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Abstract For every convex disk K (a convex compact subset of the plane, with non-
void interior), the packing density δ(K ) and covering density ϑ(K ) form an ordered
pair of real numbers, i.e., a point in R

2. The set Ω consisting of points assigned this
way to all convex disks is the subject of this article. A few known inequalities on δ(K )
and ϑ(K ) jointly outline a relatively small convex polygon P that contains Ω , while
the exact shape of Ω remains a mystery. Here we describe explicitly a leaf-shaped
convex region� contained inΩ and occupying a good portion of P . The setsΩT and
ΩL of translational packing and covering densities and lattice packing and covering
densities are defined similarly, restricting the allowed arrangements of K to translated
copies or lattice arrangements, respectively. Due to affine invariance of the translative
and lattice density functions, the sets ΩT and ΩL are compact. Furthermore, the sets
Ω, ΩT andΩL contain the subsetsΩ�, Ω�

T andΩ�
L respectively, corresponding to the

centrally symmetric convex disks K , and our leaf � is contained in each of Ω�, Ω�
T

and Ω�
L .
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Mathematics Subject Classification 52C15

1 Introduction: Definitions and Notation

An n-dimensional convex body is a compact, convex subset of R
n that contains an

interior point. A 2-dimensional convex body is called a convex disk. The convex hull
of a set S is denoted by Conv(S).
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A family F = {Ki } of subsets of R
n , each congruent to a given convex body K ,

is a packing (of R
n with copies of K ) if their interiors are mutually disjoint, and it is

a covering if their union is R
n . If F is a packing and a covering, then it is called a

tiling, and we say that such a convex body K admits a tiling of R
n or that K is a tile,

for brevity.
For a (measurable) set S in R

n, |S| denotes the n-dimensional measure of S, and
for a family of sets F = {Ki } and a region D ⊂ R

n , we will denote by |F ∩ D| the
sum of the volumes of Ki ∩ D over all Ki ∈ F . Let Br denote the ball of radius r in
R

n , centered at the origin.
Given any family F = {Ki } of congruent copies of a convex body K (in particular,

a packing or a covering), the density of F is defined as

d(F) = lim
r→∞

|F ∩ Br |
|Br | .

Here, if the limit does not exist, then in case F is a packing we take the upper limit,
limsup, and in case it is a covering we take the lower limit, liminf, in place of the limit.

For every convex body K , the supremum of the set of densities d(F) taken over
all packing arrangements with copies of K is called the packing density of K and is
denoted by δ(K ). Similarly, the infimum of the set of densities d(F) taken over all
covering arrangements with copies of K is called the covering density of K and is
denoted by ϑ(K ).

Often certain restrictions on the structure of the arrangements F are imposed: one
may consider arrangements of translated copies of K only, or just lattice arrangements
of translates of K . In these cases, the corresponding densities assigned to K by anal-
ogous definitions are: the translative packing and covering density of K , denoted by
δT (K ) and ϑT (K ), and the lattice packing and covering density of K , denoted by
δL(K ) and ϑL(K ), respectively.

It is easily seen that these quantities satisfy the following inequalities:

0 ≤ δL(K ) ≤ δT (K ) ≤ δ(K ) ≤ 1 ≤ ϑ(K ) ≤ ϑT (K ) ≤ ϑL(K ). (1.1)

For more details on these notions and their basic properties see [3]. Here we only
mention the following:

(i) Each of the extreme densities δ(K ), δT (K ), δL(K ), ϑ(K ), ϑT (K ), and ϑL(K )
is attained by a corresponding arrangement F . In other words, for every convex
body K there is a maximum density packing and a minimum density covering in
each of the three types: by arbitrary isometries, by translates only, and by lattice
arrangements only.

(ii) Each of the six densities δ, δT , δL , ϑ, ϑT , and ϑL , considered as a real-valued
function defined on the hyperspace Kn of all n-dimensional convex bodies fur-
nished with the Hausdorff metric, is continuous.

(iii) Each of the four densities δT , δL , ϑT , and ϑL is affine-invariant, hence each of
them can be viewed as a (continuous) function defined on the space

[Kn
]

of affine
equivalence classes of all convex n-dimensional bodies—a quotient space of Kn .

(iv) δ(K ) = 1 ⇐⇒ ϑ(K ) = 1 ⇐⇒ K is a tile.
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2 The Background

The main result, as outlined in the Abstract, concerns the packing and covering den-
sities of convex disks. Therefore the brief survey given in this section is focused on
the two-dimensional case.

The lattice packing density of the circular disk B2 (the unit ball in R
2) has been

determined by Lagrange [16] in 1773: δL(B2) = π/
√

12. In 1831, Gauss [6] estab-
lished that δL(B3) = π/

√
12. The first proof of the equality δ(B2) = π/

√
12 was

given by Thue [19] in 1910. The analogous result for the covering, ϑ(B2) = 2π/
√

27,
is due to Kershner [12].

The following significant generalization of Thue’s and Kershner’s theorems was
given by Fejes Tóth [5]. For every convex disk K , let h(K ) and H(K ) denote the
maximum area hexagon contained in K and the minimum area hexagon containing
K , respectively. Then no packing of the plane with congruent copies of K can be of
density greater than |K |/|H(K )|. Fejes Tóth’s proof of the bound of |K |/|h(K )| for
coverings requires that the copies Ki and K j of K do not cross each other, meaning
that at least one of the sets Ki \ K J and K j \ Ki is connected, hence the second result
is not quite analogous to the first one. However, since two translates of a convex disk
cannot cross each other, the two results produce the following inequalities:

δ(K ) ≤ |K |
|H(K )| and ϑT (K ) ≥ |K |

|H(K )| . (2.1)

Along with the theorems of Dowker [2] on inscribed and circumscribed polygons in
centrally symmetric disks, the above inequalities imply that if K is centrally symmetric,
then

δ(K ) = δT (K ) = δL(K ) = |K |
|H(K )| and ϑT (K ) = ϑL(K ) = |K |

|h(K )| . (2.2)

These two equalities generalize Thue’s and Kershner’s theorems, respectively.
The equalityϑ(K ) = |K |

|h(K )| for centrally symmetric disks K , conjectured by Fejest
Tóth [4] (see also [5]) still remains unproven.

Chakerian and Lange [1] proved that every convex disk K is contained in a quadri-
lateral of area at most

√
2 |K |. Since every quadrilateral admits a tiling of the plane,

they established the inequality

δ(K ) ≥ √
2/2 = 0.7071 . . . . (2.3)

Henceforth, K will denote an arbitrary (not necessarily centrally symmetric) convex
disk, unless otherwise explicitly assumed.

The inequality of Chakerian and Lange [13] was subsequently improved in to

δ(K ) ≥ √
3/2 = 0.8660 . . . . (2.4)
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Concerning upper bounds on covering density, the inequality

ϑ(K ) ≤ 8(2
√

3 − 3)/3 = 1.2376043 . . . , (2.5)

established in [15], was improved by Ismailescu [8] to

ϑ(K ) ≤ 1.2281772 . . . . (2.6)

The upper bound in the above inequality, though presently the best known, is not likely
to be sharp. However, for the centrally symmetric convex disks K , the second equality
in (2.2) and a theorem of Sas [18] on maximum area polygons inscribed in a convex
disk imply that

ϑ(K ) ≤ 2π/
√

27 = 1.209 . . . , (2.7)

which is sharp, since equality holds for the circular disk.
The following inequality, linking the packing density δ(K ) and the covering density

ϑ(K ):

3ϑ(K ) ≤ 4δ(K ) (2.8)

was proved in [14]. The inequality is sharp, since equality holds in the case of the
circular disk.

3 Packing and Covering Via Tiling

In this section we do not restrict ourselves to two dimensions. Here all convex bod-
ies are assumed to be n-dimensional, also packing and covering means packing and
covering of R

n .
We begin with the following simple observation.
Assume that a convex body K is contained in a tile T . Then a space tiling with

congruent replicas of T naturally yields a space packing with congruent replicas of K .
Similarly, if K contains T , then the tiling yields a space covering with replicas of K .
Such a packing, resp. covering, is said to be generated by the tile T .

Proposition 1 The density of a packing generated by a tile T containing K is |K |/|T |.
Similarly, the density of a covering generated by a tile t contained in K is |K |/|t |.

We omit the easy, natural proof of this proposition. Following are two simple, but
quite useful statements.

Proposition 2 Suppose a densest space packing with congruent copies of K , that is, a
packing of density δ(K ), is generated by a tile T containing K , and let M be a convex
body “sandwiched” between K and T , that is, K ⊂ M ⊂ T . Then δ(M) = |M |/|T |.

Henceforth we will say that set B is sandwiched between sets A and C to mean that
A ⊂ B ⊂ C or C ⊂ B ⊂ A.
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K

(b)(a)

K

Fig. 1 Disk K sandwiched between the circle and a the circumscribed, b the inscribed, regular hexagon

Proposition 3 Suppose a thinnest space covering with congruent copies of K , that
is, a covering of density ϑ(K ), is generated by a tile T contained in K , and let M be
a convex body sandwiched between K and T . Then ϑ(M) = |M |/|T |.
Proof of Proposition 2 Indeed, T generates a packing with replicas of M that is of
density |M |/|T |, and a packing with higher density is impossible, since such a packing
would yield a packing with copies of K of density exceeding δ(K ). �

Proof of Proposition 3 is completely analogous to that of Proposition 2.
As an application of the above, we obtain the following two propositions.

Proposition 4 Let K be a convex disk sandwiched between the circular disk C and a
regular hexagon H circumscribing C (see Fig. 1a). Since, by Thue’s theorem, δ(C) =
|C |/|H | and since H is a tile, we conclude that

δ(K ) = |K |/|H |.

Moreover, since the hexagon H is centrally symmetric, it tiles the plane in a lattice-like
manner, which implies that

δ(K ) = δT (K ) = δL(K ).

Similarly:

Proposition 5 Let K be a convex disk sandwiched between the circular disk C and
a regular hexagon h inscribed in C (see Fig. 1b). By the above Propositions and by
Kershner’s theorem, we conclude that

ϑ(K ) = |K |/|h|.

Moreover,

ϑ(K ) = ϑT (K ) = ϑL(K ).

Remark In view of the recent proof of the sphere packing conjecture in R
3 (also known

as the Kepler Conjecture) by Hales [7], the rhombic dodecahedron circumscribed about
the ball B3 generates a densest ball packing. Hence:
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Fig. 2 Pentagon P that contains
the set Ω

(1, 4/3)

(1, 1)(3/4, 1)

P

C

x ≥ 0.866...

y ≤ 1.228...

For every convex body K sandwiched between the ball and the rhombic dodecahe-
dron circumscribed about it, the packing density δ(K ) = δT (K ) = δL(K ) is the ratio
between the volume of K and the volume of the rhombic dodecahedron.

4 The Subset Ω of the Plane, Consisting of Pairs (δ(K ), ϑ(K ))

Define ω : K2 → R
2 by ω(K ) = (δ(K ), ϑ(K )) for every K ∈ K2. By continuity

of each of the real-valued functions δ and ϑ , the function ω is continuous. Let Ω =
ω

(K2
)
. The inequalities (2.4), (2.6), (2.7), along with the obvious ones, δ(K ) ≤ 1

and ϑ(K ) ≥ 1, can be interpreted as five half-planes in the (x, y)-plane R
2, each

containing the set Ω , namely

(a) x ≥ 0.8660 . . . , (b) x ≤ 1, (c) y ≤ 1.2281772 . . . , (d) y ≥ 1, and

(e) y ≤ 4

3
x .

The intersection of these half-planes is a pentagon, we denote it P , containingΩ , see
Fig. 2.

The vertex (1, 1) of P corresponds to all plane-tiling polygons, and is the only
point of Ω lying on the union of the two sides of P containing this vertex. The point
C = (

π/
√

12, 2π/
√

27
)

lies on the slant side of P and corresponds to the circular
disk B2, and perhaps also to every ellipse—we say perhaps, because in general the
covering density of an ellipse is unknown. It would be interesting to know if C is the
only point ofΩ lying on the line y = 4

3 x , and also if C = ω(K ) for some non-elliptical
convex disk K .

Remark 1 The sets ΩT and ΩL are defined in a similar way as Ω , just by replacing
the function ω = (δ, ϑ) by ωT = (δT , ϑT ) and by ωL = (δL , ϑL), respectively. Also,
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Fig. 3 The conjectured teardrop
shape of Ω

P

(1, 4/3)

(1, 1)(3/4, 1)

C

x ≥ 0.866...

y ≤ 1.228...

Ω?

one can define the subset Ω∗ of Ω , by restricting the function ω to the subspace K∗2

of K2 consisting of centrally symmetric disks K , and then define the sets Ω∗
T ⊂ ΩT

and Ω∗
L ⊂ ΩL in the same way. Equalities (2.2) imply that Ω∗

T = Ω∗
L .

Of course, the corresponding six Ω-type sets are readily defined in the very same
way for n-dimensional convex bodies with n > 2. However, already in dimension 3,
most of the properties and inequalities analogous to those mentioned in the previous
sections either do not hold or are not known to be true.

Remark 2 The Minkowski sum of convex bodies, defined by

K + M = {x + y : x ∈ K , y ∈ M},

is a continuous map from Kn × Kn to Kn . Therefore the space Kn is contractible,
which means that there is a homotopy between the identity on Kn and a constant map.
This implies that the space Kn is simply-connected. This in turn implies that each
of the sets Ω, ΩT , and ΩL is pathwise-connected, being a continuous image of a
pathwise-connected space. But a continuous image of a simply-connected space need
not be simply-connected. However, if a simple closed curve J inΩ (inΩT or inΩL )
is the image under ω (ωT , ωL , respectively) of a simple closed curve in Kn , then J is
contractible to a point inΩ (ΩT , ΩL , resp.). Such a contractible simple closed curve
J bounds a unique topological disk in R2, therefore the disk must be contained in
Ω (ΩT , ΩL , resp.).

Since the Minkowski sum of two centrally symmetric sets is a centrally symmet-
ric set, the analogous statements hold for the space K∗n of centrally symmetric n-
dimensional convex bodies, and to the corresponding sets Ω∗ Ω∗

T and Ω∗
L .

Remark 3 There are reasons to believe that the shape ofΩ resembles that of a teardrop,
as shown in Fig. 3. First, the lower bound δ(K ) ≥ √

3/2 = 0.866 . . . is very likely
possible to raise, perhaps fairly close to 0.9. Also, the upper bound ϑ(K ) ≤ 1.228 . . .

123



Discrete Comput Geom (2013) 50:1072–1084 1079

is likely possible to lower, perhaps all the way down to 2π/
√

27 = 1.209 . . . . Then,
since the vertex (1.1) of P is the only point thatΩ has in common with each of the two
sides of P containing it, it seems reasonable to expect that if a convex disk can pack
the plane very efficiently (i.e., has packing density close to 1), then it should cover the
plane efficiently as well. More specifically, we conjecture that there exist a convex-
to-the-left curve in P containing (1.1) and separating Ω from the ray y = 1, x < 1,
and also there is a convex-to-the-right curve in P , containing (1.1) and separating Ω
from the ray x = 1, y > 1. Possibly, the two curves may lie on the boundary of Ω ,
meeting at C , and forming the teardrop shape between them.

5 Certain Two Arcs in Ω and the Disk They Enclose

Let H be the regular hexagon of unit edge length let Dt (0 ≤ t ≤ 1) be a circular disk
shrinking monotonically and continuously in t , beginning with being circumscribed
about H and ending up inscribed in H . Let A be the arc in K2 consisting of the convex
disks Kt = Dt ∩ H , see Fig. 4.

Similarly, let B be the arc in K2 consisting of the convex disks Lt = Conv (Dt ∪ H),
see Fig. 5.

Each of the arcs A and B connects points H and D, and A ∪ B is a simple closed
curve in K2. Each of α = ω(A) and β = ω(B) is a path inΩ joining point (1, 1)with
point C = (π/

√
12, 2π/

√
27).

t = 0 t = 1t = 1/2

Fig. 4 The disks Kt representing points of the arc A for t = 0, t = 1/2, and t = 1

t = 0 t = 1t = 1/2

Fig. 5 The disks Lt representing points of the arc B for t = 0, t = 1/2, and t = 1
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Fig. 6 The parameters u and v

For a parametric description of α and β, we observe that each disk Kt is sand-
wiched between the circular disk Dt and a regular hexagon inscribed in Dt , and also
is sandwiched between the regular hehagon H and the circle inscribed in it. Similarly,
each disk Lt is sandwiched between the circular disk Dt and a regular hexagon cir-
cumscribed about Dt , and also is sandwiched between the regular hehagon H and the
circle circumscribed about it. Using Propositions 4 and 5 and by computing the areas
of the disks Kt and Lt and the disks between which they are sandwiched, we obtain
explicit parametric presentations of the paths α and β as follows.

In our parameterization of the curve α = ω(A), we choose the parameter u asso-
ciated with ω(Kt ) to be the length of a rectilinear component of the boundary of Kt .
For the curve β = ω(B), we choose the parameter v associated with ω(Kt ) to be the
total length of two rectilinear components of the boundary of Lt , see Fig. 6.

By elementary computations of corresponding areas we obtain the formulae for
the packing and covering densities δ(Kt ), ϑ(Kt ) expressed as functions of u, and
δ(Lt ) and ϑ(Lt ) expressed as functions of v, that constitute the following parametric
presentations of the arcs α and β:

α :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = f1(u) = 2π − 12 arcsin (u/2)+ 3
√

4 − u2
√

3(4 − u2)
;
(0 ≤ u ≤ 1)

y = g1(u) = 2π − 12 arcsin (u/2)+ 3
√

4 − u2

3
√

3
;

and

β :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = f2(v) = √
3

(
π

6
− arcsin (v/2)+ v√

4 − v2

)
;

(0 ≤ v ≤ 1)

y = g2(v) =
√

3

3

(
(4 − v2)

(π
6

− arcsin (v/2)
)

+ v
√

4 − v2
)

Path α begins at (1, 1) and ends at C = (π/
√

12, 2π
√

27), and path β begins at
C = (π/

√
12, 2π

√
27) and ends at (1, 1), therefore α+β is a loop. Since each of the

functions ψ1 and ψ2 is strictly monotonic (ψ1 decreases and ψ2 increases), each of
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α

β

(1, 4/3)

(1, 1)(3/4, 1)
P

C

x ≥ 0.866...

y ≤ 1.228...

ΛΛ

Fig. 7 The leaf � and its position within Ω

the paths α and β is an arc. Moreover, α is concave, and β is convex, hence the loop
α + β is a simple closed curve that bounds a leaf-shaped convex disk �, see Fig. 7.

Propositions 4 and 5 yield immediately the equalities

δ(Kt ) = δT (Kt ) = δL(Kt ),

ϑ(Kt ) = ϑT (Kt ) = ϑL(Kt ),

δ(Lt ) = δT (Lt ) = δL(Lt ),

and

ϑ(Lt ) = ϑT (Lt ) = ϑL(Lt ),

which imply that the leaf � is contained in each of Ω, ΩT , and ΩL .
Moreover, since each of the disks Kt and Lt is centrally symmetric, the last obser-

vation of Remark 2, implies that � is contained in each of Ω∗, Ω∗
T , and Ω∗

L as well.

6 Questions

(Q1) Are the sets Ω and Ω∗ compact? Comment. Since each of the functions
δT , δL , ϑT and ϑL is affine invariant (see Sect. 1, (iii)), and since the space
[Kn] of affine equivalence classes of all convex n-dimensional bodies is
compact (see Macbeath [17]), it follows that each of the setsΩT , ΩL , and
Ω∗

T = Ω∗
L is compact.

(Q2–Q4) Is each of the five Ω-type sets simply-connected? Is each of them a topo-
logical disk? Is each of them convex?

(Q5) What are the vertical lines of support from the left for each of the fiveΩ-type
sets?

123



1082 Discrete Comput Geom (2013) 50:1072–1084

Fig. 8 The inequalities of Ismailescu bound the region P0 containing Ω∗
L ; the leaf � lies in it

(Q6) What are the horizontal lines of support from above for each of the five
Ω-type sets?

(Q7) The inequalities of Ismailescu [9,10]

δL(K )+ ϑL(K ) ≥ 2

and

ϑL(K ) ≤ 1 + 5

4

√
1 − δL(K )

for every centrally symmetric convex disk K can be expressed as: the set
Ω∗

L = Ω∗
T lies between the line x + y = 2 and the curve y = 1 + √

1 − x .
Does the same hold for the set Ω?

In addition, the upper bound (2.7) on ϑT (K ) for centrally symmetric convex disks
further restricts the region P0 containing Ω∗

L , as shown in Fig. 8.
The inequalities of Ismailescu were inspired by the numerical studies in his own

doctoral thesis [9], where he devised an algorithm to compute the maximum area of a
hexagon contained in any given centrally symmetric octagon and the minimum area
of a hexagon containing it. The algorithm enabled him to compute δ(K ) and ϑ(K )
for every centrally symmetric octagon K and he used it to plot points in Ω∗

L corre-
sponding to a large number of randomly generated centrally symmetric octagons (see
Fig. 9a). Moreover, based on the algorithm, he gave a complete, analytical description
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(a) (b) (c)

Fig. 9 The Ismailescu range U and the leaf �. (Diagrams used and modified by permission of Dan
Ismailescu.)

of the subset U of Ω∗
L consisting of points that correspond to all centrally symmetric

octagons, namely:

U =
⎧
⎨

⎩
(x, y) ∈ R

2 : 1 ≤ y ≤ 4 − 2
√

2,
5y2 − 12y + 8

2y2 − 5y + 4
≤ x ≤

y
(

y + 4 + √
y2 − 8y + 8

)

4y + 2

⎫
⎬

⎭
,

see Fig. 9b.
Figure 9 shows side-by-side: (a)—the plot of 50,000 points in Ω∗

L corresponding
to random computer-generated centrally symmetric octagons; (b)—the analytically
described range U , whose apex A corresponds to the regular octagon; and (c)—the
leaf-like disk �, described in Sect. 5, superimposed on the Ismailescu diagram; the
apex C of � corresponds to the circular disk.

Note the unexpected resemblance between the shapes of U and �. Also note that,
somewhat surprisingly, a randomly generated centrally symmetric octagon seems quite
likely to be close to a planar tile. Is the same true for a randomly chosen n-gon with
n ≥ 3?

A very recent result of Ismailescu and Kim [11] includes the inequality δL (K )ϑL(K )
≥ 1 for every centrally symmetric K , which is stronger than Ismailescu’s inequal-
ity δL(K ) + ϑL(K ) ≥ 2 mentioned above, further restricting the convex region P0
containing Ω∗

L shown in Fig. 8. Still, observe that at the left vertical edge of the
region P0 and at the upper-right corner of it (see Fig. 9c) there seem to be further
areas in P0 free from points of Ω∗

L , as if inviting discovery of additional restricting
inequalities.

The questions of describing explicitly the sets Ω, ΩT , ΩL , Ω
∗, and Ω∗

L remain
open and appear to be extremely difficult. However, asking for some better approxi-
mations from outside and from inside seems reasonable.
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