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Abstract A fine mixed subdivision of a (d − 1)-simplex T of size n gives rise to
a system of

(d
2

)
permutations of [n] on the edges of T , and to a collection of n unit

(d − 1)-simplices inside T . Which systems of permutations and which collections
of simplices arise in this way? The Spread Out Simplices Conjecture of Ardila and
Billey proposes an answer to the second question. We propose and give evidence for an
answer to the first question, the Acyclic System Conjecture. We prove that the system
of permutations of T determines the collection of simplices of T . This establishes the
Acyclic System Conjecture as a first step towards proving the Spread Out Simplices
Conjecture. We use this approach to prove both conjectures for n = 3 in arbitrary
dimension.

Keywords Fine mixed subdivisions · Triangulations · Product of simplices ·
Tropical geometry

1 Introduction

The fine mixed subdivisions of a dilated simplex arise in numerous contexts, and
possess a remarkable combinatorial structure, which has been the subject of great
attention recently. The goal of this paper is to prove several structural results about
these subdivisions.
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A fine mixed subdivision of a (d − 1)-simplex T of size n gives rise to a system
of

(d
2

)
permutations of [n] on the edges of T , and to a collection of n unit (d − 1)-

simplices inside T . We address the question: Which systems of permutations and which
collections of simplices arise from such subdivisions? We prove several results in this
direction. In particular we prove Ardila and Billey’s Spread Out Simplices Conjecture
[2, Conjecture 7.1] in the special case n = 3.
1.1 Introduction We begin by summarizing the different sections of the paper,
and stating our main results and conjectures. Figure 1 illustrates the main concepts
with pictures of the case d = 3. We delay the precise definitions until the later
sections.
1.2 The Fine Mixed Subdivisions of a Simplex n�d−1 are the subdivisions of the
dilated simplex n�d−1 into fine mixed cells. A fine mixed cell is a (d −1)-dimensional
product of faces of �d−1 lying in independent affine subspaces. For d = 3, fine mixed
subdivisions are the lozenge tilings of an equilateral triangle into unit equilateral tri-
angles and rhombi.

The fine mixed subdivisions of n�d−1 are in one-to-one correspondence with tri-
angulations of the polytope �n−1 × �d−1 via the Cayley trick [20]. These and other
equivalent objects arise very naturally in many contexts [1,3–5,7–10,15,17,18,20,21].
Fine mixed subdivisions are our main object of study. We will often call them simply
“subdivisions”.
1.3 The Coloring of a Fine Mixed Subdivision is a natural coloring of the cells of a
fine mixed subdivision. It gives rise to an arrangement of tropical pseudohyperplanes
which plays a key role in the theory of tropical oriented matroids [3,11].
1.4 The System of Permutations of a fine mixed subdivision T is the restriction of
the coloring to the edges of the simplex n�d−1. It can be seen as a set of permuta-
tions of [n], one on each edge. It has the great advantage that it is simpler than the
coloring, while maintaining substantial geometric information about the subdivision.
Say a system of permutations of T is acyclic if no closed walk on the edges of the
simplex contains two colors in alternating order: . . . i . . . j . . . i . . . j . . . i . . . j . . . In
two dimensions, this property characterizes the systems of permutations coming from
subdivisions:

A fine mixed subdivision The coloring and the
system of permutations
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arrangement
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Fig. 1 A fine mixed subdivision of 4�2
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Theorem 4.2. (2-D Acyclic System Theorem) A system of permutations on the
edges of a triangle can be achieved by a lozenge tiling if and only if it is acyclic.

We also show a result which will be relevant later:

Theorem 4.3. (Short version) The positions of the triangles in a lozenge tiling
of a triangle are completely determined by the system of permutations.

1.5 The Acyclic System Conjecture seeks to generalize Theorem 4.2 to higher dimen-
sions:

Theorem 5.6. The system of permutations of a fine mixed subdivision of n�d−1
is acyclic.

Acyclic System Conjecture 5.7. Any acyclic system of permutations on n�d−1
is achievable as the system of permutations of a fine mixed subdivision.

We remark that this conjecture was recently disproved by Francisco Santos in [19],
after this paper was submitted for publication. He constructed a counterexample in
the case n = 5 and d = 4.
1.6 Duality, Deletion, and Contraction are useful notions, inspired by matroid theory
[16], that were first studied for triangulations of products of simplices by Santos in
[20], and for tropical oriented matroids by Ardila and Develin in [3]. We introduce
these notions in the context of fine mixed subdivisions and systems of permutations,
showing that they are compatible with the earlier ones.
1.7 From Systems of Permutations to Simplex Positions Ardila and Billey [2] proved
that any fine mixed subdivision on n�d−1 contains exactly n simplices. We use duality
to generalize Theorem 4.3 to any dimension:

Theorem 7.1. (Short version) The positions of the n simplices in a fine mixed
subdivision of n�d−1 are completely determined by its system of permutations.

1.8. The Spread Out Simplices Conjecture of Ardila and Billey, which is motivated
by the Schubert calculus computations of Billey and Vakil [6], concerns a surprising
relation between fine mixed subdivisions and the matroid of lines in a generic complete
flag arrangement. Using the machinery built up in the previous sections, we are able
to prove this conjecture for small simplices in any dimension.

Ardila and Billey [2] showed that the n simplices in any fine mixed subdivision of
n�d−1 must be spread out, meaning that any sub-simplex of size k contains at most
k of them. They also conjectured that the converse holds:

Spread Out Simplices Conjecture 8.1. [2] A collection of n simplices in
n�d−1 can be extended to a fine mixed subdivision if and only if it is spread
out.

Theorem 7.1 allows us to split the Spread Out Simplices Conjecture 8.1 into two: the
Acyclic System Conjecture 5.7 and the Weak Spread Out Simplices Conjecture 8.8:

Weak Spread Out Simplices Conjecture 8.8. Every spread out collection of n
simplices in n�d−1 can be achieved as the set of simplices of an acyclic system
of permutations.
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Using this approach, we are able to show:

Theorem 8.11. The Spread Out Simplices Conjecture holds for n = 3.

As we remarked above, Santos [19] recently disproved the Acyclic System Con-
jecture. The Spread Out Simplices Conjecture 8.1 (and the weak version of it) remain
open.

2 Fine Mixed Subdivisions of a Simplex

Remark 2.1 We will simply refer to fine mixed subdivisions as “subdivisions”
throughout the paper. The only other subdivisions we will consider are the trian-
gulations of �n−1 × �d−1, which we will always refer to as “triangulations”.

Remark 2.2 Throughout the paper, the vertices of �n−1 will be denoted v1, . . . , vn

and the vertices of �d−1 will be denoted w1, . . . , wd . The letters a and b will represent
elements of [d] and the letters i, j, k, and � will represent elements of [n].

Fine mixed subdivisions and several equivalent objects have been recently studied
from many different points of view. Aside from their beautiful intrinsic structure
[4,5,9], they have been used as a building block for constructing efficient triangulations
of high-dimensional cubes [10,15] and disconnected flip-graphs [17,18]. They also
arise very naturally in connection with root lattices [1], arrangements of flags [2],
tropical geometry [3,8,14], transportation problems, and Segre embeddings [21].

Before defining and studying subdivisions of n�d−1 in full generality, let us start by
discussing the easier—but by no means trivial—problem of understanding the lozenge
tilings of an equilateral triangle. This is the special case d = 3.

Let n�2 be an equilateral triangle with side length equal to n. A lozenge tiling of
n�2 is a subdivision of n�2 into upward unit triangles and unit rhombi, as illustrated
on the right hand side of Fig. 2. It is not hard to see that any lozenge tiling of n�2
consists of n triangles and

(n
2

)
rhombi. Figure 3 shows an example of a lozenge tiling

of 4�2.
The most natural high-dimensional analogs of the lozenge tilings of the triangle

n�2 are the fine mixed subdivisions of the simplex n�d−1. We briefly recall their
definition; for a more thorough treatment, see [20].

The Minkowski sum of polytopes P1, . . . , Pk in R
m is the polytope:

P1 + · · · + Pk := {
p1 + · · · + pk | p1 ∈ P1, . . . , pk ∈ Pk

}
.

Fig. 2 The triangle 4�2 and the four different tiles allowed in a lozenge tiling
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Fig. 3 Example of a lozenge
tiling of 4�2

Let

�d−1 = {
(x1, . . . , xd) ∈ R

d : xi ≥ 0 and x1 + · · · + xd = 1
}

be the standard unit (d − 1)-simplex, and n�d−1 = �d−1 +· · ·+�d−1 be its scaling
by a factor of n.

A fine mixed cell is a Minkowski sum B1+· · ·+ Bn where the Bi s are faces of �d−1
which lie in independent affine subspaces, and whose dimensions add up to d − 1. A
fine mixed subdivision S of n�d−1 is a subdivision of n�d−1 into fine mixed cells,
such that the intersection of any two cells is a face of both of them. Figure 4 shows
examples of subdivisions of 3�2 and 3�3.

Remark 2.3 Santos [20] showed that the cells in a subdivision of n�d−1 can be labeled
by ordered Minkowski sums in such a way that, if B1+· · ·+Bn is a face of C1+· · ·+Cn ,
then Bi is a face of Ci for each i . This property is normally required in the definition
of a mixed subdivision of P1 +· · ·+ Pn , but it holds automatically in this special case.

Remark 2.4 Ardila and Billey showed that any subdivision of n�d−1 contains exactly
n tiles that are simplices [2, Proposition 8.2].

3 The Coloring of a Fine Mixed Subdivision

Given a fine mixed subdivision of a simplex one can construct its colored dual polyhe-
dral complex, which we simply call its colored dual. This complex can be regarded as
a tropical pseudo-hyperplane arrangement; the interested reader is referred to [3,14].
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Fig. 4 Subdivisions of 3�2 and 3�3, and the Minkowski sum decompositions of the full-dimensional
cells
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Fig. 5 The colored dual of
a subdivision of 4�2 and
the corresponding system
of permutations on the edges
of the triangle (which we will
introduce later) (Color figure
online)
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Very loosely speaking, the colored dual assigns a different color to each of the n unit
simplices, and lets each color spread from the center of the simplex through the cells
of the tiling. Figures 5 and 6 illustrate this process in dimensions 2 and 3. Formally,
we define the coloring using the mixed Voronoi subdivision.

Definition 3.1 The Voronoi subdivision of a k-simplex divides it into k + 1 regions,
where region i consists of the points in the simplex for which i is the closest vertex.
Given a subdivision S of n�d−1, we subdivide each fine mixed cell S1 + · · · + Sn

into regions R1 + · · · + Rn , where Ri is a region in the Voronoi subdivision of
Si . The resulting subdivision of n�d−1 is called the mixed Voronoi subdivision
of S.

Fig. 6 The colored dual of a subdivision of 3�3. Only one color is shown in its entirety (Color figure
online)
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B + ABC + B BC + AC + B C + AC + BC
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Fig. 7 A fine mixed subdivision, its mixed Voronoi subdivision, and its colored dual (Color figure online)

Definition 3.2 The colored dual of a subdivision S of n�d−1 is the colored polyhedral
complex formed by the lower dimensional faces in the mixed Voronoi subdivision of
S, excluding those on the boundary of n�d−1. In the mixed cell S1 +· · ·+ Sn , color i
is given to S1 + · · · Si + · · · + Sn , where Si is the complex of lower dimensional faces
in the Voronoi subdivision of Si , excluding those on the boundary of Si .

We will not use the metric properties of this subdivision. In fact, the dual complex
may be defined as a purely combinatorial object. The distinction is not important for
us, but this choice of geometric realization will simplify some of our definitions.

Remark 3.3 The color i is the subcomplex (called a tropical pseudohyperplane in [3])
consisting of the cells of the colored dual having color i . It subdivides the simplex
n�d−1 into d regions which are naturally labeled by the vertices w1, . . . , wd of the
simplex.

A cell S1 +· · ·+Sn is intersected precisely by the colors i such that dim(Si ) �= 0, or
equivalently, Si has at least two letters. The summand Si is given by the set of regions
(letters) of color i that this cell intersects. (See Fig. 7 for an example.) It is useful to
assign to a face of the triangulation the same color(s) as its dual cell in the colored
dual.

Remark 3.4 In the colored dual of a lozenge tiling S, every pair of colors intersects
exactly once. One way to see this is to consider, for positive variables λ1, . . . , λn , the
subdivision Sλ of the triangle λ1�2 +· · ·+λn�2 which is combinatorially isomorphic
to S. The area of this triangle is

∑
i

1
2λ2

i +∑
i< j λiλ j . The i th triangle of Sλ contributes

an area of 1
2λ2

i to the subdivision, while a rhombus where colors i and j intersect
contributes an area of λiλ j . Therefore, there is exactly one such rhombus for each i
and j . A similar statement (and proof) holds in any dimension.

4 The System of Permutations: The Two-Dimensional Case

In this section, which focuses only on the two-dimensional case, we define our main
object of study: the system of permutations of a subdivision. We then prove several
structural results about these systems of permutations. In Sects. 5, 6, and 7 we will do
this (somewhat less successfully) in higher dimensions.
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Fig. 8 Two different tilings with the same system of permutations

Given a lozenge tiling of the triangle n�2, and a numbering of its n triangles, restrict
the colored dual to the edges. This determines three permutations of [n], which we
read in clockwise direction, starting from the lower left vertex. In Fig. 5, the system
of permutations is (1423, 3124, 4321). We address three questions:

1. Is a lozenge tiling completely determined by its system of permutations?
2. Which triples of permutations of [n] can arise from a lozenge tiling in this way?
3. How are the system of permutations and the positions of the unit triangles related?

The answer to Question 1 is negative, as Fig. 8 shows. Questions 2 and 3 are more
interesting, and they are addressed in the following three subsections. We answer
Question 2 positively: In Theorem 4.2 we give a simple characterization of the systems
of permutations that can be obtained from a lozenge tiling. We also answer Question
3 by showing, in Theorem 4.3, that the system of permutations determines uniquely
the numbered positions of the triangles.

4.1 The Two-Dimensional Acyclic System Theorem

Definition 4.1 A system of permutations on the edges of the triangle n�2 is a set
of three permutations of [n] on the edges of the triangle. We say that a system of
permutations is acyclic if, when we read the three permutations in clockwise direction,
starting from a vertex of the triangle, we never see a “cycle” of the form . . . i . . . j . . .,
. . . i . . . j . . ., . . . i . . . j . . .

The system of permutations (12, 12, 12) on the edges of 2�2 is the smallest system
that is not acyclic. It clearly cannot be realized as the system of permutations of a
lozenge tiling.

Theorem 4.2 (2-D Acyclic System Theorem) Let σ be a system of permutations on
the edges of the triangle n�2. Then σ is achievable as the system of permutations of
a lozenge tiling if and only if σ is acyclic.

Proof of Theorem 4.2 Let σ = (u, v, w) be a system of permutations of a lozenge
tiling of the triangle n�2. If the three permutations u, v, and w contained the elements
i and j in the same order, then in the dual complex, colors i and j would need to
intersect at least twice, contradicting Remark 3.4. This proves the forward direction.
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Fig. 9 Left The southwest paths from E to B and the southeast paths from F to C . Right The paths
P R, QS, G B , and GC divide the triangle into six regions

For the converse we proceed by induction. The case n = 1 is trivial. Now assume
that the result is true for n − 1, and consider an acyclic system σ = (u, v, w)

of permutations of [n]. Let σ ′ = (u′, v′, w′) be the acyclic system of permutation of
[n − 1] obtained by removing the number n from u, v, and w, and let T ′ be a tiling of
the triangle ABC (of side length n − 1) realizing σ ′. Let D, E, and F be the points
on the segments BC, C A, and AB where the number n needs to be inserted in the
permutations w′, v′, and u′.

In the tiling T ′, let G B be the union of all “southwest” paths from E to B, consisting
of southwest and west edges. Let GC be the union of all “southeast” paths from F
to C , consisting of southeast and east edges. The (non-empty) intersection of G B

and GC is a horizontal segment (or possibly a single point); label its left and right
endpoints P and Q, respectively. Assume that T ′ was chosen so that the length of P Q is
maximum.

Now consider the leftmost “south” path, using southwest and southeast edges, from
P to edge BC . Let its other endpoint be R, and call this path P R. Similarly, let QS be
the rightmost “south” path from Q to edge BC . The previous paths split the triangle
into six regions, which we number 1, . . . , 6 as shown in the right panel of Fig. 9. The
cells in GC and G B (which are necessarily rhombi) are considered to be in none of
the six regions.

If D is between R and S, then there is a “north” path, using northeast and northwest
edges, from D to a point M on P Q. Consider any northwest path M F along G B and
any northeast path M E along GC . Now cut the tiling along the paths M D, M E, and
M F , and glue it back together using an equilateral triangle at M and three paths of
rhombi of the shape of M D, M E, and M F , as shown in Fig. 10. The result will be a
tiling T which realizes the system of permutations σ .

If D is not between R and S, then we claim that σ is not acyclic. To prove it, assume
without loss of generality that D is to the left of R. Consider the edge of T ′ directly
to the left of R; say it has color i . It is clear that triangle i must be in region 1, 2, or 4.
We will show that in fact triangle i is in region 2. This will imply that σ contains the
cycle . . . i . . . n . . ., . . . i . . . n . . ., . . . i . . . n . . ..
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Fig. 10 From a tiling of (n − 1)�2 to a tiling of n�2

First we show that triangle i is not in region 4. Let P B be the southernmost path
from P to B in G B , and let P ′ be the first place where the paths P B and P R diverge
(Fig. 11). Note that all edges from P to P ′ must be southwest edges. By the defin-
itions of P B and P R, there are no southwest edges hanging from P ′. In particular,
the next edge in P B after P ′ is a west edge. This forces all the tiles directly to
the left of P R to be horizontal. Therefore, triangle i is above P ′, and hence not in
region 4.

Now assume that triangle i is in region 1. Then color i must enter and exit region 2
by crossing horizontal edges. This forces all tiles in region 2 and to the right of color
i to be vertical rhombi. But then we can retile this subregion by moving all horizontal
rhombi to the right end of region 2 and shifting all vertical rhombi one unit to the left
(as illustrated in Fig. 12). This results in a new tiling of the triangle of side length n −1
which has the same system of permutations, but where the length of P Q is larger, a
contradiction.

It follows that triangle i is in region 2 as desired. This concludes the proof. ��

4.2 Acyclic Systems of Permutations and Triangle Positions

The following is the main result of this section.

Theorem 4.3 (Acyclic systems of permutations and triangle positions) In a lozenge
tiling of a triangle, the acyclic system of permutations determines uniquely the num-
bered positions of the unit triangles. Conversely, the numbered positions of the trian-
gles and one permutation of the system determine uniquely the other two permutations.

Fig. 11 Triangle i cannot be in
region 4
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Fig. 12 Triangle i cannot be in region 1

4.2.1 A Permutation Factorization

We begin by introducing a way of factoring a permutation uniquely into a particular
standard form. This factorization will play an important role in our analysis of lozenge
tilings. We use cycle notation for permutations throughout this section.

Lemma 4.4 Every permutation u of [n] can be written uniquely in the form

u = (n, . . . , pn) ◦ · · · ◦ (2, 3, . . . , p2) ◦ (1, 2, . . . , p1),

for integers p1, . . . , pn such that i ≤ pi ≤ n for all i .

Proof We proceed by induction on n. The case n = 1 is trivial. Consider a permutation
π of [n]. For the equation to be true, we must have u−1(1) = p1, so p1 is determined
by u. Then we see that u ◦ (p1, . . . , 2, 1) leaves 1 fixed, and can be regarded as a
permutation of [2, . . . , n]. By the induction hypothesis, it can be written uniquely as

u ◦ (p1, . . . , 2, 1) = (n, . . . , pn) ◦ (n − 1, . . . , pn−1) ◦ · · · ◦ (2, . . . , p2),

for i ≤ pi ≤ n. This gives the unique such expression for u. ��
Lemma 4.5 Similarly, every permutation v of [n] can be written uniquely in the form

v = (1, . . . , q1) ◦ · · · ◦ (n − 1, n − 2, . . . , qn−1) ◦ (n, n − 1, . . . , qn).

for integers q1, . . . , qn such that i ≥ qi ≥ 1 for all i .

The following lemma tells us how to compute the values of p1, . . . , pn and
q1, . . . , qn in terms of the permutations u and v.

Lemma 4.6 In the two lemmas above we have

pk = k + |{� > k : u−1(�) < u−1(k)}|,
qk = k − |{� < k : v−1(�) > v−1(k)}|.
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Proof We prove the result for pk ; the proof for qk is analogous. The inverse of u is

u−1 = (p1, . . . , 2, 1) ◦ (p2, . . . , 3, 2) ◦ · · · ◦ (pn, . . . , n).

Let πk := (pk, . . . , k) ◦ (pk+1, . . . , k + 1) ◦ · · · ◦ (pn, . . . , n), a permutation of
{k, . . . , n}. Note that, to obtain πk from πk+1 (which is a permutation of {k+1, . . . , n}),
we simply insert pk at the beginning of the permutation, and substract 1 from all entries
less than or equal to it. For instance, if (p1, . . . , p6) = (3, 2, 4, 5, 6, 6), then the per-
mutations π6, . . . , π1 are 6, 65, 564, 4563, 24563, 314562, respectively. In particular,
the relative order of πk+1(a) and πk+1(b) (where a, b ≥ k + 1) is preserved in πk .

It follows that, for� > k, we have u−1(�) = π1(�) < π1(k)=u−1(k) if and only if
πk(�) < πk(k). But πk(k) = pk , so

|{� > k : u−1(�) < u−1(k)}| = |{� > k : πk(�) < πk(k))}| = pk − k,

as desired. ��

4.2.2 Tilings and Wiring Diagrams

The possible positions of the triangles in a lozenge tiling of n�2 naturally correspond
to triples in the triangular array of non-negative natural numbers (x1, x2, x3) whose
sum is equal to n − 1. The unit triangles at the corners A, B, and C have coordinates
(n−1, 0, 0), (0, n−1, 0), and (0, 0, n−1), respectively. We denote by Gn the directed
graph whose vertices are the triples in this triangular array, and where each node which
is not in the bottom row is connected to the two nodes directly below it. There is a
natural bijection between the lozenge tilings of n�2 and the vertex-disjoint routings
to the bottom n vertices of the graph Gn : simply place one rhombus over each edge
in the routing, one vertical rhombus over each isolated vertex, and one triangle over
the top vertex of each path in the routing [13]. See Fig. 13 for an example.

We perform a change of coordinates and label the nodes of Gn with pairs of numbers
(p, q), where p = x1 + x3 + 1 and q = x3 + 1. The p and q coordinates range from
1 to n, and increase in the northeast and southeast directions, respectively. Figure
13 shows the coordinates (p, q) of the graph G4. Given a lozenge tiling T , and the

A

B C
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31
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32

42

33

43

44

Fig. 13 Left A tiling of 4�2. Middle The corresponding routing of G4. Right The coordinates (p, q) of
the vertices of G4
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Fig. 14 A tiling with
p = (4, 2, 3, 5, 6, 6). We have
u = 236145 =
()(s5)(s4)()()(s1s2s3) =
(6)(56)(45)(3)(2)(1234).
In the other direction we have
q = (1, 2, 3, 1, 4, 5)

and v = 412563 =
()()()(s3s2s1)(s4)(s5) =
(11)(22)(33)(4321)(54)(65)
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corresponding routing of Gn , number the positions of the unit triangles from 1 up to
n, such that the vertex of the i th triangle is routed to the vertex with (p, q)-coordinate
equal to (i, i). Let (pi , qi ) be the position of the i th triangle in T . Since the triangles of
T are spread out, we have 1 ≤ qi ≤ i ≤ pi ≤ n for all i . We now show that knowing
the positions (pi , qi ) is equivalent to knowing the system of permutations (u, v, w).

Lemma 4.7 The ordered list of positions (pi , qi ) of the triangles in a lozenge tiling
determines the permutations u and v as follows:

u = (n, . . . , pn) ◦ · · · ◦ (2, . . . , p2) ◦ (1, . . . , p1),

v = (1, . . . , q1) ◦ · · · ◦ (n − 1, . . . , qn−1) ◦ (n, . . . , qn),

w = n . . . 321.

Proof The equation w = n . . . 321 holds by assumption. We prove the formula for
u; the proof for v is analogous. The color i splits naturally into three broken rays
RA(i), RB(i), and RC (i) centered at the i th triangle and pointing away from vertices
A, B, and C respectively. Consider the pseudolines L(i) = RA(i)∪ RC (i) for 1 ≤ i ≤
n. We can regard this pseudoline arrangement as a wiring diagram for the permutation
u (Fig. 14).

To express u as a product of transpositions, it suffices to linearly order the crossings
from bottom to top, in an order compatible with the partial order given by the wiring
diagram, and multiply them left to right. One way of doing it is to proceed up the ray
RA(n), then up the ray RA(n − 1), and so on up to the ray RA(1), recording every
crossing that we see along the way. This procedure lists every crossing exactly once,
and the crossings along ray RA(i) correspond to the transpositions si , si+1, . . . , spi −1
(where s j = ( j, j + 1)) which multiply to the cycle (i, . . . , pi ). ��
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Fig. 15 Two tilings with the
same unordered set of triangles
and different systems of
permutations
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2
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Notice that in Lemma 4.7, we need the ordered list of positions of the triangles to
determine the system of permutations. Figure 15 illustrates this.

We have now done all the work to prove the main result of this section.

Proof of Theorem 4.3 If we are given the numbered triangle positions and a permuta-
tion of the system, we can assume without loss of generality that the given permutation
is w = n . . . 1. Lemma 4.7 then tells us how to obtain the two remaining permutations
u and v. Moreover, given that 1 ≤ qi ≤ i ≤ pi ≤ n, Lemmas 4.4 and 4.5 imply that
this procedure is reversible, and Lemma 4.6 gives us an explicit way of computing the
triangle positions in terms of u and v.

4.2.3 From Acyclic Systems to Triangle Positions: Another Description

Let T be a lozenge tiling of n�2 and σ be its corresponding acyclic system of per-
mutations. In addition to Lemmas 4.6 and 4.7, we now present a different way of
computing the triangle positions of T in terms of σ .

As before, we identify the positions of the unit triangles in T with triples in the
triangular array of non-negative natural numbers (x1, x2, x3) whose sum is equal to
n − 1. For 1 ≤ i �= j ≤ n define the directed graph Gi j on the triangle ABC ; we
orient edge e according to the order in which i and j appear on e in the system of
permutations σ .

Since the system of permutations is acyclic, each graph Gi j is acyclic and has a
unique source. The position (xi

1, xi
2, xi

3) of the i th triangle is given by:

xi
1 = |{ j �= i : A is the unique source of Gi j }|,

xi
2 = |{ j �= i : B is the unique source of Gi j }|,
xi

3 = |{ j �= i : C is the unique source of Gi j }|.

1
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2

1

3

2

1

32

(1,1,0)

(0,1,1) (0,0,2)1

3

2 (2,0,0)

(1,0,1)

(0,2,0)

Fig. 16 Obtaining the triangle positions from the system of permutations
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We illustrate this in an example in Fig. 16. This result is proved in greater generality
in Sect. 7.

5 The Acyclic System Conjecture

The main goal of this section is to introduce the concept of the system of permutations
of a higher dimensional subdivision of a simplex. We prove that the system of permu-
tations of a subdivision is acyclic. Motivated by Theorem 4.2, we conjectured that the
converse statement holds as well (The Acyclic System Conjecture 5.7). However, after
this paper was submitted for publication, the conjecture was disproved by Francisco
Santos in [19].

Let S be a subdivision on n�d−1. As mentioned in Remark 2.2, in order to prevent
confusion we will denote indices in the set [n] by the letters i, j, k, �, and indices
in the set [d] by the letters a, b. We also denote the vertices of the simplex �d−1
by w1, . . . , wd , the vertices of n�d−1 by nw1, . . . , nwd , the vertices of �n−1 by
v1, . . . , vn , and the vertices of d�n−1 by dv1, . . . , dvn .

The restriction S|nwawb of the subdivision S to the edge nwawb is the subdivision
of the segment nwawb given by the Minkowski sums S1 + · · · + Sn ∈ S for which
Si ⊂ {wa, wb, wawb} for all i = 1, . . . , n.

Definition 5.1 (The permutation of an edge) Since S|nwawb is a subdivision, for each
i ∈ [n] there is a unique cell having i − 1 summands equal to wb, n − i summands
equal to wa , and one summand (which we denote Sσab(i)) equal to wawb. It is easy to
see that σab is a permutation of [n], which we call the permutation of the edge nwawb.
(Note that σab is the reverse of σba for any 1 ≤ a �= b ≤ d.)

Remark 5.2 It is worth describing more explicitly the subdivision along each edge.
As we traverse the edge nwawb from the vertex nwa to nwb, the first edge of S that
we encounter has the form wa +· · ·+wa +wawb +wa +· · ·+wa . Each subsequent
edge is obtained from the previous one by converting the summand wawb into wb and
converting one of the summands wa into wawb. The permutation σab tells us the order
in which the summands wa are converted to wawb (and then to wb).

Definition 5.3 (The system of permutations) The system of permutations of a fine
mixed subdivision S of n�d−1 is the collection σ(S) = (σab)1≤a �=b≤d of permutations
σab of the edges nwawb.

Example 5.4 Consider the subdivision S of 3�2 given on the left hand side of Fig. 7,
with the small difference that we now call the vertices 3w1, 3w2, and 3w3 instead of
A, B, and C . Writing only the one-dimensional cells of the subdivision restricted to
the edges of the triangles we have:

S|3w1w2 = S|3w2w1 = {w1w2 + w1 + w1, w2 + w1 + w1w2, w2 + w1w2 + w2},
S|3w2w3 = S|3w3w2 = {w2 + w2w3 + w2, w2w3 + w3 + w2, w3 + w3 + w2w3},
S|3w3w1 = S|3w1w3 = {w3 + w1w3 + w3, w3 + w1 + w1w3, w1w3 + w1 + w1}.
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The system of permutations σ(S) = (σab)1≤a �=b≤3 is then given by

σ12 = 132, σ21 = 231,

σ23 = 213, σ32 = 312,

σ31 = 231, σ13 = 132.

Notice that this system coincides with the restriction of the coloring of S to the edges
of the triangle.

Definition 5.5 A system of permutations on the edges of n�d−1 is a collection σ =
(σab)1≤a �=b≤d of permutations σab of [n] such that σab is the reverse of σba for all
a, b. For each pair 1 ≤ i �= j ≤ n we define the directed graph Gi j (σ ) of σ as the
complete graph on [d], where edge ab is directed a → b if and only if the permutation
σab is of the form . . . i . . . j . . . We say that a system of permutations σ is acyclic if
and only if all the graphs Gi j (σ ) are acyclic.

In other words, a system of permutations on the edges of a simplex is acyclic if
and only if there is no closed walk along the edges such that the permutation on every
directed edge of the walk has the form . . . i . . . j . . . for some i and j .

Theorem 5.6 Let S be a fine mixed subdivision of n�d−1, and σ(S) be the corre-
sponding system of permutations. Then σ(S) is acyclic.

Proof The cases d = 1, 2 are trivial. The case d = 3 was shown in Theorem 4.2. For
d > 3, notice that an orientation of the complete graph Kd is acyclic if and only if
every triangle wawbwc is acyclic. But the orientation of triangle wawbwc is given by
the subdivision S|nwawbwc , and so it is acyclic by Theorem 4.2. ��

We conjectured that the converse also holds:

Acyclic System Conjecture 5.7 Any acyclic system of permutations on the edges
of the simplex n�d−1 is achievable as the system of permutations of a fine mixed
subdivision.

Theorem 4.2 says that the Acyclic System Conjecture 5.7 is true for d = 3. How-
ever, Francisco Santos recently disproved this conjecture in the general case [19].
He constructed an acyclic system of permutations on the edges of 5�3 that is not
achievable as the system of permutations of a fine mixed subdivision.

6 Duality, Deletion and Contraction

Before we continue extending the results of Sect. 4 from two dimensions to higher
dimensions we need some simple but useful machinery. This section introduces the
notion of duality, deletion and contraction for acyclic systems of permutations on the
edges of a simplex. We show that our definitions are compatible with the previously
known notions of duality, deletion and contraction for subdivisions [3,20]. Most of
the results in this section follow easily from the definitions, and we omit their proofs.
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Fig. 17 The Cayley trick

6.1 Duality for Subdivisions

There is a natural notion of duality between subdivisions of n�d−1 and subdivisions of
d�n−1. This duality is induced by a one-to-one correspondence between subdivisions
of n�d−1 and triangulations of the polytope �n−1 ×�d−1 obtained via a special case
of the Cayley trick [12]; for a more thorough discussion see [12,20]. Figure 17 shows
an example of a triangulation of the triangular prism �1 × �2 = 12 × ABC , and the
corresponding subdivision of 2�2 , whose three tiles are ABC + B, AC + AB, and
C + ABC .

Given a subdivision S of n�d−1, we denote by S∗ the dual subdivision of d�n−1
that corresponds to the triangulation of �d−1 × �n−1. The dual subdivision is given
by:

Lemma 6.1 The dual of a mixed cell S1 +· · ·+ Sn in S is the mixed cell Z1 +· · ·+ Zd

in S∗, where Za = {vi : wa ∈ Si }.
Figure 18 shows an example of a subdivision of 3�4−1, its dual subdivision of

4�3−1 and the Minkowski sum decompositions of the full-dimensional cells.

6.2 Dualilty for Acyclic Systems of Permutations

Let σ = (σab)1≤a �=b≤d be an acyclic system of permutations on the edges of the
simplex n�d−1. Recall that, for each pair 1 ≤ i �= j ≤ n, the graph Gi j (σ ) on [d]
vertices has a directed edge a → b if and only if the permutation σab is of the form
. . . i . . . j . . . Since this graph is acyclic and complete, it can be naturally regarded as
a permutation σ ∗

i j of [d]. More precisely, for a ∈ [d], σ ∗
i j (a) is the vertex of Gi j (σ )

whose out-degree is equal to d − a.

Definition 6.2 The dual system of an acyclic system σ of n�d−1 is the system of
permutations σ ∗ = (σ ∗

i j )1≤i �= j≤n on the edges of d�n−1.

Example 6.3 If σ12 = 132, σ23 = 213, σ31 = 231, then σ ∗
12 = 132, σ ∗

23 =
231, σ ∗

31 = 321.

Lemma 6.4 The permutation σab is of the form . . . i . . . j . . . if and only if the permu-
tation σ ∗

i j is of the form . . . a . . . b . . ..
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Fig. 18 A subdivision S of 3�4−1, its dual subdivision S∗ of 4�3−1 and the Minkowski sum decom-
positions of the full-dimensional cells. The systems of permutations σ = σ(S) and σ∗ = σ(S∗) are
given by σAB = 132, σAC = 123, σAD = 123, σBC = 123, σB D = 123, σC D = 123, and
σ∗

12 = ABC D, σ∗
23 = B AC D, σ∗

31 = DC B A

Proof Omitted. ��
Proposition 6.5 The system of permutations σ ∗ is acyclic and (σ ∗)∗ = σ .

Proof Omitted. ��

6.3 Deletion and Contraction for Subdivisions

Recall that we denote the vertices of �d−1 by w1, . . . , wd , and the vertices of �n−1
by v1, . . . , vn .

Definition 6.6 Let S be a subdivision of n�d−1. For i ∈ [n], the deletion S\i is the
subdivision of (n − 1)�d−1 whose mixed cells correspond to the Minkowski sums
obtained from the Minkowski sums of S by deleting the i th summand.

Definition 6.7 Let S be a subdivision of the simplex n�d−1. For a ∈ [d], the con-
traction S/a is the subdivision of n�d−2 which consists of the cells S1 + · · · + Sn of
S such that Si ⊂ {w1, . . . , ŵa, . . . , wd}.

It is useful to also think of the deletion S\i and the contraction S/a in terms of the
Cayley trick. The subdivision S corresponds to a triangulation T of �n−1 ×�d−1; the
deletion S\i and contraction S/a correspond to the restriction of T to the appropriate
facets of �n−1 × �d−1.
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6.4 Deletion and Contraction for Systems of Permutations

Definition 6.8 Let σ be a system of permutations on the edges of n�d−1. For i ∈ [n],
the deletion σ\i is a system of permutations on the edges of (n − 1)�d−1, obtained
from σ by deleting the number i from each permutation.

For example, for the system of permutations σ = {1423, 3124, 4321} on the edges
of 4�3 in Fig. 5, we get σ\2 = {143, 314, 431}. Note that σ\2 is the system of
permutations of the deletion S\2 of the subdivision S in the same figure.

Definition 6.9 Let σ be a system of permutations on the edges of n�d−1. For a ∈ [d],
the contraction σ/a is the restriction of σ to the edges of the facet of n�d−1 that do
not contain the vertex nwa .

The following proposition follows directly from the definitions.

Proposition 6.10 If σ = σ(S) is the system of permutations of a subdivision S, then

1. σ\i = σ(S\i)
2. σ/a = σ(S/a)

6.5 Properties

In this subsection we show that the operations of deletion and contraction are dual to
each other, and that the dual system of the system of permutations of a subdivision S
is equal to the system of permutations of the dual subdivision S∗. This result will be
a key lemma in Sect. 8.

Proposition 6.11 Let S be a subdivision of n�d−1 and σ be an acyclic system of
permutations of n�d−1. Let i ∈ [n] and a ∈ [d]. Then

(S\i)∗ = S∗/ i, (S/a)∗ = S∗\a, (σ\i)∗ = σ ∗/ i, (σ/a)∗ = σ ∗\a.

The geometric content of this proposition is the following: The deletion of a color i
in a subdivision S corresponds to the contraction of the vertex i in the dual subdivision
S∗, and viceversa. This proposition follows directly from the Cayley trick and from
the definitions.

Proposition 6.12 Let S be a subdivision of n�d−1 and σ(S) be the associated system
of permutations. Then σ(S)∗ = σ(S∗).
Proof It suffices to check the relative positions of any two numbers i, j on the
edges of n�d−1; i.e., to prove the result for n = 2. Now, all mixed subdivisions
of 2�d−1 are isomorphic, up to relabeling, to the one whose d full-dimensional cells
are:

w1w2w3 . . . wd + w1, w2w3 . . . wd + w1w2,

w3 . . . wd + w1w2w3, . . . , wd + w1w2w3 . . . wd .

The proposition is easily verified in this case. ��
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The operations of restriction, contraction, and duality will be very be useful to us
in what follows.

7 From Systems of Permutations to Simplex Positions

A subdivision of n�d−1 is not uniquely determined by its system of permutations, but
in this section we will see that the positions of its simplices are completely determined.
We already proved this result for lozenge tilings in Theorem 4.3. We now prove it in
general.

Theorem 7.1 (Acyclic systems of permutations and simplex positions) The numbered
positions of the simplices in a fine mixed subdivision S of n�d−1 are completely
determined by its system of permutations σ = σ(S). More precisely, the Minkowski
decomposition of the i th simplex is

wa1 + · · · + wai−1 + w1w2 . . . wn + wai+1 + · · · + wan ,

where a j is the unique source of the acyclic graph Gi j (σ ) for all j �= i .

Proof The Minkowski sum decomposition of the i th simplex T in the subdivision S has
i th component equal to w1 . . . wd . By Lemma 6.1, this implies that the letter vi appears
in all the components of the Minkowski decomposition of the dual cell T ∗. It follows
that T ∗ is the unique full-dimensional cell of the subdivision S∗ that contains the vertex
dvi of d�n−1. This dual cell T ∗ is completely determined by the colors of the edges
adjacent to the vertex dvi in S∗, which are precisely the sources of Gi j (σ ) with j �= i .
More explicitly, for each index a ∈ [d], the Minkowski decomposition of the dual cell
T ∗ has ath component equal to {v j , j ∈ [n] : j = i or source(Gi j ) = a}. Dualizing
and applying Lemma 6.1 again, we get the desired Minkowski decomposition of the
simplex T . ��

Figure 19 shows two examples of how to compute the positions of the simplices in
a subdivision from its system of permutations.

Remark 7.2 In dimension 2, our proofs of Theorem 4.3 and Theorem 7.1 give two
descriptions of the triangle positions as a function of the acyclic system of permuta-
tions. The first description, and Lemma 4.6 in particular, gives a simple computation
of these positions. The second description gives us additional information about the
triangles, namely, their Minkowski sum decompositions. For higher d, this second
computation works without modification. It would also be interesting to generalize
the first one; i.e., to find a direct description of the positions of the simplices in the
spirit of our proof of Theorem 4.3.

8 The Spread Out Simplices Conjecture

One of the motivations of this paper is the Spread Out Simplices Conjecture of Ardila
and Billey. They showed that every subdivision of n�d−1 contains precisely n unit
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Fig. 19 How to obtain the positions (and Minkowski sum decompositions) of the simplices from the system
of permutations

simplices, and studied where those simplices could be located. They conjectured that
the possible positions of the simplices are given by the bases of the matroid determined
by the lines in a generic complete flag arrangement. For details, see [2].

The following is an equivalent statement. Recall that a collection of n simplices
in n�d−1 is said to be spread out if no subsimplex of size k contains more than k of
them.

Spread Out Simplices Conjecture 8.1 [2, Conjecture 7.1] A collection of n sim-
plices in n�d−1 can be extended to a fine mixed subdivision if and only if it is spread
out.

8.1 Regular Subdivisions: Yoo’s Example

Question 8.3 in [2] asked whether Conjecture 8.1 is true in the more restrictive context
of regular subdivisions. One may ask the same question for Conjecture 5.7. Yoo
(Personal communication, 2010) showed that these statements are false in that context,
even for d = 3. Figure 20 shows an acyclic system of permutations on 6�2 and a
collection of 6 triangles which can only be realized by two subdivisions, neither of
which is regular.

8.2 The Simplex Positions are Spread Out

We identify the possible positions of the simplices in a subdivision with the lattice
points of the simplex {(x1, . . . , xd) ∈ R

d : x1+· · ·+xd = n−1 and x1, . . . , xd ≥ 0}.
Theorem 7.1 leads us to the following definition.

123



506 Discrete Comput Geom (2013) 49:485–510

Fig. 20 A non-regular
subdivision of 6�2. Its system
of permutations and triangle
positions cannot be achieved by
a regular subdivision (Example
by Hwanchul Yoo)
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Definition 8.2 The set of simplex positions P(σ ) of an acyclic system of permutations
σ of n�d−1 is as follows: For 1 ≤ i ≤ n the i th simplex has position (xi

1, . . . , xi
d),

where

xi
a = ∣∣{ j �= i : a is the unique source of Gi j (σ )

}∣∣.

Notice that this definition makes sense for arbitrary acyclic systems, and not only
for those coming from subdivisions. When σ comes from a subdivision, the set of
positions P(σ ) is the one given by Theorem 7.1.

Remark 8.3 As seen in the proof of Theorem 7.1, computing the positions of the
simplices of σ is very easy if we know σ ∗. Each simplex of σ corresponds to a vertex
v of d�n−1, and its Minkowski summands are �d−1 and the d −1 labels on the edges
coming out of v in σ ∗. For instance, if σ is the subdivision on the top of Fig. 18, then
its three simplices are readily given by the permutations around the dual triangle in
σ ∗: they are ABC D + A + A, D + ABC D + B, D + D + ABC D.

Recall that Ardila and Billey proved the forward direction of Conjecture 8.1:

Theorem 8.4 [2, Proposition 8.2] The positions of the simplices of a fine mixed sub-
division of n�d−1 are spread out.

In principle, our next result generalizes this:

Theorem 8.5 The positions of the simplices P(σ ) of an acyclic system of permutations
σ of n�d−1 are spread out.

In order to prove Theorem 8.5, let us define the table of positions T (σ ) of an
acyclic system of permutations σ . This is an n ×n matrix whose rows are given by the
Minkowski summands of the simplices of the system of permutations σ . For example,
the table of positions of the system of permutations {123, 231, 312} on the top example
in Fig. 19 is

⎡

⎣
ABC C B

A ABC B
A C ABC

⎤

⎦ .

For each a �= b ∈ [d], define the directed graph Hab(σ ) as the graph on the vertex
set [n] containing a directed edge i → j if there is a wa in row i and a wb in row
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j which are in the same column. In the previous example, HAB(σ ) is a complete
graph in three vertices with directed edges 2 → 1, 3 → 1 and 3 → 2. Notice that in
this case HAB(σ ) is the complete acyclic graph that corresponds to the permutation
σAB = 321. In general we have:

Lemma 8.6 The graph Hab(σ ) is a subgraph of the complete, acyclic graph on [n]
that corresponds to the permutation σab.

Proof We need to prove that if Hab has a directed edge i → j then the permutation
σab is of the form . . . i . . . j . . . Suppose i → j in Hab. Then there is a column � of
the table T (σ ) such that wa ∈ Ti� and wb ∈ Tj�.

Case 1: If � = j , then Ti j = wa . This means that the graph Gi j has a source at
a ∈ [d], which implies that the permutation σab is of the form . . . i . . . j . . .

Case 2: If � = i , an analogous argument works.
Case 3: If � �= i, j , then Ti� = wa and Tj� = wb, which means that the graphs
Gi� and G j� have sources at a ∈ [d] and b ∈ [d], respectively. This implies that
the permutation σab is of the form . . . i . . . � . . . j . . . ��

Remark 8.7 The graph Hab is in general only a proper subgraph of the graph that
corresponds to σab. In particular, in contrast with the 2-dimensional case, the ordered
list of positions of the simplices (or even their Minkowski sum decompositions) is not
sufficient to determine the system of permutations. For instance, there are exactly two
subdivisions of 2�3 for which the Minkowski decomposition of the two unit simplices
are ABC D + A and B + ABC D. These two subdivisions have different systems of
permutations. The graph HC D in these cases consists of two vertices C and D without
any edge.

Proof of Theorem 8.5 Let σ be an acyclic system of permutations on the edges of
n�d−1, P(σ ) be the set of positions of the simplices and T (σ ) be the table of positions.
Suppose that there is a sub-simplex � of size k containing more than k simplices of
σ . This sub-simplex is given by

� = {
x = (x1 . . . xd) ∈ R

d : xi ≥ mi and x1 + · · · xd = 1
}
,

for some non-negative integers m1, . . . , md such that m1 +· · ·+md = n −k. Without
loss of generality, we assume that the (more than k) simplices of σ that are contained
in � correspond to the first rows of the table T (σ ). Each one of these rows contains
(off of the diagonal) at least ma letters wa for all a ∈ [d]. Call such a letter dark if it
is in the shaded rectangle in Fig. 21, and light if it is in the white square on the upper
left. This shaded rectangle has width less than n − k.

We will prove that the first row of T (σ ) has at least ma dark letters wa for all
a ∈ [d]. If ma = 0 the result is obvious. Now suppose ma > 0. If there is no light
letter wa on the first row of T (σ ) then the claim clearly follows. Otherwise, we will
construct, simultaneously for all b ∈ [d]\{a}, a path 1 = i1 → · · · → ir in the graphs
Hab ending on a row ir that has no light letter wa . To do so, we start by drawing the
arrows 1 = i1 → i2 in Hab for all b, where i2 is the column of the first letter wa

under consideration. If there is no light letter wa in row i2, we are done; otherwise,

123



508 Discrete Comput Geom (2013) 49:485–510

>k < n-k

A

A

A

A A . . . A

A A . . . A

Fig. 21 Table of positions T (σ )

we continue the process. Since the graphs Hab have no cycles, this process must end
at some row ir .

Notice that row ir must contain at least ma dark letters, since it contains no light
ones except for the one on the diagonal. Now consider the letters on the first row which
are directly above the dark letters wa on the row ir . They must all be equal to wa , or
else they would form a cycle 1 = i1 → · · · → ir → 1 in Hab for some b. Therefore,
the first row of T (σ ) has at least ma dark letters wa as we claimed.

Finally, observe that the first row contains at least ma dark letters wa for all a ∈ [d],
so the shaded rectangle must have width at least m1+· · ·+md = n−k, a contradiction.

��
We conjecture that the converse of Theorem 8.5 is true as well:

Weak Spread Out Simplices Conjecture 8.8 Any n spread out simplices in n�d−1
can be achieved as the simplices of an acyclic system of permutations.

This conjecture is weaker than the Spread Out Simplices Conjecture 8.1, and has the
advantage that it is more tractable computationally for small values of n. Conjecture
8.1 would follow from Conjecture 5.7 and Conjecture 8.8. In the next section we prove
these three conjectures in the special case n = 3.

As we remarked earlier, Santos [19] recently gave an example of an acyclic system
of permutations on the edges of 5�3 which does not extend to a mixed subdivision. This
is a counterexample to the Acyclic System Conjecture 5.7. By Theorem 8.5, Santos’s
example gives a 5 spread out simplices in 5�3, which would be a good candidate for
a counterexample of the Spread Out Simplices Conjecture 8.1. However, as Santos
remarks, these 5 spread out simplices can be extended to a mixed subdivision of 5�3.
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Fig. 22 Combinatorial types of the positions of any three spread out simplices in 3�d−1, and (non-unique)
dual acyclic systems which generate such positions

The Spread Out Simplices Conjecture 8.1 (and its Weak version, Conjecture 8.8)
remain open.

8.3 The Spread Out Simplices Theorem for Simplices of Size Three

Theorem 8.9 (Acyclic System Conjecture 5.7 for n = 3) Every acyclic system of
permutations on 3�d−1 is achievable as the system of permutations of a fine mixed
subdivision.

Proof Let σ be an acyclic system of 3�d−1 and σ ∗ be the dual system of d�2. By
Theorem 4.2 there exists a subdivision S∗ of d�2 whose system of permutations is
equal to σ ∗. The system of permutations of the dual subdivision S = (S∗)∗ of 3�d−1
is σ . ��
Theorem 8.10 (Weak Spread Out Simplices Conjecture 8.8 for n = 3) Any three
spread out simplices in 3�d−1 are achievable as the simplices of an acyclic system of
permutations.

Proof The position of a simplex of an acyclic system of permutations of 3�d−1
corresponds to a Minkowski sum of the form w1 . . . wd + wa1 + wa2 . We identify
the position of such a simplex with the pair of letters wa1wa2 . For simplicity, we
denote the letters w1, . . . , wd by by A, B, . . . , H . Figure 22 lists all the possible
(combinatorial types of) triples of pairs of letters which correspond to positions of
spread out simplices. (For instance AB, AC, AD is missing because these would
correspond to three simplices in a simplex of size 2.)

By duality and Remark 8.3, we will be done if, for each such triple, we can build a
dual acyclic system σ ∗ of d�2 such that these are the pairs of labels adjacent to each
of the three vertices of d�2. This is also done in Fig. 22. The duals to those acyclic
systems give rise to the desired simplex positions. ��
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Theorem 8.11 (Spread Out Simplices Conjecture 8.1 for n = 3) Three simplices in
3�d−1 can be extended to a fine mixed subdivision if and only if they are spread out.

Proof This result is a consequence of the previous two theorems. ��
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