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Abstract We show that every n-point tree metric admits a (1 + ε)-embedding into
�

C(ε) log n
1 , for every ε > 0, where C(ε) ≤ O

(
( 1
ε
)4 log 1

ε
)
)
. This matches the natural

volume lower bound up to a factor depending only on ε. Previously, it was unknown
whether even complete binary trees on n nodes could be embedded in �

O(log n)

1 with
O(1) distortion. For complete d-ary trees, our construction achieves C(ε) ≤ O

( 1
ε2

)
.

Keywords Dimension reduction · Metric embeddings · Bi-Lipschitz distortion

1 Introduction

Let T = (V, E) be a finite, connected, undirected tree, equipped with a length function
on edges, len : E → [0,∞). This induces a shortest-path pseudometric,

dT (u, v) = length of the shortest u–v path in T .

(This is a pseudometric because we may have d(u, v) = 0 even for distinct u, v ∈ V .)
Such a metric space (V, dT ) is called a finite tree metric.
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Given two metric spaces (X, dX ) and (Y, dY ), and a mapping f : X → Y , we
define the Lipschitz constant of f by

‖ f ‖Lip = sup
x �=y∈X

dY ( f (x), f (y))

dX (x, y)
.

An L-Lipschitz map is one for which ‖ f ‖Lip ≤ L . One defines the distortion of the
mapping f to be dist( f ) = ‖ f ‖Lip · ‖ f −1‖Lip, where the distortion is understood to
be infinite when f is not injective. We say that (X, dX )D-embeds into (Y, dY ) if there
is a mapping f : X → Y with dist( f ) ≤ D.

Using the notation �k
1 for the space R

k equipped with the ‖ · ‖1 norm, we study the
following question: How large must k = k(n, ε) be so that every n-point tree metric
(1 + ε)-embeds into �k

1?

1.1 Dimension Reduction in �1

A seminal result of Johnson and Lindenstrauss [8] implies that for every ε > 0,
every n-point subset X ⊆ �2 admits a (1 + ε)-distortion embedding into �k

2, with

k = O
( log n

ε2

)
. On the other hand, the known upper bounds for �1 are much weaker.

Talagrand [19], following earlier results of Bourgain–Lindenstrauss–Milman [3] and
Schechtman [17], showed that every n-dimensional subspace X ⊆ �1 (and, in partic-
ular, every n-point subset) admits a (1 + ε)-embedding into �k

1, with k = O
( n log n

ε2

)
.

For n-point subsets, this was very recently improved to k = O(n/ε2) by New-
man and Rabinovich [15], using the spectral sparsification techniques of Batson
et al. [4].

On the other hand, Brinkman and Charikar [2] showed that there exist n-point sub-
sets X ⊆ �1 such that any D-embedding of X into �k

1 requires k ≥ n�(1/D2) (see
also [10] for a simpler proof). Thus the exponential dimension reduction achievable
in the �2 case cannot be matched for the �1 norm. More recently, it has been shown
by Andoni et al. [1] that there exist n-point subsets such that any (1 + ε)-embedding
requires dimension at least n1−O(1/ log(ε−1)). Regev [16] has given an elegant proof of
both these lower bounds based on information theoretic arguments.

One can still ask about the possibility of more substantial dimension reduction for
certain finite subsets of �1. Such a study was undertaken by Charikar and Sahai [5].
In particular, it is an elementary exercise to verify that every finite tree metric embeds
isometrically into �1, thus the �1 dimension reduction question for trees becomes a
prominent example of this type. It was shown1 [5] that for every ε > 0, every n-point

tree metric (1+ε)-embeds into �k
1 with k = O

( log2 n
ε2

)
. It is quite natural to ask whether

the dependence on n can be reduced to the natural volume lower bound of �(log n).
Indeed, it is Question 3.6 in the list “Open problems on embeddings of finite metric
spaces” maintained by Matoušek [13], asked by Gupta et al.2 As noted there, the ques-

1 The original bound proved in [5] grew like log3 n, but this was improved using an observation of A. Gupta.
2 Asked at the DIMACS Workshop on Discrete Metric spaces and their Algorithmic Applications (2003).
The question was certainly known to others before 2003, and was asked to the first-named author by Assaf
Naor earlier that year.
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tion was, surprisingly, even open for the complete binary tree on n vertices. The present
paper resolves this question, achieving the volume lower bound for all finite trees.

Theorem 1.1 For every ε > 0 and n ∈ {1, 2, 3, . . .}, the following holds. Every
n-point tree metric admits a (1 + ε)-embedding into �k

1 with k = O
(
( 1
ε
)4 log 1

ε
log n

)
.

If the tree is a complete d-ary tree of some height, the bound improves to k =
O

(
( 1
ε
)2 log n

)
.

The proof for the general case is presented in Sect. 3.1. The special case of complete
d-ary trees is addressed in Sect. 2. We remark that the proof also yields a randomized
polynomial-time algorithm to construct the embedding.

By simple volume arguments, the �(log n) factor is necessary. Regarding the
dependence on ε, it is known [9] that for complete binary trees, one must have
k ≥ �

( log n
ε2 log(1/ε)

)
, showing that, for this special case, Theorem 1.1 is tight up to

a log(1/ε) factor.

1.2 Notation

For a graph G = (V, E), we use the notations V (G) and E(G) to denote the vertex and
edge sets of G, respectively. For a connected, rooted tree T = (V, E) and x, y ∈ V ,
we use the notation Pxy for the unique path between x and y in T , and Px for Pr x ,
where r is the root of T .

We use N for the set of positive integers {1, 2, 3, . . .}. For k ∈ N, we write [k] =
{1, 2, . . . , k}. We also use the asymptotic notation A � B to denote that A = O(B),
and A 
 B to denote the conjunction of A � B and B � A.

1.3 Proof Outline and Related Work

We first discuss the form that all our embeddings will take. Let T = (V, E) be a finite,
connected tree, and fix a root r ∈ V . For each v ∈ V , recall that Pv denotes the unique
simple path from r to v. Given a labeling of edges by vectors λ : E → R

k , we can
define ϕ : V → R

k by

ϕ(x) =
∑

e∈E(Pv)

λ(e). (1)

The difficulty now lies in choosing an appropriate labeling λ. An easy observation is
that if we have ‖λ(e)‖1 = len(e) for all e ∈ E and the set {λ(e)}e∈E is orthogonal,
then ϕ is an isometry. Of course, our goal is to use many fewer than |E | dimensions
for the embedding. We next illustrate a major probabilistic technique employed in our
approach.

Re-randomization. Consider an unweighted, complete binary tree of height h. Denote
the tree by Th = (Vh, Eh), let n = 2h+1 −1 be the number of vertices, and let r denote
the root of the tree. Let κ ∈ N be some constant which we will choose momentarily.
If we assign to every edge e ∈ Eh , a label λ(e) ∈ R

κ , then there is a natural mapping
τλ : Vh → {0, 1}κh given by

τλ(v) = (λ(e1), λ(e2), . . . , λ(ek), 0, 0, . . . , 0), (2)
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where E(Pv) = {e1, e2, . . . , ek}, and the edges are labeled in order from the root to v.
Note that the preceding definition falls into the framework of (1), by extending each
λ(e) to a (κh)-dimensional vector padded with zeros, but the specification here will
be easier to work with presently.

If we choose the label map λ : Eh → {0, 1}κ uniformly at random, the probability
for the embedding τλ specified in (2) to have O(1) distortion is at most exponentially
small in n. In fact, the probability for τλ to be injective is already this small. This is
because for two nodes u, v ∈ Vh which are the children of the same node w, there is
�(1) probability that τλ(u) = τλ(v), and there are �(n) such independent events. In
Sect. 2, we show that a judicious application of the Lovász Local Lemma [6] can be
used to show that τλ has O(1) distortion with non-zero probability. In fact, we show
that this approach can handle arbitrary k-ary complete trees, with distortion 1 + ε.
Unknown to us at the time of discovery, a closely related construction occurs in the
context of tree codes for interactive communication [18].

Unfortunately, the use of the Local Lemma does not extend well to the more difficult
setting of arbitrary trees. For the general case, we employ an idea of Schulman [18]
based on re-randomization. To see the idea in our simple setting, consider Th to be
composed of a root r , under which lie two copies of Th−1, which we call A and B,
having roots rA and rB, respectively.

The idea is to assume that, inductively, we already have a labeling λh−1 : Eh−1 →
{0, 1}κ(h−1) such that the corresponding map τλh−1 has O(1) distortion on Th−1. We
will then construct a random labeling λh : Eh → {0, 1}κ by using λh−1 on the
A-side, and π(λh−1) on the B-side, where π randomly alters the labeling in such a
way that τπ(λh−1) is simply τλh−1 composed with a random isometry of �

κ(h−1)
1 . We

will then argue that with positive probability (over the choice of π ), τλh has O(1)

distortion,
Let π1, π2, . . . , πh−1 : {0, 1}κ → {0, 1}κ be i.i.d. random mappings, where the

distribution of π1 is specified by

π1(x1, x2, . . . , xκ ) = (ρ1(x1), ρ2(x2), . . . , ρκ(xκ)) ,

where each ρi is an independent uniformly random involution {0, 1} �→ {0, 1}. To
every edge e ∈ Eh−1, we can assign a height α(e) ∈ {1, 2, . . . , h − 1} which is its
distance to the root. From a labeling λ : Eh−1 → {0, 1}κ , we define a random labeling
π(λ) : Eh−1 → {0, 1}κ by

π(λ)(e) = πα(e) ◦ λ.

By a mild abuse of notation, we will consider π(λ) : E(B) → {0, 1}κ .
Finally, given a labeling λh−1 : Eh−1 → {0, 1}κ , we construct a random labeling

λh : Eh → {0, 1}κ as follows:

λh(e) =

⎧
⎪⎨

⎪⎩

(0, 0, . . . , 0) e = (r, rA),

(1, 1, . . . , 1) e = (r, rB),

λh−1(e) e ∈ E(A),

π(λh−1)(e) e ∈ E(B).
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By construction, the mappings τλh |V (A)∪{r} and τλh |V (B)∪{r} have the same distor-
tion as τλh−1 . In particular, it is easy to check that τπ(λh−1) is simply τλh−1 composed
with an isometry of {0, 1}κ(h−1).

Now consider some pair x ∈ V (A) and y ∈ V (B). It is simple to argue that it suffices
to bound the distortion for pairs with m = dTh (r, x) = dTh (r, y) for m ∈ {1, 2, . . . , h},
so we will assume that x, y have the same height in Th .

Observe that τλh (x) is fixed with respect to the randomness in π , thus if we write
v = τλh (x) − τλh (y), where subtraction is taken coordinate-wise, modulo 2, then v

has the form

v ≡ (
1, 1, . . . , 1︸ ︷︷ ︸

κ

, b1, b2, . . . , bκ(m−1)

)

where the {bi } are i.i.d. uniform over {0, 1}. It is thus an easy consequence of Chernoff
bounds that, with probability at least 1 − e−mκ/8, we have

‖τλh (x) − τλh (y)‖1 = ‖v‖1 ≥ κ · dTh (x, y)

4
.

Also, clearly ‖τλh ‖Lip ≤ κ .
On the other hand, the number of pairs x ∈ V (A), y ∈ V (B) with m = dTh (r, x) =

dTh (r, y) is 22(m−1), thus taking a union bound, we have

P
(
dist(τλh ) > max{4, dist(τλh−1)}

) ≤
h∑

m=1

22(m−1)e−mκ/8,

and the latter bound is strictly less than 1 for some κ = O(1), showing the existence
of a good map τλh .

This illustrates how re-randomization (applying a distribution over random isome-
tries to one side of a tree) can be used to achieve O(1) distortion for embedding Th

into �
O(h)
1 . Unfortunately, the arguments become significantly more delicate when we

handle less uniform trees. The full-blown re-randomization argument occurs in Sect. 5.

Scale Selection. The first step beyond complete binary trees would be in passing to
complete d-ary trees for d ≥ 3. The same construction as above works, but now one
has to choose κ 
 log d. Unfortunately, if the degrees of our tree are not uniform,
we have to adopt a significantly more delicate strategy. It is natural to choose a single
number κ(e) ∈ N for every edge e ∈ E , and then put λ(e) ∈ 1

κ(e) {0, 1}κ(e) (this
ensures that the analogue of the embedding τλ specified in (2) is 1-Lipschitz).

Observing the case of d-ary trees, one might be tempted to put

κ(e) =
⌈

log
|Tu |
|Tv|

⌉
,

where e = (u, v) is directed away from the root, and we use Tv to denote the subtree
rooted at v. If one simply takes a complete binary tree on 2h nodes, and then connects
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a star of degree 2h to every vertex, we have κ(e) 
 h for every edge, and thus the
dimension becomes O(h2) instead of O(h) as desired.

In fact, there are examples which show that it is impossible to choose κ(u, v) to
depend only on the geometry of the subtree rooted at u. These “scale selector” values
have to look at the global geometry, and in particular have to encode the volume
growth of the tree at many scales simultaneously. Our eventual scale selector is fairly
sophisticated and impossible to describe without delving significantly into the details
of the proof. For our purposes, we need to consider more general embeddings of type
(1). In particular, the coordinates of our labels λ(e) ∈ R

k will take a range of different
values, not simply a single value as for complete trees.

We do try to maintain one important, related invariant: If Pv is the sequence of edges
from the root to some vertex v, then ideally for every coordinate i ∈ {1, 2, . . . , k} and
every value j ∈ Z, there will be at most one e ∈ Pv for which λ(e)i ∈ [2 j , 2 j+1). Thus
instead of every coordinate being “touched” at most once on the path from the root to
v, every coordinate is touched at most once at every scale along every such path. This
ensures that various scales do not interact. For technical reasons, this property is not
maintained exactly, but analogous concepts arise frequently in the proof.

The restricted class of embeddings we use, along with a discussion of the invariants
we maintain, are introduced in Sect. 3.2. The actual scale selectors are defined in
Sect. 4.

Controlling the Topology. One of the properties that we used above for complete d-ary
trees is that the depth of such a tree is O(logd n), where n is the number of nodes in the
tree. This allowed us to concatenate vectors down a root–leaf path without exceeding
our desired O(log n) dimension bound. Of course, for general trees, no similar property
need hold. However, there is still a bound on the topological depth of any n-node tree.

To explain this, let T = (V, E) be a tree with root r , and define a monotone
coloring of T to be a mapping χ : E → N such that for every c ∈ N, the color
class χ−1(c) is a connected subset of some root–leaf path. Such colorings were used
in previous works on embedding trees into Hilbert spaces [7,11,12], as well as for
preivous low-dimensional embeddings into �1 [5]. The following lemma is well-known
and elementary.

Lemma 1.2 Every connected n-vertex rooted tree T admits a monotone coloring such
that every root–leaf path in T contains at most 1 + log2 n colors.

Proof For an edge e ∈ E(T ), let �(e) denote the number of leaves beneath e in T
(including, possibly, an endpoint of e). Letting �(T ) = maxe∈E �(e), we will prove that
for �(T ) ≥ 1, there exists a monotone coloring with at most 1+log2(�(T )) ≤ 1+log2 n
colors on any root–leaf path.

Suppose that r is the root of T . For an edge e, let Te be the subtree beneath e,
including the edge e itself. If r is the endpoint of edges e1, e2, . . . , ek , we may color the
edges of Te1 , Te2 , . . . , Tek separately, since any monotone path is contained completely
within exactly one of these subtrees. Thus we may assume that r is the endpoint of
only one edge e1, and then �(T ) = �(e1).

Choose a leaf x in T such that each connected component of T ′ of T \ E(Pr x ) has
�(T ′) ≤ �(e1)/2 (this is easy to do by, e.g., ordering the leaves from left to right in
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a planar drawing of T ). Color the edges E(Pr x ) with color 1, and inductively color
each non-trivial connected component T ′ with disjoint sets of colors from N \ {1}.
By induction, the maximum number of colors appearing on a root–leaf path in T is at
most 1 + log2(�(e1)/2) = 1 + log2(�(T )), completing the proof. ��

Instead of dealing directly with edges in our actual embedding, we will deal with
color classes. This poses a number of difficulties, and one major difficulty involving
vertices which occur in the middle of such classes. For dealing with these vertices,
we will first preprocess our tree by embedding it into a product of a small number
of new trees, each of which admits colorings of a special type. This is carried out in
Sect. 3.1.

2 Warm-Up: Embedding Complete k-ary Trees

We first prove our main result for the special case of complete k-ary trees, with an
improved dependence on ε. The main novelty is our use of the Lovász Local Lemma
to analyze a simple random embedding of such trees into �1. The proof illustrates the
tradeoff between concentration and the sizes of the sets {{u, v} ⊆ V : dT (u, v) = j}
for each j = 1, 2, . . .

Theorem 2.1 Let Tk,h be the unweighted, complete k-ary tree of height h. For every

ε > 0, there exists a (1 + ε)-embedding of Tk,h into �
O((h log k)/ε2)

1 .

In the next section, we introduce our random embedding and analyze the success
probability for a single pair of vertices based on their distance. Then in Sect. 2.2,
we show that with non-zero probability, the construction succeeds for all vertices. In
the coming sections and later, in the proof of our main theorem, we will employ the
following concentration inequality [14].

Theorem 2.2 Let M be a non-negative number, and Xi (1 ≤ i ≤ n) be independent
random variables satisfying Xi ≤ E(Xi ) + M for 1 ≤ i ≤ n. Consider the sum
X = ∑n

i=1 Xi with expectation E(X) = ∑n
i=1 E(Xi ) and Var(X) = ∑n

i=1 Var(Xi ).
Then we have

P(X − E(X) ≥ λ) ≤ exp
( −λ2

2(Var(X) + Mλ/3)

)
. (3)

2.1 A Single Event

First k, h ∈ N and ε > 0. Write T = (V, E) for the tree Tk,h with root r ∈ V , and let
dT be the unweighted shortest-path metric on T . Additionally, we define

t =
⌈1

ε

⌉
(4)

and

m = t�log k�. (5)
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Let {�v(1), . . . , �v(t)} be the standard basis for R
t . Let b1, b2, . . . , bm be chosen

i.i.d. uniformly over {1, 2, . . . , t}. For the edges e ∈ E , we choose i.i.d. random labels
λ(e) ∈ R

m×t , each of which has the distribution of the random vector (represented in
matrix notation),

1

m

⎛

⎜
⎝

�v(b1)
...

�v(bm)

⎞

⎟
⎠ . (6)

Note that for every e ∈ E , we have ‖λ(e)‖1 = 1. We now define a random mapping
g : V → R

m(h−1)×t as follows: We put g(r) = 0, and otherwise

g(v) =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

λ(e1)
...

λ(e j )

0
...

0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

, (7)

where e1, e2, . . . , e j is the sequence of edges encountered on the path from the root
to v. It is straightforward to check that g is 1-Lipschitz. The next observation is also
immediate from the definition of g.

Observation 2.3 For any v ∈ V and u ∈ V (Pv), we have dT (u, v) = ‖g(u)−g(v)‖1.

For m, n ∈ N, and A ∈ R
m×n , we use the notation A[i] ∈ R

n to refer to the i th row
of A. We now bound the probability that a given pair of vertices experiences a large
contraction.

Lemma 2.4 For C ≥ 10, and x, y ∈ V ,

P[‖g(x) − g(y)‖1 ≤ (1 − Cε)dT (x, y)] ≤ k−CdT (x,y)/2. (8)

Proof Fix x, y ∈ V , and let r ′ denote their lowest common ancestor. We define a
family of random variables {Xi j }i∈[h−1], j∈[m] by setting �i j = (i − 1)m + j , and then

Xi j = ‖g(x)[�i j ] − g(r ′)[�i j ]‖1 + ‖g(y)[�i j ] − g(r ′)[�i j ]‖1

−‖g(x)[�i j ] − g(y)[�i j ]‖1. (9)

Observe that if i ≤ dT (r, r ′) then Xi j = 0 for all j ∈ [m] since all three terms in
(9) are zero. Furthermore, if i ≥ min(dT (r, x), dT (r, y)) + 1, then again Xi j = 0 for
all j ∈ [m], since in this case one of the first two terms of (9) is zero, and the other is
equal to the last. Thus if

R = [h − 1] ∩ [dT (r, r ′) + 1, min(dT (r, x), dT (r, y))],
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then i /∈ R �⇒ Xi j = 0 for all j ∈ [m], and additionally we have the estimate

|R| = min(dT (r, x), dT (r, y)) − dT (r, r ′) ≤ dT (x, y)

2
. (10)

Now, using the definition of g in (7), we can write

‖g(x) − g(y)‖1

=
∑

i∈[h−1], j∈[m]

(‖g(x)[�i j ] − g(r ′)[�i j ]‖1 + ‖g(y)[�i j ] − g(r ′)[�i j ]‖1 − Xi j
)

= ‖g(x) − g(r ′)‖1 + ‖g(y) − g(r ′)‖1 −
∑

i∈[h−1], j∈[m]
Xi j

(2.3)= dT (x, r ′) + dT (y, r ′) −
∑

i∈[h−1], j∈[m]
Xi j

= dT (x, y) −
∑

i∈[h−1], j∈[m]
Xi j .

We will prove the lemma by arguing that

P

[ ∑

i∈[h−1], j∈[m]
Xi j ≤ CεdT (x, y)

]
≤ k−CdT (x,y)/2.

We start the proof by first bounding the maximum of the Xi j variables. Since, for
every �, we have

‖g(x)[�] − g(r ′)[�]‖1, ‖g(y)[�] − g(r ′)[�]‖1 ∈ {
0,

1

m

}
,

we conclude that

max
{

Xi j : i ∈ [h − 1], j ∈ [m]} ≤ 2

m
. (11)

For i ∈ R and j ∈ [m], using (6) and (7), we see that (g(x)[�i j ] − g(r ′)[�i j ]) =
1
m �v(α) and g(y)[�i j ] − g(r ′)[�i j ] = 1

m �v(β), where α and β are i.i.d. uniform over
{1, . . . , t}. Hence, for i ∈ R and j ∈ [m], we have

P[Xi j �= 0] = 1

t
.

We can thus bound the expected value and variance of Xi j for i ∈ R and j ∈ [m]
using (11),

E[Xi j ] ≤ 2

tm
(12)
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and

Var(Xi j ) ≤ 4

tm2 . (13)

Using (10), we have

h−1∑

i=1

m∑

j=1

E[Xi j ] =
∑

i∈R

∑

j∈[m]
E[Xi j ]

(12)≤
∑

i∈R

2

t

(10)≤ dT (x, y)

t
(14)

and

h−1∑

i=1

m∑

j=1

Var(Xi j ) = ∑
i∈R

∑
j∈[m] Var(Xi j )

(13)≤ ∑
i∈R

4
tm

(10)≤ 2 dT (x,y)
tm . (15)

We now apply Theorem 2.2 to complete the proof:

P

[ ∑

i∈[h−1], j∈[m]
Xi j ≥ C

(dT (x, y)

t

)]

= P

[ ∑

i∈[h−1], j∈[m]
Xi j − dT (x, y)

t
≥ (C − 1)

(dT (x, y)

t

)]

(14)≤ P

( ∑

i∈[h−1], j∈[m]
Xi j − E

[ ∑

i∈[h−1], j∈[m]
Xi j

]
≥ (C − 1)

(dT (x, y)

t

))

≤ exp
( −((C − 1)dT (x, y)/t)2

2
( ∑

i∈[h−1], j∈[m] Var(Xi j ) + (C − 1)(dT (x, y)/t)( 2
m )/3

)
)

(15)≤ exp
( −((C − 1)dT (x, y)/t)2

2
(
2 dT (x, y)/(tm) + (C − 1)(dT (x, y)/t)( 2

m )/3
)
)

= exp
( −(C − 1)2

4
(
1 + (C − 1)/3

) · m

t
· dT (x, y)

)
.

An elementary calculation shows that for C ≥ 10, we have (C−1)2

4(1+(C−1)/3)
≥ C

2 . Hence,

P

[ ∑

i∈[h−1], j∈[m]
Xi j ≥ CεdT (x, y)

]

(14)≤ P

[ ∑

i∈[h−1], j∈[m]
Xi j ≥ C

(dT (x, y)

t

)] ≤ exp
(

− Cm

2t
dT (x, y)

)

(5)≤ k−CdT (x,y)/2

completing the proof. ��
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2.2 The Local Lemma Argument

We first give the statement of the Lovász Local Lemma [6] and then use it in conjunction
with Lemma 2.4 to complete the proof of Theorem 2.1.

Theorem 2.5 Let A be a finite set of events in some probability space. For A ∈ A, let
�(A) ⊆ A be such that A is independent from the collection of events A\({A}∪�(A)).
If there exists an assignment x : A → (0, 1) such that for all A ∈ A, we have

P(A) ≤ x(A)
∏

B∈�(A)

(1 − x(B)),

then the probability that none of the events in A occur is at least
∏

A∈A(1−x(A)) > 0.

Proof of Theorem 2.1 We may assume that k ≥ 2. We will use Theorem 2.5 and
Lemma 2.4 to show that with non-zero probability the following inequality holds for
all u, v ∈ V

‖g(u) − g(v)‖1 ≤ (1 − 14ε) dT (u, v).

For u, v ∈ V , let Euv be the event
{‖g(u) − g(v)‖1 ≤ (1 − 14ε) dT (u, v)

}
. Now,

for u, v ∈ V , define

xuv = k−3dT (u,v).

Observe that for vertices u, v ∈ V and a subset V ′ ⊆ V , the event Euv is mutually
independent of the family {Eu′v′ : u′, v′ ∈ V ′} whenever the induced subgraph of T
spanned by V ′ contains no edges from Puv . Thus using Theorem 2.5, it is sufficient
to show that for all u, v ∈ V ,

P(Euv) ≤ xuv

∏

s,t∈V :
E(Pst )∩E(Puv) �=∅

(1 − xst ). (16)

Indeed, this will complete the proof of Theorem 2.1.
To this end, fix u, v ∈ V . For e ∈ E and i ∈ N, we define the set

Se,i = {
(s, t) : s, t ∈ V, dT (s, t) = i, and e ∈ E(Pst )

}
.

Since T is a k-ary tree,

|Se,i | ≤
i∑

j=1

k j−1 · ki− j = i · ki−1 ≤ k2i . (17)
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Thus we can write

xuv

∏

s,t∈V :
E(Pst )∩E(Puv) �=∅

(1 − xst )

= xuv

∏

e∈E(Puv)

∏

i∈N

∏

(s,t)∈Se,i

(
1 − xst

) = k−3dT (u,v)
∏

e∈E(Puv)

∏

i∈N

∏

(s,t)∈Se,i

(
1 − k−3i )

(17)≥ k−3dT (u,v)
∏

e∈E(Puv)

∏

i∈N

(
1 − k−3i )k2i ≥ k−3dT (u,v)

∏

e∈E(Puv)

∏

i∈N

(
1 − k2i (k−3i )

)

= k−3dT (u,v)
∏

e∈E(Puv)

∏

i∈N

(
1 − 1

ki

)
.

For x ∈ [0, 1
2 ], we have e−2x ≤ 1 − x , and since k ≥ 2, we have k−i ≤ 1

2 for all
i ∈ N, hence

xuv

∏

s,t∈V :
E(Pst )∩E(Puv) �=∅

(1 − xst )

≥ k−3dT (u,v)
∏

e∈E(Puv)

∏

i∈N

exp
(−2

ki

) = k−3dT (u,v)
∏

e∈E(Puv)

exp
( − 2

∑

i∈N

1

ki

)

= k−3dT (u,v)
∏

e∈E(Puv)

exp
( −2/k

1 − 1/k

) ≥ k−3dT (u,v)
∏

e∈E(Puv)

exp
(−4

k

)

= k−3dT (u,v) exp
(−4 dT (u, v)

k

)
.

Since k ≥ 2, we conclude that

xuv

∏

s,t∈V :
E(Pst )∩E(Puv) �=∅

(1 − xst ) ≥ k−7dT (u,v).

On the other hand, Lemma 2.4 applied with C = 14 gives

P[‖g(u) − g(v)‖1 ≤ (1 − 14ε)dT (u, v)] ≤ k−7dT (u,v),

yielding (16), and completing the proof. ��

3 Colors and Scales

In the present section, we develop some tools for our eventual embedding. The proof
of our main theorem appears in the next section, but relies on a key theorem which is
only proved in Sect. 5.
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3.1 Monotone Colorings

Let T = (V, E) be a metric tree rooted at a vertex r ∈ V . Recall that such a tree
T is equipped with a length len: E → [0,∞). We extend this to subsets of edges
S ⊆ E via len(S) = ∑

e∈S len(e). We recall that a monotone coloring is a mapping
χ : E → N such that each color class χ−1(c) = {e ∈ E : χ(e) = c} is a connected
subset of some root–leaf path. For a set of edges S ⊆ E , we write χ(S) for the set of
colors occurring in S. We define the multiplicity of χ by

M(χ) = max
v∈V

|χ(Pv)|.

Given such a coloring χ and c ∈ N, we define

lenχ (c) = len(χ−1(c)),

and lenχ (S) = ∑
c∈S lenχ (c) if S ⊆ N.

For every δ ∈ [0, 1] and x, y ∈ V , we define the set of colors

Cχ (x, y; δ) = {
c : len(Pxy ∩ χ−1(c)) ≤ δ · lenχ (c)

} ∩ (χ(Px )�χ(Py)).

This is the set of colors c which occur in only one of Px and Py , and for which the
contribution to Pxy is significantly smaller than lenχ (c). We also put

ρχ(x, y; δ) = lenχ (C(x, y; δ)). (18)

We now state a key theorem that will be proved in Sect. 5.

Theorem 3.1 For every ε, δ > 0, there is a value C(ε, δ) = O
(
( 1
ε
+log log 1

δ
)3 log 1

ε

)

such that the following holds. For any metric tree T = (V, E) and any monotone
coloring χ : E → N, there exists a mapping F : V → �

C(ε,δ)(log n+M(χ))

1 such that
for all x, y ∈ V ,

(1 − ε) dT (x, y) − δ ρχ (x, y; δ) ≤ ‖F(x) − F(y)‖1 ≤ dT (x, y). (19)

The problem one now confronts is whether the loss in the ρχ(x, y; δ) term can be
tolerated. In general, we do not have a way to do this, so we first embed our tree into a
product of a small number of trees in a way that allows us to control the corresponding
ρ-terms.

Lemma 3.2 For every ε ∈ (0, 1), there is a number k 
 1
ε

such that the following
holds. For every metric tree T = (V, E) and monotone coloring χ : E → N, there
exist k metric trees T1, T2, . . . , Tk with monotone colorings {χi : E(Ti ) → N}k

i=1 and
mappings { fi : V → V (Ti )}k

i=1 such that M(χi ) ≤ M(χ), and |V (Ti )| ≤ |V | for all
i ∈ [k], and the following conditions hold for all x, y ∈ V :
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(a) We have

1

k

k∑

i=1

dTi ( fi (x), fi (y)) ≥ (1 − ε) dT (x, y). (20)

(b) For all i ∈ [k], we have

dTi ( fi (x), fi (y)) ≤ (1 + ε) dT (x, y). (21)

(c) There exists a number j ∈ [k] such that

ε dT (x, y) ≥ 2−(k+1)

k

k∑

i=1
i �= j

ρχi ( fi (x), fi (y); 2−(k+1)). (22)

Using Lemma 3.2 in conjunction with Theorem 3.1, we can now prove the main
theorem (Theorem 1.1).

Proof of Theorem 1.1 Let ε > 0 be given, let T = (V, E) be an n-vertex metric tree.
Let χ : E → N be a monotone coloring with M(χ) ≤ O(log n), which exists by
Lemma 1.2. Apply Lemma 3.2 to obtain metric trees T1, . . . , Tk with corresponding
monotone coloringsχ1, . . . , χk and mappings fi : V → V (Ti ). Observe that M(χi ) ≤
O(log n) for each i ∈ [k].

Let Fi : V (Ti ) → �
C(ε) log n
1 be the mapping obtained by applying Theorem 3.1 to

Ti and χi , for each i ∈ [k], with δ = 2−(k+1), where C(ε) = O
( 1

ε3 (log 1
ε
)
)
. Finally,

we put

F = 1

k

(
(F1 ◦ f1) ⊕ (F2 ◦ f2) ⊕ · · · ⊕ (Fk ◦ fk)

)

so that F : V → �O(( 1
ε
)4 log 1

ε
·log n). We will prove that F is a (1 + O(ε))-embedding,

completing the proof.
First, observe that each Fi is 1-Lipschitz (Theorem 3.1). In conjunction with con-

dition (b) of Lemma 3.2 which says that ‖ fi‖Lip ≤ 1 + ε for each i ∈ [k], we have
‖F‖Lip ≤ 1 + ε.

For the other side, fix x, y ∈ V and let j ∈ [k] be the number guaranteed in
condition (c) of Lemma 3.2. Then we have

‖F(x) − F(y)‖1

= 1

k

k∑

i=1

‖(Fi ◦ fi )(x) − (Fi ◦ fi )(y)‖1

(19)≥ 1

k

∑

i �= j

(
(1 − ε) dTi ( fi (x), fi (y)) − 2−(k+1)ρχi ( fi (x), fi (y); 2−(k+1))

)
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(22)≥
(1

k

∑

i �= j

(1 − ε) dTi ( fi (x), fi (y))
)

− ε dT (x, y)

≥
(1

k

k∑

i=1

(1 − ε) dTi ( fi (x), fi (y))
)

− 1

k
dTj ( f j (x), f j (y)) − ε dT (x, y)

(21)≥
(1

k

k∑

i=1

(1 − ε) dTi ( fi (x), fi (y))
)

− 1 + ε

k
dT (x, y) − ε dT (x, y)

(20)≥ (1 − ε)2 dT (x, y) − 1 + ε

k
dT (x, y) − ε dT (x, y)

≥ (1 − O(ε)) dT (x, y),

where in the final line we have used k 
 1
ε
, completing the proof. ��

We now move on to the proof of Lemma 3.2. We begin by proving an analogous
statement for the half line [0,∞). An R-star is a metric space formed as follows: Given
a sequence {ai }∞i=1 of positive numbers, one takes the disjoint union of the intervals
{[0, a1], [0, a2], . . .}, and then identifies the 0 point in each, which is canonically
called the root of the R-star. An R-star S carries the natural induced length metric
dS . We refer to the associated intervals as branches, and the length of a branch is the
associated number ai . Finally, if S is an R-star, and x ∈ S \ {0}, we use �(x) to denote
the length of the branch containing x . We put �(0) = 0.

Lemma 3.3 For every k ∈ N with k ≥ 2, there exist R-stars S1, . . . , Sk with mappings

fi : [0,∞) → Si

such that the following conditions hold:

(i) For each i ∈ [k], fi (0) is the root of Si .
(ii) For all x, y ∈ [0,∞), 1

k

∑k
i=1 dSi ( fi (x), fi (y)) ≥ (1 − 7

k )|x − y|.
(iii) For each i ∈ [k], fi is (1 + 2−k+1)-Lipschitz.
(iv) For x ∈ [0,∞), we have �( fi (x)) ≤ 2k−1x .

(v) For x ∈ [0,∞), there are at most two values of i ∈ [k] such that

dSi ( fi (0), fi (x)) ≤ 2−k �( fi (x)).

(vi) For all x, y ∈ [0,∞), there is at most one value of i ∈ [k] such that fi (x) and
fi (y) are in different branches of Si and

2−k(�( fi (x)) + �( fi (y))
)

> 2 |x − y|.

Proof Assume that k ≥ 2. We first construct R-stars S1, . . . , Sk . We will index the
branches of each star by Z. For i ∈ [k], Si is a star whose j th branch, for j ∈ Z, has
length 2i−1+k( j+1). We will use the notation (i, j, d) to denote the point at distance d
from the root on the j th branch of Si . Observe that (i, j, 0) and (i, j ′, 0) describe the
same point (the root of Si ) for all j, j ′ ∈ N.
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Now, we define for every i ∈ [k], a function fi : [0,∞) → Si as follows:

fi (x) =
{(

i, j, (x − 2i+k j )/(1 − 21−k)
)

for 2−i x ∈ [2k j , 2k( j+1)−1),
(
i, j, 2i+k( j+1) − x

)
for 2−i x ∈ [2k( j+1)−1, 2k( j+1)).

Condition (i) is immediate. It is also straightforward to verify that

‖ fi‖Lip ≤ (1 − 21−k)−1 ≤ 1 + 2−k+1, (23)

yielding condition (iii).
Toward verifying condition (ii), observe that for every x ∈ [0,∞) and l ∈

{0, 1, . . . , k − 2} we have

dSi ( fi (x), fi (0)) ≥ (x − 2�log2 x�−l)/(1 − 21−k) ≥ x − 2�log2 x�−l ,

when i = (�log2 x� − l) mod k. Using this, we can write

k∑

i=1

dSi ( fi (x), fi (0)) ≥
�log2 x�∑

l=�log2 x�−k+2

x − 2l = (k − 1)x −
�log2 x�∑

l=�log2 x�−k+2

2l

≥ (k − 1)x − 2�log2 x�+1 ≥ (k − 3)x . (24)

Now fix x, y ∈ [0,∞) with x ≤ y. If x ≤ y/2, then we can use the triangle
inequality, together with (23) and (24) to write

1

k

k∑

i=1

dSi ( fi (x), fi (y))

≥ 1

k

k∑

i=1

(
dSi ( fi (y), fi (0)) − dSi ( fi (x), fi (0))

) ≥ (1 − 3/k)y − (1 + 21−k)x

≥ (1 − 3/k)y − (1 + 1/k)x ≥ (1 − 7/k)(y − x) + 4y/k − 8x/k

≥ (1 − 7/k)(y − x).

In the case that y
2 ≤ x ≤ y, for l ∈ {0, 1, . . . , k − 3}, we have

dSi ( fi (x), fi (y)) ≥ (y − x)/(1 − 21−k) ≥ y − x

when i = (�log2 x� − l) mod k. From this, we conclude that

1

k

k∑

i=1

dSi ( fi (x), fi (y)) ≥ 1

k

k−3∑

l=0

(y − x) ≥ k − 2

k
(y − x), (25)

yielding condition (ii).
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It is also straightforward to check that

�( fi (x)) ≤ 2�log2 x�+k−1 ≤ 2k−1x,

which verifies condition (iv).
To verify condition (v), note that for x ∈ [0,∞), the inequality dSi ( fi (x), fi (0)) ≤

x/2 can only hold for i mod k ∈ {�log2 x�, �log2 x�+1}, hence condition (iv) implies
condition (v).

Finally we verify condition (vi). We divide the problem into two cases. If x < y/2,
then by condition (iv),

�( fi (x)) + �( fi (y)) ≤ 2k−1(x + y) ≤ 2k−1(2y) ≤ 2k+1(y − x).

In the case that y/2 < x ≤ y, fi (x) and fi (y) can be mapped to different branches of
Si only for i ≡ �log2 y� ( mod k), yielding condition (vi). ��

Finally, we move onto the proof of Lemma 3.2.

Proof of Lemma 3.2 We put k = �7/ε� and prove the following stronger statement
by induction on |V |: There exist metric trees T1, T2, . . . , Tk and monotone colorings
χi : E(Ti ) → N, along with mappings fi : V → V (Ti ) satisfying the conditions
of the lemma. Furthermore, each coloring χi satisfies the stronger condition for all
v ∈ V ,

|χi (Pfi (v))| ≤ |χ(Pv)|. (26)

The statement is trivial for the tree containing only a single vertex. Now suppose
that we have a tree T and coloring χ : E → N. Since T is connected, it is easy to see
that there exists a color class c ∈ χ(E) with the following property. Let γc be the path
whose edges are colored c, and let vc be the vertex of γc closest to the root. Then the
induced tree T ′ on the vertex set (V \ V (γc)) ∪ {vc} is connected.

Applying the inductive hypothesis to T ′ and χ |E(T ′) yields metric trees T ′
1, T ′

2, . . . ,

T ′
k with colorings χ ′

i : E(T ′
i ) → N and mappings f ′

i : V (T ′) → V (T ′
i ).

Now, let S1, . . . , Sk and {gi : [0,∞) → Si } be the R-stars and mappings guaranteed
by Lemma 3.3. For each i ∈ [k], let S′

i be the induced subgraph of Si on the set
{gi (dT (v, vc)) : v ∈ V (γc)}, and make S′

i into a metric tree rooted at gi (0), with
the length structure inherited from Si . We now construct Ti by attaching S′

i to T ′
i

with the root of S′
i identified with the node f ′

i (vc). The coloring χ ′
i is extended to Ti

by assigning to each root–leaf path in S′
i a new color. Finally, we specify functions

fi : V → V (Ti ) via

fi (v) =
{

f ′
i (v), v ∈ V (T ′),

gi (dT (vc, v)), v ∈ V \ V (T ′).

It is straightforward to verify that (26) holds for the colorings {χi } and every vertex
v ∈ V . In addition, using the inductive hypothesis, we have |V (Ti )| ≤ |V | and
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M(χ) ≤ M(χi ) for every i ∈ [k], with the latter condition following immediately
from (26) and the structure of the mappings { fi }.

We now verify that conditions (a), (b), and (c) hold. For x, y ∈ V (T ′), the induction
hypothesis guarantees all three conditions. If both x, y ∈ V (γc)\{vc}, then conditions
(a) and (b) follow directly from conditions (ii) and (iii) of Lemma 3.3 applied to the
maps {gi }. To verify condition (c), let j ∈ [k] be the single bad index from (vi). We
have for all i �= j ,

ρχi ( fi (x), fi (y); 2−(k+1)) ≤ 2k+1dT (x, y).

Since there are at most two colors on the path between x and y in any Ti , by condition
(v) of Lemma 3.3, there are at most four values of i ∈ [k] \ { j} such that

ρχi ( fi (x), fi (y); 2−(k+1)) �= 0,

hence

1

k

∑

i �= j

ρχi ( fi (x), fi (y); 2−(k+1)) ≤ 4 · 2k+1

k
dT (x, y) ≤ ε2k+1dT (x, y).

Since ‖ fi‖Lip is determined on edges (x, y) ∈ E , and each such edge has x, y ∈
V (γc) or x, y ∈ V (T ′), we have already verified condition (b) for all i ∈ [k] and
x, y ∈ V . Finally, we verify (a) and (c) for pairs with x ∈ V (T ′) and y ∈ V (γc). We
can check condition (a) using the previous two cases,

1

k

k∑

i=1

dTi ( fi (x), fi (y)) = 1

k

k∑

i=1

(
dTi ( fi (x), fi (vc)) + dTi ( fi (y), fi (vc))

)

≥ (1 − ε)dT (y, vc) + (1 − ε)dT (x, vc) ≥ (1 − ε)dT (x, y).

Towards verifying condition (c), note that by condition (v) from Lemma 3.3, there
are at most two values of i , such that

ρχi ( fi (x), fi (y); 2−(k+1)) − ρχi ( fi (x), fi (vc); 2−(k+1))

= ρχi ( fi (y), fi (vc); 2−(k+1)) �= 0.

By the induction hypothesis, there exists a number j ∈ [k] such that

ε dT (x, vc) ≥ 2−(k+1)

k

∑

i �= j

ρχi ( fi (vc), fi (x); 2−(k+1)).
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Now we use condition (iv) from Lemma 3.3 to conclude

2−(k+1)

k

∑

i �= j

ρχi ( fi (x), fi (y); 2−(k+1))

≤ 2−(k+1)

k

∑

i �= j

(
ρχi ( fi (x), fi (vc); 2−(k+1)) + ρχi ( fi (y), fi (vc); 2−(k+1))

)

≤ εdT (x, vc) + 2
(2−(k+1)

k

)
(2k−1dT (y, vc)) ≤ ε dT (x, vc) + ε dT (vc, y)

= ε dT (x, y),

completing the proof. ��

3.2 Multi-scale Embeddings

We now present the basics of our multi-scale embedding approach. The next lemma
is devoted to combining scales together without using too many dimensions, while
controlling the distortion of the resulting map.

Lemma 3.4 For every ε ∈ (0, 1), the following holds. Let (X, d) be an arbitrary
metric space, and consider a family of functions { fi : X → [0, 1]}i∈Z such that for
all x, y ∈ X, we have

∑

i∈Z

2i | fi (x) − fi (y)| < ∞. (27)

Then there is a mapping F : V → �
2+�log 1

ε
�

1 such that for all x, y ∈ X,

(1 − ε)
∑

i∈Z

2i | fi (x) − fi (y)| − 2 ζ(x, y)≤‖F(x) − F(y)‖1≤
∑

i∈Z

2i | fi (x) − fi (y)|,

where

ζ(x, y) =
∑

i :∃ j<i
f j (x)− f j (y) �=0

2i (| fi (x) − fi (y)| − �| fi (x) − fi (y)|�).

Proof Let k = 2 + �log 1/ε�, and fix some x0 ∈ X . For i ∈ [k], define Fi : X → R

by

Fi (x) =
∑

j∈Z

2 jk+i ( f jk+i (x) − f jk+i (x0)). (28)

It is easy to see that (27) implies absolute convergence of the preceding sum. We will
consider the map F = F1 ⊕ F2 ⊕ · · · ⊕ Fk : X → �k

1. It is straightforward to verify
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that for every x, y ∈ X ,

‖F(x) − F(y)‖1 ≤
∑

i∈Z

2i | fi (x) − fi (y)|.

Now, for i ∈ [k], define

ζi (x, y) =
∑

j :∃�< j
f�k+i (x)−f�k+i (y) �=0

2 jk+i (| f jk+i (x)− f jk+i (y)|−�| f jk+i (x) − f jk+i (y)|�).

One can easily check that
∑k

i=1 ζi (x, y) ≤ ζ(x, y), thus showing the following for
i ∈ [k] will complete our proof of the lemma,

|Fi (x) − Fi (y)| ≥ (1 − ε)
∑

j∈Z

(2 jk+i | f jk+i (x) − f jk+i (y)|) − 2ζi (x, y). (29)

Toward this end, fix i ∈ [k] and x, y∈X . Let S = { j∈Z : | f jk+i (x)− f jk+i (y)|=1},
and T = { j ∈ Z : 0 < | f jk+i (x) − f jk+i (y)| < 1}. Clearly we then have

|Fi (x) − Fi (y)|
= ∣∣

∑

j∈S

2 jk+i ( f jk+i (x) − f jk+i (y)) +
∑

j∈T

2 jk+i ( f jk+i (x) − f jk+i (y))
∣∣.

If S ∪ T = ∅, then (29) is immediate. Now, suppose that S �= ∅, and let c =
i + k · max(S). Observe that max(S) exists by (27).

We then have

∑

j∈Z

2 jk+i | f jk+i (x) − f jk+i (y)|

≤ 2c +
∑

j∈S∪T
j<max S

2k j+i +
∑

j∈T
j>max S

2k j+i | fk j+i (x) − fk j+i (y)|

≤ 2c +
∑

j<max S

2k j+i + ζi (x, y) ≤ 2c + 2 · 2k(max S−1)+i + ζi (x, y)

≤ 2c(1 + 21−k) + ζi (x, y) ≤ (1 + ε/2)2c + ζi (x, y).
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On the other hand,

|Fi (x) − Fi (y)| = ∣∣
∑

j∈Z

2k j+i ( f jk+i (x) − f jk+i (y))
∣∣

≥ 2c −
∑

j∈S∪T
j<max S

2k j+i −
∑

j∈T
j>max S

2k j+i | fk j+i (x) − fk j+i (y)|

≥ 2c −
∑

j<max S

2k j+i − ζi (x, y) ≥ 2c − 2 · 2k(max S−1)+i − ζi (x, y)

≥ 2c(1 − 21−k) − ζi (x, y) ≥ (1 − ε/2)2c − ζi (x, y).

Therefore,

(1 − ε)
∑

j∈Z

2k j+i | f jk+i (x) − f jk+i (y)|

≤ (1 − ε)((1 + ε/2)2c + ζi (x, y)) ≤ (1 − ε/2)2c + ζi (x, y)

≤ |Fi (x) − Fi (y)| + 2ζi (x, y),

completing the verification of (29) in the case when S �= ∅.
In the remaining case when S = ∅ and T �= ∅, if the set T does not have a minimum

element, then

∑

j∈T

2k j+i | fk j+i (x) − fk j+i (y)| = ζi (x, y),

making (29) vacuous since the right-hand side is non-positive.
Otherwise, let � = min(T ), and write

|Fi (x) − Fi (y)|
= ∣∣

∑

j∈T

2k j+i ( fk j+i (x) − fk j+i (y))
∣∣

≥ 2�k+i | f�k+i (x) − f�k+i (y)| − ∣∣
∑

j∈T, j>�

2k j+i ( fk j+i (x) − fk j+i (y))
∣∣

≥ 2�k+i | f�k+i (x) − f�k+i (y)| − ζi (x, y)

=
∑

j∈Z

2k j+i | fk j+i (x) − fk j+i (y)| − 2 ζi (x, y).

This completes the proof. ��
In Sect. 5, we will require the following straightforward corollary.

Corollary 3.5 For every ε ∈ (0, 1) and m ∈ N, the following holds. Let (X, d) be a
metric space, and suppose we have a family of functions { fi : X → [0, 1]m}i∈Z such
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that for all x, y ∈ X,

∑

i∈Z

2i‖ fi (x) − fi (y)‖1 < ∞.

Then there exists a mapping F : V → �
m(2+�log 1

ε
�)

1 such that for all x, y ∈ X,

(1 − ε)
∑

i∈Z

(
2i ‖ fi (x) − fi (y)‖1

) − 2 ζ(x, y) ≤ ‖F(x) − F(y)‖1 ≤
∑

i∈Z

2i ‖ fi (x) − fi (y)‖1,

where

ζ(x, y) =
m∑

k=1

∑

i :∃ j<i
f j (x)k− f j (y)k �=0

2i (| fi (x)k − fi (y)k | − �| fi (x)k − fi (y)k |�), (30)

and we have used the notation xk for the k-th coordinate of x ∈ R
m.

4 Scale Assignment

Let T = (V, E) be a metric tree with root r ∈ V , equipped with a monotone coloring
χ : E → N. We will now describe a way of assigning “scales” to the vertices of T .
These scale values will be used in Sect. 5 to guide our eventual embedding. The scales
of a vertex will describe, roughly, the subset and magnitude of coordinates that should
differ between the vertex and its neighbors. First, we fix some notation.

For every c ∈ χ(E), we use γc to denote the path in T colored c, and we use vc to
denote the vertex of γc which is closest to the root. We will also use the notation T (c)
to denote the subtree of T under the color c; formally, T (c) is the induced (rooted)
subtree on {vc} ∪ V (Tu) where u ∈ V is the child of vc such that χ(vc, u) = c, and
Tu is the subtree rooted at u.

We will write p(v) for the parent of a vertex v ∈ V , and p(r) = r . Furthermore, we
define the “parent color” of a color class by ρ(c) = χ(vc, p(vc)) with the convention
that χ(r, r) = c0, where c0 ∈ N \ χ(E) is some fixed element. Finally, we put
T (c0) = T .

4.1 Scale Selectors

We start by defining a function κ : χ(E) ∪ {c0} → N which describes the “branching
factor” for each color class,

κ(c) =
⌊

log2
|E(T (ρ(c)))|

|E(T (c))|
⌋

+ 1. (31)

123



Discrete Comput Geom (2013) 50:977–1032 999

Moreover, we define ϕ : χ(E) ∪ {c0} → N ∪ {0} inductively by setting ϕ(c0) = 0,
and

ϕ(c) = κ(c) + ϕ(ρ(c)) (32)

for c ∈ χ(E).
Observe that for every color c ∈ χ(E), we have

ϕ(c) =
∑

c′∈χ(E(Pvc ))∪{c}
κ(c′) ≤

∑

c′∈χ(E(Pvc ))∪{c}

(
1 + log2

|E(T (ρ(c′)))|
|E(T (c′))|

)

≤ M(χ) + log2 |E | (33)

Next, we use ϕ to inductively define our scale selectors. Let

m(T ) = min
{

len(e) : e ∈ E and len(e) > 0
}
.

We now define a family of functions {τi : V → N ∪ {0}}i∈Z.
For v ∈ V , let c = χ(v, p(v)), and put

τi (v) = 0 for i <
⌊

log2
( m(T )

M(χ) + log2 |E |
)⌋

,

and otherwise,

τi (v)

= min
( ⌈dT (v, vc) − min

(
dT (v, vc),

∑i−1
j=−∞ 2 j τ j (v)

)

2i

⌉

︸ ︷︷ ︸
(A)

, ϕ(c) −
∑

c′∈χ(E(Pv))

τi (vc′)

︸ ︷︷ ︸
(B)

)
.

(34)

The value of τi (v) will be used in Sect. 5 to determine how many coordinates of
magnitude 
 2i change as the embedding proceeds from vc to v. In this definition,
we try to cover the distance from root to v with the smallest scales possible while
satisfying the inequality

ϕ(c) ≥ τi (v) +
∑

c′∈χ(E(Pv))

τi (vc′).

For v ∈ V \ {r}, let c = χ(v, p(v)), for each i ∈ Z, part (B) of (34) for τi (vc)

implies that

τi (vc) ≤ ϕ(ρ(c)) −
∑

c′∈χ(E(Pvc ))

τi (vc′).
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Hence,

ϕ(c) −
∑

c′∈χ(E(Pv))

τi (vc′)

= ϕ(c) − τi (vc) −
∑

c′∈χ(E(Pvc ))

τi (vc′) ≥ ϕ(c) − ϕ(ρ(c)) = κ(c) ≥ 1. (35)

Therefore, part (B) of (34) is always positive, so if τk(v) = 0 for some
k ≥ ⌊

log2
( m(T )

M(χ)+log2 |E |
)⌋

, then τk(v) is defined by part (A) of (18). Hence
∑k−1

j=−∞ 2 jτ j (v) ≥ dT (v, vc) and the following observation is immediate.

Observation 4.1 For v ∈ V and k ≥ ⌊
log2

( m(T )
M(χ)+log2 |E |

)⌋
, if τk(v) = 0 then for all

i ≥ k, τi (v) = 0.

Comparing part (A) of (34) for τi (v) and τi+1(v) also allows us to observe the
following.

Observation 4.2 For v ∈ V and k ≥ ⌊
log2

( m(T )
M(χ)+log2 |E |

)⌋
, if part (A) in (34) for

τk(v) is less than or equal to part (B) then for all i > k, τi (v) = 0.

4.2 Properties of the Scale Selector Maps

We now prove some key properties of the maps κ, ϕ, and {τi }.
Lemma 4.3 For every vertex v ∈ V with c = χ(v, p(v)), the following holds. For
all i ∈ Z with dT (v,vc)

κ(c) ≤ 2i−1, we have τi (v) = 0.

Proof If dT (v, vc) = 0, the lemma is vacuous. Suppose now that dT (v, vc) > 0,
and let k = �log2

( dT (v,vc)
κ(c)

)�. We have dT (v, vc) ≥ m(T ) and κ(c) ≤ log2 |E | + 1,
therefore

k ≥
⌊

log2

( m(T )

M(χ) + log2 |E |
)⌋

.

It follows that for i ≥ k, τi (v) is given by (34).
If τk(v) = 0, then by Observation 4.1, for all i ≥ k, τi (v) = 0.
On the other hand if τk(v) �= 0 then either it is determined by part (B) of (34), in

which case

τk(v) = ϕ(c) −
∑

c′∈χ(E(Pv))

τk(vc′) = ϕ(c) − τk(vc) −
∑

c′∈χ(E(Pvc ))

τk(vc′)

≥ ϕ(c) − ϕ(ρ(c)) = κ(c),

implying that

k∑

j=−∞
2 jτ j (v) ≥ κ(c)2k ≥ dT (v, vc).
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Examining part (A) of (34), we see that τk+1(v) = 0, and by Observation 4.1, τi (v) = 0
for i > k. Alternately, τk(v) is determined by part (A) of (34), and by Observation 4.2
τi (v) = 0 for i > k, completing the proof. ��

The next lemma shows how the values {τi (v)} track the distance from vc to v.

Lemma 4.4 For any vertex v ∈ V with c = χ(v, p(v)), we have

dT (v, vc) ≤
∞∑

i=−∞
2iτi (v) ≤ 3 dT (v, vc).

Proof If dT (v, vc) = 0, the lemma is vacuous. Suppose now that dT (v, vc) > 0, and
let

k = max{i : τi (v) �= 0}.

By Lemma 4.3, the maximum exists.
We have τk+1(v) = 0, and thus inequality (35) implies that part (A) of (34) specifies

τk+1(v), yielding

dT (v, vc) ≤
k∑

i=−∞
2iτi (v) =

∞∑

i=−∞
2iτi (v).

On the other hand, since τk(v) > 0, we must have dT (v, vc) >
∑k−1

i=−∞ 2iτi (v),

and Lemma 4.3 implies that 2k < 2 dT (v, vc), hence,

k∑

i=−∞
2iτi (v) ≤

k−1∑

i=−∞
2iτi (v) + 2k

⌈dT (v, vc) − ∑k−1
i=−∞ 2iτi (v)

2k

⌉

<

k−1∑

i=−∞
2iτi (v) + 2k

(dT (v, vc) − ∑k−1
i=−∞ 2iτi (v)

2k
+ 1

)

=
k−1∑

i=−∞
2iτi (v) + 2k +

(
dT (v, vc) −

k−1∑

i=−∞
2iτi (v)

)

≤ dT (v, vc) + 2k < 3 dT (v, vc).

��
The following lemma shows that for any color c ∈ χ(E) the value of τi does not

decrease as we move further from vc in γc.

Lemma 4.5 Let u, w ∈ V be such that c = χ(w, p(w)) = χ(u, p(u)), and
dT (w, vc) ≤ dT (u, vc). Then for all i ∈ Z, we have

τi (w) ≤ τi (u).
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Proof First let k be the smallest integer for which

⌈dT (w, vc) − min
(
dT (w, vc),

∑k−1
j=−∞ 2 jτ j (w)

)

2k

⌉
≤ ϕ(c) −

∑

c′∈χ(E(Pw))

τk(vc′).

This k exists since, by (35), the right-hand side is always positive, while by
Lemma 4.3, the left-hand side must be zero for some k ∈ Z large enough.

For i > k, by Observation 4.2 we have, τi (w) = 0. Therefore, for i > k, we have
τi (u) ≥ τi (w). We now use induction on i to show that for i < k, τi (u) = τi (w),
and for i = k, τk(u) ≥ τk(w). Recall that, for i <

⌊
log2

( m(T )
M(χ)+log2 |E |

)⌋
, we have

τi (w) = τi (u) = 0, which gives us the base case of the induction.
Now, by definition of k, part (B) of (34) for τk−1(w) is an integer strictly less than

part (A), hence

k−1∑

j=−∞
2 jτ j (w) = 2k−1τk−1(w) +

k−2∑

j=−∞
2 jτ j (w)

≤ 2k−1
(⌈dT (w, vc) − ∑k−2

j=−∞ 2 jτ j (w)

2k−1

⌉
− 1

)
+

k−2∑

j=−∞
2 jτ j (w)

< 2k−1
(dT (w, vc) − ∑k−2

j=−∞ 2 jτ j (w)

2k−1

)
+

k−2∑

j=−∞
2 jτ j (w)

≤ dT (w, vc). (36)

For
⌊

log2
( m(T )

M(χ)+log2 |E |
)⌋ ≤ i ≤ k, by (36), and as dT (u, vc) ≥ dT (w, vc), we have

min
(

dT (w, vc),

i−1∑

j=−∞
2 jτ j (w)

)

=
i−1∑

j=−∞
2 jτ j (w) = min

(
dT (u, vc),

i−1∑

j=−∞
2 jτ j (w)

)
. (37)

By our induction hypothesis for all j < i, τ j (w) = τ j (u), so using (37) we can write

dT (w, vc) − min
(

dT (w, vc),

i−1∑

j=−∞
2 jτ j (w)

)

≤ dT (u, vc) − min
(

dT (u, vc),

i−1∑

j=−∞
2 jτ j (u)

)
. (38)

Since χ(w, p(w)) = χ(u, p(u)), for all i ∈ Z part (B) of (34) is identical for τi (u) and
τi (w). Therefore, using (38), and the definition of k, for all

⌊
log2

( m(T )
M(χ)+log2 |E |

)⌋ ≤
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i < k, part (B) of (34) specifies τi (u) and τi (w), hence

τi (u) = τi (w) = ϕ(c) −
∑

c′∈χ(E(Pw))

τi (vc′).

For the case that i = k, part (B) of (34) is identical for τk(u) and τk(w), and
inequality (38) implies that part (A) of (34) for τk(u) is at least as large as part (A) of
(34) for τk(w), completing the proof. ��

The next lemma bounds the distance between two vertices in the graph based
on {τi }.
Lemma 4.6 Let k >

⌊
log2

( m(T )
M(χ)+log2 |E |

)⌋
be an integer. For any two vertices w and

u such that τk(u) �= 0, τk−1(w) = 0 and χ(w, p(w)) = χ(u, p(u)), we have

dT (u, w) > 2k−1.

Proof By Observation 4.1, τk(w) = 0. Letting c = χ(u, p(u)), by Lemma 4.5 we
have dT (vc, u) ≥ dT (vc, w). Using Lemma 4.5 again, we can conclude that for all
i ∈ Z, τi (u) ≥ τi (w). Since τk−1(w) = 0, inequality (35) implies that part (A) of
(34) specifies τk−1(w). Therefore,

dT (w, vc) ≤
k−2∑

i=−∞
2iτi (w) ≤

k−2∑

i=−∞
2iτi (u)

=
( k−1∑

i=−∞
2iτi (u)

)
− 2k−1τk−1(u). (39)

Since τk(u) > 0, using part (A) of (34), we can write

dT (u, vc) >

k−1∑

i=−∞
2iτi (u). (40)

Observation 4.1 implies that τk−1(u) �= 0, thus τk−1(u) ≥ 1, and using (39) and (40),
we have

dT (w, u) = dT (u, vc) − dT (w, vc) > 2k−1,

completing the proof. ��
The next lemma and the following two corollaries bound the number of colors c in

the tree which have a small value of ϕ(c).

Lemma 4.7 For any k ∈ N ∪ {0}, and any color c ∈ χ(E), we have

#
{
c′ ∈ χ(E(T (c))) : ϕ(c′) − ϕ(c) = k

} ≤ 2k .
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Proof We start the proof by comparing the size of the subtrees T (c′) and T (c) for
c′ ∈ χ(E(T (c))).

For a given color c′ ∈ χ(E(T (c))), we define the sequence {ci }i∈N as follows. We
put c1 = c′ and for i > 1 we put ci = ρ(ci−1). Suppose now that cm = c, we have

ϕ(cm) − ϕ(c1) =
m−1∑

i=1

κ(ci ) ≥
m−1∑

i=1

log2

( |E(T (ci+1))|
|E(T (ci ))|

)
≥ log2

( |E(T (c))|
|E(T (c′))|

)
. (41)

This inequality implies that

|E(T (c))| ≤ 2ϕ(c′)−ϕ(c)|E(T (c′))|.

It is easy to check that for colors a, b ∈ χ(E(T (c))) such that ϕ(a) = ϕ(b), subtrees
T (a) and T (b) are edge disjoint. Therefore, for k ∈ N ∪ {0}, summing over all the
colors c′ such that ϕ(c′) − ϕ(c) = k gives

#{c′ ∈ χ(E(T (c))) : ϕ(c′) − ϕ(c) = k}
≤

∑

c′∈χ(E(T (c)))
ϕ(c′)−ϕ(c)=k

2k |E(T (c′))|
|E(T (c))| = 2k

∑

c′∈χ(E(T (c)))
ϕ(c′)−ϕ(c)=k

|E(T (c′))|
|E(T (c))| ≤ 2k .

��
The following two corollaries are immediate from Lemma 4.7.

Corollary 4.8 For any k ∈ N, and any color c ∈ χ(E), we have

#{c′ ∈ χ(E(T (c))) : ϕ(c′) − ϕ(c) ≤ k} < 2k+1.

Corollary 4.9 For any color c ∈ χ(E), and constant C ≥ 2, we have

∑

c′∈χ(E(T (c)))\{c}
2−C(ϕ(c′)−ϕ(c)) < 22−C .

The next lemma is similar to Lemma 4.6. The assumption is more general, and the
conclusion is correspondingly weaker. This result is used primarily to enable the proof
of Lemma 4.11.

Lemma 4.10 Let u ∈ V and w ∈ V (Pu) be such that ϕ(χ(u, p(u))) >

ϕ(χ(w, p(w))). For all vertices x ∈ V (Tu), and k ∈ Z with

2k ≥
( 6 dT (x, w)

ϕ(χ(u, p(u))) − ϕ(χ(w, p(w)))

)
, (42)

we have τk(x) = 0.
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Proof In the case that dT (x, w) = 0, this lemma is vacuous. Suppose now that
dT (x, w) > 0. Let c1, . . . , cm be the set of colors that appear on the path Px p(w),
in order from x to p(w), and for i ∈ [m], let yi = vci . We prove this lemma by
showing that if

k ≥ log2

( 6 dT (x, w)

ϕ(χ(u, p(u))) − ϕ(χ(w, p(w)))

)
, (43)

then part (A)of (34) for τk(x) is zero. First note thatϕ(χ(u, p(u)))−ϕ(χ(w, p(w)))≤
M(χ) + log2 |E | and dT (x, w)≥m(T ), hence (43) implies

k ≥
⌊

log2

( m(T )

M(χ) + log2 |E |
)⌋

.

By Lemma 4.4, we have

m−2∑

i=1

2k−1τk−1(yi ) ≤
m−2∑

i=1

∞∑

j=−∞
2 jτ j (yi ) ≤

m−2∑

i=1

3 dT (yi , yi+1) = 3 dT (y1, ym−1).

(44)

Now, using (42) gives

ϕ(c1) − ϕ(cm) ≥ ϕ(χ(u, p(u))) − ϕ(χ(w, p(w)))

≥ 6 dT (x, w)

2k
≥ 6 dT (x, ym−1)

2k
. (45)

Using the above inequality and (44), we can write

dT (x, y1) = dT (x, ym−1) − dT (y1, ym−1)

≤ 2k−1

3

(
ϕ(c1) − ϕ(cm) −

m−2∑

i=1

τk−1(yi )
)
.

First, note that cm = χ(ym−1, p(ym−1)). Now, we use part (B) of (34) for τk(ym−1)

to write

dT (x, y1) ≤ 2k−1

3

(
ϕ(c1)−

(
τk−1(ym−1)+

∑

c′∈χ(E(Pym−1 ))

τk−1(vc′)
) −

m−2∑

i=1

τk−1(yi )
)

≤ 2k−1

3

(
ϕ(c1) −

∑

c′∈χ(E(Px ))

τk−1(vc′)
)

≤ 2k−1
(
ϕ(χ(x, p(x))) −

∑

c′∈χ(E(Px ))

τk−1(vc′)
)
. (46)
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Therefore, either part (A) of (34) specifies τk−1(x) in which case by Observation 4.2,
τi (v) = 0 for i ≥ k, or part (B) of (34) specifies τk−1(x) in which case by (46) we
have

τk−1(x)2k−1 ≥ dT (x, y1),

and part (A) of (34) is zero for i ≥ k. ��
In Sect. 5, we give the description of our embedding and analyze its distortion.

In the analysis of the embedding, for a given pair of vertices x, y ∈ V , we divide
the path between x and y into subpaths and for each subpath we show that either
the contribution of that subpath to the distance between x and y in the embedding is
“large” through a concentration of measure argument, or we use the following lemma
to show that the length of the subpath is “small,” compared to the distance between x
and y. The complete argument is somewhat more delicate and one can find the details
of how Lemma 4.11 is used in the proof of Lemma 5.15.

Lemma 4.11 There exists a constant C > 0 such that the following holds. For any
c ∈ χ(E) and v ∈ V (T (c)) with v �= vc and for any ε ∈ (0, 1

2 ], there are vertices
u, u′ ∈ V with u �= u′ and dT (u, v) ≤ ε dT (u, u′), and such that

u, u′ ∈ {va : a ∈ χ(E(Pv vc ))} ∪ {v}.

Furthermore, for all vertices x ∈ V (Pu′u) \ {u′}, for all k ∈ Z,

τk(x) �= 0 �⇒ 2k <
( CdT (u, u′)
ε(ϕ(χ(u, p(u))) − ϕ(χ(vc, p(vc))))

)
.

Proof Let r ′ = vc, and let c1, . . . , cm be the set of colors that appear on the path
Pvr ′ in order from v to r ′, and put cm+1 = χ(r ′, p(r ′)). We define y0 = v, and for
i ∈ [m], yi = vci . Note that {y0, . . . , ym} = {v} ∪ {va : a ∈ χ(E(Pv vc ))}, and for
i ≤ m, χ(yi , p(yi )) = ci+1. We give a constructive proof for the lemma.

For i ∈ N, we construct a sequence (ai , bi ) ∈ N × N, the idea being that Pyai ,ybi
is a nonempty subpath Pvr ′ such that for different values of i , these subpaths are edge
disjoint. At each step of the construction either we can use (ai , bi ) to find u and u′
such that they satisfy the properties of this lemma, or we find (ai+1, bi+1) such that
bi+1 < bi . The last condition guarantees that we can always find u and u′ that satisfy
the conditions of this lemma.

We start with a1 = m and b1 = m − 1. If dT (v, yb1) ≤ εdT (ya1 , yb1) then

( 2dT (ym, ym−1)

ϕ(χ(ym−1, p(ym−1))) − ϕ(χ(r ′, p(r ′)))

)
= 2dT (ya1 , yb1)

κ(c)

and by Lemma 4.3 the assignment u′ = ya1 and u = yb1 satisfies the conditions of
this lemma if C ≥ 1. Otherwise, for i ≥ 1, we choose (ai+1, bi+1) based on (ai , bi ),
and construct the rest of the sequence preserving the following three properties:
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(i) ϕ(cbi +1) − ϕ(cai +1) ≥ ϕ(cai +1) − ϕ(χ(r ′, p(r ′)));
(ii) dT (ybi , v) ≥ εdT (ybi , yai );

(iii) ai > bi .

Let j ∈ {0, . . . , m} be the maximum integer such that εdT (y j , ybi ) ≥ dT (v, y j ). Note
that j < bi , and the maximum always exists because y0 = v. We will now split the
proof into three cases.
Case I: ϕ(c j+2) − ϕ(cbi +1) ≥ 2(ϕ(cbi +1) − ϕ(cai +1)).

In this case by condition (iii), ϕ(cbi +1) − ϕ(cai +1) > 0. Hence j + 1 < bi , and we
can preserve conditions (i), (ii) and (iii) with

(ai+1, bi+1) = (bi , j + 1).

Case II: ϕ(c j+2) − ϕ(cbi +1) < 2(ϕ(cbi +1) − ϕ(cai +1)) and ϕ(c j+1) − ϕ(cbi +1) ≥
6(ϕ(cbi +1) − ϕ(cai +1)).

In this case by (32) we have

κ(c j+1) = ϕ(c j+1) − ϕ(c j+2) = (ϕ(c j+1) − ϕ(cbi +1)) − (ϕ(c j+2) − ϕ(cbi +1)).

Using the conditions of this case, we write

κ(c j+1) = (ϕ(c j+1) − ϕ(cbi +1)) − (ϕ(c j+2) − ϕ(cbi +1))

≥ 6(ϕ(cbi +1) − ϕ(cai +1)) − (ϕ(c j+2) − ϕ(cbi +1))

= (
2(ϕ(cbi+1)−ϕ(cai +1))+4(ϕ(cbi +1)−ϕ(cai +1))

) − (
ϕ(c j+2)−ϕ(cbi +1)

)

>
(
2(ϕ(cbi +1)−ϕ(cai +1))+2(ϕ(c j+2)−ϕ(cbi +1))

)−(
ϕ(c j+2)−ϕ(cbi +1)

)
,

and by condition (i),

κ(c j+1) >
((

ϕ(cbi +1) − ϕ(cai +1)
) + (

ϕ(cai +1) − ϕ(χ(r ′, p(r ′))
)

+2(ϕ(c j+2) − ϕ(cbi +1))
) − (

ϕ(c j+2) − ϕ(cbi +1)
)

= ϕ(c j+2) − ϕ(χ(r ′, p(r ′))). (47)

Thus if dT (y j+1, v) ≥ ε dT (y j , y j+1), then (ai+1, bi+1) = ( j + 1, j), satisfies
condition (i) by (47), and it is also easy to verify that it satisfies conditions (ii) and
(iii). If dT (y j+1, v) < ε dT (y j , y j+1), then by (32),

ϕ(χ(y j , p(y j ))) = ϕ(c j+1) = κ(c j+1) + ϕ(c j+2)

and by (47),

( 2dT (y j , y j+1)

(ϕ(χ(y j , p(y j ))) − ϕ(χ(r ′, p(r ′))))

)

=
( 2dT (y j , y j+1)

κ(c j+1) + ϕ(c j+2) − ϕ(χ(r ′, p(r ′)))

)
>

dT (y j , y j+1)

κ(c j+1)
.
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Hence Lemma 4.3 implies that the assignment u′ = y j+1 and u = y j satisfies the
conditions of this lemma if C ≥ 2.
Case III: ϕ(c j+1) − ϕ(cbi +1) < 6(ϕ(cbi +1) − ϕ(cai +1)).

In this case we use Lemma 4.10 to show that the assignment u = y j and u′ = ybi

satisfies the conditions of the lemma. We have

ϕ(χ(y j , p(y j ))) − ϕ(χ(r ′, p(r ′)))
= ϕ(c j+1) − ϕ(χ(r ′, p(r ′)))
= (ϕ(c j+1−ϕ(cbi +1)) + (ϕ(cbi +1) − ϕ(cai +1))+(ϕ(cai +1) − ϕ(χ(r ′, p(r ′))))
< 6(ϕ(cbi +1)−ϕ(cai +1))+(ϕ(cbi +1) − ϕ(cai +1))+(ϕ(cai +1)−ϕ(χ(r ′, p(r ′)))),

and by condition (i),

ϕ(χ(y j , p(y j ))) − ϕ(χ(r ′, p(r ′))) < 8(ϕ(cbi +1) − ϕ(cai +1)).

Condition (ii) and the definition of y j imply that

dT (y j , ybi ) ≥ (1 − ε)dT (v, ybi ) ≥ ε(1 − ε)dT (yai , ybi ) ≥ ε

2
dT (yai , ybi ).

Hence,

( 6( 2
ε
)dT (y j , ybi )

1
8 (ϕ(χ(y j , p(y j ))) − ϕ(χ(r ′, p(r ′))))

)
≥

( 6dT (ybi , yai )

ϕ(cbi +1) − ϕ(cai +1)

)
,

and by applying Lemma 4.10 with u = ybi and w = yai , we can conclude that
the assignment u = y j and u′ = ybi satisfies the conditions of this lemma with
C = 96. ��

5 The Embedding

We now present a proof of Theorem 3.1, thereby completing the proof of Theorem 1.1.
We first introduce a random embedding of the tree T into �1, and then show that, for a
suitable choice of parameters, with non-zero probability our construction satisfies the
conditions of the theorem.

Notation: We use the notations and definitions introduced in Sect. 4. Moreover, in
this section, for c ∈ χ(E) ∪ {χ(r, p(r))}, we use ρ−1(c) to denote the set of colors
c′ ∈ χ(E) such that ρ(c′) = c, i.e. the colors of the “children” of c. For m, n ∈ N,
and A ∈ R

m×n , we use the notation A[i] to refer to the i th row of A and A[i, j] to
refer to the j th element in the i th row.
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5.1 The Construction

Fix δ, ε ∈ (0, 1
2 ], and let

t = �ε−1 + log�log2 1/δ�� (48)

and

m = �t2(M(χ) + log2 |E |)�. (49)

(See Lemma 5.15 for the relation between ε and δ, and the parameters of Theorem 3.1.)
For i ∈ Z, we first define the map �i : V → R

m×t , and then we use it to construct
our final embedding.

For a vertex v ∈ V and c = χ(v, p(v)), let α = ∑
c′∈χ(E(Pv))

t2τi (vc′), and

β = α + min
(

t2τi (v),
⌊dT (vc, v) − ∑i−1

�=−∞ 2�τ�(v)

2i/t2

⌋)
.

Note that β ≤ m since

τi (v) +
∑

c′∈χ(E(Pv))

τi (v
′
c) ≤ ϕ(c) ≤ M(χ) + log2 |E |.

For j ∈ [m], we define

�i (v)[ j] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( 2i

t2 , 0, 0 . . . , 0
)

if α < j ≤ β,
(
dT (vc, v) − (( ∑i−1

�=−∞ 2�τ�(v)
) + (β − α) 2i

t2

)
, 0, 0 . . . , 0

)

if j = β + 1 and β − α < t2τi (v),

(0, 0 . . . , 0) otherwise.

(50)

Observe that the scale selector τi chooses the scales in this definition, and for
v ∈ V and i ∈ Z,�i (v) = 0 when τi (v) = 0. Also note that the second case in the
definition only occurs when τi (v) is specified by part (A) of (34), and in that case∑

�≤i 2�τ�(v) > d(v, vc).
Now, we present some key properties of the map �i (v). The following two obser-

vations follow immediately from the definitions.

Observation 5.1 For v ∈ V and i ∈ Z, each row in �i (v) has at most one non-zero
coordinate.

Observation 5.2 For v ∈ V and i ∈ Z, let α = ∑
c′∈χ(E(Pv))

t2τi (vc′). For j /∈
(α, α + t2τi (v)], we have

�i (v)[ j] = (0, . . . , 0).

Proofs of the next four lemmas will be presented in Sect. 5.2.
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Lemma 5.3 For v ∈ V , there is at most one i ∈ Z and at most one couple ( j, k) ∈
[m] × [t] such that �i (v)[ j, k] /∈ {0, 2i

t2 }.
Lemma 5.4 Let c ∈ χ(E), and u, w ∈ V (γc)\{vc} be such that dT (w, vc) ≤
dT (u, vc). For all i ∈ Z and ( j, k) ∈ [m] × [t], we have

�i (w)[ j, k] ≤ �i (u)[ j, k].

Lemma 5.5 For c ∈ χ(E), and u, w ∈ V (γc) \ {vc}, we have

dT (w, u) =
∑

i∈Z

‖�i (u) − �i (w)‖1 (51)

and

dT (vc, u) =
∑

i∈Z

‖�i (u)‖1. (52)

Lemma 5.6 For c ∈ χ(E), u, w ∈ V (γc) \ {vc}, i > j and k ∈ [m], if both
‖�i (u)[k] − �i (w)[k]‖1 �= 0, and ‖� j (u)[k] − � j (w)[k]‖1 �= 0, then dT (u, w) ≥
2 j−1.

Re-randomization. For t ∈ N, let πt : R
t → R

t be a random mapping obtained
by uniformly permuting the coordinates in R

t . Let {σi }i∈[m] be a sequence of i.i.d.
random variables with the same distribution as πt . We define the random variable
πt,m : R

m×t → R
m×t as follows:

πt,m

⎛

⎜
⎝

r1
...

rm

⎞

⎟
⎠ =

⎛

⎜
⎝

σ1(r1)
...

σm(rm)

⎞

⎟
⎠ .

The Construction. We now use re-randomization to construct our final embedding.
For c ∈ χ(E), and i ∈ Z, the map fi,c : V (T (c)) → R

m×t will represent an
embedding of the subtree T (c) at scale 2i/t2. Recall that

V (T (c)) = V (γc) ∪
( ⋃

c′∈ρ−1(c)

V (T (c′)) \ {vc′ }
)
.

Let {�i,c′ : i ∈ Z, c′ ∈ ρ−1(c)} be a sequence of i.i.d. random variables which
each have the distribution of πt,m . We define fi,c : V (T (c)) → R

m×t as follows:

fi,c(x) =
⎧
⎨

⎩

0 if x = vc,

�i (x) if x ∈ V (γc) \ {vc},
�i (vc′) + �i,c′( fi,c′(x)) if x ∈ V (T (c′)) \ {vc′ } for some c′ ∈ ρ−1(c).

(53)
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Re-randomization permutes the elements within each row, and the permutations
are independent for different subtrees, scales, and rows. Finally, we define fi = fi,c0 ,
where c0 = χ(r, p(r)). We use the following lemma to prove Theorem 3.1.

Lemma 5.7 There exists a universal constant C such that the following holds with
non-zero probability: For all x, y ∈ V ,

(1 − Cε) dT (x, y) − δ ρχ (x, y; δ) ≤
∑

i∈Z

‖ fi (x) − fi (y)‖1 ≤ dT (x, y). (54)

We will prove Lemma 5.7 in Sect. 5.3. We first make two observations, and then use
them to prove Theorem 3.1. Our first observation is immediate from Observations 5.1
and 5.2, since in the third case of (53), by Observation 5.2,�i (v

′
c) and �i,c′( fi,c′(x))

must be supported on disjoint sets of rows.

Observation 5.8 For any v ∈ V and for any row j ∈ [m], there is at most one
non-zero coordinate in fi (v)[ j].

Observation 5.2 and Lemma 5.5 also imply the following.

Observation 5.9 For any v ∈ V and u ∈ Pv , we have

dT (u, v) =
∑

i∈Z

‖ fi (u) − fi (v)‖1.

Using these, together with Corollary 3.5, we now prove Theorem 3.1.

Proof of Theorem 3.1 By Lemma 5.7, there exists a choice of mappings {gi }i∈Z such
that for all x, y ∈ V ,

dT (x, y) ≥
∑

i∈Z

‖gi (x) − gi (y)‖ ≥ (1 − O(ε))dT (x, y) − δρχ (x, y; δ).

We will apply Corollary 3.5 to the family given by
{

fi = t2gi
2i

}
i∈Z

to arrive at an

embedding F : V → �
tm(2+�log 1

ε
�)

1 such that G = F/t2 satisfies

dT (x, y) ≥ ‖G(x) − G(y)‖1 ≥ (1 − O(ε))dT (x, y) − δρχ(x, y; δ). (55)

Observe that the codomain of fi is R
m×t , where mt = �

(
( 1
ε

+ log log( 1
δ
))3 log n

)
,

and the codomain of G is R
d , where d = �

(
log 1

ε
( 1
ε

+ log log( 1
δ
))3 log n

)
.

To achieve (55), we need only show that for every x, y ∈ V , we have ζ(x,y)

t2 �
εdT (x, y), where ζ(x, y) is defined in (30). Recalling this definition, we now restate

ζ in terms of our explicit family
{

fi = t2gi
2i

}
i∈Z

. We have

ζ(x, y)

t2 =
∑

(k1,k2)∈[m]×[t]

∑

i :∃ j<i
g j (x)[k1,k2]�=g j (y)[k1,k2]

hi (x, y; k1, k2) , (56)
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where

hi (x, y; k1, k2)

= 2i

t2

( t2

2i

∣∣gi (x)[k1, k2] − gi (y)[k1, k2]
∣∣−⌊∣∣ t2

2i
gi (x)[k1, k2]− t2

2i
gi (y)[k1, k2]

∣∣⌋
)
.

Fix x, y ∈ V . For c ∈ χ(E(Pxy)), let λc be the induced subgraph on V (Pxy)∩ V (γc),
i.e. the subpath of Pxy where all edges are colored by color c. We have

dT (x, y) =
∑

c∈χ(E(Pxy))

len(E(λc)). (57)

If we look at a single term in (56), we have

hi (x, y; k1, k2) <
2i

t2 . (58)

For u, v ∈ Pxy , let

Si (u, v) = {
(k1, k2) ∈ [m] × [t] : hi (u, v; k1, k2) �= 0 and

∃ j < i : g j (x)[k1, k2] �= g j (y)[k1, k2]
}
.

Now, notice that if t2

2i (gi (x)[k1, k2] − gi (y)[k1, k2]) is fractional, then there must
exist a subpath λc, for a color c ∈ χ(E(Pxy)), with endpoints uc and wc such that
t2

2i (gi (uc)[k1, k2] − gi (wc)[k1, k2]) is fractional too. Hence we have

ζ(x, y) <
∑

c∈χ(E(Pxy))

∑

i∈Z

2i |Si (uc, wc)|
t2 .

We call
∑

i∈Z

2i |Si (uc,wc)|
t2 the contribution of λc for each color c ∈ χ(E(Pxy)).

We divide the analysis of the paths λc for c ∈ χ(E(Pxy)) into two cases. For
c ∈ χ(E(Px ))�χ(E(Py)), the vertex vc is one endpoint of the path λc. Let uc be
the other. By Lemma 5.3, there is at most one i ∈ Z and (k1, k2) ∈ [m]× [t] such that
hi (uc, vc; k1, k2) �= 0, and

∣∣
⋃

i∈Z

Si (uc, vc)
∣∣ ≤ 1.

By Lemma 4.3, for all i ∈ Z with dT (uc, vc) ≤ 2i−1, we have τi (uc) = 0 and

‖�i (uc)‖1 = ‖gi (uc) − gi (vc)‖1 = 0. (59)
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For i < 1 + log2(dT (uc, vc)), by (58) and Lemma 5.3 we can bound the contribution
of λc to ζ(x, y) by

∑

j∈Z

2 j |S j (uc, vc)|
t2 <

2i

t2 <
2dT (uc, vc)

t2 ≤ εdT (uc, vc). (60)

Note that there is at most one color in χ(E(Pxy)) \ (χ(E(Px ))�χ(E(Py))). If no
such color exists, then by (60),

ζ(x, y) <
∑

c∈χ(E(Pxy))

ε len(E(λc))
(57)≤ εdT (x, y).

Suppose now that {c} = χ(E(Pxy)) \ (χ(E(Px ))�χ(E(Py))). Let u, w ∈ V (λc)

be the closest vertices to x and y, respectively. For i ∈ Z we will show that if
hi (u, w; k1, k2) �= 0, then either dT (x, y) ≥ 2i−2, or for all j < i , we have
(g j (x) − g j (y))[k1, k2] = 0. Then, by Lemma 5.3, there are at most two elements in

gi (u) − gi (w) that are not in {0, 2i

t2 ,− 2i

t2 }, therefore we can conclude

ζ(x, y) <
∑

i∈Z

2i |Si (u, w)|
t2 +

∑

c∈χ(E(Px ))�χ(E(Py))

∑

i∈Z

2i |Si (uc, vc)|
t2

(57)≤ 4εdT (x, y) +
∑

c∈χ(E(Px ))�χ(E(Py))

ε len(E(λc))

≤ 5εdT (x, y).

Without loss of generality suppose that dT (u, vc) ≤ dT (w, vc). If dT (w, vc) = 0
then the contribution of λc to ζ(x, y) is zero. Suppose now that dT (w, vc) > 0, and
let mw = max{i : τi (w) �= 0}. By Lemma 4.3 the maximum always exists.

We will now split the rest of the proof into two cases.
Case 1: τmw−1(u) = 0.

In this case by Lemma 4.6 we have dT (u, w) > 2mw−1. For (k1, k2) ∈ [m] × [t],
if hi (u, w; k1, k2) �= 0 then by (50), i ≤ mw and

2i

t2 ≤ 2mw

t2 <
2dT (u, w)

t2 ≤ 2dT (x, y)

t2 ≤ εdT (x, y).

Case 2: τmw−1(u) �= 0.

Let mu = max{i : τi (u) �= 0}. By Lemma 4.5 and as τmw−1(u) �= 0, we have
mu ≤ mw ≤ mu + 1. Observation 4.2 implies that for all j < mu ,

τ j (u) +
∑

c′∈χ(E(Pu))

τ j (vc′) = ϕ(c).
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We have mw ≥ mu , and by Observation 4.2,

τ j (w) +
∑

c′∈χ(E(Pw))

τ j (vc′) = τ j (u) +
∑

c′∈χ(E(Pu))

τ j (vc′) = ϕ(c). (61)

Therefore, by Observation 5.2 for j < mu and k ∈ [t2ϕ(c)],

‖(g j (x) − g j (u))[k]‖1 = ‖(g j (y) − g j (w))[k]‖1 = 0, (62)

and by Observation 5.2 and part (B) of (34), for all i ∈ Z, all the non-zero elements
of gi (u) − gi (w) are in the first t2ϕ(c) rows.

Suppose that there exists k ∈ [m] such that ‖(gi (u) − gi (w))[k]‖1 �= 0. Now, we
divide the proof into two cases again.
Case 2.1: There exists a j < i such that ‖(g j (x) − g j (u))[k]‖1 + ‖(g j (y) − g j

(w))[k]‖1 �= 0.

In this case, there must exist some c′ ∈ χ(E(Px ))�χ(E(Py)) such that

‖(g j (vc′) − g j (uc′))[k]‖1 �= 0.

By (53) and (50), we have τ j (uc′) �= 0. Inequality (62) implies j ≥ mu , and finally
by Lemma 4.3,

dT (x, y) ≥ dT (uc′, vc′) > 2 j−1 ≥ 2mu−1 ≥ 2mw−2 ≥ 2i−2. (63)

Case 2.2: ‖(g j (x) − g j (u))[k]‖1 + ‖(g j (y) − g j (w))[k]‖1 = 0 for all j < i .
In this case, either for all j < i, ‖g j (x)[k] − g j (y)[k]‖1 = 0 which implies that

for k′ ∈ [t], (k, k′) /∈ Si (u, w), or ‖g j (u)[k] − g j (w)[k]‖1 �= 0 for some j < i . If
‖g j (u)[k] − g j (w)[k]‖1 �= 0 for some j < i then by Lemma 5.6,

dT (x, y) ≥ dT (u, w) ≥ 2mu−1 ≥ 2mw−2 ≥ 2i−2. (64)

For i > mw we have ‖gi (u) − gi (w)‖1 = 0, therefore in both cases if
hi (x, y; k1, k2) �= 0 either for all j < i, ‖g j (x)[k] − g j (y)[k]‖1 = 0 or

2i

t2 ≤ 4dT (x, y)

t2 ≤ 2εdT (x, y).

��

5.2 Properties of the �i Maps

We now present proofs of Lemmas 5.3–5.6.

Proof of Lemma 5.3 For a fixed i ∈ Z, by (50) there is at most one element in �i (v)

that takes a value other than {0, 2i

t2 }.
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We prove this lemma by showing that if for some i ∈ Z, and ( j, k) ∈ [m] × [t],

�i (v)[ j, k] /∈ {
0,

2i

t2

}
,

then for all i ′ > i and ( j ′, k′) ∈ [m] × [t], we have �i ′(v)[ j ′, k′] = 0. Let c =
χ(v, p(v)). Using (50), we can conclude that

t2τi (v) >
⌊dT (vc, v) − ∑i−1

�=−∞ 2�τ�(v)

2i/t2

⌋
.

Since the left-hand side is an integer,

t2τi (v) ≥ dT (vc, v) − ∑i−1
�=−∞ 2�τ�(v)

2i/t2

and

∑

�≤i

2�τ�(v) = 2iτi (v) +
∑

�<i

2�τ�(v)

≥ 2i
(dT (vc, v) − ∑

�<i 2�τ�(v)

2i

)
+

∑

�<i

2�τ�(v) ≥ dT (vc, v).

By part (A) of (34), for i ′ > i we have τi ′(v) = 0, thus ‖�i ′(v)‖1 = 0 and the proof
is complete. ��
Proof of Lemma 5.4 For i<

⌊
log2

( m(T )
M(χ)+ log2 |E |

)⌋
we have ‖�k(u)‖=‖�k(w)‖1=0.

Let ν be the minimum integer greater than
⌊

log2
( m(T )

M(χ)+log2 |E |
)⌋−1 such that part

(A) of (34) for τν(w) is less that or equal to part (B). This ν exists since, by (35), part
(B) of (34) is always positive, while by Lemma 4.3, part (A) of (34) must be zero for
some ν ∈ Z large enough. First we analyze the case when i < ν.

Observation 4.2 implies that part (B) of (34) specifies the value of τi (w). By
Lemma 4.5 τi (u) ≥ τi (w), but the part (B) for τi (u) is the same as for τi (w), so
we must have τi (u) = τi (w), and the same reasoning holds for τ�(w) for � < i . Using
this and the fact that part (A) does not define τi (w), we have

2iτi (w) +
∑

�<i

2�τ�(w) = 2iτi (u) +
∑

�<i

2�τ�(u) < dT (vc, w) < dT (vc, u).

Therefore, the second case in (50) happens neither for u nor for w, and for i < ν we
have �i (u) = �i (w).

We now consider the case i=ν. We have already shown that for �<i, τ�(u)=τ�(w),

and using (50), it is easy to verify that for all ( j, k) ∈ [m] × [t],

�i (u)[ j, k] ≥ �i (w)[ j, k].
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Finally, in the case that i > ν, by Observation 4.2, we have τi (w) = 0 and
�i (w)[ j, k] = 0. ��
Proof of Lemma 5.5 For all i ∈ Z, recalling the definition α and β in (50) for �i (u),
we have

β − α = min
(

t2τi (v),
⌊dT (vc, v) − ∑i−1

�=−∞ 2�τ�(v)

2i/t2

⌋)
.

and by definition of �i (u) we have

‖�i (u)‖1 = min
(

2iτi (u), dT (u, vc) −
∑

j<i

2 jτ j (u)
)
.

By Lemma 4.4, we have
∑

i∈Z
2iτi (u) ≥ dT (u, vc), therefore dT (vc, u) =∑

i∈Z
‖�i (u)‖1. The same argument also implies that dT (w, vc) = ∑

i∈Z
‖�i (w)‖1.

Now, suppose that dT (u, vc) ≥ d(w, vc). Then Lemma 5.4 implies that

‖�i (u) − �i (w)‖1 = ‖�i (u)‖1 − ‖�i (w)‖1 = dT (vc, u) − dT (vc, w) = dT (w, u).

��
Proof of Lemma 5.6 Without loss of generality suppose that dT (vc, u) ≥ dT (vc, w).
We have

dT (u, w) =
∑

h∈Z

‖�h(u) − �h(w)‖1 ≥
i∑

h= j

‖�h(u) − �h(w)‖1

≥ ‖�i (u) − �i (w)‖1 + ‖� j (u) − � j (w)‖1. (65)

By Lemma 4.5 we have τ j (w) ≤ τ j (u). In the definition of τ j (w), if part (B) of (34)
is less than part (A), then by (50), for all h such that

∑

c′∈χ(E(Pv))

t2τ j (vc′) < h ≤ t2ϕ(c),

we have ‖� j (w)[h]‖1 = 2i

t2 . By Lemma 5.4 and Observation 5.2 for k ∈ Z,

� j (w) = � j (u). Hence, part (A) of (34) must specify the value of τ j (w). Observa-
tion 4.2 implies that τi (w) = 0 and by (50), we have ‖�i (w)‖1 = 0.

By (50), since ‖�i (u)[k]‖1 > 0, and α from (50) is a multiple of t2 for all t2� k
t2 � <

h < k we have ‖�i (u)[h]‖1 = 2i

t2 . This implies that

‖�i (u) − �i (w)‖1 ≥ 2i

t2

(
k − 1 − t2⌊ k

t2

⌋) ≥ 2 j

t2

(
k − 1 − t2⌊ k

t2

⌋)
.
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Moreover, ‖� j (w)[k]‖1 < 2 j

t2 , and (50) implies that for all k < h ≤ t2�1 + k
t2 �, we

have ‖� j (w)[h]‖1 = 0. The same argument also shows that

‖� j (u) − � j (w)‖1 ≥ 2 j

t2

(
t2⌊1 + k

t2

⌋ − k
)
.

Hence by (65),

dT (u, w) ≥ t2 − 1

t2 2 j ≥ 2 j−1.

��

5.3 The Probabilistic Analysis

We are thus left to prove Lemma 5.7. For c ∈ χ(E), we analyze the embedding for
T (c) by going through all c′ ∈ χ(E(T (c))) one by one in increasing order of ϕ(c′).
Our first lemma bounds the probability of a bad event, i.e. of a subpath not contributing
enough to the distance in the embedding.

Lemma 5.10 For any C ≥ 8, the following holds. Consider three colors a ∈
χ(E), b ∈ ρ−1(a), and c ∈ χ(E(Pu vb )) for some u ∈ V (T (b)). Then for every
w ∈ V (T (a)) \ V (T (b)), we have

P

[
∃ x ∈ V (Pw va ) :

∑

i∈Z

‖ fi,a(x) − fi,a(u)‖1 ≤ (1 − Cε) dT (u, vc)

+
∑

i∈Z

‖ fi,a(vc) − fi,a(x)‖1 | { fi,c′ }c′∈ρ−1(a)

]

≤ 1

�log2 1/δ� exp
( − (C/(ε2β+2)) dT (u, vc)

)
, (66)

where β = max{i : ∃y ∈ Pu vc\{vc}, τi (y) �= 0}. (See Fig. 1 for position of vertices
in the tree.)

Proof Recall that R
m×t is the codomain of fi,a . For i ∈ Z, and j ∈ [m], and z ∈

V (Pw va ), let

si j (z) = ∥∥ fi,a(z)[ j] − fi,a(vc)[ j]∥∥1 + ∥∥ fi,a(vc)[ j]
− fi,a(u)[ j]∥∥1 − ∥

∥ fi,a(z)[ j] − fi,a(u)[ j]∥∥1 .

We have
∑

i∈Z

‖ fi,a(u) − fi,a(vc)‖1 +
∑

i∈Z

‖ fi,a(vc) − fi,a(z)‖1

=
∑

i∈Z

‖ fi,a(z) − fi,a(u)‖1 +
∑

i∈Z, j∈[m]
si j (z).
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Fig. 1 Position of vertices
corresponding to the statement
of Lemma 5.10

By Observation 5.9, we have dT (u, vc) = ∑
i∈Z

‖ fi,a(u) − fi,a(vc)‖1, therefore

dT (u, vc) −
∑

i∈Z, j∈[m]
si j (z)=

∑

i∈Z

‖ fi,a(z) − fi,a(u)‖1 −
∑

i∈Z

‖ fi,a(z) − fi,a(vc)‖1.

(67)

Let E = { fi,c′ : c′ ∈ ρ−1(a)}. We define PE [·] = P[· | E]. In order to prove this
theorem, we bound

PE
[∃ x ∈ V (Pw va ) :

∑

i∈Z, j∈[m]
si j (x) ≥ CεdT (u, vc)

]
.

We start by bounding the maximum of the random variables si j .
For i > β we have �i (u) = �i (vc), hence fi,a(u) = fi,a(vc). Using the triangle

inequality for all i ∈ Z, j ∈ [m] and z ∈ Pw va ,

si j (z) ≤ 2‖ fi,a(vc)[ j] − fi,a(u)[ j]‖1, (68)

Hence for all i ∈ Z and j ∈ [m] by Observation 5.8,

si j (z) ≤ 2‖ fi,a(vc)[ j] − fi,a(u)[ j]‖1 ≤ 2β+1

t2 . (69)

First note that, if z is on the path between vb and va then by Observation 5.9,
si j (z) = 0. Observation 5.2 and (50) imply that if ‖ fi,a(u)[ j] − fi,a(vc)[ j]‖1 �= 0
then ‖ fi,a(vc)[ j]‖1 = 0. From this, we can conclude that si j (z) �= 0 if and only
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if there exists a k ∈ [t] such that both fi,a(u)[ j, k] − fi,a(vc)[ j, k] �= 0 and
fi,a(z)[ j, k] �= 0. Since by Lemma 5.4, for all i ∈ Z, j ∈ [m] and k ∈ [t], we
have fi,a(w)[ j, k] ≥ fi,a(z)[ j, k], we conclude that for z ∈ Pw va if si j (z) �= 0 then
si j (w) �= 0.

Now, for i ∈ Z and j ∈ [m], we define a random variable

Xi j =
{

0 if si j (w) = 0,

2‖ fi,a(u)[ j] − fi,a(vc)[ j]‖1 if si j (w) �= 0.
(70)

Note that since the re-randomization in (53) is performed independently on each
row and at each scale, the random variables

{
Xi j : i ∈ Z, j ∈ [m]} are mutually

independent. By (68), for all z ∈ Pw va , we have si j (z) ≤ Xi j , and thus

PE
[
∃ x ∈ V (Pw va ) :

∑

i∈Z, j∈[m]
si j (x) ≥ CεdT (u, vc)

]

≤ PE
[ ∑

i∈Z, j∈[m]
Xi j ≥ CεdT (u, vc)

]
. (71)

As before, for Xi j to be non-zero, it must be that k ∈ [t] is such that fi,a(w)[ j, k] �= 0
and fi,a(u)[ j, k] − fi,a(vc)[ j, k] �= 0. Since w /∈ V (T (b)) with the re-randomization
in (53) and Observation 5.8, this happens at most with probability 1

t , hence for j ∈ [m],
and i ∈ Z,

PE [Xi j �= 0] = PE
[‖ fi,a(w)[ j] − fi,a(vc)[ j]‖1 + ‖ fi,a(vc)[ j]

− fi,a(u)[ j]‖1 − ‖ fi,a(w)[ j] − fi,a(u)[ j]‖1 �= 0
] ≤ 1

t
.

This yields

E[Xi j | E] ≤ 1

t

(
2‖ fi,a(u)[ j] − fi,a(vc)[ j]‖1

)
. (72)

Now we use (69) to write

Var(Xi j | E)≤ 1

t

(
2‖ fi,a(u)[ j]− fi,a(vc)[ j]‖1

)2 ≤ 2β+2

t3 ‖ fi,a(u)[ j]− fi,a(vc)[ j]‖1,

and use Observation 5.9 in conjunction with (72) to conclude that

E

[ ∑

i∈Z, j∈[m]
Xi j | E

]
≤

∑

i∈Z, j∈[m]

2

t
‖ fi (vc)[ j] − fi (u)[ j]‖1 = 2

t
dT (vc, u) (73)
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and

∑

i∈Z, j∈[m]
Var(Xi j | E) ≤

∑

i∈Z, j∈[m]

2β+2

t3 ‖ fi (vc)[ j] − fi (u)[ j]‖1 = 2β+2

t3 dT (vc, u).

(74)

Define M = max{Xi j − E[Xi j | E] : i ∈ Z, j ∈ [m]}. We now apply Theorem 2.2 to
complete the proof:

PE
[ ∑

i∈Z, j∈[m]
Xi j ≥ C

(dT (u, vc)

t

)]

= PE
[ ∑

i∈Z, j∈[m]
Xi j − 2dT (u, vc)

t
≥ (C − 2)

(dT (u, vc)

t

)]

(73)≤ PE
[ ∑

i∈Z, j∈[m]
Xi j − E

[ ∑

i∈Z, j∈[m]
Xi j | E

]
≥ (C − 2)

(dT (u, vc)

t

)]

≤ exp
( −((C − 2)dT (u, vc)/t)2

2
( ∑

i∈Z, j∈[m] Var(Xi j | E) + (C − 2)(dT (u, vc)/t)M/3
)
)
.

Since E[Xi j | E] ≥ 0, (69) implies M ≤ 2β+1

t2 . Now, we can plug in this bound and
(74) to write

PE
[ ∑

i∈Z, j∈[m]
Xi j ≥ C

(dT (u, vc)

t

)]

≤ exp
( −((C − 2)dT (u, vc)/t)2

2
( 2β+2

t3 dT (u, vc) + (C − 2)(dT (u, vc)/t)(2β+1/t2)/3
)
)

= exp
( −t (C − 2)2dT (u, vc)

2
(
2β+2 + (C − 2)(2β+1)/3

)
)

= exp
( −(C − 2)2

(C − 2)/3 + 2

( tdT (u, vc)

2β+2

))
.

An elementary calculation shows that for C ≥ 8,
(C−2)2

(C−2)/3+2 > C, hence

PE
[ ∑

i∈Z, j∈[m]
Xi j ≥ C

(dT (u, vc)

t

)]

< exp
(

− (Ct/2β+2) dT (u, vc)
)
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(48)≤ exp
(

− C
(1

ε
+ log

⌈
log2

1

δ

⌉)( 1

2β+2

)
dT (u, vc)

)

=
( 1

⌈
log2(1/δ)

⌉
)CdT (u,vc)

2β+2 · exp
(

− C
(1

ε

)( 1

2β+2

)
dT (u, vc)

)
.

Since there exists a y∈Pu vc\{vc} such that τβ(y) �= 0, and for all c′ ∈ χ(E),

κ(c′) ≥ 1, Lemma 4.3 implies that dT (u, vc) > 2β−1, and for C ≥ 8, we have
CdT (u,vc)

2β+2 > 1. Therefore,

PE
[
∃ x ∈ V (Pw va ) :

∑

i∈Z

‖ fi,a(x) − fi,a(u)‖1

≤ (1 − Cε) dT (u, vc) +
∑

i∈Z

‖ fi,a(vc) − fi,a(x)‖1

]

(67)≤ PE
[
∃ x ∈ V (Pw vc) :

∑

i∈Z, j∈[m]
si j (x) ≥ CεdT (u, vc)

]

(71)≤ PE
[ ∑

i∈Z, j∈[m]
Xi j ≥ Cε (dT (u, vc))

]

(48)≤ PE
[ ∑

i∈Z, j∈[m]
Xi j ≥ C

(dT (u, vc)

t

)]

<
( 1

�log2(1/δ)�
)

· exp
(

− C
( 1

ε2β+2

)
dT (u, vc)

)
,

completing the proof. ��
The �a Mappings. Before proving Lemma 5.7, we need some more definitions. For
a color a ∈ χ(E), we define a map �a : V (T (a)) → V (T (a)) based on Lemma 5.10.
For u ∈ V (γa), we put �a(u) = u. For all other vertices u ∈ V (T (a)) \ V (γa), there
exists a unique color b ∈ ρ−1(a) such that u ∈ V (T (b)). We define �a(u) as the
vertex w ∈ V (Puvb ) which is closest to the root among those vertices satisfying the
following condition: For all v ∈ V (Puw) \ {w} and k ∈ Z, τk(v) �= 0 implies

2k <
dT (u, w)

ε(ϕ(χ(u, p(u))) − ϕ(a))
. (75)

Clearly such a vertex exists, because the conditions are vacuously satisfied for w = u.
We now prove some properties of the map �a .

Lemma 5.11 Consider any a ∈ χ(E) and u ∈ V (T (a)) such that �a(u) �= u. Then
we have �a(u) = vc for some c ∈ χ(E(Puva )) \ {a}.
Proof Let w ∈ V (Pu �a(u)) be such that �a(u) = p(w). The vertex w always exists
because �a(u) ∈ V (Pu) \ {u}. If χ(w,�a(u)) �= χ(�a(u), p(�a(u))) then �a(u) is
vc for some c ∈ χ(E(Pu va )) \ {a}.
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Now, for the sake of contradiction suppose thatχ(w,�a(u))=χ(�a(u), p(�a(u))).
In this case, we show that for all v ∈ Pu p(�a(u)) \ {p(�a(u))}, and k ∈ Z, τk(v) �= 0
implies

2k <
dT (u, p(�a(u)))

ε(ϕ(χ(u, p(u))) − ϕ(a))
. (76)

This is a contradiction since by definition of �a , it must be that �a(u) is the closest
vertex to the root satisfying this condition, yet p(�a(u)) is closer to root than �a(u).

Observe that

V (Pu p(�a(u))) \ {p(�a(u))} = V (Pu �a(u)).

We first verify (76) for �a(u) and k ∈ Z with τk(�a(u)) �= 0. Since �a(u) ∈ V (Pu),
we have

dT (u, �a(u)) ≤ dT (u, p(�a(u))). (77)

Recalling that p(w) = �a(u), by Lemma 4.5 for all k ∈ Z, τk(�a(u)) ≤ τk(w),
therefore for all k ∈ Z, with τk(�a(u)) �= 0, we have τk(w) �= 0 as well, hence (75)
implies

2k <
dT (u, �a(u))

ε(ϕ(χ(u, p(u))) − ϕ(a))

(77)≤ dT (u, p(�a(u)))

ε(ϕ(χ(u, p(u)) − ϕ(a))
. (78)

For all other vertices, v ∈ V (Pu�a(u))\ {�a(u)}, and k ∈ Z with τk(v) �= 0 by (75),

2k <
dT (u, �a(u))

ε(ϕ(χ(u, p(u))) − ϕ(a))

(77)≤ dT (u, p(�a(u)))

ε(ϕ(χ(u, p(u))) − ϕ(a))
, (79)

completing the proof. ��
Lemma 5.12 Suppose that a ∈ χ(E) and u ∈ V (T (a)). For any w ∈ V (Pu �a(u))

such that χ(u, p(u)) = χ(w, p(w)) we have �a(w) ∈ V (Pu �a(u)).

Proof For the sake of contradiction, suppose that �a(w) /∈ V (Pu �a(u)). Since w ∈
V (Pu) and �a(w) /∈ V (Pu �a(u)), we have �a(w) ∈ V (P�a(u)) and

dT (u, �a(u)) ≤ dT (u, �a(w)). (80)

Since w ∈ V (Pu �a(u)) by assumption, for all vertices, we have V (Pu w) \ {w} ⊆
V (Pu �a(u)) \ {�a(u)}. Thus for all v ∈ V (Pu w) \ {w} and k ∈ Z with τk(v) �= 0
by (75),

2k <
dT (u, �a(u))

ε(ϕ(χ(u, p(u))) − ϕ(a))

(80)≤ dT (u, �a(w))

ε(ϕ(χ(u, p(u))) − ϕ(a))
. (81)
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The fact that w ∈ V (Pu �a(u)) also implies that dT (w, �a(w))) ≤ dT (u �a(w))).
Therefore, for all vertices v∈V (Pw �a(w))\{�a(w)} and k ∈Z with τk(v) �=0 by (75),

2k <
dT (w, �a(w))

ε(ϕ(χ(w, p(w))) − ϕ(a))
≤ dT (u, �a(w))

ε(ϕ(χ(w, p(w))) − ϕ(a))

= dT (u, �a(w))

ε(ϕ(χ(u, p(u))) − ϕ(a))
. (82)

We have

V (Pu �a(w)) = V (Pu w) ∪ (
V (Pw �a(w)) \ {�a(w)}).

Hence, by (81) and (82), for all v ∈ V (Pu �a(w)) \ {�a(w)} and k ∈ Z, τk(v) �= 0
implies

2k <
dT (u, p(�a(w)))

ε(ϕ(χ(u, p(u))) − ϕ(a))
. (83)

This is a contradiction to the definition of �a(u), since �a(u) must be the closest vertex
to the root satisfying this condition, yet �a(w) is closer to root than �a(u). ��

Defining Representatives for γc. Now, for each c ∈ χ(E), we define a small set of
representatives for vertices in γc. Later, we use these sets to bound the contraction of
pairs of vertices that have one endpoint in γc.

For a ∈ χ(E) and c ∈ χ(E(T (a))) \ {a}, we define the set Ra(c) ⊆ V (γc), the set
of representatives for γc, as follows:

Ra(c) =
�log2

1
δ
�−1⋃

i=0

{
u ∈ V (γc) : u is the furthest vertex

from vc s.t. �a(u) �= u and d(u, vc) ≤ 2−i len(γc)
}
. (84)

The next lemma shows when a vertex has a close representative.

Lemma 5.13 Consider a ∈ χ(E) and c ∈ χ(E(T (a))) \ {a}. For all vertices u ∈
V (γc) with �a(u) �= u there exists a w ∈ Ra(c) such that

dT (u, vc) ≤ dT (w, vc) ≤ 2 max
(
dT (u, vc), δ len(γc)

)
.

Proof Let i ≥ 0 be such that

dT (u, vc)

len(γc)
∈ (

2−i−1, 2−i ].
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If i ≤ �log2
1
δ
�−1, then (84) implies that either u ∈ Ra(c), or there exists a w ∈ Ra(c)

such that

dT (u, vc) < dT (w, vc) ≤ len(γc)

2i
≤ 2 dT (u, vc).

On the other hand, if i > �log2
1
δ
� − 1, then (84) implies that either u ∈ Ra(c), or

that there exists a w ∈ Ra(c) such that

dT (u, vc) < dT (w, vc) ≤ len(γc)

2�log2
1
δ
�−1

≤ 2δ len(γc),

completing the proof. ��
The following lemma, in conjunction with Lemma 5.13, reduces the number of

vertices in V (γc) that we need to analyze using Lemma 5.10.

Lemma 5.14 Let (X, d) be a pseudometric, and let f : V → X be a 1-Lipschitz
map. For x, y ∈ V , and x ′, y′ ∈ V (Pxy) and h ≥ 0, if d( f (x), f (y)) ≥ dT (x, y) − h
then d( f (x ′), f (y′)) ≥ dT (x ′, y′) − h.

Proof Suppose without loss of generality that dT (x ′, x) ≤ dT (y′, x). Using the trian-
gle inequality,

d( f (x ′), f (y′)) ≥ d( f (x), f (y)) − d( f (x), f (x ′)) − d( f (y), f (y′))
≥ (dT (x, y) − h) − d( f (x), f (x ′)) − d( f (y), f (y′))
≥ dT (x, y) − dT (x, x ′) − dT (y, y′) − h

= dT (x ′, y′) − h. ��
The following lemma constitutes the inductive step of the proof of Lemma 5.7.

Lemma 5.15 There exists a universal constant C such that for any color c ∈ χ(E) ∪
{χ(r, p(r))}, the following holds. Suppose that, with non-zero probability, for all c′ ∈
ρ−1(c), and for all pairs x, y ∈ V (T (c′)), we have

(1 − Cε) dT (x, y) − δ ρχ (x, y; δ) ≤
∑

i∈Z

‖ fi,c′(x) − fi,c′(y)‖1 ≤ dT (x, y). (85)

Then with non-zero probability for all x, y ∈ V (T (c)), we have

(1 − Cε) dT (x, y) − δ ρχ(x, y; δ) ≤
∑

i∈Z

‖ fi,c(x) − fi,c(y)‖1 ≤ dT (x, y). (86)

Proof Let E denote the event that, for all c′ ∈ ρ−1(c), and all x, y ∈ V (T (c′)), we
have

dT (x, y) ≥
∑

i∈Z

‖ fi,c′(x) − fi,c′(y)‖ ≥ (1 − Cε)dT (x, y) − δρχ (x, y; δ). (87)
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We will prove the lemma by showing that, conditioned on E , (86) holds with non-zero
probability.

For x, y ∈ V (T (c)) we define

μ(x, y) = max
{
ϕ(a) : a ∈ χ(E) and x, y ∈ V (T (a))

}
.

Note that since x, y ∈ V (T (c)), we have

μ(x, y) ≥ ϕ(c). (88)

It is easy to see that if μ(x, y) > ϕ(c), then x, y ∈ V (T (c′)) for some c′ ∈ ρ−1(c).
By construction, if c′ ∈ ρ−1(c) and x, y ∈ V (T (c′)), then

‖ fi,c(x) − fi,c(y)‖ = ‖ fi,c′(x) − fi,c′(y)‖,

hence E implies that (86) holds for all such pairs. Thus in the remainder of the proof,
we need only handle pairs x, y ∈ V (T (c)) with μ(x, y) = ϕ(c).

Write χ(E(T (c))) = {c1, c2, . . . , cn}, where the colors are ordered so that ϕ(c j ) ≤
ϕ(c j+1) for j = 1, 2, . . . , n − 1. Let ε1 = 24ε, where the constant 24 comes from
Lemma 5.10. And let ε2 = 2 · C ′ε, where C ′ is the constant from Lemma 4.11.

For i ∈ [m], we define the event Xi as follows: For all j ≤ i , all x ∈ V (γci ) and
y ∈ V (γc j ) with μ(x, y) = ϕ(c), we have

∑

k∈Z

‖ fk,c(x) − fk,c(y)‖1

≥ dT (x, y) − ε1dT (x, y) − ε2dT (�c(x), �c(y)) − δρχ(x, y; δ). (89)

For all pairs x ∈ V (γci ) and y ∈ V (γc j ), the event Xmax(i, j) implies

∑

k∈Z

‖ fk,c(x) − fk,c(y)‖1 ≥ dT (x, y) − (ε1 + ε2)dT (x, y) − δρχ(x, y; δ).

In particular this shows that for C = 2 · C ′ + 24, if the events X1, X2, . . . , Xn all
occur, then (86) holds for all pairs x, y ∈ V (T (c)). Hence we are left to show that

P[X1 ∧ · · · ∧ Xn | E] > 0.

To this end, we define new events {Yi : i ∈ [n]} and we show that for every i ∈ [n],

PE
[
X1 ∧ · · · ∧ Xi | X1 ∧ · · · ∧ Xi−1 ∧ Yi

] = 1 , (90)

and then we bound the probability that Yi does not occur by

PE
[
Yi

] ≤ 2−3(ϕ(ci )−ϕ(c))+1. (91)
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By Lemma 5.5 and the definition of fk,c (53), we have PE [X1] = 1. Since for all
i ∈ {2, . . . n}, ci ∈ χ(E(T (c))) \ {c}, we have

PE [X1 ∧ · · · ∧ Xn]
≥ 1 −

n∑

i=2

PE
[
Yi

] (91)≥ 1 −
n∑

i=2

2−3(ϕ(ci )−ϕ(c))+1(4.9)
> 1 − 2 · 2(2−3) = 0,

which completes the proof.
For each i ∈ [n], we define the event Yi as follows: For all j < i , and all vertices

x ∈ Rc(ci ) and y ∈ V (γc j ) with μ(x, y) = ϕ(c), we have

∑

k∈Z

‖ fk,c(x) − fk,c(y)‖1 −
∑

k∈Z

‖ fk,c(�c(x)) − fk,c(y)‖1

≥ (1 − ε1/2) dT (x, �c(x)). (92)

We now complete the proof of Lemma 5.15 by proving (90) and (91).

Proof of (90). Suppose that X1, . . . , Xi−1 and Yi hold. We will show that Xi holds as
well. First note that for all vertices in x, y ∈ V (γci ), by Lemma 5.5 and the definition
of fk,ci (53), we have

dT (x, y) =
∑

k∈Z

‖ fk,ci (x) − fk,ci (y)‖1 =
∑

k∈Z

‖ fk,c(x) − fk,c(y)‖1,

thus we only need to prove (89) for pairs x ∈ V (γci ) and y ∈ V (γc j ) for j < i and
μ(x, y) = ϕ(c). We now divide the pairs with one endpoint in γci into two cases based
on �c.
Case I: x ∈ V (γci ) with x �= �c(x), and y ∈ V (γc j ) for some j < i , and μ(x, y) =
ϕ(c).

In this case, by Lemma 5.13, there exists a vertex z ∈ Rc(ci ) such that

d(x, vci ) ≤ d(z, vci ) ≤ 2 max
(
δ len(E(γci )), dT (x, vci )

)
.

If d(x, vci ) ≤ δ len (E(γci )), then by (18), we have len(E(γci )) = ρχ(x, vci ; δ), hence

dT (z, �c(z)) ≤ dT (vci , �c(z)) + 2 max(δ len(E(γci )), dT (x, vci ))

≤ dT (vci , �c(z)) + 2 max(δ ρχ (x, vci ; δ), dT (x, vci ))

≤ dT (vci , �c(z)) + 2 δ ρχ (x, vci ; δ) + 2 dT (x, vci )

≤ 2δ ρχ (x, vci ; δ) + 2 dT (x, �c(z)). (93)

Since z ∈ Rc(ci ), by definition we have �c(z) �= z, therefore by Lemma 5.11,
�c(z) = vc′ for some color c′ ∈ χ(Pz vc)\{c}. The function ϕ is non-decreasing along
any root–leaf path, hence χ(�c(z), p(�c(z))) = c� for some � < i .
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Fig. 2 Position of vertices in the subtree T (c) for Case I

We refer to Fig. 2 for the relative position of the vertices referenced in the following
inequalities. Using our assumption that X1, . . . , Xi−1 and Yi hold, we can write

∑

k∈Z

‖ fk,c(z) − fk,c(y)‖1

Yi≥ dT (�c(z), z) − (ε1/2) dT (z, �c(z)) +
∑

k∈Z

‖ fk,c(�c(z)) − fk,c(y)‖1

Xmax(�, j)≥ dT (�c(z), z)−(ε1/2) dT (z, �c(z))+dT (�c(z), y)

−ε2 dT (�c(�c(z)), �c(y)) − ε1 dT (�c(z), y) − δ ρχ(�c(z), y; δ)

≥ dT (y, z) − (ε1/2) dT (z, �c(z)) − ε2 dT (�c(�c(z)), �c(y))

−ε1 dT (�c(z), y) − δ ρχ(�c(z), y; δ).

We may assume that ε1 < 1, otherwise there is nothing to prove. Using the preceding
inequality, and applying Lemma 5.14 on pairs (z, y) and (x, y) implies that

∑

k∈Z

‖ fk,c(x) − fk,c(y)‖1

≥ dT (x, y) − (ε1/2) dT (z, �c(z)) − ε2 dT (�c(�c(z)), �c(y))

−ε1 dT (�c(z), y) − δ ρχ(�c(z), y; δ)

(93)≥ dT (x, y) − (ε1/2)
(
2 dT (x, �c(z)) + 2δ ρχ(x, vci ; δ)

)

−ε2 dT (�c(�c(z)), �c(y)) − ε1 dT (�c(z), y) − δ ρχ(�c(z), y; δ).

where in the last line we have used the fact that ε1 ≤ 1.
We have χ(x, p(x)) = χ(z, p(z)) = ci . Moreover, since �c(z) �= z, using

Lemma 5.11 it is easy to check that x ∈ Pz �c(z). Therefore, by Lemma 5.12,
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dT (�c(�c(z)), y) ≤ dT (�c(z), y) ≤ dT (�c(x), y), and combining this with the pre-
ceding inequality yields

∑

k∈Z

‖ fk,c(x) − fk,c(y)‖1 ≥ dT (x, y) − (ε1/2)
(
2 dT (x, �c(z)) + 2δ ρχ(x, vci ; δ)

)

−ε2 dT (�c(x), �c(y)) − ε1 dT (�c(z), y) − δρχ(�c(z), y; δ).

Recall the definition of C(x, y; δ) in (18). Since by Lemma 5.11, �c(z) = vc′
for some color c′ ∈ χ(Pz vc ) \ {c}, we have C(�c(z), y; δ) ⊆ C(vci , y; δ), hence
ρχ(vci , y; δ) ≥ ρχ(�c(z), y; δ) and thus,

∑

k∈Z

‖ fk,c(x) − fk,c(y)‖1

≥ dT (x, y) − (ε1/2)
(
2 dT (x, �c(z)) + 2δ ρχ (x, vci ; δ)

)

−ε2 dT (�c(x), �c(y)) − ε1 dT (�c(z), y) − δ ρχ (vci , y; δ)

≥ dT (x, y)−ε1 dT (x, �c(z))−ε2 dT (�c(x), �c(y)) − ε1dT (�c(z), y)

−δ
(
ρχ(vci , y; δ) + ε1ρχ(x, vci ; δ)

)

≥ dT (x, y) − ε1 dT (x, �c(z)) − ε2 dT (�c(x), �c(y)) − ε1dT (�c(z), y)

−δ
(
ρχ(x, vci ; δ) + ρχ(vci , y; δ)

)
,

where in the last line we have again used that ε1 < 1.
The set of colors that appear on the paths Px vci

and Pvci y are disjoint, therefore
ρχ(x, y; δ) = ρχ(x, vci ; δ) + ρχ(vci , y; δ), and

∑

k∈Z

‖ fk,c(x) − fk,c(y)‖1

≥ dT (x, y) − ε1 dT (x, �c(z))

−ε2 dT (�c(x), �c(y)) − ε1 dT (�c(z), y) − δρχ(x, y; δ)

= dT (x, y) − ε1 dT (x, y) − ε2 dT (�c(x), �c(y)) − δρχ(x, y; δ).

Case II: x ∈ V (γci ) with x = �c(x), and y ∈ V (γc j ) for some j < i , and μ(x, y) =
ϕ(c).

In this case, we first note that since c = c1, x /∈ V (γc). Hence we can suppose that
x ∈ V (T (c′)) for some c′ ∈ ρ−1(c). Recall that ε2

2 = C ′ε, where C ′ is the constant
from Lemma 4.11. By Lemma 4.11 (with c′, x , and ε2

2 substituted for c, v, and ε,
respectively, in the statement of Lemma 4.11), there exist vertices u, u′ ∈ {x} ∪ {va :
a ∈ χ(E(Px vc′ ))} such that

dT (x, u) ≤ (ε2/2) dT (u′, u). (94)

For all vertices z ∈ V (Pu′u) \ {u′} and for all k ∈ Z,

τk(z) �= 0 �⇒ 2k <
( dT (u, u′)
ε(ϕ(χ(u, p(u))) − ϕ(χ(vc′, p(vc′))))

)
.
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We have χ(vc′, p(vc′)) = c, and this condition is exactly the same condition as (75)
for �c(u), therefore

dT (x, u) ≤ (ε2/2) dT (u′, u) ≤ (ε2/2) dT (�c(u), u). (95)

Note that the assumption that �c(x) = x implies that u �= x and u = va for some
color a ∈ χ(E(Px vc′ )).

We have

∑

k∈Z

‖ fk,c(x) − fk,c(y)‖1 −
∑

k∈Z

‖ fk,c(u) − fk,c(y)‖1

≥ −
∑

k∈Z

‖ fk,c(x) − fk,c(u)‖1
(5.9)= − dT (x, u)

(95)≥ dT (x, u) − ε2 dT (u, �c(u))

≥ dT (x, u) − ε2 dT (x, �c(u)) = dT (x, u) − ε2 dT (�c(x), �c(u)). (96)

Since u = va for some color a ∈ χ(E(Px vc′ )), χ(u, p(u)) = c�, for some � < i and
Xmax(�, j) implies that

∑

k∈Z

‖ fk,c(u) − fk,c(y)‖1 ≥ dT (u, y) − ε2 dT (�c(u), �c(y)) − ε1 dT (u, y) − δ ρχ (u, y; δ).

Recall the definition of C(x, y; δ) in (18). We have u = va for some color a ∈
(E(Px vc′ )), therefore C(u, y; δ) ⊆ C(x, y; δ), and ρχ(u, y; δ) ≤ ρχ(x, y; δ). Now
we can write

∑

k∈Z

‖ fk,c(u) − fk,c(y)‖1

≥ dT (u, y) − ε2 dT (�c(u), �c(y)) − ε1 dT (u, y) − δ ρχ(x, y; δ). (97)

Adding (96) and (97) we can conclude that

∑

k∈Z

‖ fk,c(x) − fk,c(y)‖1

≥ dT (u, y) + dT (u, x) − ε2 (dT (�c(x), �c(u))

+dT (�c(u), �c(y))) − ε1 dT (x, y) − δ ρχ(x, y; δ)

≥ dT (x, y) − ε2 dT (�c(x), �c(y)) − ε1 dT (x, y) − δ ρχ(x, y; δ),

completing the proof of (90).

Proof of (91). We prove this inequality by first bounding the probability that (92) holds
for a fixed x and all y ∈ V (γc j ) (for a fixed j ∈ {1, . . . , i − 1}) with μ(x, y) = ϕ(c).
Then we use a union bound to complete the proof.

We start the proof by giving some definitions. For a vertex x ∈ Rc(ci ), let

Sx = {
j ∈ {1, . . . , i − 1} : there exists a v ∈ V (γc j ) such that μ(x, v) = ϕ(c)

}
.
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For a ∈ Sx , we define w(x; a) as the vertex v ∈ V (γa) which is furthest from the root
among those satisfying μ(x, v) = ϕ(c). Finally for x ∈ Rc(ci ), we put

βx = max
{
k ∈ Z : ∃z ∈ Px �c(x) \ {�c(x)}, τk(z) �= 0

}
.

Inequality (75) implies

2βx <
dT (x, �c(x))

ε(ϕ(ci ) − ϕ(c))
. (98)

By definition of Rc, for all elements x ∈ Rc(ci ), we have �c(x) �= x . Moreover,
by Lemma 5.11, �c(x) = vc′ for some c′ ∈ χ(E(Px vc )) \ {c}. Now, for x ∈ Rc(ci )

and a ∈ Sx we apply Lemma 5.10 with ε1/2 = 12ε to write

PE
[
∃y ∈ Pw(x;a),vc :

∑

k∈Z

‖ fk,c(x) − fk,c(y)‖1

≤ (1 − ε1/2)dT (x, �c(x)) +
∑

k∈Z

‖ fk,c(y) − fk,c(�c(x))‖1

]

≤ 1

�log2 1/δ�exp
(

− 12
dT (x, �c(x))

2βx +2ε

)

(98)≤ exp(−3(ϕ(ci ) − ϕ(c)))

�log2 1/δ� . (99)

Note that, for all y ∈ V (γca ) with μ(x, y) = ϕ(c), we have y ∈ Pw(x;a),vc .
By definition of Rc(ci ), |Rc(ci )| ≤ �log2 δ−1�. We also have ϕ(c j ) ≤ ϕ(ci ) for

j < i , and by Corollary 4.8, |Sx | ≤ i < 2ϕ(ci )−ϕ(c)+1. Taking a union bound over all
x ∈ Rc(ci ) and a ∈ Sx implies

PE [Yi ]
(99)≤

∑

x∈Rc(ci )

|Sx |
( 1

�log2 δ−1� exp(−3(ϕ(ci ) − ϕ(c)))
)

<
(�log2 δ−1�2ϕ(ci )−ϕ(c)+1)

( 1

�log2 δ−1� exp(−3(ϕ(ci ) − ϕ(c)))
)

= 2ϕ(ci )−ϕ(c)+1 exp(−3(ϕ(ci ) − ϕ(c))).

Since ϕ(ci ) ≥ ϕ(c), by an elementary calculation we conclude that

PE [Yi ] < 2 · 2−3(ϕ(ci )−ϕ(c)),

which completes the proof of (91). ��

Finally, we present the proof of Lemma 5.7.
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Proof of Lemma 5.7 Let C be the same constant as the constant in Lemma 5.15. For
the sake of contradiction, suppose that

P

[
∀x, y ∈ V, (1 − Cε) dT (x, y) − δ ρχ (x, y; δ)

≤
∑

i∈Z

‖ fi (x) − fi (y)‖1 ≤ dT (x, y)
]

= 0.

Now let c ∈ χ(E) ∪ {χ(r, p(r))} be a color with a maximal value of ϕ(c) such that

P

[
∀x, y ∈ V (T (c)), (1 − Cε) dT (x, y) − δ ρχ (x, y; δ)

≤
∑

i∈Z

‖ fi,c(x) − fi,c(y)‖1 ≤ dT (x, y)
]

= 0. (100)

For a ∈ χ(E), κ(a) > 0. Hence, for all c′ ∈ ρ−1(c), by (32), ϕ(c′) > ϕ(c), and
by maximality of c, for all c′ ∈ ρ−1(c), we have

P

[
x, y ∈ V (T (c′)), (1 − Cε) dT (x, y) − δ ρχ(x, y; δ)

≤
∑

i∈Z

‖ fi,c′(x) − fi,c′(y)‖1 ≤ dT (x, y)
]

> 0.

But now applying Lemma 5.15 contradicts (100), completing the proof. ��
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6. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions.

In: Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), vol.
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