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Abstract We consider the kth-power-free points in n-dimensional lattices and
explicitly calculate their entropies and diffraction spectra. This is of particular interest
since these sets have holes of unbounded inradius.
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1 Introduction

In [4] the diffraction properties of the visible points and the kth-power-free numbers
were studied and it was shown that these sets have positive, pure-point, translation-
bounded diffraction spectra with countable, dense support. The interest of this lay in
the fact that these sets fail to be Delone sets: they are uniformly discrete (subsets of
lattices, in fact) but not relatively dense. The lack of relative denseness means that
these sets have arbitrarily large “holes” and hence are not repetitive in the sense of
[14]. It is of interest to ask for more precise information about the irregularity of these
sets, and Lenz (private communication) has asked what their entropy is.

There are two kinds of entropy commonly associated with arrays of symbols
(of which subsets of lattices are a particular case): patch-counting entropy which
is defined simply by counting patches and depends only on the adjacency relation
between sites, not on any metric of the ambient space; and measure entropy which
is defined in terms of the frequency of occurrence of patches in space. The patch-
counting entropy is an upper bound for the measure entropy, whatever measure is
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used. We show that the sets considered here have measure entropy zero (relative to
a canonically constructed measure) but positive patch-counting entropy, contrasting
with regular model sets [18], for which both entropies are zero [5]. In [4], a model set
construction for the visible points and the kth-power-free numbers was described, with
the internal spaces adelic, instead of Euclidean as in more usual cut-and-project sets.
In this construction, the boundaries of the windows have positive measure, however,
so they are not regular model sets.

In Sect. 2, we define patch-counting and measure entropies, while in Sect. 3 we
define the set of k-free points, whose entropies we investigate, and show that they
possess patch frequencies which can be explicitly calculated in terms of infinite prod-
ucts. This is just a mild generalization to the case of lattices other than Z of the results
of Mirsky [16] on kth-power-free integers. To keep the route to our main results as
clear as possible we have been content with weak error terms in Sect. 3, but for the
record we show in Sect. 8 how error terms like those in [15] carry over to the general
case. Section 4 gives some examples of patch frequencies and Sect. 5 completes the
calculation of the entropies, with the aid of a key lemma (for the measure entropy case)
that gives a small upper bound for the frequencies of the great majority of patches.
In Sect. 6, we give a short discussion of the variational principle, which relates the
two kinds of entropy. In Sect. 7, we demonstrate how the results in [4] on the diffrac-
tion spectra of the kth-power-free integers and visible lattice points carry over to the
general case.

For the special case of square-free numbers (resp., kth-power-free numbers), some
of our results were found independently by employing alternative methods from the
theory of dynamical systems by Cellarosi and Sinai [7], Cellarosi and Vinogradov [8]
and by Sarnak [22]. Furthermore, these references also contain results on the ergodic
properties of the underlying invariant measures that go beyond what we cover here.

In the course of the paper, we need to call on a number of standard results in number
theory, which for convenience we have collected in an appendix.

Peter A. B. Pleasants gave me (CH) an early draft of this paper already in 2006.
After his untimely death in 2008, Michael Baake asked me to finish the manuscript.
At that time, it already contained the entire calculation of the entropies (Sects. 1–5).
Moreover, Peter had planned two further sections, one on improved error terms and
one on a model set construction including the sets in question together with an upper
bound for the topological entropies that is intrinsic to the corresponding window.
While the former is now included (Sect. 8), the latter is still work in progress. Instead,
the text now has two additional sections, one on a variational principle (Sect. 6) and
one on the diffraction of the sets studied here (Sect. 7).

2 Definitions of Entropy

Let X be a subset of a lattice � in R
n . Given a radius ρ > 0 and a point t ∈ �, the

ρ-patch of X at t is

(X − t) ∩ Bρ(0),
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the translation to the origin of the part of X within a distance ρ of t . We denote by
A(ρ) the set of all ρ-patches of X and by N (ρ) = |A(ρ)| the number of distinct
ρ-patches of X . Then the patch-counting entropy of X is

hpc(X) := lim
ρ→∞

log2 N (ρ)

ρnvn
, (1)

where vn is the volume of an n-dimensional ball of radius 1, i.e. vn = πn/2/�(1 + n
2 )

(so that the denominator is the volume of the open ball Bρ(0)). It can be shown by a
subadditivity argument that this limit exists for every X ⊂ �. In [5, Theorem 1 and
Remark 2] Baake, Lenz and Richard show that, for the dynamical system of coloured
Delone sets of finite local complexity, the patch-counting entropy coincides with the
topological entropy; see Sect. 6 for more on the natural dynamical system associated
with a subset X of � and the k-free points in particular.

To describe measure entropy, we must take into account densities of subsets of a
lattice. If Y ⊂ �, its density δ(Y ) is defined by

δ(Y ) := lim
R→∞

|Y ∩ BR(0)|
Rnvn

, (2)

when the limit exists; cf. [4] for related ways of defining densities of discrete point
sets. In cases where the limit does not exist, we can still define an upper density, δ̄(Y )

and a lower density, δ(Y ), by replacing the limit in (2) by lim sup or lim inf. The
frequency, ν(P), of a ρ-patch P of X is defined by

ν(P): = δ({t ∈ � : the ρ-patch of X at t is P}), (3)

when this density exists. In the absence of a well defined density, we can still define
an upper frequency, ν̄(P) and a lower frequency, ν(P), by replacing δ by δ̄ or δ. The
measure entropy of X , which can be thought of as corresponding to the metric entropy
of a dynamical system, is now defined by

hmeas(X) := lim
ρ→∞

1

ρnvn

∑

P∈A(ρ)

−ν(P) log2 ν(P), (4)

with the convention that ν log2 ν = 0 when ν = 0; see Sect. 6 for details. It is defined
when every patch of X has a well defined frequency, in which case a subadditivity
argument again shows that the limit exists. Since ν log2 ν is a convex function of ν,
the sum does not decrease if we replace the ν(P)’s by their average value, 1/N (ρ), to
make the right side the same as the right side of (1). Hence

hmeas(X) ≤ hpc(X).

As a simple example where these entropies differ, consider the binary sequence
consisting of the binary numbers in order (0, 1, 10, 11, 100, …) with n, n+1 separated
by n 1’s:
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011101111111100111110111111110111111111111111110001111 . . . .

Evidently, there are very few 0’s to contribute variety here. In fact the sequence of 0’s
has density zero, and consequently any finite word that is not all 1’s has frequency
zero. So hmeas = 0. But since there are 2l possible words of length l and every word
occurs somewhere, hpc = 1.

In general, hpc is a combinatorial function of the set of finite configurations that
occur, while hmeas is a geometric function of an infinite configuration and can differ
among different infinite configurations built up from the same set of finite ones, with
hpc being an upper bound for the possible values it can take. Of the two entropies,
hmeas would appear to carry more physical significance.

More generally, if we have a pattern formed by labelling the points of � with letters
from an a-letter alphabet then we can again define ρ-patches, and the entropies of the
pattern are given by (1) and (4) with 2 replaced by a as the base of logarithms. A subset
of � corresponds to a 2-letter labelling indicating whether or not a site is occupied.
The reason for the patch volume in the denominator and for the choice of base of
logarithms is to normalize so that the integer lattice with random labelling has both
entropies 1.

There are various ways in which the definition of measure entropy might be extended
to sets X for which not all patch frequencies exist. A first step would be to replace the
sum in (4) by

lim
R→∞

∑

P∈A(ρ)

−|L(P) ∩ BR(0)|
Rnvn

log2
( |L(P) ∩ BR(0)|

Rnvn

)
,

where L(P) is the set appearing in (3). This delays taking the limit, so that it has a
chance of existing even when some individual patch frequencies may fail to exist. We
shall not need such extensions here, however, since Theorem 1 below guarantees that,
for the sets studied in this paper, all patch frequencies exist.

3 k-Free Points

As a convenient context for our results, we shall use the set V = V (�, k) of k-free
points of a lattice � in R

n . For a point l �= 0 in � define its k-content, ck(l), to be the
largest integer c such that l ∈ ck�. Then ck(l) is also the least common multiple of the
numbers d with d−k l ∈ �, i.e. d−k l ∈ � if and only if d | ck(l). For consistency and
convenience, we define ck(0) = ∞, with the understanding that d | ∞ for any number
d. The k-free points, V = V (�, k), of � are the points with ck(l) = 1. One can see
that V is non-periodic, i.e. V has no nonzero translational symmetries. As particular
cases we have the visible points of � (with n ≥ 2 and k = 1), treated in [4], and
the k-free integers (with � = Z), treated in [4,15,16]. The more general context has
the advantage of avoiding duplication of near-identical proofs. When n = k = 1, V
consists of just the two points of � closest to 0 on either side, and we exclude this trivial
case. Since � is a free Abelian group of rank n, its automorphism group, Aut(�), is
isomorphic to the matrix group GL(n, Z). Explicit isomorphisms can be found by
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taking coordinates with respect to any basis of �. Since the action of GL(n, Z) on �

preserves k-content, the k-free points V are invariant under the action of GL(n, Z).

Proposition 1 V is uniformly discrete, but has arbitrarily large holes. Moreover, for
any r > 0, there is a set of holes in V of inradius at least r whose centres have positive
density.

Proof Since V ⊂ �, the uniform discreteness is trivial. Now let C = {a1, . . . , as} be
any finite configuration of points in � (e.g., all points in a ball or a cube). Choose s
integers m1, . . . , ms > 1 that are pairwise coprime (e.g., the first s primes). By (39),
there is a point a ∈ � with

a ≡ −ai (mod mk
i �)

for i = 1, . . . , s. Now for any x ≡ a (mod mk
1 · · · mk

s �) the configuration C + x =
{a1 + x, . . . , as + x} is congruent, in the geometric sense, to C but no point in
C + x is in V , since ai + x ∈ mk

i � for i = 1, . . . , s. The points x have density
1/((m1 · · · ms)

nk det(�)) > 0 by (38) and (39). ��
For a natural number P , we define VP = VP (�, k) to be the set of points l ∈ �\{0}

with (ck(l), P) = 1. Clearly VP is fully periodic with a lattice of periods that contains
Pk�. The VP ’s are partially ordered inversely to the divisibility partial order on N, that
is, VP Q ⊂ VP for all P, Q. In fact, more precisely, VP Q = VP ∩ VQ . The intersection
of all the VP ’s is V , so if P is divisible by all primes up to a large bound VP can be
regarded as a set of “potentially k-free” points.

For a finite subset F of � and a positive integer m, we shall use

F/m�

to denote the set of cosets of m� in � that are represented in F . We also write

D(F) := max
l,m∈F

‖l − m‖

for the diameter of F , where ‖ · ‖ denotes the Euclidean norm on R
n .

Since entropies of sets in R
n vary under change of scale inversely as the nth power

of the scaling constant, it is sufficient to consider lattices of determinant 1. (For other
lattices the formula for the entropy of V must simply be divided by the determinant
of �.) We fix the following notation for the rest of this paper:

� is a lattice of determinant 1 in R
n , λ is the length of its shortest nonzero vector,

k is a natural number (with k ≥2 if n =1) and V is the set of k-free points in �.

Also, for subsets X,P,Q of �, with X infinite but P,Q finite, we define the
locator set

L(X;P,Q) := {t ∈ � : P + t ⊂ X, Q + t ⊂ � \ X}
consisting of those lattice translations that locate P totally inside X and Q totally
outside X .
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The genesis of our proof of positive, but non-maximal, patch-counting entropy for
the visible points is the observation that, of the four corners of any unit square of the
integer lattice in the plane, at least one is invisible (because both its coordinates are
even) but each of the 15 possibilities for the visibility or not of the corners, when the
possibility of their all being visible is excluded, can occur, depending on the position
of the square within the lattice. This is the simplest example of the fact that, in general,
every ρ-patch contains an irreducible minimum of points not in V but for the remaining
points in the patch we can arrange that they are visible or not, independently of each
other by choosing the position of the patch in the lattice. This leads to an exponentially
large number of ρ-patches, the number of which can be estimated quite accurately.

Our aim with the following lemma is to concentrate most of the necessary inclusion–
exclusion arguments into a single result from which ensuing results can be fairly
readily derived. For this reason it has several parameters (P , m, m, P and x) and three
components to its error term. Until the parameters are further specified, there is no
assumption that the error terms are of smaller order than the main term. To keep the
proof short we have not made the error terms as small as possible—in Sect. 8 we make
use of the technique of [15] to vastly improve the last error term.

Lemma 1 Let P be a finite subset of �, m ∈ N, m ∈ �, P be a natural number
coprime to m and x ∈ R

n. Then

|L(VP ;P,∅) ∩ (m + m�) ∩ BR(x)|

is estimated by a main term

Rnvn

mn

∏

p|P

(
1 − |P/pk�|

pnk

)
(5)

with error

O
(
R1/k + Rn−1(min{log log P, log S})|P | + min{τ|P |+1(P), (S/λ)|P |/k}), (6)

where S := R + ‖x‖ + max p∈P ‖ p‖, τr is the r-divisor function in (35), and the
O-constant depends only on �, k and P .

Proof We may clearly assume that P is squarefree. For each prime p the points t with
t + P ⊂ Vp consist of pnk − |P/pk�| cosets of pk� in � (those cosets t + pk�

with (−t + pk�) ∩ P = ∅). Clearly |P/pk�| = |P| when pkλ > D(P). Let Q
be the product of those prime factors p of P with |P/pk�| < |P|. By the Chinese
Remainder Theorem (39), L(VQ;P,∅) ∩ (m + m�) consists of

∏

p|Q
(pnk − |P/pk�|)

cosets of m Qk� in �. For each such coset q + m Qk� we have

(q + m Qk�) ∩ L(VP ;P,∅) = (q + m Qk�) ∩ L(VP/Q;P,∅). (7)
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Now write P = { p1, . . . , pr }. Since pi + t ∈ VP/Q if and only if ck( pi + t) is
coprime to P/Q, it follows from (31) that for each of these cosets the cardinal of
L(VP ;P,∅) ∩ (q + m Qk�) ∩ BR(x) is

∑

t∈�∩BR(x)

t−q∈m Qk�

r∏

i=1

∑

d|P/Q
d|ck( pi +t)

μ(d).

Reversing the order of summation gives

∑

d1|P/Q

∑

d2|P/Q

· · ·
∑

dr |P/Q

dk
i < S/λ for each i

μ(d1d2 · · · dr )
∑

t∈�∩BR(x)

t∈q+m Qk�

t∈− pi +dk
i �

1, (8)

where replacing μ(d1) · · · μ(dr ) by μ(d1 · · · dr ) is justified by the fact that the di ’s
are pairwise coprime since any common factor of ck( pi + t) and ck( p j + t) divides
ck( pi − p j ), all of whose prime factors divide Q. Writing d1 · · · dr = d and noting
that (m Q, d) = 1, we can apply (38) with � replaced by m(d Q)k� to obtain, for the
inner sum, the estimate

Rnvn

mn(d Q)nk
+ O(Rn−1/mn−1(d Q)(n−1)k) + O(1). (9)

Substituting this estimate in (8) gives a main term

Rnvn

mn Qnk

∏

p|P/Q

(
1 − r

pnk

)

with error term (6). The main term arises by removing the conditions dk
i < S/λ from

the sum of the main term in (9) then using the fact that μ(d)τr (d) (where τr (d) is the
number of ways of expressing d as a product of r natural numbers) is a multiplicative
function, whose value is −r at primes and 0 at prime powers, to express the extended
sum as an Euler product, as in (37). The first error term in (6) comes from the extra
terms included in the extended multiple sum, so is

≤ r Rnvn

mn Qnk

∑

dk
1 ≥S/λ

1

dnk
1

∞∑

d2=1

1

dnk
2

· · ·
∞∑

dr =1

1

dnk
r

= O
(
Rn S−n+(1/k)

)
,

since each of the r − 1 complete sums is ≤ ζ(2) < 2. The other two error terms
account for the sum over the error terms in (9). The logarithms in the middle error
term are necessary only in the case n = 2, k = 1, when the series

∑
d−(n−1)k

i diverge
but the partial sums can be estimated by using (36) or the standard estimate for the
partial sums of the harmonic series. In all other cases these series converge and the
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middle error term can be taken as O(Rn−1). (When n = 1, there is no middle error
term, since the first error term in (9) is then the same as the last.)

Finally, summing over the cosets of m Qk� that make up L(VQ;P,∅)∩ (m +m�)

gives the main term (5) (since |P/pk�| = r when p � Q) and increases the error term
by a factor at most Qk , which is bounded in terms of k and P . ��
Corollary 1 If ρ is a positive radius and P is a natural number divisible by every
prime less than log ρ, then

|VP ∩ Bρ(0)| = ρnvn

ζ(nk)
+ o(ρn), (10)

|V ∩ Bρ(0)| = ρnvn

ζ(nk)
+ o(ρn), (11)

|(VP \ V ) ∩ Bρ(0)| = o(ρn) (12)

and, for any x ∈ R
n,

|VP ∩ Bρ(x)| ≤ ρnvn

ζ(nk)
+ o(ρn), (13)

where ζ is the Riemann ζ -function.

Proof For (10) we use the lemma with P = {0}, m = 1, x = 0 and R = ρ, then
replace the product by 1/ζ(nk) using (33), with N = log ρ, and (32). This gives (10)
with error term O(ρn/ lognk−1 ρ).

Clearly VQ ∩ Bρ(0) = V ∩ Bρ(0) when Q is the product of all primes less than
(ρ/λ)1/k (where λ is the length of the shortest nonzero vector in �), giving (11), and
(12) results from subtracting this from (10).

For (13) we use the lemma with P replaced by P ′, the product of the primes less
than log ρ, together with (33) and (32), and note that VP ⊂ VP ′ . Then

|VP ∩ Bρ(x)| ≤ |VP ′ ∩ Bρ(x)| = ρnvn

ζ(nk)
+ O

(
ρn/ lognk−1 ρ

)
,

since log P ′ = O(log ρ) and hence log log P ′ and τ(P ′) are both O(ρε) by (34) and
(35). ��

We note that (11) tells us that V has density 1/ζ(nk), generalizing Propositions 6
and 11 of [4] (though the error terms are not as good as those in [4] and much worse
than those in [15,16]). Also, one might regard (13) as saying that V has a “uniform
upper density” (or that � \ V has a uniform lower density).

The following two theorems carry over to k-free points the results of Mirsky [15,
16] ([15] improves the error terms in [16])1 on k-free numbers. A weaker result for
squarefree numbers goes back to Pillai [20]. Again, we make no attempt in Theorem 1
to match the error term of [15], postponing this to Sect. 8.

1 As pointed out by Jörg Brüdern, the work of Tsang [24] can be extended to the case of k-free numbers
and gives a further small improvement.
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Theorem 1 For any two disjoint finite subsets P and Q of �, L(V ;P,Q) has a well
defined density given by

∑

F⊂Q
(−1)|F | ∏

p

(
1 − |(P ∪ F)/pk�|

pnk

)
.

Proof By the inclusion–exclusion principle (30) applied to L(V ;P,∅)∩ BR(0), with
Pi being the property that qi + t ∈ V (where Q = {q1, q2, . . .}), we have

|L(V ;P,Q) ∩ BR(0)| =
∑

F⊂Q
(−1)|F ||L(V ;P ∪ F ,∅) ∩ BR(0)|.

Now Lemma 1 with P equal to the product of the primes less than log R gives the
estimate

Rnvn

∏

p<log R

(
1 − |(P ∪ F)/pk�|

pnk

) + O(R1/k + Rn−1+ε)

for |L(VP ;P ∪ F ,∅) ∩ BR(0)|, the proof of (12) of Corollary 1 shows that VP can
be replaced by V at the expense of an extra error term O(Rn/(log R)nk−1), and (33)
allows the product to be extended over all primes with a similar extra error term.
Altogether, this gives the estimate

Rnvn

∑

F⊂Q
(−1)|F | ∏

p

(
1 − |(P ∪ F)/pk�|

pnk

) + O(Rn/(log R)nk−1)

for |L(V ;P,Q) ∩ BR(0)|. ��
Theorem 2 For disjoint finite subsets P and Q of �, the following statements are
equivalent:

(i) |P/pk�| < pnk for every prime p;
(ii) L(V ;P,Q) is non-empty;

(iii) L(V ;P,Q) has positive density.

Proof Clearly (iii) implies (ii) and, almost as clearly, (ii) implies (i), since if P contains
a complete set of coset representatives for pk� then, for every t ∈ �, some point of
P + t is in pk� (so not in V ).

Now assume (i) holds. For each q ∈ Q choose a different prime p(q) > (D(P ∪
Q)/λ)1/k and let m be the product of the p(q)’s. By the Chinese Remainder Theorem,
there is an m ∈ � such that

t ≡ m(mod mk�) ⇐⇒ t ≡ −q(mod p(q)k�) ∀q ∈ Q.

Then for t ≡ m (mod mk�) we have Q + t ⊂ � \ V and P + t ⊂ Vm (the latter
using the fact that for every p ∈ P and every prime factor p(q) of m, q + t ∈ p(q)k�
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and ‖ p − q‖ < p(q)kλ, ensuring that p + t �∈ p(q)k�). Now Lemma 1, with P the
product of the primes less than log R not dividing m, gives a main term C Rn with error
O(max{Rn−1 log R, R1/k}) for the cardinal of a subset of the points t ∈ � ∩ BR(0)

with P + t ⊂ Vm P and Q + t ⊂ � \ V , where the constant C is positive since the
product in (5) has every term positive. By (12) of Corollary 1, the number of these
points with P + t �⊂ V is o(Rn). Hence L(V ;P,Q) has positive lower density, and
so, by Theorem 1, positive density. ��

An interesting feature of Theorem 2 is that the criterion (i) is independent of Q.
This means, for example, that

L(V ;P,∅) �= ∅ ⇒ δ(L(V ;P,Q)) > 0 ∀Q with P ∩ Q = ∅,

which tells us, in particular, that every subset of a patch of V is a patch of V .

4 Examples

Theorem 1 allows us to calculate the frequencies of ρ-patches of V in terms of the
products


r (nk) :=
∏

p>r1/nk

(
1 − r

pnk

)

for r = 0, 1, . . . , |� ∩ Bρ(0)|. Here, we give two simple examples that both have
nk = 2 and that have |� ∩ Bρ(0)| = 3 and 5, respectively. So we need the products


1(2) = 1/ζ(2) = 6/π2 = 0.6079271 . . . ,


2(2) = 0.3226340 . . . (the Feller–Tornier constant),


3(2) = 0.1254869 . . . , 
4(2) = 0.3785994 . . . , 
5(2) = 0.2733455 . . . ,

whose values can be calculated efficiently by the method described in [19].
Our first example is to find the frequencies of all 2-patches when V is the set of

squarefree numbers. Here � = Z, n = 1, k = 2 and |� ∩ B2(0)| = 3. Since −1, 0, 1
are distinct mod pk , for every p, |(P ∪ F)/pk | = |P ∪ F | and ν(P) depends only
on |P| in this case. Table 1 gives the frequencies of 2-patches of all possible sizes,
both in terms of the above products and numerically, and Fig. 1 depicts the patches
themselves, with their frequencies. There are three patches each of sizes 1 and 2, and
we check that the sum,

∑
ν(P), of the frequencies of all patches is 1 and that the

average patch size,
∑

ν(P)|P|, is 3δ(V ) = 18/π2. The patches of size 2 are the most
frequent, as is to be expected since 2 is the closest integer to 3δ(V ): indeed, 59 % of
all locations have patches of size 2. The empty patch is by far the rarest, occurring at
less than 2 % of locations. The radius ρ = 2 is the largest for which every subset of
� ∩ Bρ(0) occurs as a patch of V : of the 32 subsets of � ∩ B3(0) the 3 that contain 4
or 5 consecutive points do not occur as patches of V .
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Table 1 Frequencies of the
2-patches of the squarefree
numbers

|P| ν(P) Numerical value

3 
3(2) 0.125486980905…

2 
2(2) − 
3(2) 0.197147118033…

1 
1(2) − 2
2(2) + 
3(2) 0.088145884881…

0 1 − 3
1(2) + 3
2(2) − 
3(2) 0.018634010349…

Fig. 1 The 2-patches of the squarefree numbers (� = Z, k = 2) with their frequencies accurate to five
decimal places. The black dots are points of V and the open circles other lattice points. The top row contains
the patches with mirror symmetry and the bottom row the two mirror image pairs

Our other example is the
√

2-patches of the visible points, V , in Z
2, where � =

Z
2, n = 2, k = 1 and |� ∩ B2(0)| = 5. Figure 2 shows the different patches, up

to symmetry, with their frequencies. The four patches in the top row have the full
dihedral symmetry D4; the two in the second row have symmetry D2, and give rise to
another patch on rotation through π/2; the remaining six patches have only reflection
symmetry, and each gives rise to three others on rotation through ±π/2 and π . We
can again check that

∑
ν(P) = 1 and

∑
ν(P)|P| = 5δ(V ) = 30/π2. This time,

however, the frequencies do not depend only on |P|, and indeed no two patches that are
not symmetry related have the same frequency. Of the five patches with |P| = 4, the
symmetric one has frequency nearly five times that of each of the other four, and the
ratio of the frequencies of two of the patches with |P| = 3 is nearly 30. Surprisingly,
one of the patches with |P| = 3 (the commonest patch size) has frequency smaller
than that of any patch except the empty one. The empty patch itself occurs at less than
1 in 900 locations. As in the previous example,

√
2 is the largest radius for which

every subset of � ∩ Bρ(0) is a patch: of the 512 subsets of � ∩ B√
3(0), the 135 that

contain all four vertices of a lattice square do not occur as patches of V .

5 Entropy Calculations

Theorem 3 hpc(V ) = 1/ζ(nk).

Proof For each radius ρ > 0 let P = P(ρ) be the product of the primes p with
pnk ≤ |�∩ Bρ(0)|. Then P is divisible by every prime less than log ρ when ρ is large
enough.

The ρ-patch of V at any point t ∈ � is a subset of (VP − t) ∩ Bρ(0) and by (13)
of Corollary 1 the cardinal of this set is at most ρnvn/ζ(nk) + o(ρn). Also there are
at most Pnk possibilities for VP − t as t varies, since Pk� is the lattice of periods of
VP . So
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Fig. 2 The
√

2-patches of the visible points of Z
2, up to symmetry, with their frequencies, accurate to five

decimal places

log2 N (ρ) ≤ ρnvn

ζ(nk)
+ o(ρn) + nk log2 P

≤ ρnvn

ζ(nk)
+ o(ρn) + O(ρ1/k), (14)

since log2 P = O(ρ1/k), by (34).
To bound log2 N (ρ) below we note that every subset P of V ∩ Bρ(0) is the

ρ-patch of V at some point of �, by Theorem 2 with Q = � ∩ Bρ(0) \ P . By
(11) of Corollary 1, |V ∩ Bρ(0)| = ρnvn/ζ(nk) + o(ρn), so

log2 N (ρ) ≥ ρnvn

ζ(nk)
+ o(ρn). (15)

On dividing by ρnvn and letting ρ tend to infinity, (14) and (15) give hpc(V ) =
1/ζ(nk). ��

To bound the measure entropy we need the following lemma, which enables us to
obtain good upper bounds for the frequency of “sparse” patches of V , i.e. patches that
contain few points in comparison to their size.
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Lemma 2 Let P and Q be disjoint finite subsets of �, let Q be the product of all
primes p with

|Q/pk�| < |Q| (16)

and define

s := min
t∈L(V ;P,Q)

|(Q + t) ∩ VQ |.

Then

δ(L(V ;P,Q)) = O
(
4(D(Q)/λ)1/k nk/|Q|s−s/nk), (17)

where the O-constant depends only on �.

Proof If t ∈ L(V ;P,Q) then for each q ∈ Q ∩ (VQ − t) there is a prime p(q) � Q
with q + t ∈ p(q)k�, and by the definition of Q these primes are distinct. By (12)
of Corollary 1 with ρ = R + maxq∈Q ‖q‖ and P the product of the primes less than
log ρ, the number of points t ∈ L(V ;P,Q) ∩ BR(0) for which p(q) ≥ log ρ for
some q ∈ Q ∩ (VQ − t) is o(ρn). The remaining t’s in L(V ;P,Q) ∩ BR(0) have
p(q) < log ρ for each q ∈ Q ∩ (VQ − t). For the number of such t with a given set
Q ∩ (VQ − t) = {q1, . . . , q t } and a given ordered set of primes {p(q1), . . . , p(q t )},
(38) with � replaced by (p(q1) · · · p(q t ))

k�, gives the estimate

≤ C Rn

(p(q1) · · · p(qt ))
nk

when R is large enough to ensure that Rn > (log ρ)nk|Q|, where the constant C depends
only on �. The sum of this over all sets of t primes not dividing Q is majorized by

C Rn(∑

p�Q

1

pnk

)t
< C Rn( ∑

m≥|Q|1/nk

1

mnk

)t
<

C Rn

|Q|s−s/nk
,

since t ≥ s and the least prime not dividing Q is ≥ |Q|1/nk , by (16). There are at most
Qnk possibilities for Q ∩ (VQ − t), since Qk� is the lattice of periods of VQ , so

|L(V ;P,Q) ∩ BR(0)| <
QnkC Rn

|Q|s−s/nk
+ o(Rn)

<
4(D(Q)/λ)1/k nkC Rn

|Q|s−s/nk
+ o(Rn)

for large R, where the second inequality results from (34) and the fact that pk ≤
D(Q)/λ for every prime factor p of Q. The result follows on dividing by Rn and
letting R tend to infinity (the existence of the limit on the left being guaranteed by
Theorem 1). ��
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Theorem 4 hmeas(V ) = 0.

Proof Given ρ > 0 and a ρ-patch P of V , let Q := (� ∩ Bρ(0)) \ P and, as in
Lemma 2, define Q = Q(P) to be the product of all primes p with |Q/pk�| < |Q|
and

s = s(P) := min
t∈L(V ;P,Q)

|(Q + t) ∩ VQ |.

By (13) of Corollary 1 and the fact that V ⊂ VP with P the product of primes less
than log ρ, we have

|Q| >
(
1 − 1

ζ(nk)

)
vnρn − o(ρn) >

vnρn

2nk
(18)

for large enough ρ.
Now put S = S(ρ) := ρn/

√
log2 ρ. We shall calculate separately the contributions

to the measure entropy hmeas of the ρ-patches P of V with s(P) ≥ S and those with
s(P) < S. The former patches have small frequency and the latter are few in number.

For the ρ-patches with s(P) ≥ S, Lemma 2 and (18) give

− log2 ν(P) >
n

2
S log2 ρ − O

(
D(Q)1/k) = n

2
S log2 ρ − O

(
ρ1/k) >

S log2 ρ

3

for large enough ρ which, since − log2 ν is decreasing but −ν log2 ν is increasing for
ν ∈ (0, 1/e], gives the estimate

−ν(P) log2 ν(P) = O(2−S log2 ρ/3S log2 ρ).

Since there are at most 2|�∩Bρ(0)| ρ-patches in all, the contribution of the ρ-patches
P with s(P) ≥ S to the sum on the right of (4) is

O
(
2|�∩Bρ(0)|−(S log2 ρ)/3S log2 ρ

) = O
(
2− ρn

4

√
log2 ρρn

√
log2 ρ

) = o(1). (19)

Turning to the ρ-patches with s(P) < S, denote this set of patches by B ⊂ A(ρ)

and let F be their combined frequency. The contribution of these patches to the sum
on the right of (4) is

∑

P∈B
−ν(P) log2 ν(P)

which, since ν log2 ν is a convex function of ν, does not decrease if we replace the
ν(P)’s by their average value, F/|B|. So this contribution is

≤ F log2 |B| − F log2 F ≤ log2 |B| + log2 e

e
. (20)
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To bound |B| we note that if P ∈B then there is a t ∈ L(V ;P,Q) with |Q∩(VQ−t)|< S.
Since P ⊂ V − t ⊂ VQ − t , Q = (� ∩ Bρ(0)) \ P , and Qk� is the lattice of periods
of VQ , P and Q are completely determined by this subset of Bρ(0) and by t modulo
Qk�. There are Qnk cosets of Qk� in � and the number of subsets of � ∩ Bρ(0)

with fewer than S members is bounded above by

�S�∑

i=0

( |� ∩ Bρ(0)|
i

) ≤ (�S� + 1)
( |� ∩ Bρ(0)|

�S�
) ≤ 2S

(e|� ∩ Bρ(0)|
S

)S

for large ρ, by (40). Hence the bound on the right of (20) is majorized by

S log2(e|� ∩ Bρ(0)|/S) + log2 2eS + nk log2 Q

= O
(ρn log2 log2 ρ√

log2 ρ

) + O(log2 ρ) + O(ρ1/k) = o(ρn). (21)

Since the contributions (19) and (21) are both o(ρn), hmeas(V ) = 0. ��
Note on patch shapes. On the general principle of the isotropy of space, we have
used spherical patches throughout and measured densities and frequencies through
expanding spherical regions; but the results we obtain are independent of the shapes
of these patches and regions: all our point-counting estimates stem from (38) which
remains valid for an arbitrary expanding region in place of the expanding ball, with
main term the volume of the region (using the volume of the fundamental region of
the lattice as a unit) and an error term of smaller order provided the boundary of the
region has n-dimensional measure zero. It is not even necessary for the shape of the
density-defining regions to be the same as the (also expanding) patch shape.

6 Variational Principle

Endowing the power set {0, 1}� of the lattice � with the product topology of the
discrete topology on {0, 1}, it becomes a compact topological space (by Tychonov’s
theorem). This topology is in fact generated by the metric d defined by

d(X, Y ) := min
{
1, inf{ε > 0 | X ∩ B1/ε(0) = Y ∩ B1/ε(0)}}

for subsets X, Y of �. Then ({0, 1}�,�) is a topological dynamical system, i.e. the
natural translational action of the group � on {0, 1}� is continuous.

Now let X be a subset of �. The closure X(X) of the set of lattice translations t + X
(t ∈ �) of X in {0, 1}� gives rise to the topological dynamical system (X(X),�),
i.e. X(X) is a compact topological space on which the action of � is continuous; cf.
[5] and references therein for details. Denote by M(X(X),�) the set of �-invariant
probability measures on X(X) with respect to the Borel σ -algebra on X(X), i.e. the
smallest σ -algebra on X(X) which contains the open subsets of X(X). For a fixed
such measure μ and a radius ρ > 0, let hρ(μ) be the entropy of μ restricted to A(ρ),
i.e.
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hρ(μ) :=
∑

P∈A(ρ)

−μ(CP ) log2 μ(CP ),

where A(ρ) denotes the set of ρ-patches of X and CP is the set of elements of X(X)

whose ρ-patch at 0 is P , the so-called cylinder set with respect to P . The metric
entropy of μ is then given by the limit

h(μ) := lim
ρ→∞

hρ(μ)

ρnvn
,

which exists by a subadditivity argument; cf. [6] and also see [10,13,25]. As in Sect. 2,
replacing the μ(CP )’s by their average value, 1/N (ρ), we see that

h(μ) ≤ hpc(X) ∀μ ∈ M(X(X),�).

Since the topological entropy htop(X(X),�) of (X(X),�) coincides with hpc(X) by
[5, Theorem 1 and Remark 2], the variational principle for lattice actions on compact
spaces here reads as follows; cf. [6] and [21, Sect. 6], the latter being an extension of
the case n = 1 from [9,25]. An elementary proof can be found in [17]. Note that the
additional statement follows from the expansiveness of the action of � on X(X).

Theorem 5 (Variational principle)

sup
μ∈M(X(X),�)

h(μ) = hpc(X).

Moreover, the supremum is achieved at some measure. ��
In case of V , X(V ) will also contain the empty set (cf. Proposition 1) and various

other subsets of � and thus admits many �-invariant probability measures. In fact,
we shall now show that X(V ) coincides with the set of admissible subsets A of �, i.e.
subsets A of � having the property that every finite subset P of A satisfies criterion
(i) of Theorem 2; compare [22, Theorem 8(i)]. We denote the set of all admissible
subsets of � by A.

Theorem 6 X(V ) = A.

Proof Since V ∈ A (otherwise some point of V is in pk� for some prime p, a
contradiction) and since A is a �-invariant and closed subset of {0, 1}�, it follows
that A contains X(V ). For the other inclusion, let A ∈ A. Then, for any ρ > 0,
Theorem 2 applied to the finite subset Aρ = A ∩ Bρ(0) of A implies the existence of
a tρ ∈ L(V ; Aρ,� ∩ Bρ(0) \ Aρ). It follows that A ∈ X(V ). ��

Moreover, one has hpc(V ) = 1/ζ(nk) by Theorem 3. Consider the frequency func-
tion ν from above which gives the frequencies ν(P) of occurence of ρ-patches P of V
in space. The function ν, regarded as a function on the cylinder sets by setting ν(CP ) :=
ν(P), is finitely additive on the cylinder sets with ν(X(V )) = ∑

P∈A(ρ) ν(CP ) = 1.
Since the family of cylinder sets is a (countable) semi-algebra that generates the Borel
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σ -algebra on X(V ), one can use the method from [25, Sect. 0.2] to show that ν

extends uniquely to a probability measure on X(V ). Moreover, this probability mea-
sure can be seen to be �-invariant. This shows that the measure entropy hmeas(V )

is indeed a metric entropy of a �-invariant probability measure on X(V ). Certainly,
an explicit characterisation of (MX(V ),�) together with the corresponding metric
entropies (in particular those measures μ ∈ M(X(V ),�) with maximal entropy, i.e.
h(μ) = 1/ζ(nk)) would be desirable (but not simple).

7 Diffraction Spectrum

In the following, we assume that the reader is acquainted with the mathematics of
diffraction as carefully laid out in [4]; see also [2] and references therein for a review.
We shall also use the notation and results from that text. In fact, the proofs presented
below are straightforward modifications of the corresponding proofs in [4] and are only
included for the reader’s convenience. For an alternative derivation of the diffraction
spectrum in case of the visible lattice points, see [23, Sect. 5a].

A Dirichlet series we shall encounter below is

ξ(s) :=
∞∑

m=1

μ(m)τ (m)

ms
=

∏

p

(
1 − 2

ps

)
, (22)

which is absolutely convergent for �(s) > 1, where τ is the ordinary divisor function
in (35).

Theorem 7 The natural autocorrelation of V exists and is supported on �, the weight
of a point a ∈ � in the autocorrelation of V being given by

w(a) = ξ(nk)
∏

p|ck(a)

(
1 + 1

pnk − 2

)
,

with error term equal to O(R−(1−(1/k))2
) for n = 1 and k ≥ 2, O(R−1/2) for n = 2

and k = 1 and O(R−1) otherwise, where, in any case, the implied constant depends
on a as well as on �. (For lattices � with determinant �= 1 the weights above must
be divided by det(�).)

Proof Since the cases n = 1, k ≥ 2 and n ≥ 2, k = 1 were already treated in
[4, Theorems 1, 2 and 4], we may assume that n, k ≥ 2. Since V − V ⊂ �, the
autocorrelation of V (if it exists) can only be supported on �. The weight of a point
a ∈ � in the autocorrelation of V is the limit as R → ∞ of

1

Rnvn

∑

x,x−a∈V ∩BR(0)

1 (23)

and, by [4, Lemma 1], the existence of this limit for each a ∈ � is sufficient to ensure
the existence of the autocorrelation.
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It is convenient to drop the condition x − a ∈ BR(0) in (23), which then becomes

1

Rnvn

∑

x,x−a∈V
x∈BR(0)

1 . (24)

The difference between these sums is O(1/R) by (38), due to the extra lattice points
x within a constant distance ‖a‖ of the boundary of BR(0) that are included in the
latter. By (31), this can be written as

1

Rnvn

∑

x∈�∩BR(0)\{0,a}

∑

l|ck(x)

μ(l)
∑

m|ck(x−a)

μ(m) .

Reversing the order of summation gives

1

Rnvn

∑

1≤l<S
1
k

∑

1≤m<S
1
k

μ(l)μ(m)
∑

x∈�∩BR(0)\{0,a}
x∈lk�

x−a∈mk�

1 ,

where S := (R + ‖a‖)/λ. Collecting terms with the same value of d = (l, m), noting
that all x in the inmost sum belong to dk� and that there is no such x unless a ∈ dk�,
and putting l ′ := l/d, m′ := m/d, x′ := x/dk , a′ := a/dk , we obtain

1

Rnvn

∑

d|ck(a)

∑

1≤l ′<S
1
k /d

∑

1≤m′<S
1
k /d

(l ′,m′)=1

μ(l ′d)μ(m′d)
∑

x′∈�∩BR/dk (0)\{0,a′}
x′∈l ′k�

x′−a′∈m′k�

1 . (25)

Since l ′ and m′ are bound variables of summation and x′ and a′ will not be referred
to again, we can drop the dashes: from now on l and m are the new l ′ and m′ but a is
the original a.

By (38) with � replaced by (lm)k�, the inmost sum is

vn
( R

(dlm)k

)n + O
( R

(dlm)k

)n−1 + O(1) .

These three terms give a main term and two error terms in (25).
The first error term is majorized by

O
( 1

R

∑

1≤l<S
1
k

1

lk(n−1)

∑

1≤m<S
1
k

1

mk(n−1)

) = O(1/R)

since the sums are convergent due to k(n − 1) ≥ 2.
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The second error term is majorized by

O
( S2/k

Rn

) = O
( 1

Rn−2/k

) = O(1/R)

since S = O(R) and k(n − 1) ≥ 2. So both error terms are O(1/R) and thus tend to
0 as R → ∞.

The main term is

∑

d|ck(a)

∑

1≤l<S
1
k /d

∑

1≤m<S
1
k /d

(l,m)=1

μ(ld)μ(md)

(dlm)nk

=
∑

d|ck(a)

∑

1≤l<S
1
k /d

(l,d)=1

∑

1≤m<S
1
k /d

(m,d)=1
(l,m)=1

μ(ld)μ(md)

(dlm)nk

=
∑

d|ck(a)

μ2(d)

dnk

∑

1≤l<S
1
k /d

(l,d)=1

∑

1≤m<S
1
k /d

(m,d)=1

μ(lm)

(lm)nk

since μ is multiplicative and μ(lm) = 0 when (l, m) �= 1. Since the last double sum
is absolutely convergent, this converges to

∑

d|ck (a)

μ2(d)

dnk

∞∑

r=1
(r,d)=1

μ(r)τ (r)

rnk
(26)

as R → ∞. The difference between this limit and the partial sum above is
O(1/Rnk−1), so falls within the error estimate O(1/R).

Using (22), the expression for the limit (26) can be rearranged as

∑

d|ck(a)

d squarefree

1

dnk

∏

p�d

(
1 − 2

pnk

)

= ξ(nk)
∑

d|ck(a)

d squarefree

1

dnk

∏

p|d

(
1 − 2

pnk

)−1

= ξ(nk)
∏

p|ck(a)

(
1 + 1

pnk

(
1 − 2

pnk

)−1)

= ξ(nk)
∏

p|ck(a)

(
1 + 1

pnk − 2

)
.

This completes the proof. ��

123



58 Discrete Comput Geom (2013) 50:39–68

Corollary 2 V − V = �.

Proof Trivially, one has V − V ⊂ �. From Theorem 7, one gets w(a) > 0 for all
a ∈ � and thus also � ⊂ V − V by [4, Lemma 1]. ��

The dual or reciprocal lattice �∗ of � is

�∗ := { y ∈ R
n | y · x ∈ Z for all x ∈ �}

By definition, the denominator q of a point p ∈ Q�∗ is the smallest number a ∈ N

with a p ∈ �∗. This is also the greatest common divisor of the numbers a ∈ N with
a p ∈ �∗, i.e. a p ∈ �∗ if and only if q | a.

Theorem 8 The diffraction measure γ̂ of the autocorrelation γ of V exists and is a
positive, pure-point, translation-bounded measure which is concentrated on the set of
points in Q�∗ with (k + 1)-free denominator and whose intensity at a point with such
a denominator q is given by

1

ζ 2(nk)

∏

p|q

1

(pnk − 1)2 . (27)

This measure can also be interpreted as

γ̂ = ξ(nk)

∞∑

d=1
d squarefree

( ∏

p|d

1

p2nk − 2pnk

)
ω�∗/dk , (28)

a weak*-convergent sum (in fact, even ‖ · ‖loc-convergent sum) of Dirac combs. (For
lattices � with determinant �= 1 the above formulas must be divided by the square of
det(�).)

Proof Let γ be the autocorrelation of V . As shown in the proof of Theorem 7, one
has

w(a) = ξ(nk)

∞∑

d=1
d squarefree

a∈dk�

1

dnk

∏

p|d

(
1 − 2

pnk

)−1
.

So by Theorem 7 and [4, Lemma 1] one obtains

γ = ξ(nk)

∞∑

d=1
d squarefree

1

dnk

∏

p|d

(
1 − 2

pnk

)−1
ωdk� .

Since ‖ωdk�‖loc = O(1) and the coefficient of ωdk� is O(1/dnk), this sum of tem-
pered distributions is convergent in the weak*-topology by [4, Lemma 2]. By the
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Poisson summation formula for lattice Dirac combs [4, Eq. 31], its term-by-term
Fourier transform is

γ̂ = ξ(nk)

∞∑

d=1
d squarefree

1

d2nk

∏

p|d

(
1 − 2

pnk

)−1
ω�∗/dk

= ξ(nk)

∞∑

d=1
d squarefree

( ∏

p|d

1

p2nk − 2pnk

)
ω�∗/dk ,

which weak*-converges to the diffraction measure of V , since the Fourier transform
operator is weak*-continuous. Since ‖ω�∗/dk ‖loc = O(dnk) and the coefficient of
ω�∗/dk is O(1/d2nk), the weak*-sum is a translation-bounded pure-point measure
equal to the pointwise sum of its terms by [4, Lemma 2].2 This establishes the series
form (28) for the diffraction spectrum.

The explicit values of the intensities can now be calculated as follows. Let p be
a point in Q�∗ with denominator q. We can assume that q is (k + 1)-free, since
otherwise there is no contribution to (28) at all. The terms in (28) that contribute to
the intensity at p are those with d = mq∗, where q∗ is the squarefree kernel of q and
m ∈ N is squarefree and coprime to q. Thus the intensity at p is

ξ(nk)
∏

p|q

1

p2nk − 2pnk

∞∑

m=1
m squarefree
(m,q)=1

∏

p|m

1

p2nk − 2pnk
.

Using the Euler products in (32) and (22) this simplifies to

ξ(nk)
∏

p|q

1

p2nk − 2pnk

∏

p�q

(
1 + 1

p2nk − 2pnk

)

= ξ(nk)
∏

p|q

1

p2nk

(
1 − 2

pnk

)−1 ∏

p�q

(
1 − 1

pnk

)2(1 − 2

pnk

)−1

= 1

ζ 2(nk)

∏

p|q

1

p2nk

(
1 − 1

pnk

)−2
,

which agrees with (27). ��
One explicitly sees that γ̂ above is fully translation invariant, with lattice of periods

�∗, in accordance with Theorem 1 of [1]. Moreover, since the action of the group of

2 Note that γ̂ is even a ‖ · ‖loc-convergent sum of Dirac combs. Since convergence with respect to the local
norm preserves the spectral type, it is thus clear that γ̂ is a pure-point measure; cf. [3, Theorem 8.4].
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automorphisms of �∗, Aut(�∗) � GL(n, Z), on Q�∗ preserves the denominator, γ̂

is (�∗
� Aut(�∗))-symmetric. In particular, both γ̂ and the set V itself are GL(n, Z)-

symmetric.

8 Improving the Error Terms

What has kept the error term large in the argument as we have presented it so far is
the last term of (6), with |P| in the exponent of S (in the second component of the
minimum). This arose from the O(1) error term in (9), when (9) was substituted for
the inner sum in (8). The O(1) error term was not even a boundary effect: it was
caused solely by lattices whose determinants are much larger than the volume of the
region in which points are being counted. The result of this was to put the burden
of keeping the last term of (6) small onto P (which occurs in the first component
of the minimum), causing an increase in the error due to the tail of the ζ -function
product. Mirsky’s idea in [16] and [15] was to show that the terms with some di large
contribute a negligible amount to (8) and can be discarded before the substitution of
(9) is made. The remaining terms have the individual di ’s so well bounded that the
second component of the minimum can take over the role of providing a respectable
error term, freeing P to be assigned a much larger value and thus reducing the size of
the tail of the ζ -function product.

Let r ∈ Z
+, let p1, . . . , pr ∈ �, and let m1, . . . , mr ∈ N. Define the symbol

E
( m1, . . . , mr

p1, . . . , pr

)
as 1 or 0 according to the system of congruences in t ∈ �,

t + pi ∈ mi� (1 ≤ i ≤ r) , (29)

being solvable or not. Further, for a positive real number R and a point x ∈ R
n , let

T
(
x; R; m1, . . . , mr

p1, . . . , pr

)
denote the number of points t ∈ � such that

t ∈ BR(x) ,

t + pi ∈ mi� (1 ≤ i ≤ r) .

We denote by [m1, . . . , mr ] the least common multiple of m1, . . . , mr . Further,
(mi , m j ) denotes the greatest common divisor of mi and m j . For brevity, let c(l)
denote the 1-content of a nonzero point l ∈ �.

Lemma 3 The system (29) of congruences is soluble if and only if

(mi , m j ) | c( pi − p j ) (1 ≤ i < j ≤ r) .

In the case of solubility, the solutions form precisely one residue class

(mod [m1, . . . , mr ]�) .
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Proof This is an immediate consequence of [15, Lemma 1] applied to each coordinate
with respect to a basis of �. ��

If m1, . . . , mr are pairwise coprime, the last result boils down to the Chinese
Remainder Theorem (39). In fact, only this special case will be needed in Theo-
rem 9 below. However, since the subsequent lemmas may be of independent interest,
we prefer to stick to the general case.

Lemma 4

T
(
x; R; m1, . . . , mr

p1, . . . , pr

) = Rnvn

E
( m1, . . . , mr

p1, . . . , pr

)

[m1, . . . , mr ]n
+O

( Rn−1

[m1, . . . , mr ]n−1

)+O(1),

where the implied O-constants depend only on �.

Proof This is an immediate consequence of Lemma 3 together with (38) applied to
the lattice [m1, . . . , mr ]�. ��

Lemma 5

E
( m1, . . . , mr

p1, . . . , pr

)

[m1, . . . , mr ] ≤ K

m1 · · · mr
.

where K depends only on r, p1, . . . , pr .

Proof This follows along the same lines as Lemma 3 of [15] by employing Lemma 3
instead of [15, Lemma 1]. ��

For points p1, . . . , pr ∈ � and positive real numbers R and α, denote by
L(x; R; p1, . . . , pr ;α) the cardinality of systems (t, a1, . . . , ar ) of lattice points
t ∈ � and numbers a1, . . . , ar ∈ N such that

t ∈ BR(x) ,

t + pi ∈ ak
i � (1 ≤ i ≤ r) ,

a1 · · · ar > Rα .

Lemma 6

L(x; R; p1, . . . , pr ;α) = O
(
Rn−α(nk−1)+ε

) + O
(
Rn−1+ 2

nk+1 +ε
)
,

where the implied O-constants depend only on �, k, r, p1, . . . , pr .
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Proof The proof is by induction on r . For r = 1, we can apply Lemma 4 to obtain

L(x; R; p1;α) =
∑

t∈BR(x)

t+ p1∈ak
1�

a1>Rα

1 =
∑

a1>Rα

a1<((R+‖ p1‖)/λ)1/k

T
(
x; R; ak

1
p1

)

=
∑

a1>Rα

a1<((R+‖ p1‖)/λ)1/k

( Rnvn

ank
1

+ O
( Rn−1

a(n−1)k
1

) + O(1)
)

= O
(
Rn−α(nk−1)

) + O
(
Rn−1 log R

) + O(R1/k) ,

where there is no middle term when n = 1 and the logarithm in the middle term
is only needed in the case n = 2, k = 1, when the corresponding harmonic series∑

1/a(n−1)k
1 diverges. In all other cases, these series converge, and the middle term

can be taken as O(Rn−1). Thus the lemma holds for r = 1. Assume now that the
assertion holds for some r ≥ 1. Let β be a positive real parameter to be fixed later.
Writing a = a1 · · · ar+1, for symmetry reasons one has

L(x; R; p1, . . . , pr+1;α) = O(
∑

t∈BR(x)

t+ p1∈ak
1�

···
t+ pr+1∈ak

r+1�

a>Rα

a
a1

,..., a
ar+1

≤xβ

1) + O(
∑

t∈BR(x)

t+ p1∈ak
1�

···
t+ pr+1∈ak

r+1�

a>Rα

a1···ar >xβ

1) = L1 + L2 ,

say. Employing Lemmas 4 and 5, one obtains

L1 = O
( ∑

t∈BR(x)

t+ p1∈ak
1�

···
t+ pr+1∈ak

r+1�

Rα<a≤Rβ(r+1)/r

1
) = O

( ∑

Rα<a≤Rβ(r+1)/r

T
(
x; R; ak

1, . . . , ak
r+1

p1, . . . , pr+1

))

= O
( ∑

Rα<a≤Rβ(r+1)/r

(
Rnvn

E
( ak

1, . . . , ak
r+1

p1, . . . , pr+1

)

[ak
1, . . . , ak

r+1]n
+ Rn−1 + 1

))

= O
(
Rn

∑

a>Rα

1

(a1 · · · ar+1)nk

) + O
(
Rn−1+β(r+1)/r+ε

)

= O
(
Rn−α(nk−1)+ε

) + O
(
Rn−1+β(r+1)/r+ε

)
.
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With τ denoting the ordinary divisor function, one further obtains

L2 = O(
∑

t∈BR(x)

t+ p1∈ak
1�

···
t+ pr ∈ak

r �

a1···ar >xβ

∑

t+ pr+1∈ak
r+1�

1) = O(
∑

t∈BR(x)

t+ p1∈ak
1�

···
t+ pr ∈ak

r �

a1···ar >xβ

τ
(‖t + pr+1‖/λ

)

= O(
∑

t∈BR(x)

t+ p1∈ak
1�

···
t+ pr ∈ak

r �

a1···ar >xβ

Rε) = O(Rε L(x; R; p1, . . . , pr ;β))

= O
(
Rn−β(nk−1)+2ε

) + O
(
Rn−1+ 2

nk+1 +2ε
)
,

by assumption. Setting β := r
rnk+1 , we obtain

L(x; R; p1, . . . , pr+1;α) = O
(
Rn−α(nk−1)+ε

) + O
(
Rn−1+ 2

nk+1 +2ε
)
,

which proves the lemma. ��
We are now in a position to improve the error term of Lemma 1.

Theorem 9 Let P be a finite subset of �, m ∈ N, m ∈ �, P be a natural number
coprime to m and x ∈ R

n. Then

|L(VP ;P,∅) ∩ (m + m�) ∩ BR(x)|
is

Rnvn

mn

∏

p|P

(
1 − |P/pk�|

pnk

) + O
(
Rn−1+ 2

nk+1 +ε
)
,

where the O-constant depends only on �, k and P .

Proof This follows from the following modification of the proof of Lemma 1. We
shall also use the notation from that proof. It suffices to show that (8) is

Rnvn

mn Qnk

∏

p|P/Q

(
1 − r

pnk

) + O
(
Rn−1+ 2

nk+1 +ε
)
.

To this end, divide (8) as C1 + C2, where

C1 =
∑

d1|P/Q

∑

d2|P/Q

· · ·
∑

dr |P/Q

d1 · · · dr ≤ R
1

nk

μ(d1 · · · dr )
∑

t∈�∩BR(x)

t∈q+m Qk�

t∈− pi +dk
i �

1,
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and C2 consists of the terms with d1 · · · dr > R
1

nk . By Lemma 6,

C2 = O
(
Rn− nk−1

nk +ε
) + O

(
Rn−1+ 2

nk+1 +ε
) = O

(
Rn−1+ 2

nk+1 +ε
)
.

One further obtains

C1 = ∑
d1|P/Q

∑
d2|P/Q · · ·∑dr |P/Q

d1 · · · dr ≤ R
1

nk

μ(d1 · · · dr )
∑

t∈�∩BR(x)

t∈q+m Qk�

t∈− pi +dk
i �

1

= ∑
d1|P/Q

∑
d2|P/Q

· · · ∑
dr |P/Q

d1 · · · dr ≤ R
1

nk

μ(d1 · · · dr )T
(
x; R; dk

1 , . . . , dk
r , m Qk

p1, . . . , pr , q
)

Since the d1, . . . , dr are pairwise coprime and since (m Q, d) = 1, Lemma 4 in
conjunction with Lemma 3 shows that

T
(
x; R; dk

1 , . . . , dk
r , m Qk

p1, . . . , pr , q
) = Rnvn

mn(d Q)nk
+ O

( Rn−1

mn−1(d Q)(n−1)k

) + O(1)

= Rnvn

mn(d Q)nk
+ O(Rn−1) .

Just as in the proof of Lemma 1, substituting this in the above expression for C1 and

removing the condition d ≤ R
1

nk from the sum over Rnvn/(mn(d Q)nk) gives the main
term

Rnvn

mn Qnk

∏

p|P/Q

(
1 − r

pnk

)

The error from the extra terms included in the extended multiple sum is

O
(
Rn

∑

d>R
1

nk

τr (d)

dnk

) = O(Rn−1+ 1
nk +ε) = O

(
Rn−1+ 2

nk+1 +ε
)
.

Similarly, the sum over the error term can be seen to be O(Rn−1+ 1
nk +ε). Altogether,

this proves the assertion. ��
One can now employ Theorem 9 instead of Lemma 1 to see that the error terms

in Corollary 1 and Theorem 1 of the form O(Rn/(log R)nk−1) can indeed be
improved to

O(Rn−1+ 2
nk+1 +ε) .
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More precisely, Theorem 9 allows one to choose P as large as the product of primes
less than R1/(nk+1) (instead of log R) in the modified proofs.
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Appendix A: Facts from Number Theory

We have used a number of standard facts from number theory in this paper, which we
collect here with proper references for convenience.

The inclusion–exclusion principle says that if we have a set of N elements and a
list of properties P1, P2, . . ., with Ni elements having property Pi , Ni j having both
properties Pi and Pj , and so on, then the number of elements having none of the
properties is [11, Theorem 260]

N − N1 − N2 − · · · + N12 + · · · − N123 − · · · . (30)

The Möbius function is defined for m ∈ N by

μ(m) :=
{ 1 when m = 1,

(−1)r when m is the product of r distinct primes,
0 otherwise,

and has the property that, for any m ∈ N [11, Theorem 263], [12, Theorem 6.3.1],

∑

d|m
μ(d) =

{ 1 if m = 1,

0 otherwise,
(31)

(the basis of the Möbius inversion formula), derived by applying the inclusion–
exclusion principle to the singleton set {m} with the property Pi being divisibility
by the i th prime.

The Riemann ζ -function is defined for �(s) > 1 by

ζ(s) :=
∞∑

m=1

1

ms
=

∏

p prime

(
1 − 1

ps

)−1 (32)
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and, as a result of Möbius inversion [11, Theorem 287], [12, Sect. 6.14],

∞∑

m=1

μ(m)

ms
= 1

ζ(s)
.

We needed to approximate partial Euler products, slightly more general than that on
the right of (32). Let r ≥ 0 and s > 1 be fixed. Then

0 ≥ log
∏

p≥N

(
1 − r

ps

) =
∑

p≥N

log
(
1 − r

ps

)

≥
∑

p≥N

r
ps

r
ps − 1

ifN s > r

≥ r
r

N s − 1

∑

p≥N

1

ps

≥ r
r

N s − 1

1

(N − 1)s−1 .

Hence, on exponentiating,

∏

p≥N

(
1 − r

ps

) = 1 − O(N 1−s). (33)

We also had to estimate the product of primes up to a given bound [11, Theorem 415]:

∏

p≤N

p < 4N . (34)

The r -divisor function τr (m), for r ≥ 2, is the number of ways of expressing m as an
ordered product of r natural numbers. The special case r = 2 is the ordinary divisor
function

τ(m) := τ2(m) =
∑

d|m
1.

which satisfies τ(m) = O(mε) for every ε > 0 [11, Theorem 315],
[12, Theorem 6.5.2], from which we deduce that also

τr (m) ≤ τ(m)r = O(mε) (35)

Another divisor sum estimate we have used is [11, Theorem 323]

∑

d|m

1

d
= O(log log m). (36)
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An arithmetic function f (m) (defined on natural numbers m) is called multiplicative
if f (m1m2) = f (m1) f (m2) whenever (m1, m2) = 1. For example, the functions
μ(m) and τr (m) are clearly multiplicative. A Dirichlet series,

∑∞
m=1 f (m)/ms , whose

coefficients f (m) are multiplicative can be expressed as an Euler product over the
primes p,

∞∑

m=1

f (m)

ms
=

∏

p

(
1 + f (p)

ps
+ f (p2)

p2s
+ · · · ), (37)

for all values of s for which the sum is absolutely convergent.
An estimate we have used frequently is

|Bρ(x) ∩ �| = ρnvn

det �
+ O

(( ρn

det �

)1−1/n) + O(1), (38)

approximating the number of points of an n-dimensional lattice � in a large ball
Bρ(x) (the last error term being required only when det � is bigger than ρn). This is
obtained by dividing Bρ(x) into fundamental regions for �, each of volume det � and
containing one point of �, with the error terms arising from fundamental regions that
overlap the boundary of Bρ(x). The O-constants depend on the shape of �, but not
on its size, and are independent of x. A more precise version is given as Proposition
1 of [4].

We have also made much use of the Chinese Remainder Theorem in the form that
if m1, m2, . . . , mr are points of a lattice � and m1, m2, . . . , mr is a set of natural
numbers that are pairwise coprime, then there is a point t ∈ � such that for all points
x ∈ �

x ≡ mi (mod mi�) for i = 1, . . . , r ⇐⇒ x ≡ t( mod m1 · · · mr�). (39)

This is given as Proposition 2 of [4] and is proved by applying Theorem 2.7.2 of [12]
(or Theorem 121 of [11]) to each coordinate relative to a basis of �.

We needed a simple upper bound for binomial coefficients. By comparison with∫ s
1 log x dx , we have, for s ∈ N,

log s! ≥ s log s − s + 1

(a weak, one-sided version of Stirling’s formula), so s! > (s/e)s and hence

( m
s

) = m(m − 1) · · · (m − s + 1)

s! ≤ ms

s! <
(em

s

)s
. (40)
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