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Abstract It is shown that every complete n-vertex simple topological graph has at
Ω(n1/3) pairwise disjoint edges, and these edges can be found in polynomial time.
This proves a conjecture of Pach and Tóth, which appears as Problem 5 from Chapter
9.5 in Research Problems in Discrete Geometry by Brass, Moser, and Pach.
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1 Introduction

Given a collection of objects C in the plane, the intersection graph G(C) has vertex
set C and two objects are adjacent if and only if they have a nonempty intersection.
The independence number of G(C) is the size of the largest independent set, that is,
the size of the largest subfamily of pairwise disjoint objects in C. It is known that
computing the independence number of an intersection graph is NP-hard [12], even
for very simple objects such as rectangles and disks in the plane [3,11]. However,
due to its applications in VLSI design [13], map labeling [1], and elsewhere, a lot
of research has been devoted to developing polynomial-time approximation schemes
(PTAS) for computing the independence number of intersection graphs (see [9] for
more references). In this paper, we study the independence number of the intersection
graph of edges in a complete simple topological graph.

A topological graph is a graph drawn in the plane such that its vertices are repre-
sented by points, and its edges are represented by non-self-intersecting arcs connecting
the corresponding points. The arcs are allowed to intersect, but they may not inter-
sect vertices except for their endpoints. Furthermore, no three edges have a common
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interior point and no two edges are tangent, i.e., if two edges share an interior point,
then they must properly cross at that point in common. A topological graph is simple if
every pair of its edges intersect at most once. Two edges of a topological graph cross if
their interiors share a point, and are disjoint if they neither share a common vertex nor
cross. If the edges are drawn as straight-line segments, then the graph is geometric.

Let F denote the graph obtained from the complete graph on five vertices by sub-
dividing each edge with an extra vertex. It is easy to see that every intersection graph
G of curves in the plane does not contain F as an induced subgraph [6]. By apply-
ing a theorem of Erdős and Hajnal [7], every complete n-vertex simple topological
graph contains eΩ(

√
log n) edges that are either pairwise disjoint or pairwise crossing.

However, it was suspected [16] that this bound is far from optimal. Fox and Pach [8]
showed that there exists a constant δ > 0, such that every complete n-vertex simple
topological graph contains Ω(nδ) pairwise crossing edges. However, much weaker
bounds were previously known for pairwise disjoint edges.

In 2003, Pach et al. [16] showed that every complete n-vertex simple topological
graph has at least Ω(log1/6 n) pairwise disjoint edges. This lower bound was later
improved by Pach and Tóth [17] to Ω(log n/ log log n). Recently, Fox and Sudakov
[10] gave a modest improvement of Ω(log1+ε n), where ε is a very small constant.
We note that the previous two bounds hold for dense simple topological graphs. Pach
and Tóth conjectured (see Problem 5 of Chapter 9.5 in [4]) that there exists a constant
δ > 0 such that every complete n-vertex simple topological graph has at least Ω(nδ)

pairwise disjoint edges. Our main result settles the conjecture in the affirmative.

Theorem 1.1 Every complete n-vertex simple topological graph contains Ω(n1/3)

pairwise disjoint edges.

Note that Theorem 1.1 does not remain true if the simple condition is dropped.
Indeed, in [17], Pach and Tóth gave a construction of a complete n-vertex topological
graph such that every pair of edges intersect exactly once or twice.

2 The Dual Shatter Function

In this section, we will recall one of the most useful parameters measuring the com-
plexity of a set system: the dual shatter function. All of the following concepts and
results can be found in Chapter 5 of [14]. Let (X,S) be a set system with ground set
X , such that X is finite.

Definition 2.1 The dual shatter function of (X,S) is a function, denoted by π∗
S , whose

value at m is defined as the maximum number of equivalence classes on X defined
by an m-element subfamily Y ⊂ S, where two points x, y ∈ X are equivalent with
respect to Y if x belongs to the same sets of Y as y does. In other words, π∗

S(m) is the
maximum number of nonempty cells in the Venn diagram of m sets of S.

One of the main tools used to prove Theorem 1.1 is the following result of Chazelle
and Welzl on matchings with low stabbing number. A similar approach was done
by Pach in [15], who showed that every n-vertex complete geometric graph contains
Ω(n1/2) pairwise parallel edges, where two edges are parallel if they are the opposite
sides of a convex quadrilateral.
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Given a set system (X,S) and a graph G = (X, E), we say that a set S ∈ S stabs
edge uv ∈ E(G) if |S ∩ {u, v}| = 1. The stabbing number of G with respect to the
set S is the number of edges of G stabbed by S, and the stabbing number of G is the
maximum of stabbing numbers of G with respect to all sets of S.

Lemma 2.2 ([5]) Let n be an even integer, and S be a set system on an n-point set X
with π∗

S(m) ≤ Cmd for all m, where C and d are constants. Then there exists a perfect
matching M on X (i.e. a set of n/2 vertex disjoint edges) whose stabbing number is
at most C1n1−1/d , where C1 is a constant that depends only on C and d.

We will also need the following two lemmas on the dual shatter function of a set
system.

Lemma 2.3 Let S1,S2 be set systems on a set X and let S = S1 ∪ S2. Then π
∗(m)

S ≤
π

∗(m)

S1
π

∗(m)

S2
.

Proof Suppose that π∗
S(m) is maximized for some m1 sets in S1 and m2 sets in S2

where m1 + m2 = m. Then the number of nonempty cells in the Venn diagram of
these m sets is at most

π∗
S1

(m1)π
∗
S2

(m2) ≤ π∗
S1

(m)π∗
S2

(m). 	


Lemma 2.4 Let �(X1, X2, . . ., Xt ) be a fixed set-theoretic expression (using the
operations of union, intersection, and difference) with variables X1, . . ., Xt standing
for sets. Let S be a set system on a set X. Let T consist of all sets �(S1, . . ., St ) for all
possible choices S1, . . ., St ∈ S. If π∗

S(m) ≤ Cmd for every m, then π∗
T (m) ≤ Ctdmd.

Proof Each set in T is a disjoint union of some cells of the Venn diagram of some t
sets in S. Therefore, given any m sets in T , each cell in the Venn diagram of these
m sets is a disjoint union of some cells in the Venn diagram of at most tm sets of S.
Hence

π∗
T (m) ≤ π∗

S(tm) ≤ Ctdmd . 	


3 Proof of Theorem 1.1

Let K = (V, E) be a complete simple topological graph with n + 1 vertices. Without
loss of generality, we can assume n is even. Notice that the edges of K divide the plane
into several cells (regions), one of which is unbounded. We can assume that there is
a vertex v0 ∈ V such that v0 lies on the boundary of the unbounded cell. Indeed, we
can otherwise project K onto a sphere, choose an arbitrary vertex v0, and then project
K back to the plane such that v0 lies on the boundary of the unbounded cell, and
moreover two edges cross (are disjoint) in the new drawing if and only if they crossed
(were disjoint) in the original drawing.

Given a subset V ′ ⊂ V , we denote by K [V ′] the topological subgraph induced by
the vertex set V ′. Since we will be dealing with both combinatorial and topological
graphs, the term edge will refer to an edge in a combinatorial graph and will be
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denoted by pairs of vertices viv j . The term topological edge will refer to edges in the
topological graph K , and will be denoted by K [vi , v j ] (i.e. the topological subgraph
induced by vertices vi and v j ).

Consider the topological edges emanating out from v0, and label their endpoints
v1, . . ., vn in counterclockwise order so that for i < j , the vertices (v0, vi , v j ) appear
in counterclockwise order along the simple closed curve K [v0, vi , v j ]. This is possible
since v0 lies on the unbounded cell and these three edges do not cross. For all pairs
i, j , we will call the topological subgraph K [v0, vi , v j ] a triangle in K . Note that each
“triangle” is incident to v0, and is a simple closed curve since K is simple.

Set X = {v1, . . ., vn}, and now we will define the set system (S1, X) as follows.
For each pair i, j that satisfies 1 ≤ i < j ≤ n, we define the set Si, j to be the set of
vertices in X that lie in the interior of triangle K [v0, vi , v j ]. See Fig. 1(a) for a small
example. Then set

S1 =
⋃

1≤i< j≤n

{
Si, j

}
.

Lemma 3.1 Let (S1, X) be the set system defined as above. Then π∗
S1

(m) ≤ 5m2.

Proof In order to obtain an upper bound on π∗
S1

(m), we simply need to bound the
maximum number of regions for which m triangles in K partitions the plane into. We
proceed by induction on m. The base case when m = 1 is trivial. Now assume that
the statement holds up to m − 1. Notice that any set of m − 1 triangles consists of at
most 3(m − 1) topological edges of K . Therefore, when we add the mth triangle T ,
each topological edge in T creates at most 3(m − 1) new crossing points (since K is
simple). Hence triangle T creates at most 9(m − 1) new regions in the arrangement.
By the induction hypothesis, we have at most

5(m − 1)2 + 9(m − 1) ≤ 5m2

cells created by the m triangles. 	

Now we define the set system (S2, X) as follows. For each pair i, j that satisfies

1 ≤ i < j ≤ n, we define the set S′
i, j = {vk ∈ X : K [v0, vk]crossesK [vi , v j ]}. See

Fig. 1(b) for a small example. Then set

S2 =
⋃

1≤i< j≤n

{
S′

i, j

}
.

Lemma 3.2 Let S = S1 ∪ S2 where S1,S2 are defined as above. Then π∗
S(m) ≤

120m3.

Proof Let i, j be fixed such that i < j . Notice that if k is an integer that satisfies
k < i or k > j , then vk ∈ S′

i, j ∈ S2 if and only if vk ∈ Si, j ∈ S1. Moreover, if k is
an integer that satisfies i < k < j , then vk ∈ S′

i, j ∈ S2 if and only if vk �∈ Si, j ∈ S1.
In what follows, we will apply Lemmas 2.3 and 2.4 in order to obtain the set system
S = S1 ∪ S2. This will ensure that the dual shatter function π∗

S is well behaved.
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(a) (b)
Fig. 1 Sets S3,6 ∈ S1 and S′

3,6 ∈ S2

Let (I, X) be a set system such that

I =
⋃

1≤i< j≤n

{
Ii j

}
,

where Ii j = {vk : i < k < j}. It is easy to see that π∗
I(m) ≤ 2m + 1 ≤ 3m, since

this is equivalent to determining the number of cells created by m intervals on the real
line. Let T1 be the set system defined as T1 = S1 ∪ I ∪ {∅}. By Lemmas 2.3 and 3.1,
we have π∗

T1
(m) ≤ 15m3. Notice that each set S′

i j ∈ S2 can be expressed as

S′
i j = (Si j \ Ii j ) ∪ (Ii j \ Si j ),

where Si j ∈ S1 and Ii j ∈ I are defined above. Therefore, let �(X1, X2) be the
set-theoretic expression defined as

�(X1, X2) = (X1 \ X2) ∪ (X2 \ X1),

and let T2 consist of all sets �(X1, X2) for all possible choices X1, X2 ∈ T1. Hence
S = S1 ∪ S2 ⊂ T2. By Lemma 2.4, we have

π∗
S(m) ≤ π∗

T2
(m) ≤ π∗

T1
(2m) ≤ 15(2m)3 = 120m3. 	


By setting S = S1 ∪ S2, we know that π∗
S(m) ≤ 120m3. Therefore we can apply

Lemma 2.2 to (S, X) and find a perfect matching M on X of which stabbing number
is at most Cn2/3, where C is an absolute constant. In other words, each set in S ∈ S
stabs at most Cn2/3 members in M .

Now let G = (V, E) be an (n/2)-vertex graph, where V (G) = M , and two vertices
viv j , vkvl in G (edges in M) are adjacent if and only if

1. Si, j ∈ S1 stabs vkvl , or
2. S′

i, j ∈ S2 stabs vkvl , or
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Fig. 2 Cases 1 and 2

3. Sk,l ∈ S1 stabs viv j , or
4. S′

k,l ∈ S2 stabs viv j .

As M has a stabbing number at most Cn2/3, the two sets corresponding to each
vertex in G stab (in total) at most 2 · Cn2/3 other edges in M . A simple counting
argument shows that G contains at most Cn5/3 edges. Therefore, we can use the
following well-known theorem of Turán to find a large independent set in M .

Theorem 3.3 Every graph with n vertices and e edges contains an independent set
of size at least n2/(2e + n).

In particular, the graph G defined above contains an independent set of size Ω(n1/3).
Let M ′ ⊂ M be the edges corresponding to this independent set of size Ω(n1/3). Now
we claim that the corresponding topological edges in K are pairwise disjoint. Indeed,
let e1, e2 ∈ M ′ be such that e1 = viv j and e2 = vkvl . As the set Si, j ∈ S1 does not
stab vkvl , both vertices vk, vl must either lie inside or outside of triangle K [v0, vi , v j ].
See Fig. 2.

Case 1. Suppose that vk, vl lie outside of triangle K [v0, vi , v j ]. For the sake of
contradiction, suppose that the topological edges K [vi , v j ] and K [vk, vl ] cross. By
a simple parity argument, K [vk, vl ] must cross either K [v0, vi ] or K [v0, v j ], but not
both. However, this implies that the set S′

k,l ∈ S2 stabs viv j which is a contradiction.
Therefore, K [vi , v j ] and K [vk, vl ] must be disjoint.

Case 2. If vk, vl lie inside of triangle K [v0, vi , v j ], then by the same parity argument
as above, K [vi , v j ] and K [vk, vl ] must be disjoint.

4 Concluding Remarks

1. Remarks on algorithms. As the matching in Lemma 2.2 and the independent set
in Theorem 3.3 can be found in polynomial time (see [2] and [5]), the proof above
gives a polynomial time algorithm for finding Ω(n1/3) pairwise disjoint edges in
a complete n-vertex simple topological graph.

2. We proved that every complete n-vertex simple topological graph has at least
Ω(n1/3) pairwise disjoint edges. It would be interesting to see if a polynomial
bound holds for dense simple topological graphs.

3. We proved that the dual shatter function π∗
F (m) = O(m3). Recently Tóth [18]

gave a construction showing that this bound is tight.
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4. To our knowledge, there are no constructions of a complete n-vertex simple topo-
logical graph with sublinear number of pairwise disjoint edges. However, let us
remark that Valtr [4] gave a construction of a complete n-vertex simple topological
graph, such that every edge crosses at least Ω(n3/2) other edges.
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