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Abstract Motivated by an open problem from graph drawing, we study several par-
titioning problems for line and hyperplane arrangements. We prove a ham-sandwich
cut theorem: given two sets of n lines in R

2, there is a line � such that in both line
sets, for both halfplanes delimited by �, there are

√
n lines which pairwise intersect

in that halfplane, and this bound is tight; a centerpoint theorem: for any set of n lines
there is a point such that for any halfplane containing that point there are

√
n/3 of

the lines which pairwise intersect in that halfplane. We generalize those results in
higher dimension and obtain a center transversal theorem, a same-type lemma, and a
positive portion Erdős–Szekeres theorem for hyperplane arrangements. This is done
by formulating a generalization of the center transversal theorem which applies to set
functions that are much more general than measures. Back to graph drawing (and in
the plane), we completely solve the open problem that motivated our search: there
is no set of n labeled lines that are universal for all n-vertex labeled planar graphs.
In contrast, the main result by Pach and Toth (J. Graph Theory 46(1):39–47, 2004),
has, as an easy consequence, that every set of n (unlabeled) lines is universal for all
n-vertex (unlabeled) planar graphs.

The preliminar version of this paper has appeared in the Proceedings of the 27th Annual ACM
Symposium on Computational Geometry, SoCG, 2011.
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1 Introduction

Consider a mapping of the vertices of a graph to distinct points in the plane and
represent each edge by the closed line segment between its endpoints. Such a graph
representation is a (straight-line) drawing if the only vertices that each edge intersects
are its own endpoints. A crossing in a drawing is a pair of edges that intersect at some
point other than a common endpoint. A drawing is crossing-free if it has no crossings.

One main focus in graph drawing is finding methods to produce drawings or
crossing-free drawings for a given graph with various restrictions on the position
of the vertices of the graph in the plane. For instance, there is plethora of work where
vertices are required to be placed on integer grid points or on parallel lines in two or
three dimensions.

Given a set R of n regions in the plane and an n-vertex graph G, consider a class
of graph drawing problems where G needs to be drawn crossing-free by placing each
vertex of G in one region of R. If such a drawing exists, then R is said to support G.
The problems studied in the literature distinguish between two scenarios: in one, each
vertex of the graph is prescribed its specific region (that is, the vertices and the regions
are labeled); in the other, each vertex is free to be assigned to any of the n regions
(that is, the vertices are unlabeled).

When regions are points in the plane, Rosenstiehl and Tarjan [19] asked if there
exists a set of n points that support all n-vertex unlabeled planar graphs. This ques-
tion is answered in the negative by De Fraysseix [8, 9]. On the contrary, every set
of n points in general position supports all n-vertex unlabeled outerplanar graphs,
as proved by Gritzmann et al. [13] and recapitulated in Lemma 14.7 in the text by
Agarwal and Pach [1]. If the drawings are not restricted to be straight-line, then every
set of labeled points supports every labeled planar graph, as shown by [18]. However,
Ω(n) bends per edge may be necessary in any such crossing-free drawing.

When regions are labeled lines in the plane, Estrella-Balderrama et al. [11] showed
that for every n ≥ 6, there is no set of n parallel lines in the plane that support all
labeled n-vertex planar graphs. The authors moreover characterized a (sub)class of
n-vertex planar graphs that are supported by every set of n-parallel lines, for every
labeling of the graphs in the class. That class is mainly comprised of several special
families of trees. Dujmović et al. [7] showed that no set of n lines that all intersect in
one common point supports all n-vertex labeled planar graphs. Moreover, they show
that for every n large enough, there is a set of n lines in general position that does not
support all labeled n-vertex planar graphs. They leave as the main open problem the
question of whether, for every n large enough, there exists a universal set of n lines
in the plane, that is, one that supports all labeled n-vertex planar graphs. In Sect. 5,
as our main graph drawing result, we answer that question in the negative. The main
result by Pach and Toth [17] on monotone drawings, has, as an easy consequence, that
in the unlabeled case, every set of n-lines supports every n-vertex unlabeled planar
graph. As a side note, we give an alternative and direct proof of that fact. The result
illustrates the sharp contrast with the labeled case.

While the positive result is proved using little of the geometry in the arrangement,
the non-existence of universal line sets required extraction of some (bad) substruc-
ture from any line arrangement. This prompted us to study several structural and
partitioning problems for line and hyperplane arrangements.
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Hyperplane Arrangements Partitioning problems are central to our understanding
of discrete and computational geometry, and while much work has focused on parti-
tioning point sets, probability distributions or measures, much less is understood for
sets of lines in R

2 or hyperplanes in R
d . This is partially due to the fact that a line

(or a hyperplane), being infinite, cannot be contained in any bounded region, or even
in a halfplane (except if the boundary of the halfplane is parallel to the given line).
Previous work (such as cuttings [5, 15] or equipartitions [14]) has focused on iden-
tifying and bounding the number of lines/hyperplanes intersecting a set of regions.
Other work [6] focused on partitioning the vertices of the arrangements rather than
the lines themselves. Those results have found numerous applications. Our graph
drawing problem motivates a different approach.

An arrangement L of n lines in R
2 is composed of vertices V (L) (all pairwise

intersections between lines of L), edges connecting these vertices, and half-lines.
If we omit the half-lines, we are left with a finite graph which can be contained
in a bounded region of the plane, in particular, it is contained in the convex hull
CH(V (L)) of the vertices of the arrangement. Therefore, a natural way of evaluating
the portion of an arrangement contained in a given convex region C is to find the
largest subset L′ of lines of L such that the arrangement of L′ (without the half-lines)
is contained in C, or equivalently, such that all pairwise intersections of lines in L′
lie in C.

It is not hard to show that, in any arrangement of n lines, a line � can be found such
that for both closed halfplanes bounded by � there are at least

√
n lines which pairwise

intersect in that halfplane. This provides the analogue of a bisecting line for point sets.
In Sect. 3.1, we show that any two line arrangements can be bisected simultaneously
in this manner, thus proving a ham-sandwich theorem for line arrangements. We also
prove a centerpoint theorem: for any arrangement of n lines, there is a point q such
that for any halfplane containing q , there are at least

√
n/3 lines of the arrangement

that pairwise intersect in that halfplane. In Sect. 3.2 we generalize these notions to
higher dimensions and prove a center transversal theorem: for any k and d , there is a
growing function Q such that for any k sets A1, . . . ,Ak of hyperplanes in R

d , there
is a (k − 1)-flat π such that for any halfspace h containing π there is a subset A′

i of
Q(|Ai |) hyperplanes from each set Ai such that any d hyperplanes of A′

i intersect
in h. The bound Q we find is related to Ramsey numbers for hypergraphs.

Ham-sandwich theorems have a number of natural consequences. In Sect. 2 we
show a same-type lemma for hyperplane arrangements: informally, for any k arrange-
ments A1, . . . ,Ak of hyperplanes in general position (no d +1 share a point) and that
are large enough, we can find a large subset of hyperplanes A′

i from each set Ai

such that the convex hulls CH(A′
i ) of the vertices in the arrangements A′

i are well-
separated, that is, no hyperplane hits d + 1 of them. In the plane, we also show a
positive portion Erdős–Szekeres theorem: for any integers k and c there is an integer
N such that any set of N lines in general position contains k subsets A1, . . . ,Ak of c

lines each such that the vertices of each arrangement Ai can be separated from those
of all the others by a line.

All the results above would be relatively easy to prove if the set function we were
computing—the maximum subset of hyperplanes that have all d-wise intersections
in a given region—was a measure. Unfortunately it is not. However, in Sect. 2, we
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identify basic properties much weaker than those of measures which, if satisfied by a
set function, guarantee a central-transversal theorem to be true.

2 Center Transversal Theorem

The center transversal theorem is a generalization of both the ham-sandwich cut theo-
rem and the centerpoint theorem discovered independently by Dol’nikov [10], and Ži-
valjević and Vrećica [21]. The version of Dol’nikov is defined for a class of set func-
tions that is more general than measures. Let H be the set of all open halfspaces in R

d

and let G be a family of subsets of R
d closed under union operations and that contains

H. A charge μ is a finite set function that is defined for all set X ∈ G , and that is mono-
tone (μ(X) ≤ μ(Y ) whenever X ⊆ Y ) and subadditive (μ(X ∪ Y) ≤ μ(X) + μ(Y )).
A charge μ is concentrated on a set X if for every halfspace h ∈ H s.t. h ∩ X = ∅,
μ(h) = 0. Dol’nikov shows1:

Theorem 1 (Center transversal theorem [10]) For arbitrary k charges μi , i =
1, . . . , k, defined on G and concentrated on bounded sets, there exists a (k − 1)-flat
π such that

μi(h) ≥ μi(R
d)

d − k + 2
, i = 1, . . . , k,

for every open halfspace h ∈ H containing π .

A careful reading of the proof of this theorem reveals that its statement can be
generalized, and the assumptions on μi weakened. We first notice that the subadditive
property is only used in the proof for taking the union of a finite number of halfspaces
from H. Therefore, define μ to be H-subadditive if

μ

( ⋃
h∈H

)
≤

∑
h∈H

μ(h)

for any finite set H ⊂ H of halfspaces.
Next, notice that in order for the proof to go through, the set function μ need

not be real-valued. Recall [4] that a totally ordered unital magma (M,⊕,≤, e) is a
totally ordered set M endowed with a binary operator ⊕ such that M is closed under
⊕ operations, ⊕ has neutral element e (i.e., x ⊕ e = x = e ⊕x) and is monotone (i.e.,
a ⊕ c ≤ b ⊕ c and c ⊕ a ≤ c ⊕ b whenever a ≤ b). Further, for all x ∈ M and c ∈ N,
define the cth multiple of x as cx := ⊕c

x := x ⊕ (x ⊕ (. . . ⊕ x) . . .)︸ ︷︷ ︸
c times

.

Then, it suffices that μ take values over M , and use e as the 0 used in the definition
of a concentrated set function above. It is then the addition operator ⊕ which is to be
used in the definition of the subadditive (or H-subadditive) property and in the proof

1Dol’nikov actually shows a slightly more general theorem that allows for non-concentrated charges. For
the sake of simplicity we only discuss the simplified version even though our generalizations extend to the
stronger original result.
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of the theorem. Thus, just by reading the proof of Dol’nikov under this new light we
have:

Theorem 2 Let μi , i = 1, . . . , k be k set functions defined on G and taking values
in a totally ordered unital magma (M,⊕,≤, e). If the functions μi are monotone
H-subadditive and concentrated on bounded sets, there exists a (k − 1)-flat π such
that

(d − k + 2)μi(h) ≥ μi

(
R

d
)
, i = 1, . . . , k,

for every open halfspace h ∈ H containing π .

3 Center Transversal Theorem for Arrangements

Let A be an arrangement of n hyperplanes in R
d . We write V (A) for the set of all ver-

tices (intersection points between any d hyperplanes) of A and CH(A) = CH(V (A))

for the convex hull of those points. In the arguments that follow, by abuse of lan-
guage, we will write A and mean V (A) or CH(A). For example, we say that the
arrangement A is above hyperplane h when all points in V (A) are above h. More
generally for a region Q in R

d , we say that the arrangement A does not intersect Q

if CH(A) does not intersect Q. We say that the k arrangements A1,A2, . . . ,Ak are
disjoint if their convex hulls do not intersect. They are separable if they are disjoint
and no hyperplane intersects d + 1 of them simultaneously.

Let H be the set of all open halfspaces in R
d and let G be a family of subsets of

R
d closed under union operations and that contains H. For any set S ∈ G , let μA(S)

be the maximum number of hyperplanes of A that have all their vertices inside of S,
that is,

μA(S) = max
A′⊆A,V (A′)⊆S

∣∣A′∣∣.
In particular, μA(Rd) = μA(CH(A)) = n and μA(∅) = d − 1.

3.1 Lines in R
2

We start with the planar case. Thus, A is a set of lines in R
2, and H is the set of all

open halfplanes. Recall the Erdős–Szekeres theorem [12].

Theorem 3 (Erdős–Szekeres) For all integers r , s, any sequence of n >

(r − 1)(s − 1) numbers contains either a non-increasing subsequence of length r

or an increasing subsequence of length s.

We show:

Lemma 4 For any two sets S1 ∈ H and S2 ∈ G ,

μA(S1 ∪ S2) ≤ μA(S1)μA(S2).
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Proof Let � be a line defining two open halfplanes �+ and �− such that S1 = �− and
let S′

2 = S2 \ �−. Rotate and translate the plane so that � is the (vertical) y axis, and
�+ contains all points with positive x coordinate. Let A′ be a maximum cardinality
subset of A such that V (A′) ⊆ S1 ∪ S2. Let l1, . . . , l|A′| be the lines in A′ ordered by
increasing order of their slopes, and let Y = (y1, . . . , y|A′|) be the y coordinates of the
intersections of the lines li with line �, in the same order. For any set A1 ⊆ A′ such
that the yi values of the lines in A1 form an increasing subsequence in Y , notice that
V (A1) ⊆ S1. Likewise, for any set A2 ⊆ A′ that forms a non-increasing subsequence
in Y , we have V (A2) ⊆ S′

2. Any such set A1 is of size |A1| ≤ μA(S1) and any such
set A2 is of size |A2| ≤ μA(S′

2) ≤ μA(S2).
Therefore, Y has no non-decreasing subsequence of length μA(S1)+1 and no non-

increasing subsequence of length μA(S2) + 1, and so by Theorem 3, μA(S1 ∪ S2) =
|A′| = |Y | ≤ μA(S1)μA(S2). �

Corollary 5 The set function μA takes values in the totally ordered unital magma
(R+

0 , ·,≤,1); it is monotone and H-subadditive.

We thus apply the generalized center transversal theorem with k = 2 to obtain a
ham-sandwich cut theorem:

Theorem 6 For any arrangements A1 and A2 of lines in R
2, there exist a line �

bounding closed halfplanes �+ and �− and sets Aσ
i , i ∈ 1,2, σ ∈ +,− such that

Aσ
i ⊆ Ai, |Aσ

i | ≥ |Ai |1/2, and V (Aσ
i ) ∈ �σ .

Note that this statement is similar to the result of Aronov et al. [2] on mutually
avoiding sets. Specifically, two sets A and B of points in the plane are mutually
avoiding if no line through a pair of points in A intersects the convex hull of B ,
and vice versa. Note that, on the other hand, our notion of separability for lines is
equivalent to the following definition in the dual. Two sets A and B of points in the
plane are separable if there exists a point x such that all the lines through pairs of
points in A are above x and all the lines through pairs of points in B are below x or
vice versa. Aronov et al. show in Theorem 1 of [2] that any two sets A1 and A2 of
points contains two subsets A′

i ⊆ Ai , |A′
i | ≥ |Ai/12|1/2, i ∈ {1,2} that are mutually

avoiding. That this bound is tight, up to a constant, was proved by Valtr [20]. In the
dual, Theorem 6 states that for any two sets A1 and A2 of points in R

2, there exist
a point � and sets Aσ

i , i ∈ 1,2, σ ∈ +,− such that Aσ
i ⊆ Ai, |Aσ

i | ≥ |Ai |1/2, and all
lines through pairs of points in A+

i are above � and all lines through pairs of points in
A−

i are below �. While similar, neither the two results nor the two notions of mutually
avoiding and separable are equivalent. It is not difficult to show that no result/notion
immediately implies the other. Moreover, neither our proof of Theorem 6 nor the
proof of Theorem 1 in [2] give two sets that are, at the same time, mutually avoiding
and separable.

Note that the bound in Theorem 6 is tight: assume n is the square of an integer.
Construct the first line arrangement A1 with

√
n pencils of

√
n lines each, centered

at points with coordinates (−1/2, i) for i = 1, . . . ,
√

n, and the slopes of the lines in
pencil i are distinct values in [1/2 − (i − 1)/

√
n,1/2 − i/

√
n]. Thus all intersections
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other than the pencil centers have x coordinates greater than 1/2. The line x = 0
delimits two halfplanes in which μA1(x ≤ 0) = √

n since any set of more than
√

n

lines have lines from different pencils which intersect on the right of x = 0, and
μA1(x ≥ 0) = √

n since any set of more than
√

n lines has two lines in the same
pencil which intersect left of x = 0. Since μA1 is monotone, no vertical line can
improve this bound on both sides. Perturb the lines so that no two intersection points
have the same x coordinate. For A2, build a copy of A1 translated down, far enough so
that no line through two vertices of A1 intersects CH(A2) and conversely. Therefore
any line not combinatorially equivalent to a vertical line (with respect to the vertices
of A1 and A2) does not intersect one of the arrangements and so there is no better cut
than x = 0.

Applying the generalized center transversal theorem with k = 1 gives a centerpoint
theorem with a bound of |A|1/3. A slightly more careful analysis improves that bound.

Theorem 7 For any arrangement A of lines in R
2, there exists a point q such that

for every halfplane h containing q there is a set A′ ⊆ A, |A′| ≥ √|A|/3, such that
V (A′) ∈ h.

Proof Let H be the set of halfplanes h such that μA(h) < z = √|A|/3. The halfspace
depth δ(q) is the minimum value of μA(h) for any halfspace containing q . Therefore,
the region of depth ≥ z is the intersection of the complements h of the halfplanes
h ∈ H . If there is no point of depth ≥ z then the intersection of the complements of
halfplanes in H is empty, and so (by Helly’s Theorem) there must be three halfplanes
h1, h2, and h3 in H such that the intersection of their complements h1 ∩ h2 ∩ h3 is
empty. But then, there is at least one point q ∈ h1 ∩ h2 ∩ h3. Let h′

i be the translated
halfplanes hi with point q on the boundary. Since h′

i ⊆ hi , μA(h′
i ) ≤ μA(hi) < z.

The point q and the three halfplanes through it are witness that there is no point of
depth ≥ z.

The three lines bounding those three halfplanes divide the plane into 6 regions.
Every line misses one of the three regions h′

1 ∩h′
2 ∩h′

3, h′
1 ∩h′

2 ∩h′
3, and h′

1 ∩h′
2 ∩h′

3.
Classify the lines in A depending on the first region it misses, clockwise. The largest
class A′ contains ≥ |A|/3 lines. Assume without loss of generality that all lines in
A′ miss h′

1 ∩ h′
2 ∩ h′

3, then all intersections between lines of A′ are in h′
2 ∪ h′

3. By
Lemma 4,

|A|/3 ≤ ∣∣A′∣∣ = μA′
(
h′

2 ∪ h′
3

) ≤ μA′
(
h′

2

)
μA′

(
h′

3

)
< z2 = |A|/3,

a contradiction. �

3.2 Hyperplanes in R
d

We first briefly review a bichromatic version of Ramsey’s theorem for hypergraphs.

Theorem 8 For all p,a, b ∈ N, there is a natural number R = Rp(a, b) such that for
any set S of size R and any 2-colouring c : (S

p

) → {1,2} of all subsets of S of size p,

there is either a set A of size a such that all p-tuples in
(
A
p

)
have colour 1 or a set B

of size b such that all p-tuples in
(
B
p

)
have colour 2.



Discrete Comput Geom (2013) 49:74–88 81

Lemma 9 For any two sets S1 ∈ H and S2 ∈ G ,

μA(S1 ∪ S2) ≤ Rd

(
μA(S1) + 1,μA(S2) + 1

) − 1.

Proof Let h be a hyperplane defining two open halfplanes h+ and h− such that S1 =
h− and let S′

2 = S2 \ h−. Let A′ be a maximum cardinality subset of A such that
V (A) ⊆ S1 ∪ S2. Colour every subset of d hyperplanes in A′ with colour 1 if their
intersection point is in h− and with colour 2 otherwise.

For any set A1 ⊆ A′ such that all subsets in
(
A1
d

)
have colour 1, notice that

V (A1) ⊆ S1. Likewise, for any set A2 ⊆ A′ such that all subsets in
(
A2
d

)
have colour

2, we have V (A2) ⊆ S′
2. Any such set A1 is of size |A1| ≤ μA(S1) and any such set

A2 is of size |A2| ≤ μA(S′
2) ≤ μA(S2).

Therefore, A′ has no subset of size μA(S1) + 1 that has all d-tuples of colour 1,
and no subset of size μA(S2)+1 that has all d-tuples of colour 2, and so by Ramsey’s
Theorem, μA(S1 ∪ S2) = |A′| ≤ Rd(μA(S1) + 1,μA(S2) + 1) − 1. �

Define the operator ⊕ as a ⊕ b = Rd(a + 1, b + 1)− 1. The operator is increasing
and closed on the set N≥d−1 of naturals ≥ d −1. Since Rd(d, x) = x for all x, d −1 is
a neutral element. Therefore (N≥d−1,⊕,≤, d − 1) is a totally ordered unital magma.
Thus we have:

Corollary 10 The set function μA takes values in the totally ordered unital magma
(N≥d−1,⊕,≤, d − 1); it is monotone and H-subadditive.

Apply now the generalized center transversal theorem to obtain:

Theorem 11 Let A1, . . . ,Ak be k sets of hyperplanes in R
d . There exists a (k − 1)-

flat π such that for every open halfspace h that contains π ,

(d − k + 2)μAi
(h) ≥ |Ai |.

The special case when k = d gives a ham-sandwich cut theorem.

Corollary 12 Let A1, . . . ,Ad be d sets of hyperplanes in R
d . There exist a hy-

perplane π bounding the two closed halfspaces π+ and π− and sets Aσ
i ⊆ Ai ,

σ ∈ {+,−}, such that V (Aσ
i ) ⊆ πσ and |Aσ

i | ⊕ |Aσ
i | ≥ |Ai |.

If the arrangement A has the property that no r + 1 hyperplanes intersect in a
common point, μA(π) ≤ r for any hyperplane π , and so by Lemma 9, if h is an
open halfspace bounded by π and h̄ = π ∪ h is the corresponding closed halfspace,
μA(h̄) ≤ μA(h) ⊕ r .

Corollary 13 Let A1, . . . ,Ad be d sets of hyperplanes in R
d , no r + 1 of which

intersect in a common point. There exist a hyperplane π bounding the two open
halfspaces π+ and π− and sets Aσ

i ⊆ Ai , σ ∈ {+,−}, such that V (Aσ
i ) ⊆ πσ and

(|Aσ
i | ⊕ |Aσ

i |) ⊕ r ≥ |Ai |.
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4 Same-Type Lemma for Arrangements

Center transversal theorems, and especially the ham-sandwich cut theorem, are basic
tools for proving many facts in discrete geometry. We show here how the same facts
can be shown for hyperplane arrangements in R

d .
A transversal of a collection of sets X1, . . . ,Xm is a m-tuple (x1, . . . , xm) where

xi ∈ Xi . A collection of sets X1, . . . ,Xm has same-type transversals if all of its
transversals have the same order-type.

Note that m ≥ d + 1 sets have same-type transversals if and only if every d + 1 of
them have same-type transversals. There are several equivalent definitions for these
notions.

1. The sets X1, . . . ,Xd+1 have same-type transversals if and only if they are well-
separated, that is, if and only if for all disjoint sets of indices I, J ⊆ {1, . . . , d +1},
there is a hyperplane separating the sets Xi, i ∈ I from the sets Xj , j ∈ J .

2. Connected sets C1, . . . ,Cd+1 have same-type transversals if and only if there is no
hyperplane intersecting simultaneously all Ci . Sets X1, . . . ,Xd+1 have same-type
transversals if and only if there is no hyperplane intersecting simultaneously all
their convex hulls Ci = CH(Xi).

The same-type lemma for point sets states that there is a constant c = c(m,d) such
that for any collection S1, . . . , Sm of finite point sets in R

d , there are sets S′
i ⊆ Si such

that |S′
i | ≥ c|Si | and the sets S′

1, . . . , S
′
m have same-type transversals. We here show

a similar result for hyperplane arrangements.
A function f is growing if for any value y0 there is a x0 such that f (x) ≥ y0 for

any x ≥ x0.

Lemma 14 For any integers d , m, and r , there is a growing function f = fm,d,r such
that for any collection of m hyperplane arrangements A1, . . . ,Am, in R

d , where no
r + 1 hyperplanes intersect at a common point, there are sets A′

i ⊆ Ai such that
|A′

i | ≥ f (|Ai |) and the sets CH(A′
1), . . . ,CH(A′

m) have same-type transversals.

Proof The proof will follow closely the structure of Matoušek [16, Theorem 9.3.1,
p. 217]. First notice that the composition of two growing functions is a growing func-
tion. The proof will show how to choose successive (nested) subsets of each set Ai ,
c times where c = c(m,d) only depends on m and d and where the size of each subset
is some growing function of the previous one.

Also, it will suffice to prove the theorem for m = d + 1, and then apply it repeat-

edly for each d + 1 tuple of sets. The resulting function fm,d,r will be f
( m
d+1)

d+1,d,r , the
repeated composition of fd+1,d,r ,

(
m

d+1

)
times.

So, given d + 1 sets A1, . . . ,Ad+1 of hyperplanes in R
d , suppose that there is

an index set I ⊆ {1, . . . , d + 1} such that
⋃

i∈I CH(Ai) and
⋃

i /∈I CH(Ai) are not
separable by a hyperplane and assume without loss of generality that d + 1 ∈ I . Let
π be the ham-sandwich cut hyperplane for arrangements A1, . . . ,Ad obtained by
applying Corollary 13. Then for each i ∈ [1, d], each of the two open halfspaces πσ ,
σ ∈ {+,−} bounded by π contains a subset Aσ

i ⊆ Ai such that V (Aσ
i ) ⊆ πσ and

(|Aσ
i | ⊕ |Aσ

i |) ⊕ r ≥ |Ai |. Furthermore, because μAd+1(π) ≤ r and by Lemma 9,
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μAd+1

(
π+) ⊕ μAd+1

(
π−) ⊕ r ≥ μAd+1

(
R

d
) = |Ad+1|.

Assume without loss of generality μAd+1(π
+) ≥ μAd+1(π

−). Then μAd+1(π
+) ⊕

μAd+1(π
+) ⊕ r ≥ |Ad+1|. For each i ∈ I , let A′

i = A+
i and for each i /∈ I , let A′

i =
A−

i . Let g(x) = min{y|y ⊕ y ⊕ r ≥ x}. Then g is a growing function, and |A′
i | ≥

g(|Ai |).
In the worst case, we have to shrink the sets for each possible I , 2d times. There-

fore for m = d + 1, the function f in the statement of the theorem is a composition
of g, 2d times, and is a growing function. �

In the plane, the same-type lemma readily gives a positive portion Erdős–Szekeres
Theorem. Recall that the Erdős–Szekeres (happy ending) theorem [12] states that for
any k there is a number ES(k) such that any set of ES(k) points in general position
in R

2 contains a subset of size k which is in convex position.

Theorem 15 For every integers k, r , and c, there is an integer N such that any
arrangement A of N lines, such that no r + 1 lines go through a common point,
contains disjoint subsets A1, . . . ,Ak with |Ai | ≥ c and such that every transversal of
CH(A1), . . . ,CH(Ak) is in convex position.

Proof Let m = ES(k) and let f = fm,2,r be as in Lemma 14. Let N be such that
f (�N/m�) ≥ c. Partition the set A of N lines into m sets A1, . . . ,Am of N/m

lines arbitrarily. Apply Lemma 14 to obtain sets A′
1, . . . ,A

′
m each of size at least c.

Finally, choose one transversal (x1, . . . , xm) from the sets CH(A′
i ) and apply the

Erdős–Szekeres theorem to obtain a subset xi1, . . . , xik of points in convex posi-
tion. Because the sets CH(A′

i ) have the same-type property, every transversal of
CH(A′

i1
), . . . ,CH(A′

ik
) is in convex position. �

5 Graph Drawing

Formally, a vertex labeling of a graph G = (V ,E) is a bijection π : V → [n]. A set
of n lines in the plane labeled from 1 to n supports G with vertex labeling π if there
exists a straight-line crossing-free drawing of G where for each i ∈ [n], the vertex
labeled i in G is mapped to a point on line i. A set L of n lines labeled from 1 to
n supports an n-vertex graph G if for every vertex labeling π of G, L supports G

with vertex labeling π . In this context clearly it only makes sense to talk about planar
graphs. We are interested in the existence of an n-vertex line set that supports all
n-vertex planar graphs, that is, in the existence of a universal set of lines for planar
graphs.

Theorem 16 For some absolute constant c′ and every n ≥ c′, there exists no set of n

lines in the plane that support all n-vertex planar graphs.

The following known result will be used in the proof of this theorem.
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Fig. 1 Illustration for the proof of Theorem 16

Lemma 17 (See [7]) Consider the planar triangulation on six vertices, denoted by
G6, depicted on the bottom of Fig. 1. G6 has vertex labeling π such that the following
holds for every set L of six lines labeled from 1 to 6, no two of which are parallel.
For every straight-line crossing-free drawing, D, of G6 where for each i ∈ [n], the
vertex labeled i in π is mapped to a point on line i in L, there is a point that is in an
interior face of D and in CH(L).

Proof of Theorem 16 Let L be any set of n ≥ c′ = 5N lines, where N is obtained
from Theorem 15 with values k = 6, c = 6, r = 17.

Estrella-Balderrama et al. [11] proved that for every n ≥ 6, no set of n parallel
lines supports all n-vertex planar graphs. Thus if L has at least six lines that are
pairwise parallel, then L cannot support all n-vertex planar graphs.

Dujmović et al. [7] proved that for every n ≥ 18, no set of n lines that all go
through a common point supports all n-vertex planar graphs. Thus if L has at least
18 such lines, then L cannot support all n-vertex planar graphs.

Thus assume that L has no six pairwise parallel lines and no 18 lines that intersect
in one common point. Then L has a subset L′ of c′/5 ≥ N lines no two of which
are parallel and no 18 of which go through one common point. Then Theorem 15
implies that we can find in L′ six sets A1, . . . ,A6 of six lines each, such that the set
{CH(A1), . . . ,CH(A6)} is in convex position. Assume CH(A1), . . . ,CH(A6) appear
in that order around their common “convex hull”.

Consider an n-vertex graph H whose subgraph G is illustrated in Fig. 1. G \ v has
three components, A, B , and C, each of which is a triangulation. Each of the com-
ponents A, B , and C has two vertex disjoint copies of G6 (the 6-vertex triangulation
from Lemma 17). Map the vertices of the first copy of G6 in A to A1 and the second
copy to A4 using the mapping equivalent to π in Lemma 17. Map the vertices of the
first copy of G6 in B to A2 and the second copy to A5 using the mapping equivalent
to π in Lemma 17. Map the vertices of the first copy of G6 in C to A3 and the sec-
ond copy to A6 using the mapping equivalent to π in Lemma 17. Map the remaining
vertices of H arbitrarily to the remaining lines of L.

We now prove that L does not support H with such a mapping. Assume, for the
sake of contradiction, that it does and consider the resulting crossing-free drawing D

of H . In D the drawing of each of A, B , and C has a triangle as an outerface. Let TA,
TB , and TC denote these three triangles together with their interiors in the plane.
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It is simple to verify that in any crossing-free drawing of G at least two of these
triangles are disjoint, meaning that there is no point p in the plane such that p is
in both of these triangles. Assume, without loss of generality, that TA and TB are
disjoint. By Lemma 17, there is a point p1 ∈ CH(A1) such that p1 ∈ TA, and a point
p4 ∈ CH(A4) such that p4 ∈ TA. Thus the segment p1p4 is in TA. Similarly, by
Lemma 17, there is a point p2 ∈ CH(A2) such that p2 ∈ TB , and a point p5 ∈ CH(A5)

such that p5 ∈ TB . Thus the segment p2p5 is in TA.
By Theorem 15 and our ordering of A1, . . . ,A6, p1p4 and p2p5 intersect in some

point p. That implies that p ∈ TA and p ∈ TB . That provides the desired contradic-
tion, since TA and TB are disjoint. �

As a sharp contrast to Theorem 16, the following theorem shows that the situation
is starkly different for unlabeled planar graphs. Namely, every set of n lines supports
all n-vertex unlabeled planar graphs. The proof of this theorem does not use any of
the tools we introduced in the previous section and is in that sense elementary. It
is not difficult to verify that the theorem also follows from the main result in [17]
which states the following: given a drawing of a graph G in the plane where edges
of G are x-monotone curves any pair of which cross even number of times, G can
be redrawn as a straight-line crossing-free drawing where the x-coordinates of the
vertices remain unchanged.

Theorem 18 (See [17]) Given a set L of n lines in the plane, every planar graph has
a straight-line crossing-free drawing where each vertex of G is placed on a distinct
line of L. (In other words, given any set L of lines, labeled from 1 to n, and any n-
vertex planar graph G there is a vertex labeling π of G such that L supports G with
vertex labeling π .)

Proof In this proof we will use canonical orderings introduced in [9] and a re-
lated structure called frame introduced in [3]. We first recall these tools. We can
assume that G is an embedded edge-maximal planar graph.2 Each face of G is
bounded by a 3-cycle. De Fraysseix [9] proved that G has a vertex ordering σ =
(v1, v2, v3, . . . , vn), called a canonical ordering, with the following properties. De-
fine Gi to be the embedded subgraph of G induced by {v1, v2, . . . , vi}. Let Ci be the
subgraph of G induced by the edges on the boundary of the outer face of Gi . Then

• v1, v2, and vn are the vertices on the outer face of G.
• For each i ∈ {3,4, . . . , n}, Ci is a cycle containing v1v2.
• For each i ∈ {3,4, . . . , n}, Gi is biconnected and internally 3-connected; that is,

removing any two interior vertices of Gi does not disconnect it.
• For each i ∈ {3,4, . . . , n}, vi is a vertex of Ci with at least two neighbours in Ci−1,

and these neighbours are consecutive on Ci−1.

For example, the ordering in Fig. 2(a) is a canonical ordering of the depicted embed-
ded graph G.

2A planar graph H is edge-maximal (also called, a triangulation), if for all vw �∈ E(H), the graph resulting
from adding vw to H is not planar.
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Fig. 2 Illustration for the proof of Theorem 18: (a) Canonical ordering of G, (b) Frame F of G

A frame F of G [3] is the oriented subgraph of G with vertex set V (F ) := V (G),
where:

• v1v2 is in E(F ) and is oriented from v1 to v2.
• For each i ∈ {3,4, . . . , n} in the canonical ordering σ of G, edges pvi and vip

′
are in E(F ), where p and p′ are the first and the last neighbour, respectively, of vi

along the path in Ci−1 from v1 to v2 not containing edge v1v2. Edge pvi is oriented
from p to vi , and edge vip

′ is oriented from vi to p′, as illustrated in Fig. 2(b).

By definition, F is a directed acyclic graph with one source v1 and one sink v2.
The frame F defines a partial order <F on V (F ), where v <F w whenever there is
a directed path from v to w in F .

Translate the given set L of lines so that all vertices of the arrangement of lines
have negative y coordinates, and sort the lines �i ∈ L according to the x coordinate
bi of the intersection of �i with the x axis. Therefore, the lines �i ∈ L have equation
y = ai(x − bi), with b1 < b2 < · · · < bn. Because all intersections among lines of
L have negative coordinates, all bi are distinct, and the values 1/ai are sorted. Note
that the slopes ai might be positive or negative. Let â = min |ai |. For any segment
of slope in [−â, â] connecting two points (xi, yi) ∈ �i and (xj , yj ) ∈ �j above the x

axis (that is, yi, yj > 0), xi < xj if and only if i < j .
Construct a linear extension vρ(1), vρ(2), . . . , vρ(n) of the partial order <F and

define the bijection π : V → [n] as π(vρ(i)) = i. That is, the vertices of G will be
placed on the lines in such a way that the partial order <F is compatible with the
order determined by the values bi of the lines.

We prove by induction that for every value ŷ and every i ≥ 2, it is possible to draw
Gi such that v1 and v2 are placed on points (b1,0), (bn,0), and the y coordinates of
all other vertices are in the horizontal slab (0, ŷ]. The base case (i = 2) is obviously
true.

Note that we could have formulated the induction on the slopes of the edges of
Gi in the drawing. In fact those two formulations imply each other: for any value
0 < s ≤ â, there is a ŷs > 0 such that any segment whose endpoints lie on distinct
lines of L and have y coordinates in [0, ŷs], the slope of the segment is in [−s, s].
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This is easy to see: draw an upward cone with apex on each point (bi,0) and bounded
by the lines of slopes s and −s through that point. Define ŷs as the y coordinate of the
lowest intersection point between any two such cones. Any segment with a slope not
in [−s, s] and with its lowest point inside a cone must have its highest point inside the
same cone, therefore no segment connecting two different lines inside the horizontal
slab [0, ŷs] can have such a slope.

Assume by induction that the statement is true for Gi−1. We will show how to
draw Gi for a specific value ŷ. The point vi will be placed on the point on line π(vi)

with y coordinate ŷ. Let s1 and s2 be the slopes of the segments v1vi and viv2, and
let s = max(|s1|, |s2|)/2 or â, whichever is smaller. Let y1 be the intersection of the
line of slope s through vi and line �1 and y2 the intersection of the line of slope −s

through vi and �n. Note that y1 and y2 are strictly positive. Let ŷ′ = min(y1, y2, ŷs).
Apply the induction hypothesis to draw Gi−1 in the horizontal slab [0, ŷ′]. Thus, in
the drawing of Gi−1, all edges have slope at most s ≤ â. Then by construction, the
path in Ci−1 from v1 to v2 not containing edge v1v2 is x-monotone (that is, all its
edges are oriented rightwards), and vi is above the supporting line of each edge on
that path. Therefore, vi can see all vertices in Ci−1 and all edges adjacent to vi can
be drawn. �

We conclude this part with an intriguing 3D variant of this graph drawing problem.
A graph is linkless if it has an embedding in 3D such that any two cycles of the graph
are unlinked.3 These graphs form a three-dimensional analogue of the planar graphs.

Open Problem 19 Is there an arrangement of labeled planes in 3D such that any
labeled linkless graph has a linkless straight-line embedding where each vertex is
placed on the plane with the same label?
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