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Abstract The visibility graph of a finite set of points in the plane has the points as
vertices and an edge between two vertices if the line segment between them contains
no other points. This paper establishes bounds on the edge- and vertex-connectivity
of visibility graphs.

Unless all its vertices are collinear, a visibility graph has diameter at most 2, and so
it follows by a result of Plesník (Acta Fac. Rerum Nat. Univ. Comen. Math. 30:71–93,
1975) that its edge-connectivity equals its minimum degree. We strengthen the result
of Plesník by showing that for any two vertices v and w in a graph of diameter 2, if
deg(v) ≤ deg(w) then there exist deg(v) edge-disjoint vw-paths of length at most 4.

For vertex-connectivity, we prove that every visibility graph with n vertices and
at most � collinear vertices has connectivity at least n−1

�−1 , which is tight. We also
prove the qualitatively stronger result that the vertex-connectivity is at least half the
minimum degree. Finally, in the case that � = 4 we improve this bound to two thirds
of the minimum degree.
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1 Introduction

Let P be a finite set of points in the plane. Two distinct points v and w in the plane
are visible with respect to P if no point in P is in the open line segment vw. The
visibility graph of P has vertex set P , and an edge between two vertices if and only
if they are visible with respect to P .

Visibility graphs have interesting graph-theoretic properties and give rise to sev-
eral challenging open problems. For example, Kára, Pór and Wood [5] showed
that K4-free visibility graphs are 3-colourable. They also conjectured that visibility
graphs with bounded collinearities and bounded clique number have a bounded num-
ber of vertices. See [5, 10, 13] for further results and conjectures about the clique and
chromatic number of visibility graphs. Further related results can be found in [1, 3, 8].
The study of visibility graphs is a natural extension of point-line incidence geometry
where the order of points on a line is taken into account. Visibility graphs appear
implicitly in Székely’s celebrated paper [14]. For example, Székely’s proof of the
Szemeredi–Trotter theorem could be summarised as, “apply the crossing lemma to
a certain subgraph of the visibility graph”. We therefore consider the fundamental
graph-theoretic properties of visibility graphs to be worthy of study.

The purpose of this paper is to study the edge- and vertex-connectivity of visibility
graphs. A graph G on at least k+1 vertices is k-vertex-connected (k-edge-connected)
if G remains connected whenever fewer than k vertices (edges) are deleted. Menger’s
theorem says that this is equivalent to the existence of k vertex-disjoint (edge-disjoint)
paths between each pair of vertices. Let κ(G) and λ(G) denote the vertex- and edge-
connectivity of a graph G. Let δ(G) denote the minimum degree of G. Then κ(G) ≤
λ(G) ≤ δ(G).

If a visibility graph G has n vertices, at most � of which are collinear, then
δ(G) ≥ n−1

�−1 . We will show that both edge- and vertex-connectivity are at least n−1
�−1

(Theorem 4 and Corollary 11). Since there are visibility graphs with δ = n−1
�−1 these

lower bounds are best possible.
We will refer to visibility graphs whose vertices are not all collinear as non-

collinear visibility graphs. Non-collinear visibility graphs have diameter 2 [5], and it
is known that graphs of diameter 2 have edge-connectivity equal to their minimum
degree [11]. We strengthen this result to show that if a graph has diameter 2 then for
all vertices v and w with deg(v) ≤ deg(w), there are deg(v) edge-disjoint vw-paths
of length at most 4 (Theorem 2).

With regard to vertex-connectivity, our main result is that κ ≥ δ
2 + 1 for all non-

collinear visibility graphs (Theorem 9). This bound is qualitatively stronger than the
bound κ ≥ n−1

�−1 since it is always within a factor of 2 of being optimal. In the special

case of at most four collinear points, we improve this bound to κ ≥ 2δ+1
3 (Theo-

rem 13). We conjecture that κ ≥ 2δ+1
3 for all visibility graphs.

This bound would be best possible since, for each integer k, there is a visibility
graph with a vertex cut of size 2k + 1, but minimum degree δ = 3k + 1. Therefore
the vertex-connectivity is at most 2k + 1 = 2δ+1

3 . Figure 1 shows the case k = 4.
A central tool in this paper, which is of independent interest, is a kind of bipartite

visibility graph. Let A and B be disjoint sets of points in the plane. The bivisibility
graph B(A,B) of A and B has vertex set A ∪ B , where points v ∈ A and w ∈ B are
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Fig. 1 A visibility graph with vertex-connectivity 2δ+1
3 . The black vertices are a cut set. The minimum

degree δ = 3k + 1 is achieved, for example, at the top left vertex. Not all edges are drawn

adjacent if and only if they are visible with respect to A ∪ B . The following simple
observation is used several times in this paper.

Observation 1 Let G be a visibility graph. Let {A,B,C} be a partition of V (G)

such that C separates A and B . If B(A,B) contains t pairwise non-crossing edges,
then |C| ≥ t since there must be a distinct vertex in C on each such edge.

2 Edge-Connectivity

Non-collinear visibility graphs have diameter at most 2 [5]. This is because even if
two points cannot see each other, they can both see the point closest to the line con-
taining them. Plesník [11] proved that the edge-connectivity of a graph with diameter
at most 2 equals its minimum degree. Thus the edge-connectivity of a non-collinear
visibility graph equals its minimum degree. There are several other known conditions
that imply that the edge-connectivity of a graph is equal to the minimum degree; see
for example [2, 12, 16]. Here we prove the following strengthening of the result of
Plesník.

Theorem 2 Let G be a graph with diameter 2. Then the edge-connectivity of G

equals its minimum degree. Moreover, for all distinct vertices v and w in G, if d :=
min{deg(v),deg(w)} then there are d edge-disjoint vw-paths of length at most 4,
including at least one of length at most 2.

Proof First suppose that v and w are not adjacent. Let C be the set of common
neighbours of v and w. For each vertex c ∈ C, take the path (v, c,w). Let A be
a set of d − |C| neighbours of v not in C. Let B be a set of d − |C| neighbours
of w not in C. Let M1 be a maximal matching in the bipartite subgraph of G in-
duced by A and B . Call these matched vertices A1 and B1. For each edge ab ∈ M1,
take the path (v, a, b,w). Let A2 and B2, respectively, be the subsets of A and B

consisting of the unmatched vertices. Let D := V (G) \ (A2 ∪ B2 ∪ {v,w}). Let M2
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be an arbitrary pairing of vertices in A2 and B2. For each pair ab ∈ M2, take the
path (v, a, x, b,w), where x is a common neighbour of a and b (which exists since
G has diameter 2). Since x is adjacent to a, x �= w, and by the maximality of M1,
x �∈ B2. Similarly, x �= v and x �∈ A2, and so x ∈ D. Thus there are three types of path,
namely (v,C,w), (v,A1,B1,w), and (v,A2,D,B2,w). Paths within each type are
edge-disjoint. Even though D contains A1 and B1, edges between each pair of sets
from {A1,B1,A2,B2,C,D, {v}, {w}} occur in at most one of the types, and all edges
are between distinct sets from this collection. Hence no edge is used twice, so all the
paths are edge-disjoint. The total number of paths is |C| + |A1| + |A2| = d . This fin-
ishes the proof if v and w are not adjacent. If G does contain the edge vw then take
this as the first path, then remove it and find d − 1 paths in the same way as above. �

Note that the lengths of the paths found in Theorem 2 cannot be improved, as
shown by the following example. For integers γ ≥ 1 and δ ≥ 3, let G be the graph
obtained from a 5-cycle (v,w,x, y, z) by replacing x by a (δ−1)-clique X, replacing
y by a γ -clique Y , replacing z by a (δ − 1)-clique Z, and replacing edges between
these vertices with complete bipartite subgraphs. Each vertex in X is adjacent to w

and to each vertex in Y . Each vertex in Z is adjacent to v and to each vertex in Y . Thus
G has minimum degree δ and diameter 2. Note that deg(v) = deg(w) = δ. In fact, by
choosing γ large, we can make v and w the only vertices of degree δ and every other
vertex have arbitrarily large degree. Consider a set S of δ edge-disjoint paths between
v and w. One path in S is the edge vw, while every other path has length at least 4.
Thus the paths found in Theorem 2 are best possible. A further example, in which
u and v are not adjacent, can be constructed by taking two disjoint (δ + 1)-cliques
and identifying a vertex from each. Suppose u and v come from different cliques and
are not the identified vertex. Then there are δ − 1 vw-paths of length 4 and one of
length 2. Alternatively, one can take δ − 2 vw-paths of length 4 and two of length 3.

Theorem 2 implies the following corollary for visibility graphs.

Corollary 3 Let G be a non-collinear visibility graph. Then the edge-connectivity
of G equals its minimum degree. Moreover, for distinct vertices v and w, there are
min{deg(v),deg(w)} edge-disjoint vw-paths of length at most 4, including at least
one of length at most 2.

The full version of this paper [9] extends Corollary 3 to prove that every minimum
edge-cut in a non-collinear visibility graph is the set of edges incident to some vertex.

We now show that not only is the edge-connectivity as high as possible, but it is
realised by paths with at most one bend.

Theorem 4 Let G be a visibility graph with n vertices, at most � of which are
collinear. Then G is �n−1

�−1 �-edge-connected, which is best possible. Moreover, be-

tween each pair of vertices, there are �n−1
�−1 � edge-disjoint 1-bend paths.

Proof Let v and w be distinct vertices of G. Let V ∗ be the set of vertices of G not
on the line vw. Let m := |V ∗|. Thus m ≥ n − �.

Let L be the pencil of lines through v and the vertices in V ∗. Let M be the pencil
of lines through w and the vertices in V ∗. Let H be the bipartite graph with vertex
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Fig. 2 (a) If each ray from v

through V (G) contains �

vertices, the degree of v is n−1
�−1 .

(b) Two properly coloured
non-crossing geometric graphs
with no black-white edge
between them

set L ∪ M, where L ∈ L is adjacent to M ∈ M if and only if L ∩ M is a vertex in
V ∗.

Thus H has m edges, and maximum degree at most � − 1. Hence, by König’s
theorem [6], H is (� − 1)-edge-colourable. Thus H contains a matching of at least
m

�−1 edges. This matching corresponds to a set S of at least m
�−1 vertices in V ∗, no

two of which are collinear with v or w.
For each vertex x ∈ S, take the path in the visibility graph from v straight to x and

then straight to w. These paths are edge-disjoint. Adding the path straight from v to
w, we get at least m

�−1 + 1 paths, which is at least n−1
�−1 . Figure 2(a) shows that this

bound is best possible. �

3 A Key Lemma

We call a plane graph drawn with straight edges a non-crossing geometric graph.
The following interesting fact about non-crossing geometric graphs will prove useful.
It says that, except for some degenerate cases, two properly coloured non-crossing
geometric graphs that are separated by a line can be joined by an edge such that the
union is a properly coloured non-crossing geometric graph. Note that this is false
if the two graphs are not separated by a line, as demonstrated by the example in
Fig. 2(b).

Lemma 5 Let G1 and G2 be two properly coloured non-crossing geometric graphs
with at least one edge each. Suppose their convex hulls are disjoint and that V (G1)∪
V (G2) is not collinear. Then there exists an edge e ∈ V (G1) × V (G2) such that
G1 ∪ G2 ∪ {e} is a properly coloured non-crossing geometric graph.

Proof Let h be a line separating G1 and G2. Assume that h is vertical with G1 to the
left. Let G := G1 ∪ G2.

Call a pair of vertices v1 ∈ V (G1) and v2 ∈ V (G2) a visible pair if the line seg-
ment between them does not intersect any vertices or edges of G. We aim to find a
visible pair with different colours, so assume for the sake of contradiction that every
visible pair is monochromatic.

We may assume that G1 and G2 are edge maximal with respect to the colouring,
since the removal of an edge only makes it easier to find a bichromatic visible pair.

Suppose the result holds when there are no isolated vertices in G. Then, if there
are isolated vertices, we can ignore them and find a bichromatic visible pair (v1, v2)
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Fig. 3 Proof of Lemma 5. The shaded areas are empty. (a) A type-1 visible pair. (b) A type-2 visible pair.
(c) The highest visible pair. (d) The lowest pair is type-1. (e) The lowest pair is type-2

in the remaining graph. If the edge v1v2 contains some of the isolated vertices, then
it has a sub-segment joining two vertices of different colours. If these vertices lie on
the same side of h then the graphs were not edge maximal after all. If they are on
different sides, then they are a bichromatic visible pair. Thus we may assume that
there are no isolated vertices in G.

Let l be the line containing a visible pair (v1, v2), then the height of the pair is the
point at which l intersects h. Call the pair type-1 if v1 and v2 both have a neighbour
strictly under the line l (Fig. 3(a)). Call the pair type-2 if there are edges v1w1 in G1
and v2w2 in G2 such that the line g containing v1w1 intersects v2w2 (call this point
x), w2 lies strictly under g, and the closed triangle v1v2x contains no other vertex
(Fig. 3(b)). Here x may equal v2, in which case g = l. A visible pair is also type-2 in
the equivalent case with the subscripts interchanged.

A particular visible pair may be neither type-1 nor type-2, but we may assume
there exists a type-1 or type-2 pair. To see this, consider the highest visible pair
(v1, v2) and assume it is neither type-1 nor type-2 (see Fig. 3(c)). Note that v1v2
is an edge of the convex hull of G. Since all of G lies on or below the line l contain-
ing v1v2, both vertices must have degree 1 and their neighbours w1 and w2 must lie
on l. For i = 1,2, let xi be a vertex of Gi not on l that minimizes the angle ∠viwixi .
Since V (G) is not collinear, at least one of xi exists. By symmetry, we may assume
that either only x1 exists, or both x1 and x2 exist and dist(x1, l) ≤ dist(x2, l). In either
case, (x1, v2) and (x1,w2) are visible pairs and at least one of them is bichromatic.

So now assuming there exists a type-1 or type-2 visible pair, let (u1, u2) be the
lowest such pair:

Case (i) The pair (u1, u2) is type-1 (see Fig. 3(d)). Let u1w1 be the first edge of
G1 incident to u1 in a clockwise direction, starting at u1u2. Let u2w2 be the first edge
of G2 incident to u2 in a counterclockwise direction, starting at u2u1. Let x be the
point on the segment u1w1 closest to w1 such that the open triangle u1u2x is disjoint
from G. Similarly, let y be the point on the segment u2w2 closest to w2 such that the
open triangle u1u2y is disjoint from G.

Without loss of generality, the intersection of u1y and u2x is to the left of h, or
on h. Therefore the segment xu2 is disjoint from G2. Let v ∈ V (G1) be the vertex
on xu2 closest to u2. Thus (v,u2) is a visible pair of height less than (u1, u2). We
may assume that v �= w1, otherwise (v,u2) would be bichromatic. The point w2 is
under the line vu2 and v has no neighbour above the line vu2. Hence v either has
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a neighbour under the line vu2 and (v,u2) is type-1, or v has a neighbour on the
line vu2 and (v,u2) is type-2. This contradicts the assumption that (u1, u2) was the
lowest pair of either type.

Case (ii) The pair (u1, u2) is type-2 with neighbours w1 and w2, such that the line
u2w2 intersects the edge u1w1 at some point x (see Fig. 3(e)). Let y be the point on
the segment u1w1 closest to w1 such that the open triangle u1u2y is disjoint from G.
Note y is below x by the definition of type-2.

First assume that G2 intersects yu2. Let v2 be the closest vertex to u2 on yu2.
Thus (u1, v2) is a visible pair of height less than (u1, u2). Let z be a neighbour of v2.
If z is under the line u1v2 then (u1, v2) is type-1 since w1 is also under this line. Note
z cannot lie above the line yu2 since u1 and u2 see each other and the open triangle
u1u2y is empty. Furthermore, if z lies on yu2 then z = u2 and (u1, v2) is bichromatic.
Thus if z is not under the line u1v2, the line v2z must intersect the edge u1w1 at a
point above y, so (u1, v2) is a type-2 pair. Hence the pair (u1, v2) is type-1 or type-2,
a contradiction.

Now assume that yu2 does not intersect G2, and therefore does intersect G1, and
let v1 ∈ V (G1) be the vertex on yu2 closest to u2. Thus (v1, u2) is a visible pair of
height less than (u1, u2). We may assume that v1 �= w1, otherwise (v1, u2) would be
bichromatic. Since w2 is under the line v1u2, if v1 has a neighbour under the line
v1u2 then (v1, u2) is a type-1 pair. Otherwise the only neighbour of v1 is on the line
v1u2 which makes (v1, u2) a type-2 pair. Hence the pair (v1, u2) is type-1 or type-2,
a contradiction. �

4 Vertex-Connectivity

As is common practice, we will often refer to vertex-connectivity simply as connec-
tivity. Connectivity of visibility graphs is not as straightforward as edge-connectivity
since there are visibility graphs with connectivity strictly less than the minimum de-
gree (see Fig. 1). Our aim in this section is to show that the connectivity of a visibility
graph is at least half the minimum degree (Theorem 9). This follows from Theorem 8,
which says that bivisibility graphs contain large non-crossing subgraphs. In the proof
of Theorem 8 we will need a version of the Ham Sandwich Theorem for point sets in
the plane, and also Lemma 7.

Theorem 6 (Ham Sandwich. See [7]) Let A and B be finite sets of points in the
plane. Then there exists a line h such that each closed half-plane determined by h

contains at least half of the points in A and at least half of the points in B .

Lemma 7 Let A be a set of points lying on a line l. Let B be a set of points, none
of them lying on l. Let |A| ≥ |B|. Then there is a non-crossing spanning tree in the
bivisibility graph of A and B .

Proof We proceed by induction on |B|. If |B| = 1 then the point in B sees every
point in A, and we are done. Now assume 1 < |B| ≤ |A|.

First suppose that all of B lies to one side of l and consider the convex hull C

of A ∪ B . An end point a of A is a corner of C and there is a point b of B visible



676 Discrete Comput Geom (2012) 48:669–681

to it in the boundary of C. There exists a line h that separates {a, b} from the rest
of A ∪ B . Applying induction and Lemma 5 we find a non-crossing spanning tree
among A ∪ B \ {a, b} and an edge across h to the edge ab, giving a non-crossing
spanning tree of B(A,B).

Now suppose that there are points of B on either side of l. Then we may apply
the inductive hypothesis on each side to obtain two spanning trees. Their union is
connected, and thus contains a spanning tree. �

Theorem 8 Let A and B be disjoint sets of points in the plane with |A| = |B| = n

such that A ∪ B is not collinear. Then the bivisibility graph B(A,B) contains a non-
crossing subgraph with at least n + 1 edges.

Proof We proceed by induction on n. The statement holds for n = 1, since no valid
configuration exists. For n = 2, any triangulation of A∪B contains at least five edges.
At most one edge has both endpoints in A, and similarly for B . Removing these
edges, we obtain a non-crossing subgraph of B(A,B) with at least three edges. Now
assume n > 2.

Case (i) First suppose that there exists a line l that contains at least n points of
A ∪ B . Let A0 := A ∩ l, B0 := B ∩ l, A1 := A \ l and B1 := B \ l. Without loss of
generality, |A0| ≥ |B0|.

If |A0| > |B0| then |A0|+ |B1| > |B0|+ |B1| = n. Since |A0|+ |B0| ≥ n = |B1|+
|B0| we have |A0| ≥ |B1|, so we may apply Lemma 7 to A0 and B1. We obtain a
non-crossing subgraph of B(A,B) with |A0| + |B1| − 1 ≥ n edges, and by adding an
edge along l if needed, we are done.

Now assume |A0| = |B0|. We apply Lemma 7 to A0 and B1, obtaining a non-
crossing subgraph with n − 1 edges, to which we may add one edge along l. We still
need one more edge. Suppose first that one open half-plane determined by l contains
points of both A1 and B1. Let a and b be the furthest points of A1 and B1 from l in
this half-plane. Since |A0| = |B0| we may assume that a is at least as far from l as b.
Then we may add an edge along the segment ab, because none of the edges from A0
to B1 cross it. It remains to consider the case where l separates A1 from B1. Then
applying Lemma 7 on each side of l we find a non-crossing subgraph with 2n − 1
edges: |A0| + |B1| − 1 on one side, |B0| + |A1| − 1 on the other side, and one more
along l.

Case (ii) Now assume that no line contains n points in A∪B . By Theorem 6 there
exists a line h such that each of the closed half-planes determined by h contains at
least n

2 points from each of A and B . Assume that h is horizontal. Let A+ be the
points of A that lie above h along with any that lie on h that we choose to assign to
A+. Define A−, B+ and B− in a similar fashion. Now assign the points on h to these
sets so that each has exactly �n

2 � points. In particular, assign the required number of
leftmost points of h ∩ A to A+ and rightmost points of h ∩ A to A−. Do the same for
h ∩ B with left and right interchanged. If n is even then A+ ∪ A− and B+ ∪ B− are
partitions of A and B . If n is odd then |A+ ∩ A−| = |B+ ∩ B−| = 1.

Since there is no line containing n points of A ∪ B , the inductive hypothesis may
be applied on either side of h. Thus there is a non-crossing subgraph with �n

2 � + 1
edges on each side. The union of these subgraphs has at least n + 2 edges, but some
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edges along h may overlap. Due to the way the points on h were assigned, one of the
subgraphs has at most one edge along h. (If n is odd, this is the edge between the
two points that get assigned to both sides.) Deleting this edge from the union yields
a non-crossing subgraph of B(A,B) with at least n + 1 edges. �

Theorem 9 Every non-collinear visibility graph with minimum degree δ has connec-
tivity at least δ

2 + 1.

Proof Suppose {A,B,C} is a partition of the vertex set of a non-collinear visibility
graph such that C separates A and B , and |A| ≤ |B|. By considering a point in A

we see that δ ≤ |A| + |C| − 1. By removing points from B until |A| = |B| whilst
ensuring that A ∪ B is not collinear, we may apply Theorem 8 and Observation 1 to
get |C| ≥ |A| + 1. Combining these inequalities yields |C| ≥ δ

2 + 1. �

5 Vertex-Connectivity with Bounded Collinearities

For the visibility graphs of point sets with n points and at most � collinear, connectiv-
ity is at least n−1

�−1 , just as for edge-connectivity. Bivisibility graphs will play a central
role in the proof of this result. For point sets A and B an AB-line is a line containing
points from both sets.

Theorem 10 Let A ∪ B be a non-trivial partition of a set of n points with at most �

on any AB-line. Then the bivisibility graph B(A,B) contains a non-crossing forest
with at least n−1

�−1 edges. In particular, if � = 2 then the forest is a spanning tree.

Proof The idea of the proof is to cover the points of A∪B with a large set of disjoint
line segments each containing an edge of G := B(A,B). Start with a point v ∈ A.
Consider all open ended rays starting at v and containing a point of B . Each such ray
contains at least one edge of G and at most �−1 points of (A∪B)\v. For each ray r ,
choose a point w ∈ B ∩ r . Draw all maximal line segments with an open end at w and
a closed end at a point of A in the interior of the sector clockwise from r . Figure 4
shows an example. If one sector S has central angle larger than π then some points
of A may not be covered. In this case we bisect S, and draw segments from each of
its bounding rays into the corresponding half of S (assign points on the bisecting line
to one sector arbitrarily). Like the rays, these line segments all contain at least one
edge of G and at most � − 1 points of (A ∪ B) \ {v,w}. Together with the rays, they
are pairwise disjoint and cover all of (A ∪ B) \ v. Hence the edges of G contained in
them form a non-crossing forest with at least n−1

�−1 edges. Note that if � = 2 we have
a forest with n − 1 edges, hence a spanning tree. �

Note that the � = 2 case of Theorem 10 is well known [4].

Corollary 11 Let G be the visibility graph of a set of n points with at most � collinear.
Then G has connectivity at least n−1

�−1 , which is best possible.
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Fig. 4 Covering A ∪ B with
rays and segments (a), each of
which contains an edge of the
bivisibility graph (b)

Proof Let {A,B,C} be a partition of V (G) such that C separates A and B . Consider
the bivisibility graph of A ∪ B . Applying Observation 1 and Theorem 10 (with n′ =
n − |C| and �′ = � − 1) yields |C| ≥ n−|C|−1

�−2 , which implies |C| ≥ n−1
�−1 . As in the

case of edge-connectivity, the example in Fig. 2(a) shows that this bound is best
possible. �

The following theorem yields an improvement of Theorem 9 for visibility graphs
with at most four collinear vertices. Lemma 5 is an important tool in the proof.

Theorem 12 Let A and B be disjoint point sets in the plane with |A| = |B| = n

such that A ∪ B has at most three points on any AB-line. Then the bivisibility graph
B(A,B) contains a non-crossing spanning tree.

Proof We proceed by induction on n. The statement is true for n = 1. Apply The-
orem 6 to find a line h such that each closed half-plane defined by h has at least n

2
points from each of A and B . Assume that h is horizontal. The idea of the proof
is to apply induction on each side of h to get two spanning trees, and then find an
edge joining them together. In most cases the joining edge will be found by applying
Lemma 5.

We will construct a set A+ containing the points of A that lie above h along with
any that lie on h that we choose to assign to A+. We will also construct A−, B+
and B− in a similar fashion. By the properties of h, there exists an assignment1 of
each point in h ∩ (A ∪ B) to one of these sets such that |A+| = |B+| = �n

2 � and
|A−| = |B−| = �n

2 
.
Consider the sequence sh of signs (+ or −) given by the chosen assignment of

points on h from left to right. If sh is all the same sign, or alternates only once from
one sign to the other, then it is possible to perturb h to h′ so that A+ ∪ B+ lies
strictly above h′ and A− ∪ B− lies strictly below h′. Thus we may apply induction
on each side to obtain non-crossing spanning trees in B(A+,B+) and B(A−,B−).
Then apply Lemma 5 to find an edge between these two spanning trees, creating a
non-crossing spanning tree of B(A,B).

Otherwise, sh alternates at least twice (so there are at least three points on h). This
need never happen if there are only points from one set on h, since the points required

1We need only consider one of the sets, say A. Say there are x points above h, y points on h and z points
below h. Then x + y ≥ �n/2� ≥ �n/2
 ≥ x so we can ensure |A+| = �n/2�. A− is the complement and
therefore has �n/2
 points.
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Fig. 5 The only case in which h

may not be perturbed to separate
the points assigned above h

from those assigned below

above h can be taken from the left and those required below h from the right. Without
loss of generality, the only remaining case to consider is that h contains one point
from A and two from B . If the two points from B are consecutive on h, then without
loss of generality sh = (+,−,+) and the points of B are on the left. In this case the
signs of the points from B may be swapped so sh becomes (−,+,+). If the point
from A lies between the other two points, it is possible that sh must alternate twice. In
this case, use induction to find spanning trees in B(A+,B+) and B(A−,B−). These
spanning trees have no edges along h, so we may add an edge along h to connect
them, as shown in Fig. 5. �

Theorem 13 Let G be a visibility graph with minimum degree δ and at most four
collinear vertices. Then G has connectivity at least 2δ+1

3 .

Proof Let {A,B,C} be a partition of V (G) such that C separates A and B and |A| ≤
|B|. By considering a point in A we can see that δ ≤ |A| + |C| − 1. If necessary
remove points from B so that |A| = |B|. Applying Theorem 12 and Observation 1
yields |C| ≥ 2|A| − 1. Combining these inequalities yields |C| ≥ 2δ+1

3 . �

It turns out that Theorem 13 is best possible. There are visibility graphs with at
most three collinear vertices and connectivity 2δ+1

3 . The construction was discovered
by Roger Alperin, Joe Buhler, Adam Chalcraft and Joel Rosenberg in response to a
problem posed by Noam Elkies. Elkies communicated their solution to Todd Trimble
who published it on his blog [15]. Here we provide a brief description of the con-
struction, but skip over most background details. Note that the original problem and
construction were not described in terms of visibility graphs, so we have translated
them into our terminology.

The construction uses real points on an elliptic curve. For our purposes a real
elliptic curve C is a curve in the real projective plane (which we model as the Eu-
clidean plane with an extra ‘line at infinity’) defined by an equation of the form
y2 = x3 + αx + β (see Fig. 6(a)). The constants α and β are chosen so that the
discriminant 
 = −16(4α3 + 27β2) is non-zero, which ensures that the curve is
non-singular. We define a group operation ‘+’ on the points of C by declaring that
a + b + c = 0 if the line through a and b also intersects C at c, that is, if a, b and c

are collinear. The identity element 0 corresponds to the point at infinity in the ±y-
direction, so that for instance a + b + 0 = 0 if the line through a and b is parallel to
the y-axis. Furthermore, a + a + b = 0 if the tangent line at a also intersects C at b.
It can be shown that this operation defines an Abelian group structure on the points
of C .
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Fig. 6 (a) The elliptic curve y2 = x3 − x. (b) The black points separate the white points from the grey
points

We will use two facts about real elliptic curves and the group structure on them.
First, no line intersects an elliptic curve in more than three points. Second, the group
acts continuously: adding a point e which is close to 0 to another point a results in a
point close to a (in terms of distance along C ).

Proposition 14 (Alperin, Buhler, Chalcraft and Rosenberg) For infinitely many in-
tegers δ, there is a visibility graph with at most three vertices collinear, minimum
degree δ, and connectivity 2δ+1

3 .

Proof Begin by choosing three non-zero collinear points a, b and c on a real elliptic
curve C , such that c lies between a and b (see Fig. 6(b)). Choose a point e very
close to 0. Define A := {a + ie : 0 ≤ i ≤ m − 1}, B := {b + je : 0 ≤ j ≤ m − 1} and
C := {−(a + b + ke) : 0 ≤ k ≤ 2m − 2}. Let G be the visibility graph of A ∪ B ∪ C.
Since the points are all on C , G has at most three vertices collinear. Observe that the
points a + ie and b + je are collinear with the point −(a + b + (i + j)e). Since
e was chosen to be very close to 0, by continuity the set A is contained in a small
neighbourhood of a, and similarly for B and C. Therefore, the point from C is the
middle point in each collinear triple, and so C is a vertex cut in G, separating A and
B .

By choosing a, b and c away from any points of inflection, we can guarantee that
there are no further collinear triples among the sets A, B or C. Thus a point in A sees
all other points in A ∪ C, a point in B sees all other points in B ∪ C, and a point in
C sees all other points. Therefore the minimum degree of G is δ = 3m − 2, attained
by the vertices in A ∪ B . Hence (also using Theorem 13) the connectivity of G is
|C| = 2m − 1 = 2δ+1

3 . �

We close with the following conjecture.

Conjecture 15 Every visibility graph with minimum degree δ has connectivity at
least 2δ+1

3 .
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