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Abstract A circle C holds a convex body K ⊂ R
3 if K can’t be moved far away

from its position without intersecting C . One of our results says that there is a convex
body K ⊂ R

3 such that the set of radii of all circles holding K has infinitely many
components. Another result says that the circle is unique in the sense that every frame
different from the circle holds a convex body K (actually a tetrahedron) so that every
nontrivial rigid motion of K intersects the frame.
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1 Circles Holding Convex Bodies

Can a circle hold a convex body? Yes, it can. Not every convex body, but many, most
of them: it is proved in [8] that those convex bodies which cannot be held by a circle
form a nowhere dense family.
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What does this holding mean, mathematically?
Let K ⊂ R

3 be a convex body with interior int K �= ∅. Consider the space C of all
circles in R

3 disjoint from intK , equipped with the Pompeiu–Hausdorff metric, and
C(r) the set of all circles in C of fixed radius r > 0.

We say that a circle holds K if it belongs to a bounded component of C(r) for
some r .

We say that a holding circle C fixes K if the only possible movement of C in C is
a rotation which keeps C fixed.

The midpoints of the edges of a hamiltonian cycle in the 1-skeleton of a regular
tetrahedron are the vertices of a square. The circle circumscribed to that square fixes
the tetrahedron, and many circles slightly larger than but close to it hold it. Assuming
the tetrahedron T has edge-length 1, it can be held by circles of diameter in the interval
[1/

√
2, 0.896 . . . [, a result of Itoh et al. [4]. There are three circles of diameter 1/

√
2,

each of which fixes T . And T can pass through circles of diameter at least 0.896 . . .

Remark that the (circular) section of the circumscribed cylinder of T (this is the infinite
circular cylinder of smallest section surrounding intT ) has diameter 1.

The set H(K ) of all diameters of circles holding K is called the holding range of
K . Put

dh(K ) = inf H(K ), dh(K ) = sup H(K ).

Further, let dp(K ) be the lower bound of all diameters of circles through which K can
pass, and let dc(K ) denote the diameter of the (normal) section of the circumscribed
cylinder.

It seems quite reasonable to think that in general there exist circles of diameter
dh(K ) fixing K , and

dh = dp < dc,

as in the case of the regular tetrahedron.
However, in fact the situation is often different. Generally true are only the trivial

inequalities directly derived from the definitions.
The number dp(K ) is, for various K , rather independent of dh(K ) and dh(K ). It

can be smaller than dh(K ), larger than dh(K ), or in between.
While, indeed, for most convex bodies K , dp(K ) < dc(K ) (this was proved by the

second author [9]), there are still lots of them for which equality holds.
Fruchard [3] proved that, while dh(K ) can be less than the width w(K ) of K ,

we always have dh(K )/w(K ) > 2/3. He also showed [3] that dh(K )/dc(K ) can be
arbitrarily small (which comes close to our Theorem 3).

The set H(K ) of all diameters of circles holding K , the holding range of K , may be
disconnected. Maehara [7] showed that the holding range of the regular icosahedron
has two components. He also constructed an octahedron whose holding range has
three components, and asked whether the number of components can be arbitrarily
large [7].

Theorem 1 There are convex bodies K such that H(K ) has arbitrarily many com-
ponents.
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The proof will be clear after reading the proof of Theorem 2.
Let ab denote the line through a, b ∈ R

3, let ab denote the line-segment from a to b,
and let ]ab[denote ab deprived of its endpoints. The convex hull, interior, and boundary
of S ⊂ R

3 are denoted by convS, intS, and ∂S respectively. If a1, . . . , ak ∈ R
3, we

also write a1a2 . . . ak for the convex hull of the set {a1, . . . , ak}.
Theorem 2 There are convex bodies K for which H(K ) has infinitely many compo-
nents.

Proof Let �0,�1,�2, . . . be consecutive half-lines in the plane x0y, starting at 0,
such that their angles � �i� j satisfy

(1) � �0�1 = π/24,

(2) � �i�i+1 = π/2i+2 (i = 1, 2, . . .).

Let a1 be a point on the trisector of the angle �1�2 closer to �1, and consider the
orthogonal projections b1, b2 of a1 onto �1,�2, respectively. Let a0 be the intersection
of the line a1b1 with �0, and a2 the intersection of a1b2 with the trisector of the angle
�2�3 closer to �2 (see Fig. 1).

The obvious iteration leads to the sequences {an}∞n=1 and {bn}∞n=1, both convergent
to the same point a on the half-line �, limit of {�n}∞n=1. � �0� = (π/4) + (π/24).

It follows from the construction that ai+1 < bi < ai .
Finally, let c be the point of coordinates (0, 0, ε) for a small ε > 0.
We define our convex body

K = conv{a0, a1, a2, . . . , a, c,−c}.

Fig. 1 The construction for Theorem 2
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Each circle on which 0 and bi are diametrally opposite, and whose plane makes
an angle of π/4 with x0y, holds K (i = 1, 2, . . .). Close to it there are circles of
diameters in [‖bi‖, ‖ai‖[ holding K . Circles with diameter in [‖ai+1‖, ‖bi‖[ do not
hold K .

The circles with centres close to 0 which hold K have diameter close to 2ε, smaller
than ‖a‖. Thus, [‖bi‖, ‖ai‖[ are connected components of H(K ) for all i ≥ 1.

This proves the theorem. 
�
Theorem 3 There are convex bodies K with dh(K )/dp(K ) as small as wished.

Proof Choose a, b �= 0 in the plane x0y such that π/2 < � 0ab < π , and take
c = (0, 0, ε), for small ε > 0 and set c′ = −c. Then

K = conv{a, b, c, c′}

is an appropriate convex body. Indeed, all circles holding K have centres close to 0,
and dh(K ) = 2ε. On the other hand, dp(K ) equals the minimal value v of the diameter
of the circle circumscribed to axx ′, where x, x ′ are running on bc, respectively bc′,
and v is larger than the height, h, of the triangle 0ab at a. Thus, dh(K )/dp(K ) < ε/h
can be made arbitrarily small. 
�
Theorem 4 (a) There are convex bodies K with dc(K )/dh(K ) as small as wished.
(b) There are convex bodies admitting holding circles, but admitting no fixing circle.

Proof Let ε > 0 be small, and Ci be the circles

y2 + z2 = 4ε2

in the plane x = i . Consider the segment σ connecting the points (3, 0, ε) and
(3, 0,−ε), and the segment τ connecting (0, ε, 0) and 0,−ε, 0). The convex body

K = conv(τ ∪ σ ∪ C1 ∪ C2)

obviously has dh(K ) = 3 and dp(K ) = dc(K ) = 4ε.
This K has holding circles, but no fixing circles. 
�
We saw in the preceding example that a convex body K with holding circles may

have no fixing circle, but the holding circles of minimal diameter allow only rotations
of K .

A holding circle C fixes K up to rotations, if the only possible movements of K are
rotations fixing the sphere circumscribed to C . The natural question arises, whether
the existence of holding circles yields the existence of fixing circles up to rotations.

Theorem 5 There are convex bodies admitting holding circles but admitting no fixing
circle up to rotations.
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Fig. 2 The construction for Theorem 5

Proof Let abcda′b′c′d ′ be a box (a parallelepiped with all angles right), with centre 0,
opposite faces abcd and a′b′c′d ′, long edges bc, da, b′c′, d ′a′, and very short edges
aa′, bb′, cc′, dd ′ (see Fig. 2). Let C be the circle circumscribed to abb′a′. Choose u in
the plane � of C , outside of C but close to C , such that ‖u−a‖ = ‖u−b‖ > ‖u−a′‖.
Set u′ = −u and consider

K ′ = conv{a, b, c, d, a′, b′, c′, d ′, u, u′}

and the ball B of centre 0 and radius ‖u‖.
Let H be the family of all closed half-spaces containing K ′ and bounded by the

planes of all faces of K ′ except abb′ua′ and c′d ′du′c. Then

K = B ∩
⋂

H∈H
H

is a suitable convex body. This can be seen as follows.
Let Z be the bounded cylinder ∂conv(C ∪ −C). Let a′′ be the intersection of Z

with uc′.
Obviously, all planes parallel to � and separating a′′ from −a′′ meet Z along

circles, of diameter dh(K ) = diamC , which hold but do not fix K .
The spherical parts of ∂K prohibit the existence of other components of H(K ).

Thus, no circle fixes K . 
�
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2 Frames Fixing Convex Bodies

A frame is a planar closed convex curve. The notions of holding or fixing can be easily
generalized from the circle to any frame.

We noticed that a circle cannot fix any convex body K in the sense that K doesn’t
move at all; so, we allowed rotation in the definition for the circle. Is only the circle in
this situation? No, Maehara, Tokushige and the first author [1] showed that no triangle
can hold any convex body, and a fortiori it cannot fix it. A more detailed analysis
follows.

A fixed plane P ⊂ R
3 and a convex compact set F ⊂ P , whose boundary ∂ F

is our frame, are given. We always assume that intF is nonempty. A rigid motion is
a continuous map M : R

3 × [0, 1] → R
3 with M(·, 0) = I (the identity) such that

Mt = M(·, t) is a congruence of R
3 for all t ∈ [0, 1]. So a rigid motion Mt is a

homotopy (with congruences) between the identity I and M1. Given a convex body
K ⊂ R

3, the rigid motion Mt moves K through F if (Mt K )∩ P ⊂ F for all t ∈ [0, 1].
This definition models the case when F is a hole in the wall P and one wants to move
K through the hole, and also, when one wants to see that K is stuck in the hole.

Thus, the frame ∂ F holds K if no rigid motion Mt that moves K through F satisfies
M1 K ∩ P = ∅. The frame fixes K if every rigid motion moving K through F satisfies
Mt P = P for all t ∈ [0, 1]. If F fixes K then, of course, it holds K as well. The
following result is known.

Theorem 6 [1]. Every frame that is not a triangle fixes some tetrahedron.

In the definition of fixing we did not require that Mt equal the identity because, for
instance, even if a circle fixes some convex body K , there is a rigid motion Mt (the
one that rotates the disk around its centre) with (Mt K ) ∩ P ⊂ F for all t ∈ [0, 1]
which is not the identity. We are going to show that the circle is, essentially, the only
exception. We need one more definition: We say that a convex body K ⊂ R

3 is fixed
without motion by the frame ∂ F if every rigid motion Mt of K through F satisfies
Mt = I for all t .

Theorem 7 If F is neither a triangle nor a circular disk, then some tetrahedron
T ⊂ R

3 is fixed without motion by F.

Some preparations are needed before the proof. Let f : F × F → R be the
Euclidean distance function, that is, f (x, y) = ‖x − y‖, restricted to F .

The proof uses the following two ingredients of the proof of Theorem 6.

Lemma 1 Assume that f has a local maximum at (a, b), that ]ab[⊂ intF, and that
c, d ∈ ∂ F are on opposite sides of ab. Then there is a tetrahedron T that is fixed by
∂ F and satisfies T ∩ P = abcd.

Although such a T need not be unique, the proof of the lemma constructs it explicitly.
We will denote it by T = T (a, b; c, d).

Lemma 2 Assume ab is a diameter of F, ab ⊂ ∂ F, and the function fa(x) = f (a, x)

is non-decreasing as x moves from a to b on ∂ F \ ab. Then F fixes a tetrahedron T
without motion.
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Fig. 3 Case 1 and 2 of Theorem 7

Proof of Theorem 7 Assume first that F has a diameter ab such that ]ab[⊂ intF . Let
Ia be an arc on ∂ F containing a and maximal with respect to the property that for
every x ∈ Ia there is y ∈ F such that xy is a diameter of F . Of course, Ia may consist
of a single point (namely a) and may coincide with ∂ F , in which case F is of constant
width. The arc Ib is defined analogously.

Case 1 When Ia = {a}. Choose c, d ∈ ∂ F \ab from opposite sides of ab. As (a, b)

is a local maximum of f , Lemma 1 applies and the tetrahedron T (a, b; c, d) is fixed
by ∂ F . Now let Mt be a continuous rigid motion with M0 = I and (Mt T ) ∩ P ⊂ F
for all t ∈ [0, 1]. Then Mt P = P and Mt a = a for all t , as Mt maps a diameter of
F to another diameter. Then Mt is a rotation with centre a, and it follows easily that
Mt = I for all t (see Fig. 3 left).

Case 2 When neither Ia nor Ib is a single point or the whole ∂ F . Then Ia , resp. Ib, is
an arc from a1 to a2, resp. b1, b2, on ∂ F . We choose the notation so that a1, a2, b1, b2
are in this order on ∂ F . It is easy to see that a1b1 and a2b2 are diameters of F . Thus,
Lemma 1 applies again and gives a tetrahedron T (a1, b1; a2, b2) which is fixed by F .
Any rigid motion Mt (as in the definition of fixing) would move the endpoints of a1b1
or a2b2 outside Ia or Ib. Thus Mt must be identity (see Fig. 3 right).

Case 3 When Ia = Ib = ∂ F , i.e. F is of constant width, then for every x ∈ ∂ F
there is y ∈ ∂ F such that xy is a diameter of F . Let B be the unique smallest area
Euclidean disk containing F ; assume its centre is 0. Set H = ∂ F ∩ ∂ B. It is well
known that H is nonempty and 0 ∈ convH . If H contains a pair of antipodal points
then F and B coincide. Then F would be a circular disk, which is excluded by the
hypothesis of the theorem.

So H contains no antipodal pair of points. Then there are points a, b, c ∈ H with
0 ∈ abc. Let aa∗, bb∗, cc∗ be diameters of F .

Assume that the diameter aa∗ does not separate the points b and c, meaning that they
are on the same side of the diameter aa∗. Let I (a, b) (resp. I (a, c)) be the arc on ∂ F
between a and b not containing c (and between a and c not containing b). Thus, a∗ lies
in I (a, b) or I (a, c). It lies on I (a, c), say. As any two diameters have a common point,
bb∗ and aa∗ intersect, implying that b∗ ∈ I (a, c). Hence, a and c are separated by bb∗.

We showed that either aa∗ separates b and c or bb∗ separates a and c. For simpler
writing, we assume that bb∗ separates a and c. Now Lemma 1 applies since (b, b∗)
is a local maximum of f and a, c are on opposite sides of bb∗. Thus, the tetrahedron
T (b, b∗; a, c) is fixed by F .

Assume there is a continuous rigid motion Mt , as in the definition. Then Mt (abc) ⊂
F ⊂ B. The triangles abc and Mt (abc) are congruent, so B is the minimal area disk
containing Mt (abc). Then Mt B = B and consequently Mt is a rotation with centre 0.
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Fig. 4 Case 3 of Theorem 7

Let Ja, Jb, Jc ⊂ H be maximal arcs containing a, b, c, respectively. If any of
these arcs is a single point, then Mt = I . So assume none of them is a single point,
and write a1, a2 resp. b1, b2 and c1, c2 for the endpoints of Ja, Jb, Jc, so that the
points a1, a2, b1, b2, c1, c2 come in this order on ∂ F , see Fig. 4. Lemma 1 gives
the tetrahedron T (b, b∗; a2, c1). Now let Nt be the rigid motion with N0 = I and
(Nt T )∩ P ⊂ F . As we have seen before, Nt is a rotation with center 0. But if Nt �= I
then either Nt a2 moves outside Ja or Nt c1 moves outside Jc, which is impossible.
This finishes Case 3 and, further, all cases when a diameter of F does not lie on its
boundary.

Now let ab ⊂ ∂ F be a diameter of F . If fa(x) is non-decreasing (in the sense of
Lemma 2), then this lemma guarantees the existence of a tetrahedron T that is fixed
by F without motion. Assume now that fa(·) has a local maximum at c ∈ ∂ F \ ab.

Case 4 When ]ac[⊂ ∂ F . Then, as it is easy to check, (c, b) is a local maximum
of f . Note that ]cb[⊂ intF , as otherwise F is a triangle. Choose a point d from the
arc connecting c, b and not containing a. Lemma 1 applies and gives a tetrahedron
T (b, c; a, d) fixed by ∂ F . It is clear that this fixing is without motion: the triangle abc
has only one congruent copy contained in F , namely abc.

Case 5 When ]ac[⊂ intF . Choose d from the arc connecting a, c on ∂ F which is
not containing b. Lemma 1 applies again: (a, c) is a local maximum of f and b, d
are on opposite sides of ac. The tetrahedron T = T (a, c; b, d) is fixed by ∂ F . If
this fixing goes with a rigid motion Mt then Mt (ab) is a diameter of F . As any two
diameters of F intersect, and the diameter ab lies on the boundary of F , Mt a = a or
Mt b = b holds for every t ∈ [0, 1], and Mt is a rotation with centre a or b. It follows
again that Mt = I . 
�

A frame ∂ F fixes tightly a convex body K , if it fixes it and lies on its boundary.
Note that this does not imply that the frame fixes K without motion: let K be the
convex hull of the union of the regular tetrahedron abcd with the smallest disk D
circumscribed to the square with vertices (a + b)/2, (a + c)/2, (d + b)/2, (d + c)/2.
The frame ∂ D fixes K (it even fixes the regular tetrahedron) but not without motion.
The following theorem gives a positive answer to Problem 2 from [1].
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Fig. 5 Case 1 and 2 of Theorem 8

Theorem 8 Every tetrahedron is tightly fixed by some frame.

Proof Let a, b, c, d be the vertices of T , and ab be the longest edge of T (or one of
the longest ones). We distinguish two cases.

Case 1 The angle between the faces abc and abd of T is at least π/2.
Case 2 The angle between the faces abc and abd of T is less than π/2.
Case 1 is simpler. The shortest distance between the lines ab and cd is reached

on a line-segment xy with x ∈ ab and y ∈ cd, as one can easily check (this is the
point where we need the large angle). Consider the circular cylinder with radius ρ

whose axis is the line xy. For small ρ > 0 this cylinder is disjoint from the broken
path through a, c, b, d, a. So there is a smallest ρ > 0 when they have a common
point, say u. So u is (one of) the point(s) on the broken path which is closest to the
segment xy (ties broken arbitrarily). It is clear that u does not coincide with either
of the points a, b, c, d. We can assume without loss of generality that u ∈ ac. Let P
be the plane spanned by x, y, u. P intersects T in a quadrilateral Q = T ∩ P with
vertices x, y, u, v where v ∈ bd. We claim that, as a frame, ∂ Q fixes T .

Fact. (x, y) is a strict local maximum of the distance function f : Q × Q → R.
(This is trivial.)

Assume that Mt is a rigid motion of R
3 with P ∩ Mt T ⊂ Q for all t ∈ [0, t0] where

t0 > 0. The Fact implies that Mt (xy) = xy. Consequently, Mt is a rotation around the
line xy. It follows that Mt (xyu) is not contained in xyu unless Mt is the identity, as
Mt u ∈ ac, and every point of ac, including Mt u, is farther from xy than u. It follows
that Mt Q cannot be contained in Q unless Mt is the identity (see Fig. 5 left).

In Case 2 choose a plane P parallel with ab, perpendicular to abc, and close to ab.
(How close will be clear later.) Let P intersect the edges ac, ad, bd, bc respectively
in points x, y, z, v. (The existence of y, z follows from the assumption that the angle
is smaller than π/2.) We show that the frame ∂ Q, with Q = xyzv, fixes T (see Fig. 5
right). Note that Q is a trapezoid contained in the triangle �∗ with vertices a∗b∗d∗
(where a∗, b∗, d∗ are the projections of a, b, d onto P), and that the angles of Q at z
and y are obtuse.

Suppose again that a rigid motion Mt of R
3 moves T , with P ∩ Mt T ⊂ Q for all

t ∈ [0, t0].
Set Qt = xt yt ztvt = M−1

t P ∩ T . Thus, Qt fits into Q. Let Qt = xt yt ztvt be the
orthogonal projection of Qt onto the plane P . By Kovalyov’s result in [6], (see also
Kós and Törőcsik [5] or Debrunner and Mani-Levitska [2]), Qt also fits into Q. Then
Qt fits into the triangle �∗, since Q ⊂ a∗b∗d∗.
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Note that, given ε > 0, we can choose the plane P so close to ab that |x − a|,
|v−a|, |y−b|, |z−b| < ε, which implies that |x −a∗|, |v−a∗|, |y−b∗|, |z−b∗| < ε.
Further, given any δ > 0, for all small enough t > 0 the angles of Qt at zt and vt are
obtuse, and |x − xt |, |y − yt |, |z − zt |, |v − vt | < δ.

Fact. If ε, δ > 0 are small enough, then Qt fits into a∗b∗d∗ in a unique way, that
is, there is a unique congruent copy of Qt contained in a∗b∗d∗, namely Qt .

The proof is a direct 2-dimesional argument in the plane P . As xt , yt , zt , vt resp.
are on edges ac, bd, bc, ad of T , their projections xt , yt , zt , vt resp. are on edges
a∗d∗, b∗d∗, b∗c∗, a∗d∗ of �∗.

Take a congruent copy of Qt contained in a∗b∗d∗, Q1 say, with vertices
x1, y1, z1, v1. Apply a parallel translation to Q1 towards a∗b∗ by a translation orthog-
onal to a∗b∗ as long as the translated copy of Q1 lies in �∗. Let Q2 be the final
position of Q1 in this translation, with vertices x2, y2, z2, v2. Then either x2 ∈ a∗b∗
or v2 ∈ a∗b∗ because a∗b∗ is the longest edge of �∗ and Qt is very close to [a∗, b∗]
when ε and t are small enough.

By symmetry we can assume x2 ∈ a∗b∗. Now rotate Q2 around its vertex x2 so
that v2 moves towards a∗b∗ as long as the rotated copy of Q2 is contained in �∗. So
we stop when v2 reaches a∗b∗ or z2 reaches b∗d∗ or when y2 reaches d∗a∗, whichever
happens first. As the angles of Q2 at vertices z2 and y2 are obtuse, the points z2 resp.
y2 move away from the edges b∗d∗ and d∗a∗ during the rotation. So we stop when v2

reaches a∗b∗. Let Q3 be the final position of Q2 during this rotation, its vertices are
x3, y3, z3, y3.

It follows that Q3 ⊂ �∗ and x3, v3 ∈ a∗b∗. Also, Qt ⊂ �∗ and xt , vt ∈ a∗b∗ (for
small enough t). But Q3 is congruent to Qt , and their vertices are on the same edges
of �∗. So they coincide. Then there was no rotation, and there was no translation, so
Q1 = Q2 = Q3 = Qt . 
�

The Fact shows that Qt fits into Q in a unique way as well. Then zt = z because
zt resp. z is the unique common point of Qt and Q with [b∗d∗]. Then zt = zt = z.
Similarly yt = yt = y, implying that Mt is a rotation around the axis zy.

Finally, P is perpendicular to abc, so the width of T ∩ M−1
t P is larger than that of

xyuv, unless Mt is the identity.
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