subseteq I^{\prime} \subseteq I_{j}^{\prime}$, and $I^{\prime} \neq I_{i}^{\prime}$ and $I^{\prime} \neq I_{j}^{\prime}$ since $i, j \in U_{k}$, so that $I_{i}^{\prime} \subsetneq I^{\prime} \subsetneq I_{j}^{\prime}$. Hence $\left\{v\left(I_{i}^{\prime}\right), v\left(I_{j}^{\prime}\right)\right\} \in \Gamma\left(\mathcal{B} / I_{k}\right)$.
(2) Suppose that $I_{i} \nsubseteq I_{j}$, and that $\left\{v\left(I_{i}^{\prime}\right), v\left(I_{j}^{\prime}\right)\right\} \in \Gamma\left(\mathcal{B} / I_{k}\right)$, and suppose for a contradiction that $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \notin \Gamma(\mathcal{B})\right|_{U_{k}}$, i.e. $i \notin U_{j}$. Then there exists $I \in \mathcal{B}_{i-1}$ such that $I \backslash I_{j}=I_{i} \backslash I_{j}$. Then $I^{\prime} \backslash I_{j}^{\prime}=I_{i}^{\prime} \backslash I_{j}^{\prime}$ which implies the contradiction that $\left\{v\left(I_{i}^{\prime}\right), v\left(I_{j}^{\prime}\right)\right\} \notin \Gamma\left(\mathcal{B} / I_{k}\right)$.

Suppose that $I_{i} \nsubseteq I_{j}$, and that $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in \Gamma(\mathcal{B})\right|_{I_{k}}$. We will prove the contrapositive that $\left\{v\left(I_{i}^{\prime}\right), v\left(I_{j}^{\prime}\right)\right\} \notin \Gamma\left(\mathcal{B} / I_{k}\right)$ implies that $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \notin \Gamma(\mathcal{B})\right|_{U_{k}}$. $\left\{v\left(I_{i}^{\prime}\right), v\left(I_{j}^{\prime}\right)\right\} \notin \Gamma\left(\mathcal{B} / I_{k}\right)$ implies there exists $M \in \mathcal{B}_{i-1}$ such that $M^{\prime} \backslash I_{j}^{\prime}=I_{i}^{\prime} \backslash I_{j}^{\prime}$.

- Assume that $M \subseteq I_{i}$, and for this case refer to Fig. 1. Let $R:=\left(I_{i} \backslash\left(M \cup I_{j}\right)\right)$, and note that this is a subset of I_{k} since $I_{i} \backslash\left(M \cup I_{i} \cup I_{k}\right)=\emptyset$ by the definition of M. Also, let $J:=I_{i} \backslash\left(M \cup I_{k}\right)$. Since $M \subseteq I_{i}$, by Lemma 2.4, there exists a decomposition of I_{i} in \mathcal{B}_{i} that contains M. Hence M is contained in a maximal component D of this decomposition. Let D^{\prime} be the other maximal component, and note that $D \cap D^{\prime}=\emptyset$. If $D^{\prime} \cap R=\emptyset$ then $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \notin \Gamma(\mathcal{B})\right|_{U_{k}}$ since $D \backslash I_{j}=$ $I_{i} \backslash I_{j}$, hence the desired condition holds. If $D^{\prime} \cap J=\emptyset$ then $I_{i} \backslash I_{k}=D \backslash I_{k}$ which contradicts $i \in U_{k}$. If $D^{\prime} \cap J \neq \emptyset$ and $D^{\prime} \cap R \neq \emptyset$, then $\left(D^{\prime} \cup I_{j}\right) \backslash I_{k}=I_{j} \backslash I_{k}$, which contradicts $j \in U_{k}$.
- Assume that $M \nsubseteq I_{i}$. For this case refer to Fig. 2. Let $H:=I_{i} \backslash\left(I_{j} \cup I_{k}\right)$. In $\left(\mathcal{B}_{j} / I_{k}\right) / I_{j}^{\prime}$ both I_{i}^{\prime} and M^{\prime} have the same image that is given by H, and $H \neq \emptyset$
since $H=\emptyset$ implies $I_{i}^{\prime} \subseteq I_{j}^{\prime}$, which contradicts Claim 3.2. Let $K:=M \backslash\left(I_{k} \cup I_{i}\right)$. Then $K \neq \emptyset$ since $K=\emptyset$ implies $I_{i} \backslash I_{k}=M \backslash I_{k}$, which contradicts $i \in U_{k}$. Let $L:=M \backslash\left(I_{i} \cup I_{j}\right) . L=\emptyset$ implies $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \notin \Gamma(\mathcal{B})\right|_{U_{k}}$ since $\left(I_{i} \cup M\right) \backslash I_{j}=$ $I_{i} \backslash I_{j}$, so the desired condition holds. Suppose now $L \neq \emptyset$. Then M intersects each of H, K and L. Let I be a minimal (for inclusion) element in \mathcal{B}_{i-1} that intersects H, K and L. Then $|I| \geq 3$ and at least one of the maximal components of a decomposition of I (in \mathcal{B}_{i-1}) must intersect exactly two of K, H and L (since I is minimal with respect to intersecting H, K and L, and the components cannot both intersect exactly one set since their disjoint union is I). Denote such an element by \widehat{D}. Note that since $\widehat{D} \in \mathcal{B}_{i-1}$, and $\widehat{D} \cap I_{i} \neq \emptyset$, this implies by the definition of a building set that $\widehat{D} \cup I_{i} \in \mathcal{B}_{i-1}$. If \widehat{D} intersects K and L then $\left(I_{j} \cup \widehat{D}\right) \backslash I_{k}=I_{j} \backslash I_{k}$ which contradicts $j \in U_{k}$. If \widehat{D} intersects both K and H then $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \notin \Gamma(\mathcal{B})\right|_{U_{k}}$ since $\left(I_{i} \cup \widehat{D}\right) \backslash I_{j}=I_{i} \backslash I_{j}$, so the desired condition holds. If \widehat{D} intersects L and H, then $\left(I_{i} \cup \widehat{D}\right) \backslash I_{k}=I_{i} \backslash I_{k}$, which contradicts $i \in U_{k}$.

We now consider the flag building set $\left.\mathcal{B}\right|_{I_{k}}$. It is not necessarily true that $\left.\mathcal{D}\right|_{I_{k}}$ is a decomposition of I_{k}. Let

$$
\mathcal{D}_{k}:=\left.\mathcal{D}\right|_{I_{k}} \cup\left\{I_{j} \mid I_{j} \subseteq I_{k}, j \notin V_{k}\right\} .
$$

The following claim holds for \mathcal{D}_{k}.
Claim 3.4 Suppose \mathcal{B} is a flag building set with flag ordering $\left(\mathcal{D}, I_{1}, \ldots, I_{k}\right)$. Then \mathcal{D}_{k} is a decomposition of I_{k} in $\left.\mathcal{B}\right|_{I_{k}}$, and for any $i \leq k, \mathcal{D}_{k} \cup\left\{I_{i} \mid i \leq j\right.$ and $\left.i \in V_{k}\right\}$ is a flag building set on I_{k}.

Proof We will first show that \mathcal{D}_{k} is a decomposition of I_{k} in $\left.\mathcal{B}\right|_{I_{k}}$. This can be seen by induction. We assume that for some $i<k$, the set of V-degenerate elements with respect to I_{k} in \mathcal{B}_{i}, that are a subset of I_{k}, together with $\left.\mathcal{D}\right|_{I_{k}}$, are the union of a decomposition for each element in $\left(\left.\mathcal{B}_{i}\right|_{I_{k}}\right)_{\max }$. Then if $I_{i+1} \subseteq I_{k}$ and $i+1 \notin V_{k}$, then I_{i+1} is the union of two elements in $\left(\left.\mathcal{B}_{i}\right|_{I_{k}}\right)_{\max }$, so that the inductive hypothesis holds for $i+1$. It is also true that if $I_{i+1} \subseteq I_{k}$ and $i+1 \in V_{k}$, or if $I_{i+1} \nsubseteq I_{k}$, that the inductive hypothesis holds for $i+1$. The hypothesis clearly holds for $i=0$. Hence this statement holds by induction.

We will now show that for any $i \leq k, \mathcal{D}_{k} \cup\left\{I_{i} \mid i \leq j\right.$ and $\left.i \in V_{k}\right\}$ is a flag building set on I_{k}. This is true since $\left.\mathcal{B}_{i}\right|_{I_{k}}$ is a flag building set, and each element in $\left.\mathcal{B}_{i}\right|_{I_{k}}$ is a subset of, or disjoint to any element in $\mathcal{D}_{k}-\left.\mathcal{B}_{i}\right|_{I_{k}}$.

Since Claim 3.4 holds, we define $\Gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right)$ to be the flag complex $\Gamma(O)$ with respect to the flag ordering O of $\left.\mathcal{B}\right|_{I_{k}}$ with decomposition \mathcal{D}_{k} and ordering of $\left.\mathcal{B}\right|_{I_{k}}-\mathcal{D}_{k}$ given by $I_{v_{1}}, I_{v_{2}}, \ldots, I_{v_{\left|V_{k}\right|}}$ where v_{j} is the j th element of V_{k} listed in increasing order. We label the vertices of $\Gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right)$ by $v\left(I_{v_{1}}\right), \ldots, v\left(I_{u_{\left|V_{k}\right|}}\right)$ rather than by their index in V_{k}. In keeping with the notation that \mathcal{B}_{j} is the flag building set obtained after adding elements indexed up to j, we let $\left(\left.\mathcal{B}\right|_{I_{k}}\right)_{j}$ denote the flag building set $\mathcal{D}_{k} \cup\left\{I_{i} \mid i \leq j\right.$ and $\left.i \in V_{k}\right\}$, so that $\Gamma\left(\left(\left.\mathcal{B}\right|_{I_{k}}\right)_{j}\right)$ is defined. Note then that for any j, $\left.\mathcal{B}_{j}\right|_{I_{k}} \subseteq\left(\left.\mathcal{B}\right|_{I_{k}}\right)_{j}$.

Proposition 3.5 Let \mathcal{B} be a connected flag building set with flag ordering given by $\left(\mathcal{D}, I_{1}, \ldots, I_{k}\right)$. Then $\Gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right)=\left.\Gamma(\mathcal{B})\right|_{V_{k}}$.

Proof Both $\Gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right)$ and $\left.\Gamma(\mathcal{B})\right|_{V_{k}}$ are both flag complexes with the vertex set $v\left(I_{v_{1}}\right), v\left(I_{v_{2}}\right), \ldots, v\left(I_{u_{\left|V_{k}\right|}}\right)$. We need to show that for any $i, j \in V_{k}$ where $i<j$, $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in \Gamma(\mathcal{B})\right|_{v_{k}}$ if and only if $\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in \Gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right)$.
\Rightarrow : Suppose that $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in \Gamma(\mathcal{B})\right|_{v_{k}}$. First assume that $I_{i} \subseteq I_{j}$. Then there is some $I \in \mathcal{B}_{i-1}$ such that $I_{i} \subsetneq b \subsetneq I_{j}$. Since $\left.I \in \mathcal{B}_{i-1}\right|_{I_{k}}$ and $\left.\mathcal{B}_{i-1}\right|_{I_{k}} \subseteq\left(\left.\mathcal{B}\right|_{I_{k}}\right)_{i-1}$ this implies that $\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in \Gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right)$.

Now suppose that $I_{i} \nsubseteq I_{j}$. Suppose for a contradiction that $\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \notin$ $\Gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right)$. Then there exists some $D \in \mathcal{D}_{k}-\left.\mathcal{D}\right|_{I_{k}}, D \in \mathcal{B}_{i-1}$, such that $D \cup I_{j}=I_{i} \cup I_{j}$. Since $i \in V_{k}$, there exists some $I \in \mathcal{B}_{i-1}$ such that $I_{i} \subsetneq I \subsetneq I_{k}$. Since $\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in$ $\left.\Gamma(\mathcal{B})\right|_{V_{k}}$, we have that $I \backslash\left(I_{i} \cup I_{j}\right) \neq \emptyset$. Since the index of D is not in V_{k}, every element in the restriction to I_{k} that is earlier than D in the flag ordering is a subset of it or does not intersect it. This implies $I \subseteq D$, so $D \backslash\left(I_{i} \cup I_{j}\right) \neq \emptyset$, which contradicts $D \cup I_{j}=I_{i} \cup I_{j}$.
\Leftarrow : Suppose that $\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in \Gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right)$. First assume that $I_{i} \subseteq I_{j}$, so that there is some $D \in\left(\left.\mathcal{B}\right|_{I_{k}}\right)_{i-1}$ such that $I_{i} \subsetneq D \subsetneq I_{j}$. If $\left.D \in \mathcal{B}_{i-1}\right|_{I_{k}}$ then clearly $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in \Gamma(\mathcal{B})\right|_{V_{k}}$, as desired. If $\left.D \notin \mathcal{B}_{i-1}\right|_{I_{k}}$ then $D \in \mathcal{D}_{k}-\left.\mathcal{D}\right|_{I_{k}}$. Since $i \in V_{k}$, there exists some $I \in \mathcal{B}_{i-1}$ such that $I_{i} \subsetneq I \subsetneq I_{k}$. Since the index of D is not in V_{k}, we have that $I_{i} \subsetneq I \subsetneq D$. This is because D either contains or does not intersect elements that are earlier in the flag ordering and contained in I_{k}. Then since $D \subsetneq I_{j}$ this implies $I \subsetneq I_{j}$ and since $I \in \mathcal{B}_{i-1}$ and $I_{i} \subsetneq I \subsetneq I_{j}$, this implies $\left.\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in \Gamma(\mathcal{B})\right|_{v_{k}}$.

Now assume that $I_{i} \nsubseteq I_{j}$. Suppose for a contradiction that $\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \notin$ $\left.\Gamma(\mathcal{B})\right|_{V_{k}}$. Then there exists $\left.I \in \mathcal{B}_{i-1}\right|_{I_{k}}$ such that $I \cup I_{j}=I_{i} \cup I_{j}$. Since $\left.\mathcal{B}_{i-1}\right|_{I_{k}} \subseteq$ $\left(\left.\mathcal{B}\right|_{I_{k}}\right)_{i-1}$, this contradicts $\left\{v\left(I_{i}\right), v\left(I_{j}\right)\right\} \in \Gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right)$.

Theorem 3.6 Let \mathcal{B} be a connected flag building set with flag ordering O. Then $\gamma(\mathcal{B})=f(\Gamma(O))$.

Proof This is a proof by induction on the number of elements of $\mathcal{B}-\mathcal{D}$, and on the size of the set S that \mathcal{B} is on. The result holds for $k=0$ since $f(\Gamma(\mathcal{D}))=1=\gamma(\mathcal{D})$, and when $|S|=1$. So we assume $k \geq 1$ and that the result holds for all connected flag building sets with a smaller value of k.

By Propositions 3.3 and 3.5 and the inductive hypothesis we have $f\left(\left.\Gamma(\mathcal{B})\right|_{U_{k}}\right)=$ $f\left(\Gamma\left(\mathcal{B} / I_{k}\right)\right)=\gamma\left(\mathcal{B} / I_{k}\right)$, and $f\left(\left.\Gamma(\mathcal{B})\right|_{V_{k}}\right)=f\left(\Gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right)\right)=\gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right)$.

Suppose that $u \in U_{k}$ and $w \in V_{k}$. Then $\left\{v\left(I_{u}\right), v\left(I_{w}\right)\right\} \in \Gamma(\mathcal{B})$, for suppose, by way of contradiction, that $\left\{v\left(I_{u}\right), v\left(I_{w}\right)\right\} \notin \Gamma(\mathcal{B})$, and suppose that $u<w$. Then there is some element $I \in \mathcal{B}_{u-1}$ such that $I \cup I_{w}=I_{u} \cup I_{w}$. This implies that $I \cup I_{k}=$ $I_{u} \cup I_{k}$, which contradicts $u \in U_{k}$. Suppose that $w<u$. Then either $I_{u} \cap I_{w}=\emptyset$ or $I_{w} \subseteq I_{u}$ (otherwise $I_{u} \cup I_{w}$ makes $I_{u} U$-degenerate with respect to I_{k}). Suppose that $I_{w} \cap I_{u}=\emptyset$. Then since $\left\{v\left(I_{u}\right), v\left(I_{w}\right)\right\} \notin \Gamma(\mathcal{B})$, there exists $I \in \mathcal{B}_{w-1}$ such that $I \cup I_{u}=I_{w} \cup I_{u}$, and $I \cap I_{u} \neq \emptyset$. Then $I \cup I_{u}$ makes $I_{u} U$-degenerate with respect to I_{k}; a contradiction. Suppose that $I_{w} \subseteq I_{u}$. Now $w \in V_{k}$ implies there is some $I \in \mathcal{B}_{w-1}$ such that $I_{w} \subsetneq I \subsetneq I_{k}$. Also, $I \subseteq I_{u}$ else $I \cup I_{u}$ makes $I_{u} U$-degenerate
with respect to I_{k}. However, this implies the contradiction that $\left\{v\left(I_{u}\right), v\left(I_{w}\right)\right\} \in \Gamma(\mathcal{B})$ since $I_{w} \subsetneq I \subsetneq I_{u}$.

Hence

$$
\left.\Gamma(\mathcal{B})\right|_{U_{k} \cup V_{k}}=\left.\left.\Gamma(\mathcal{B})\right|_{U_{k}} * \Gamma(\mathcal{B})\right|_{V_{k}},
$$

and therefore

$$
f\left(\left.\Gamma(\mathcal{B})\right|_{U_{k} \cup V_{k}}\right)=f\left(\left.\Gamma(\mathcal{B})\right|_{U_{k}}\right) f\left(\left.\Gamma(\mathcal{B})\right|_{V_{k}}\right)=\gamma\left(\mathcal{B} / I_{k}\right) \gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right) .
$$

Since the vertex $v\left(I_{k}\right)$ is adjacent to the vertices indexed by elements in $U_{k} \cup V_{k}$, we have

$$
f(\Gamma(\mathcal{B}))=f\left(\Gamma\left(\mathcal{B}_{k-1}\right)\right)+t \gamma\left(\mathcal{B} / I_{k}\right) \gamma\left(\left.\mathcal{B}\right|_{I_{k}}\right) .
$$

By the induction hypothesis this implies that

$$
f(\Gamma(\mathcal{B}))=\gamma\left(\mathcal{B}_{k-1}\right)+t \gamma\left(\mathcal{B} \mid I_{k}\right) \gamma\left(\mathcal{B} / I_{k}\right),
$$

which implies that $f(\Gamma(\mathcal{B}))=\gamma(\mathcal{B})$ by Theorem 2.6.

For two flag orderings O_{1}, O_{2} of a connected flag building set \mathcal{B}, it is not necessarily true that the flag complexes $\Gamma\left(O_{1}\right), \Gamma\left(O_{2}\right)$ are equivalent (up to change of labels on the vertices) even if they have the same decomposition. The following example provides a counterexample.

Example 3.7 Let $\mathcal{B}=\mathcal{B}\left(\mathrm{Cyc}_{5}\right)$, and let

$$
\mathcal{D}=\{\{1\},\{2\},\{3\},\{4\},\{5\},[2],[3],[4],[5]\} .
$$

Let O_{1} be the flag ordering with decomposition \mathcal{D} and the following ordering of $\mathcal{B}-\mathcal{D}$:

$$
\begin{aligned}
& \{2,3\},\{2,3,4\},\{2,3,4,5\},\{4,5\},\{3,4,5\},\{3,4\}, \\
& \{3,4,5,1\},\{4,5,1,2\},\{5,1,2,3\},\{4,5,1\},\{5,1,2\},\{1,5\} .
\end{aligned}
$$

Let O_{2} be the flag ordering with decomposition \mathcal{D} and the following ordering of $\mathcal{B}-\mathcal{D}$:

$$
\begin{aligned}
& \{2,3\},\{2,3,4\},\{2,3,4,5\},\{3,4\},\{3,4,5\},\{4,5\},\{3,4,5\},\{3,4\}, \\
& \{3,4,5,1\},\{4,5,1,2\},\{5,1,2,3\},\{4,5,1\},\{5,1,2\},\{1,5\} .
\end{aligned}
$$

Then $\Gamma\left(O_{1}\right)$ and $\Gamma\left(O_{2}\right)$ are depicted in Fig. 3.

4 The Flag Complexes of Nevo and Petersen

In this section we compare the flag complexes that we have defined to those defined for certain graph-associahedra by Nevo and Petersen [8]. They define flag complexes $\Gamma\left(\widehat{\mathfrak{S}}_{n}\right), \Gamma\left(\widehat{\mathfrak{S}}_{n}(312)\right)$ and $\Gamma\left(P_{n}\right)$ such that:

Fig. $3 \Gamma\left(O_{1}\right)$ is on the left, and $\Gamma\left(O_{2}\right)$ is on the right

- $\gamma\left(\mathcal{B}\left(K_{n}\right)\right)=f\left(\Gamma\left(\widehat{\mathfrak{S}}_{n}\right)\right)$,
- $\gamma\left(\mathcal{B}\left(\operatorname{Path}_{n}\right)\right)=f\left(\Gamma\left(\widehat{\mathfrak{S}}_{n}(312)\right)\right)$,
- $\gamma\left(\mathcal{B}\left(\mathrm{Cyc}_{n}\right)\right)=f\left(\Gamma\left(P_{n}\right)\right)$.

In Proposition 4.3, we show that for all n, there is a flag ordering for $\mathcal{B}\left(\operatorname{Path}_{n}\right)$ so that

$$
\Gamma\left(\mathcal{B}\left(\operatorname{Path}_{n}\right)\right) \cong \Gamma\left(\widehat{\mathfrak{S}}_{n}(312)\right) .
$$

We also show, namely in Propositions 4.2 and 4.5, that the analogous statement is not true for $\mathcal{B}\left(K_{n}\right)$ and $\mathcal{B}\left(\mathrm{Cyc}_{n}\right)$, although we have omitted the proofs, which were done by a manual case analysis.

4.1 The Flag Complexes $\Gamma\left(\mathcal{B}\left(K_{n}\right)\right)$ and $\Gamma\left(\widehat{\mathfrak{S}}_{n}\right)$

The permutohedron is the nestohedron $P_{\mathcal{B}\left(K_{n}\right)}$. Note that $\mathcal{B}\left(K_{n}\right)$ consists of all nonempty subsets of [n]. The γ-polynomial of $P_{\mathcal{B}\left(K_{n}\right)}$ is the descent generating function of $\widehat{\mathfrak{S}}_{n}$, which denotes the set of permutations with no double descents or final descent (see [11, Theorem 11.1]). First we recall the definition of $\Gamma\left(\widehat{\mathfrak{S}}_{n}\right)$ given by Nevo and Petersen [8, Sect. 4.1].

A peak of a permutation $w=w_{1} \cdots w_{n}$ in \mathfrak{S}_{n} is a position $i \in[1, n-1]$ such that $w_{i-1}<w_{i}>w_{i+1}$, (where $w_{0}:=0$). We denote a peak at position i with a bar $w_{1} \cdots w_{i} \mid w_{i+1} \cdots w_{n}$. A descent of a permutation $w=w_{1} \cdots w_{n}$ is a position $i \in[n-1]$ such that $w_{i+1}<w_{i}$. Let $\widehat{\mathfrak{S}}_{n}$ denote the set of permutations in \mathfrak{S}_{n} with no double (i.e. consecutive) descents or final descent, and let $\widetilde{\mathfrak{S}}_{n}$ denote the set of permutations in \mathfrak{S}_{n} with one peak. Then $\widehat{\mathfrak{S}}_{n} \cap \widetilde{\mathfrak{S}}_{n}$ consists of all permutations of the form

$$
w_{1} \cdots w_{i} \mid w_{i+1} \cdots w_{n}
$$

where $1 \leq i \leq n-2, w_{1}<\cdots<w_{i}, w_{i}>w_{i+1}, w_{i+1}<\cdots<w_{n}$.
Define the flag complex $\Gamma\left(\widehat{\mathfrak{S}}_{n}\right)$ on the vertex set $\widehat{\mathfrak{S}}_{n} \cap \widetilde{\mathfrak{S}}_{n}$ where two vertices

$$
u=u_{1} \mid u_{2}
$$

and

$$
v=v_{1} \mid v_{2}
$$

with $\left|u_{1}\right|<\left|v_{1}\right|$ are adjacent if there is a permutation $w \in \mathfrak{S}_{n}$ of the form

$$
w=u_{1}|a| v_{2} .
$$

Equivalently, if $v_{2} \subseteq u_{2},\left|u_{2}-v_{2}\right| \geq 2, \min \left(u_{2}-v_{2}\right)<\max \left(u_{1}\right)$ and $\max \left(u_{2}-v_{2}\right)>$ $\min \left(v_{2}\right)$. (Since there must be two peaks in w this implies $|a| \geq 2$.) The faces of $\Gamma\left(\widehat{\mathfrak{S}}_{n}\right)$ are the cliques in this graph.

Example 4.1 Taking only the part after the peak, $\widehat{\mathfrak{S}}_{5} \cap \widetilde{\mathfrak{S}}_{5}$ can be identified with the set of subsets of [5] of sizes 2,3 and 4 which are not $\{4,5\},\{3,4,5\}$, or $\{2,3,4,5\}$. Then the edges of $\Gamma\left(\widehat{\mathfrak{S}}_{5}\right)$ are given by:
$\{1,2,3,4\}$ is adjacent to each of $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\}$,
$\{1,2,3,5\}$ is adjacent to each of $\{1,2\},\{1,3\},\{1,5\},\{2,3\},\{2,5\}$,
$\{1,2,4,5\}$ is adjacent to each of $\{1,4\},\{1,5\},\{2,4\},\{2,5\}$, and
$\{1,3,4,5\}$ is adjacent to each of $\{3,4\},\{3,5\}$.

Proposition 4.2 There is no flag ordering of $\mathcal{B}\left(K_{5}\right)$ so that

$$
\Gamma\left(\mathcal{B}\left(K_{5}\right)\right) \cong \Gamma\left(\widehat{\mathfrak{S}}_{5}\right)
$$

The proof of Proposition 4.2, which is a manual case analysis, has been omitted.

4.2 The Flag Complexes $\Gamma\left(\mathcal{B}\left(\operatorname{Path}_{n}\right)\right)$ and $\Gamma\left(\widehat{\mathfrak{S}}_{n}(312)\right)$

The associahedron is the nestohedron $P_{\mathcal{B}\left(\text { Path }_{n}\right)}$. Note that $\mathcal{B}\left(\right.$ Path $\left._{n}\right)$ consists of all intervals [j, k] with $1 \leq j \leq k \leq n$. The γ-polynomial of the associahedron is the descent generating function of $\widehat{\mathfrak{S}}_{n}(312)$, which denotes the set of 312-avoiding permutations with no double or final descents (see [11, Sect. 10.2]). We now describe the flag complex $\Gamma\left(\widehat{\mathfrak{S}}_{n}(312)\right)$ defined by Nevo and Petersen [8, Sect. 4.2].

Given distinct integers a, b, c, d such that $a<b$ and $c<d$, the pairs $(a, b),(c, d)$ are non-crossing if either:

- $a<c<d<b$ (or $c<a<b<d$), or
- $a<b<c<d$ (or $c<d<a<b$).

Define $\Gamma\left(\widehat{\mathfrak{S}}_{n}(312)\right)$ to be the flag complex on the vertex set

$$
V_{n}:=\{(a, b) \mid 1 \leq a<b \leq n-1\},
$$

with faces the sets S of V_{n} such that if $(a, b) \in S$ and $(c, d) \in S$ then (a, b) and (c, d) are non-crossing.

Let O denote the flag ordering of $\mathcal{B}=\mathcal{B}\left(\right.$ Path $\left._{n}\right)$ with decomposition $\mathcal{D}=$ $\{\{1\},\{2\},\{3\},\{4\},\{n\},[2],[3],[4],[n]\}$, where elements $A, B \in \mathcal{B}-\mathcal{D}$ are ordered so that A is earlier than B if:

- $\max (A)<\max (B)$, or
- $\max (A)=\max (B)$ and $|A|>|B|$.

Proposition 4.3 For the flag ordering O of $\mathcal{B}=\mathcal{B}\left(\operatorname{Path}_{n}\right)$ described above, $\Gamma(O) \cong$ $\Gamma\left(\widehat{\mathfrak{S}}_{n}(312)\right)$ where the bijection on the vertices is given by $v([a+1, b+1]) \mapsto(a, b)$.

Proof Since $\mathcal{B}-\mathcal{D}=\{[j, k] \mid 2 \leq j<k \leq n\}$, it is clear that the stated map on vertices is a bijection. Let $[l, m],[j, k]$ be distinct elements of $\mathcal{B}-\mathcal{D}$ with $[l, m]$ occurring before $[j, k]$. Then $m \leq k$, and if $m=k$ we have $l<j$. If $[l, m] \nsubseteq[j, k]$ then $v([l, m])$ is adjacent to $v([j, k])$ if and only if $m<j$. If $[l, m] \subseteq[j, k]$ (which entails $m<k)$, then $v([l, m])$ is adjacent to $v([j, k])$ if and only if $j<l$. So in either case $v([l, m])$ is adjacent to $v([j, k])$ if and only if $(l-1, m-1)$ and $(j-1, k-1)$ are non-crossing.

4.3 The Flag Complexes $\Gamma\left(\mathcal{B}\left(\mathrm{Cyc}_{n}\right)\right)$ and $\Gamma\left(P_{n}\right)$

The cyclohedron is the nestohedron $P_{\mathcal{B}\left(\mathrm{Cyc}_{n}\right)}$. Note that $\mathcal{B}\left(\mathrm{Cyc}_{n}\right)$ consists of all sets $\{i, i+1, i+2, \ldots, i+s\}$ where $i \in[n], s \in\{0,1, \ldots, n-1\}$, and the elements are taken $\bmod n$. By [11, Proposition 11.15], $\gamma_{r}\left(\mathcal{B}\left(\mathrm{Cyc}_{n}\right)\right)=\left(\begin{array}{c}n, r, n-2 r\end{array}\right)$. We now describe the flag complex $\Gamma\left(P_{n}\right)$ defined by Nevo and Petersen [8, Sect. 4.3].

Define the vertex set

$$
V_{P_{n}}:=\{(l, r) \in[n-1] \times[n-1] \mid l \neq r\} .
$$

$\Gamma\left(P_{n}\right)$ is the flag complex on the vertex set $V_{P_{n}}$ where vertices $\left(l_{1}, r_{1}\right),\left(l_{2}, r_{2}\right)$ are adjacent in $\Gamma\left(P_{n}\right)$ if and only if $l_{1}, l_{2}, r_{1}, r_{2}$ are all distinct and either $l_{1}<l_{2}$ and $r_{1}<r_{2}$, or $l_{2}<l_{1}$ and $r_{2}<r_{1}$.

Example $4.4 \Gamma\left(P_{5}\right)$ is the flag complex on vertices

$$
\begin{aligned}
V_{P_{5}}=\{ & (1,2),(1,3),(1,4),(2,3),(2,4),(3,4), \\
& (2,1),(3,1),(4,1),(3,2),(4,2),(4,3)\}
\end{aligned}
$$

with edges

$$
\begin{aligned}
& \{(1,3),(2,4)\},\{(3,1),(4,2)\},\{(1,2),(3,4)\}, \\
& \{(1,2),(4,3)\},\{(2,1),(4,3)\},\{(2,1),(3,4)\} .
\end{aligned}
$$

Note that $\Gamma\left(P_{5}\right)$ has exactly two vertices of degree two, and has six connected components, four of which contain more than one vertex.

Proposition 4.5 There is no flag ordering of $\mathcal{B}\left(\mathrm{Cyc}_{5}\right)$ so that $\Gamma\left(\mathcal{B}\left(\mathrm{Cyc}_{5}\right)\right) \cong \Gamma\left(P_{5}\right)$.
The proof of Proposition 4.5, which is a manual case analysis, has been omitted.
Acknowledgements This paper forms part of my Ph.D. research in the School of Mathematics and Statistics at the University of Sydney. I would like to thank my supervisor Anthony Henderson for his feedback and help.

References

1. Aisbett, N.: Inequalities between γ-polynomials of graph-associahedra. Electron. J. Comb. 19(2), 36 (2012)
2. Aisbett, N.: Gamma-vectors of edge subdivisions of the boundary of the cross polytope (2012). arXiv:1209.1789v1 [math.CO]
3. Buchstaber, V.M., Volodin, V.D.: Sharp upper and lower bounds for nestohedra. Izv. Math. 75(6), 1107-1133 (2011)
4. Erokhovets, N.Yu.: Gal's conjecture for nestohedra corresponding to complete bipartite graphs. Proc. Steklov Inst. Math. 266(1), 120-132 (2009)
5. Frohmader, A.: Face vectors of flag complexes. Isr. J. Math. 164, 153-164 (2008)
6. Frankl, P., Füredi, Z., Kalai, G.: Shadows of colored complexes. Math. Scand. 63, 169-178 (1988)
7. Gal, S.R.: Real root conjecture fails for five and higher dimensional spheres. Discrete Comput. Geom. 34(2), 269-284 (2005)
8. Nevo, E., Petersen, T.K.: On γ-vectors satisfying the Kruskal-Katona inequalities. Discrete Comput. Geom. 45, 503-521 (2010)
9. Nevo, E., Petersen, T.K., Tenner, B.E.: The γ-vector of a barycentric subdivision. J. Comb. Theory, Ser. A 118, 1364-1380 (2011)
10. Postnikov, A.: Permutohedra, associahedra and beyond. Int. Math. Res. Not. 6, 1026-1106 (2009)
11. Postnikov, A., Reiner, V., Williams, L.: Faces of generalized permutohedra. Doc. Math. 13, 207-273 (2008)
12. Volodin, V.D.: Cubical realizations of flag nestohedra and a proof of Gal's conjecture for them. Usp. Mat. Nauk 65(1), 188-190 (2010)
13. Volodin, V.D.: Geometric realization of the γ-vectors of 2-truncated cubes (2012). arXiv:1210.0398v1 [math.CO]
14. Volodin, V.D.: Geometric realization of the γ-vectors of 2-truncated cubes. Russ. Math. Surv. 67(3), 582-584 (2012)

[^0]: N. Aisbett

 School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
 e-mail: N.Aisbett@maths.usyd.edu.au

