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Abstract We investigate distribution of integral well-rounded lattices in the plane,
parameterizing the set of their similarity classes by solutions of the family of Pell-
type Diophantine equations of the form x2 + Dy2 = z2 where D > 0 is squarefree.
We apply this parameterization to the study of the greatest minimal norm and the
highest signal-to-noise ratio on the set of such lattices with fixed determinant, also
estimating cardinality of these sets (up to rotation and reflection) for each determinant
value. This investigation extends previous work of the first author in the specific cases
of integer and hexagonal lattices and is motivated by the importance of integral well-
rounded lattices for discrete optimization problems. We briefly discuss an application
of our results to planar lattice transmitter networks.
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1 Introduction and Statement of Results

Let N ≥ 1 be an integer, and let Λ ⊂ R
N be a lattice of full rank. Given a basis

a1, . . . ,aN for Λ we can write A = (a1, . . . ,aN) for the corresponding basis matrix,
and then Λ = AZ

N . The corresponding norm form is defined as

QA(x) = xtAtAx,

and we say that the lattice is integral if the coefficient matrix AtA of this quadratic
form has integer entries; it is easy to see that this definition does not depend on the
choice of a basis. The matrix AtA is called a Gram matrix of the lattice Λ. Integral
lattices are central objects in arithmetic theory of quadratic forms and in lattice theory.
We define det(Λ) to be |det(A)|, again independent of the basis choice, and (squared)
minimum or minimal norm

|Λ| = min
{‖x‖2 : x ∈ Λ \ {0}} = min

{
QA(y) : y ∈ Z

N \ {0}},
where ‖ ‖ stands for the usual Euclidean norm. Then each x ∈ Λ such that ‖x‖2 =
|Λ| is called a minimal vector, and the set of minimal vectors of Λ is denoted by
S(Λ). A lattice Λ is called well-rounded (abbreviated WR) if the set S(Λ) contains
N linearly independent vectors. These vectors do not necessarily form a basis for
lattices in any dimension N , however they are known to form a basis for all N ≤ 4
(see, for instance [15]); we will refer to such a basis as a minimal basis for Λ. WR
lattices are important in discrete optimization, in particular in the investigation of
sphere-packing, sphere-covering, and kissing-number problems (see [12]), as well
as in coding theory (see [1]). Properties of WR lattices have also been investigated
in [13] in connection with Minkowski’s conjecture and in [8] in connection with the
linear Diophantine problem of Frobenius. A particularly interesting and important
class of WR lattices are the integral well-rounded lattices (abbreviated IWR). The
main objective of the current paper is to study the properties of IWR lattices in the
plane, extending some of the previous results of Refs. [3], [4], and [6] with a view
toward discrete optimization problems. Specifically, our investigation is motivated
by the following three questions, which are the direct analogs of the questions asked
about sublattices of the hexagonal lattice in [2]:

Question 1 Which IWR lattice Λ of a fixed determinant � maximizes the minimal
norm? Since the density of circle-packing associated with Λ is equal to π |Λ|/�, this
choice of Λ also maximizes the packing density.

Question 2 Which IWR lattice Λ of a fixed determinant � maximizes the signal-to-
noise ratio (defined below)?

Question 3 How many IWR lattices of a fixed determinant � are there, up to rotation
and reflection? This number is known to be finite.
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Given a lattice Λ ∈ R
N , we can regard its nonzero points as transmitters which

interfere with the transmitter at the origin, and then a standard measure of the total
interference of Λ is given by EΛ (2), where

EΛ(s) =
∑

x∈Λ\{0}

1

‖x‖2s
(1)

is the Epstein zeta-function of Λ, and the signal-to-noise ratio of Λ is defined by

SNR(Λ) = 10 log10
1

9EΛ(2)
, (2)

as in Ref. [2]. To maximize SNR(Λ) on the set of all planar IWR lattices of a fixed
determinant � is the same as to minimize EΛ(2) on this set. In fact, EΛ(s) for each
real s ≥ 3 is maximized by the same planar WR lattice of fixed determinant � that
maximizes |Λ|, and vice versa (this follows from an old result of S. S. Ryskov [16];
see Lemma 3.1 below). Moreover, Lemma 3.2 and Remark 3.1 below suggest that
it may likely be so for s = 2 as well. This would mean that Questions 1 and 2 are
equivalent, which is not always so for non-WR lattices, as demonstrated in [2].

Suppose that we have a network of transmitters positioned at the points of a planar
lattice Λ. The plane is tiled with translates of the Voronoi cell of Λ, which are the
cells serviced by the corresponding transmitters at their centers. The packing density
of Λ is precisely the proportion of the plane covered by the transmitter network. IWR
lattices allow for transmitters of the same power and for integral distances between
transmitters in the network, which simplifies positioning. Hence a lattice that answers
Question 1 maximizes coverage and the lattice that answers Question 2 maximizes
signal-to-noise ratio for a 2-dimensional lattice transmitter network with a fixed cell
area � and integral distances between transmitters. Our Lemma 3.2 and Remark 3.1
below suggest that this may be done simultaneously. We present an algorithm for
finding a lattice answering Question 1 for each possible value of � in Theorem 1.3.
It is also interesting to understand how many choices for positioning a network of
equal-power transmitters with integral distances between them and fixed cell area are
there—this is an application of Question 3; we estimate this number in Theorem 1.4.
We refer the reader to Ref. [17] for further information about transmitter networks on
planar lattices.

To discuss the proposed questions in further detail, we build on a convenient de-
scription of IWR lattices which we outline next. An important equivalence relation
on lattices is geometric similarity: two lattices Λ1,Λ2 ⊂ R

N are called similar, de-
noted Λ1 ∼ Λ2, if there exists a positive real number α and an N ×N real orthogonal
matrix U such that Λ2 = αUΛ1. It is easy to see that similar lattices have the same
algebraic structure, i.e., for every sublattice Γ1 of a fixed index in Λ1 there is a sub-
lattice Γ2 of the same index in Λ2 so that Γ1 ∼ Γ2. Most geometric and optimization
properties of lattices (such as packing density, covering thickness, kissing number,
signal-to-noise ratio, etc.) are invariant on similarity classes. Moreover, a WR lattice
can only be similar to another WR lattice, so it makes sense to speak of WR similarity
classes of lattices. If Λ ⊂ R

2 is a full rank WR lattice, then its set of minimal vectors
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S(Λ) contains 4 or 6 vectors, and this number is 6 if and only if Λ is similar to the
hexagonal lattice

H :=
(

2 1
0

√
3

)
Z

2

(see, for instance Lemma 2.1 in [7]). Any two linearly independent vectors x,y ∈
S(Λ) form a minimal basis. While this choice is not unique, it is always possible to se-
lect x,y so that the angle θ between these two vectors lies in the interval [π/3,π/2],
and any value of the angle in this interval is possible. From now on when we talk
about a minimal basis for a WR lattice in the plane, we will always mean such a
choice. Then the angle between minimal basis vectors is an invariant of the lattice,
and we call it the angle of the lattice Λ, denoted θ(Λ); in other words, if x,y is any
minimal basis for Λ and θ is the angle between x and y, then θ = θ(Λ) (see [5] for
details and proofs of the basic properties of WR lattices in R

2). In fact, it is easy to
notice that two WR lattices Λ1,Λ2 ⊂ R

2 are similar if and only if θ(Λ1) = θ(Λ2)

(see [5] for a proof). Therefore the set of all similarity classes of WR lattices in R
2

is bijectively parameterized by the set of all possible values of the angle, which is
the interval [π/3,π/2]. On the other hand, this parameterization becomes less trivial
if we talk about similarity classes of planar IWR lattices. In other words, one may
wonder what are the possible values of θ(Λ) in the interval [π/3,π/2] if Λ is IWR?

The following parameterization follows from the classical theory of integral lat-
tices and quadratic forms (see, for instance Chap. 1 of [12]).

Proposition 1.1 Let Λ ⊂ R
2 be an IWR lattice, then

cos θ(Λ) = p

q
, sin θ(Λ) = r

√
D

q
(3)

for some p, r, q,D ∈ Z>0 such that

p2 + Dr2 = q2, gcd(p, q) = 1,
p

q
≤ 1

2
, and D squarefree, (4)

and so Λ is similar to

ΩD(p,q) :=
(

q p

0 r
√

D

)
Z

2. (5)

Moreover, for every p, r, q,D satisfying (4), ΩD(p,q) is an IWR lattice with
the angle θ(ΩD(p,q)) satisfying (3), and ΩD(p,q) ∼ ΩD′(p′, q ′) if and only
if (p, r, q,D) = (p′, r ′, q ′,D′). In addition, if Λ is any IWR lattice similar to
ΩD(p,q), then

|Λ| ≥
∣∣
∣∣

1√
q

ΩD(p,q)

∣∣
∣∣, (6)

where the lattice 1√
q
ΩD(p,q) is also IWR. Due to this property, we call 1√

q
ΩD(p,q)

a minimal IWR lattice in its similarity class.
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Remark 1.1 Notice in particular that the integer lattice Z
2 = Ω1(1,1) and the hexag-

onal lattice H = Ω3(1,2).

Hence we see that the set of similarity classes of planar IWR lattices is in bijective
correspondence with the set of 4-tuples (p, r, q,D) satisfying (4). Here is an explicit
characterization of this set of 4-tuples, which will be useful to us.

Lemma 1.2 Let D be a positive squarefree integer and m,n ∈ Z with gcd(m,n) = 1

and
√

D
3 ≤ m

n
≤ √

3D. Now p, r, q,D ∈ Z>0 satisfy (4) if and only if

p = |m2 − Dn2|
2e gcd(m,D)

, r = 2mn

2e gcd(m,D)
, q = m2 + Dn2

2e gcd(m,D)
, (7)

where

e =
{

0 if either 2 | D, or 2 | (D + 1),mn

1 otherwise.
(8)

We prove Lemma 1.2 in Sect. 2. Further, let us say that an IWR planar lattice Λ is
of type D for a squarefree D ∈ Z>0 if it is similar to some ΩD(p,q) as in (5). The
type is uniquely defined, i.e., Λ cannot be of two different types. Moreover, a planar
IWR lattice Λ is of type D for some squarefree D ∈ Z>0 if and only if all of its IWR
finite index sublattices are also of type D. If this is the case, Λ contains a sublattice
similar to ΩD(p,q) for every 4-tuple (p, r, q,D) as in (4). Hence the set of planar
IWR lattices is split into types which are indexed by positive squarefree integers
with similarity classes inside of each type D being in bijective correspondence with
solutions to the ternary Diophantine equation p2 + r2D = q2 as parameterized in
Lemma 1.2.

Remark 1.2 In fact, the set of similarity classes of IWR lattices of a fixed type can
be endowed with a semigroup structure, coming from the geometric group law on
rational points of a Pell conic; we include a brief discussion of this fact in Sect. 2
below (Lemma 2.2). The correspondence between IWR lattices and solutions to the
Pell-type equations as described above follows from the theory of integral quadratic
forms, as we indicated; it can also be obtained by an elementary argument, however
we do not include it here in the interest of brevity of the exposition.

In Sect. 3 we discuss a possible connection between Questions 1 and 2, and then
use the above-described correspondence to provide an algorithmic procedure in an-
swer to Question 1.

Theorem 1.3 A positive real number � is a determinant value of IWR lattices if and
only if � = M

√
D where M,D ∈ Z>0 with D squarefree so that the set

mn(M) =
{
(m,n) ∈ Z

2
>0 : gcd(m,n) = 1,

√
D

3
≤ m

n
≤ √

3D,
2mn

2e gcd(m,D)

∣∣∣∣M
}
,

(9)
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where e is as in (8), is not empty. Fix such a �, and let (m,n) ∈ mn(M) be the pair
that maximizes the expression

m

n
+ D

n

m

on mn(M). Now define p, r, q as in (7) for this choice of m,n and let k = M/r . Then

Λ =
√

k

q
ΩD(p,q) (10)

is an IWR lattice with det(Λ) = � and |Λ| = kq which maximizes |Λ| among all
planar IWR lattices with determinant �. This lattice can be found in a finite number
of steps for each fixed �.

Remark 1.3 Some examples of such norm-maximizing lattices are presented in Ta-
ble 1 below.

In Sect. 4 we obtain the following counting estimate, which answers Question 3.

Theorem 1.4 For � ∈ R>0, define IWR(�) to be the set of all planar IWR lattices,
up to rotation and reflection, with determinant = �. Then the set IWR(�) is finite for
any �, and it is only nonempty if � = M

√
D with the set mn(M) as in (9) nonempty.

In this latter case, the cardinality of the set IWR(�) satisfies

∣∣IWR(�)
∣∣ ≤ 1

2

∑

r|M
2ω(rD). (11)

Moreover,

∣∣IWR(�)
∣∣ 


∑

r|M

∑

g|r
μ

(
r

g

)
τ(g2D)√
ω(gD)

, (12)

where τ(u) is the number of divisors, ω(u) is the number of prime divisors, and μ(u)

is the Möbius function of an integer u. The constant in the Vinogradov notation 

does not depend on �.

We are now ready to proceed.

2 Parameterization Lemmas

In this section we start by proving Lemma 1.2. The following lemma is used in the
proof, which we state here for the reader’s convenience.

Lemma 2.1 (Lemma 2.1 of [6]) Consider the Diophantine equation

αx2 + βxy + γy2 = δz2, (13)
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where α,β, γ, δ ∈ Z with β2 �= 4αγ and δ �= 0. Then either this equation has no inte-
gral solutions with z �= 0, or all such solutions (x, y, z) of (13) are rational multiples
of

x = γ n(an − 2bm) − (αa + βb)m2,

y = αm(bm − 2an) − (γ b + βa)n2,

z = ±c
(
αm2 + βmn + γ n2),

(14)

where m,n ∈ Z with gcd(m,n) = 1 and m ≥ 0; here (a, b, c) is any integral solution
to (13) with c �= 0. In this later case, every multiple of (14) is a solution to (13) by
homogeneity of (13).

Proof of Lemma 1.2 We start by applying Lemma 2.1 to the equation p2 + Dr2 =
q2 for a fixed squarefree D: since (p, r, q) = (1,0,1) is an integral solution of this
equation with q �= 0, the lemma guarantees that all positive integral solutions of this
equation with q �= 0 are rational multiples of

p0 = ∣∣m2 − Dn2
∣∣, r0 = 2mn, q0 = m2 + Dn2, (15)

where m,n range over all relatively prime non-negative integers, not both 0. In order
for (p, r, q,D) to satisfy (4), we need two more conditions: gcd(p, q) = 1 and p/q ≤
1/2. First consider p0, r0, q0 as in (15) and notice that the fact that p2

0 + Dr2
0 = q2

0
implies that gcd(p0, q0) = gcd(r0, q0) = gcd(p0, r0, q0). Since gcd(m,n) = 1, it is
easy to notice that gcd(p0, q0) = 2e gcd(m,D), where e is as in (8). Hence if we
define p, r, q as in (7), we ensure that they are relatively prime, and this covers all the
relatively prime solutions of our equation for each fixed D. Finally, we need to select
only the solutions with p/q ≤ 1/2, which means that

−1/2 ≤ m2 − Dn2

m2 + Dn2
≤ 1/2,

and so we must have
√

D

3
≤ m

n
≤ √

3D. (16)

This completes the proof of the theorem. �

We also briefly mention the algebraic structure of the planar IWR lattices.

Lemma 2.2 Let D > 0 be squarefree and let C(D) be the set of similarity classes of
all IWR lattices of type D. Let us write CD(p,q) for each such class, i.e., for each
(p, q) satisfying (4):

CD(p,q) = {
Λ : Λ ∼ ΩD(p,q)

}
, (17)

and so

C(D) = {
CD(p,q) : (p, q) satisfy (4)

}
.
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Then the set C(D) has the structure of an abelian semigroup, induced by the compo-
sition law on rational points of the Pell conic corresponding to D.

Proof A Pell conic is a curve given by the equation x2 − Dy2 = 1. The following
commutative composition law on the set of rational points on a Pell conic is defined
in [11]:

(x1, y1) + (x2, y2) = (x1x2 + Dy1y2, x1y2 + x2y1). (18)

In [11], this operation is also described geometrically by analogy with addition on an
elliptic curve. Notice that a rational point (x, y) = (q/p, r/p) is on this curve if and
only if

p2 + r2D = q2. (19)

Then (18) induces the following commutative composition law on the set of solutions
(p, r, q) of (19):

(p1, r1, q1) + (p2, r2, q2) = 1

g
(p1p2, r1q2 + r2q1, q1q2 + Dr1r2), (20)

where g = gcd(p1p2, r1q2 + r2q1, q1q2 + Dr1r2). It is easy to check that the set of
solutions of (19) is closed under this operation. Moreover, since D > 0,

q1q2 + Dr1r2

p1p2
≥ q1

p1
× q2

p2
,

and so whenever p1/q1,p2/q2 ≤ 1/2, we will have

p1p2

q1q2 + Dr1r2
≤ 1

4
.

This ensures that C(D) is closed under this operation, and hence has a structure of
an abelian semigroup, although not a monoid: the point (1,0,1), which serves as
identity, is not in C(D). �

3 Optimization Properties

In this section we investigate Questions 1 and 2. Let Λ be a planar IWR lattice, then

Λ =
√

k

q
UΩD(p,q) (21)

for some (p, r, q,D) as in (4), k ∈ Z>0, and a 2 × 2 real orthogonal matrix U . Now
suppose that � = M

√
D, M ∈ Z>0, is fixed and let Λ ∈ IWR(�) be given as in (21)

so that kr = M . Then

|Λ| = kq = Mq

r
, (22)
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and so to maximize |Λ| on IWR(�) we need to maximize q/r . A trivial upper bound
for |Λ| is given by 2�√

3
: this is just a restatement of the fact that � = |Λ| sin θ(Λ) and

θ ∈ [π/3,π/2].
We start by discussing a connection between the problems of maximizing |Λ| and

minimizing EΛ(s) on sets of WR lattices of fixed determinant in R
2. This discussion

is an adaptation and correction of Lemma 5.2 of [6].

Lemma 3.1 Let � be a positive real number, and let WR2(�) be the set of all full
rank WR lattices in R

2 with determinant �. Then for any fixed real number s ≥ 3,
EΛ(s) is a decreasing function of |Λ| on WR2(�).

Proof Let QΛ(x,y) be the quadratic form of Λ corresponding to a minimal basis;
then

QΛ(x,y) = |Λ|(x2 + y2 + 2xy cos θ
)
, (23)

where θ = θ(Λ) ∈ [π/3,π/2] and |Λ| is as in (22). Now

cos θ =
√|Λ|2 − �2

|Λ| =
√

1 − �2

|Λ|2 , (24)

and 0 ≤ cos θ ≤ 1/2. Lemma 1 of [16] guarantees that EΛ(s) is a decreasing function
of cos θ for any real s ≥ 3, and (24) implies that cos θ is an increasing function of |Λ|.
Hence EΛ(s) is a decreasing function of |Λ| on WR2(�) for s ≥ 3. �

In fact, it seems likely that the statement of Lemma 3.1 should hold for smaller
real values of s as well. At the very least, we have the following bounds.

Lemma 3.2 With notation as in Lemma 3.1, let s > 1 be real. Then there exist real
constants C1(s) and C2(s), dependent only on s, such that

C1(s)

|Λ|s ≤ EΛ(s) ≤ C2(s)

|Λ|s (25)

for every Λ ∈ WR2(�).

Proof Combining (23) and (24), we obtain

QΛ(x,y) = T x2 + Ty2 + 2xy
√

T 2 − �2,

where T = |Λ|. The Epstein zeta-function of Λ is then given by

EΛ(s) =
∑

x,y∈Z\{0}
QΛ(x,y)−s =

∑

x,y∈Z\{0}

1

(T x2 + Ty2 + 2xy
√

T 2 − �2)s

=
∑

x,y∈Z>0

(
2

(T x2 + Ty2 + 2xy
√

T 2 − �2)s

+ 2

(T x2 + Ty2 − 2xy
√

T 2 − �2)s

)
.
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Now recall that since θ ∈ [π/3,π/2], we must have
√

3T
2 ≤ � ≤ T , and so 0 ≤√

T 2 − �2 ≤ T/2. Hence for each fixed real s > 1, we have

EΛ(s) ≤ 2

T s

∑

x,y∈Z>0

(
1

(x2 + y2)s
+ 1

(x2 + y2 − xy)s

)
, (26)

and

EΛ(s) ≥ 2

T s

∑

x,y∈Z>0

(
1

(x2 + y2)s
+ 1

(x2 + y2 + xy)s

)
. (27)

Since both series in the bounds of (26) and (27) converge, we have (25). �

Remark 3.1 Since WR lattice Λ with fixed |Λ| and det(Λ) is unique up to multi-
plication by an orthogonal matrix U (which does not change the value of EΛ(s) for
any s), Lemmas 3.1 and 3.2 make it natural to expect that the total interference of
Λ is minimized on WR2(�) (and so SNR(Λ) is maximized) if and only if |Λ| is
maximized.

We are now ready to answer Question 1.

Proof of Theorem 1.3 We will now discuss a finite procedure to maximize q/r , and
hence |Λ|, on the set IWR(�) using finiteness of this set along with Lemma 1.2.
First we notice that r has to be a divisor of M = �/

√
D, hence we can start by going

through the list of all possible divisors of M . For each such divisor r , consider all
possible decompositions

r = 2mn

2e gcd(m,D)

with relatively prime m,n so that m/n ∈ [√D/3,
√

3D], as in (7). Out of all such
decompositions, we want to pick one which maximizes the ratio

q/r = m2 + Dn2

2mn
= 1

2

(
m

n
+ D

n

m

)
.

This can be done in a finite number of steps, since there are finitely many values
for r , a divisor of M , and for each r there are finitely many such m,n. Hence we can
choose Λ maximizing |Λ| and SNR(Λ) on IWR(�) to be as in (10). In particular,
our argument confirms that � is a determinant value of an IWR lattice if and only if
it is of the form M

√
D with the set mn(M) as in (9) nonempty. This completes the

proof. �

Remark 3.2 Let us write m/n = √
Dx for appropriate x ∈ [1/

√
3,

√
3]. Then

q/r =
√

D

2
(x + 1/x).
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Table 1 Examples of IWR
lattices Λ with det(Λ) = � that
maximize |Λ| on IWR(�)

� |Λ| Λ

24
√

5 61
√

1
61 Ω5(29,61)

24
√

7 69
√

3
23 Ω7(9,23)

20
√

11 75
√

1
3 Ω11(7,15)

24
√

13 98
√

2
49 Ω13(7,15)

24
√

17 104
√

8
13 Ω17(4,13)

105
√

19 510
√

15
34 Ω19(15,34)

96
√

23 522
√

6
87 Ω23(41,87)

Now, the function f (x) = x + 1/x assumes its maximal values on the interval
[1/

√
3,

√
3] at the endpoints and has a minimum at x = 1. Hence, to maximize

q/r one should consider m,n with m/n close to the endpoints of the interval
[√D/3,

√
3D]. Keeping these considerations in mind can reduce the number of com-

putational steps necessary to find maximizer for |Λ| in IWR(�) in each particular
case.

We give some computational examples in Table 1.

4 Counting Estimates

Here we prove the counting estimates of Theorem 1.4.

Proof of Theorem 1.4 Let � = M
√

D, as above, so that mn(M) defined in (9)
is nonempty. First we observe that such sets are in fact finite up to rotation and
reflection—this is an immediate consequence of a more general fact that there are
only finitely many isometry classes of integral lattices of fixed determinant in a fixed
dimension (see remarks on p. 432 of [12]). Suppose now that Λ ∈ IWR(�), then we
can assume without loss of generality that

Λ =
√

k

q
ΩD(p,q),

where k = M/r and p, r, q are as in (7) for some (m,n) ∈ mn(M). Hence the choice
of p, r, q determines Λ uniquely. For each r | M define

f (r) =
∣∣∣∣

{
(p, q) ∈ Z

2
>0 : q2 − p2 = r2D, gcd(p, q) = 1, 0 <

p

q
≤ 1

2

}∣∣∣∣, (28)

then
∣∣IWR(�)

∣∣ =
∑

r|M
f (r).
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Hence we want to produce estimates on f (r). Define

f1(r) = ∣∣{(p, q) ∈ Z
2
>0 : q2 − p2 = r2D, gcd(p, q) = 1

}∣∣,

and

f2(r) =
∣∣∣∣

{
(p, q) ∈ Z

2
>0 : q2 − p2 = r2D, 0 <

p

q
≤ 1

2

}∣∣∣∣, (29)

and notice that

f (r) ≤ min
{
f1(r), f2(r)

}
, (30)

meaning that
∣∣IWR(�)

∣∣ ≤
∑

r|M
min

{
f1(r), f2(r)

}
. (31)

The function f1(r) is well studied; in particular, the following formula follows from
Theorem 6.2.4 of [14]:

f1(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2ω(r2D)−1 if 2 � r2D, r2D > 1

2ω(r2D)−1 if 8 | r2D, r2D has odd prime divisors

1 if r2D is a power of 2

0 otherwise,

(32)

hence f1(r) ≤ 2ω(r2D)−1 = 2ω(rD)−1. Now (11) follows upon combining (31), (32).
Next we estimate f2(r). Let c = r2D, and let us write

a = q − p, b = q + p, (33)

then q = (a + b)/2, p = (b − a)/2, and ab = c. Let α := p/q , and assume that
0 < α ≤ 1/2. Then let ν = 1+α

1−α
, and observe that

1 < ν = b

a
≤ 3.

Since ab = c, we have b = √
νc, and so

√
c < b ≤ √

3c.

Therefore

f2(r) = ∣∣{b ∈ Z>0 : b | c, √
c < b ≤ √

3c}∣∣. (34)

For a positive integer t , Hooley’s �-function of t (see [9] for detailed information) is
defined as

�(t) = max
x

∣∣{b ∈ Z>0 : b | t, ex < b ≤ ex+1}∣∣.
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Take x = log
√

c, then

{b ∈ Z>0 : b | c, √
c < b ≤ √

3c} ⊆ {
b ∈ Z>0 : b | c, ex < b ≤ ex+1},

since
√

3 < e, and so f2(r) ≤ �(c). Therefore an estimate on f2(r) would follow
from estimates on �(c), some of which can be found in Sect. 2 of [3]; in particular,
equations (10)–(13) of [3] imply that the bound

f2(r) ≤ O

(
τ(c)√
ω(c)

)
≤ O

(
c

(1+ε) log 2
log log c

)
(35)

holds for any ε > 0, assuming c is greater than some c0(ε) for the second inequality;
here the constant in O-notation is independent of c.

Next notice that if q2 − p2 = r2D and g | p,q , then g | r , since D is squarefree.
This implies that

f2(r) =
∑

g|r
f

(
r

g

)
. (36)

Recall that the Möbius function is defined by

μ(u) =
{

(−1)ω(u) if u is squarefree

0 otherwise;

then, applying the Möbius inversion formula to (36), we obtain

f (r) =
∑

g|r
μ

(
r

g

)
f2(g) 


∑

g|r
μ

(
r

g

)
τ(g2D)

√
ω(g2D)

(37)

by (35). This establishes (12) upon the observation that ω(g2D) = ω(gD). �

Remark 4.1 Theorems 431 and 432 of [10] state that normal orders of ω(u) and τ(u)

are log logu and 2log logu, respectively. This implies that one would normally expect

τ(u)√
ω(u)

≤ 2ω(u)

for a randomly chosen integer u (in the appropriate sense).
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