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Abstract In this paper, we combine separate works on (a) the transfer of infinites-
imal rigidity results from an Euclidean space to the next higher dimension by con-
ing (Whiteley in Topol. Struct. 8:53–70, 1983), (b) the further transfer of these re-
sults to spherical space via associated rigidity matrices (Saliola and Whiteley in
arXiv:0709.3354, 2007), and (c) the prediction of finite motions from symmetric in-
finitesimal motions at regular points of the symmetry-derived orbit rigidity matrix
(Schulze and Whiteley in Discrete Comput. Geom. 46:561–598, 2011). Each of these
techniques is reworked and simplified to apply across several metrics, including the
Minkowskian metric M

d and the hyperbolic metric H
d .

This leads to a set of new results transferring infinitesimal and finite motions asso-
ciated with corresponding symmetric frameworks among E

d , cones in E
d+1, S

d , M
d ,

and H
d . We also consider the further extensions associated with the other Cayley–

Klein geometries overlaid on the shared underlying projective geometry.

Keywords Bar-and-joint frameworks · Infinitesimal rigidity · Finite motions ·
Symmetry · Coning to spherical frameworks · Cayley–Klein geometries

1 Introduction

It is a difficult problem to predict when a framework (G,p) in Euclidean space E
d

is flexible [5]. It is even less common to predict that a framework (G,p) is flexi-
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ble in another metric, such as the spherical space S
d , hyperbolic space H

d , or even
Minkowskian space M

d . There are a few well known examples, such as the Bricard
octahedra, which have been shown to be flexible in each of these spaces, but with
a separate proof for each space [1, 4, 23, 24]. Such examples raise the possibility
that there are transfer principles which would bring some flexibility results from one
space to another. In this paper, we present one such transfer principle.

Coning is an established tool for transferring results about infinitesimal rigidity of
a framework from E

d to E
d+1 [27]. Working within the cone, with the original frame-

work placed on the hyperplane xd+1 = 1, then pulling points back and forth towards
the cone vertex, we can also transfer infinitesimal rigidity results from E

d through the
cone to the spherical space S

d within E
d+1, with the cone point at the center of the

sphere [18]. As a more subtle consequence of the equivalence of infinitesimal flexi-
bility and finite flexibility at regular configurations (configurations where the rigidity
matrix indexed by the edges and vertices of the framework has maximal rank), this
process also transfers finite flexes between E

d , the cone in E
d+1, and the sphere S

d .
Several recent papers have examined when symmetry of a framework induces un-

expected finite flexes in E
d , most recently using a symmetric analog of the rigidity

matrix: the orbit matrix [22]. This matrix has rows indexed by orbits of edges un-
der the symmetry group, and columns indexed by orbits of vertices under the group.
Again, in this setting, fully symmetric infinitesimal flexes and finite flexes are equiv-
alent at symmetry regular configurations (configurations where the orbit matrix has
maximal rank).

It is a natural question to ask when this symmetry analysis is preserved by coning,
so that a symmetry induced finite flex in E

d transfers to the cone in E
d+1 and to the

sphere S
d . Our starting point in Sect. 3 is to confirm that this transfer works when the

cone point is placed ‘above’ the central point of the symmetry group (point group).
In the process, we give an alternate proof of the transfer for the identity group, using
direct matrix manipulations on the rigidity matrix, and then extend the analysis to the
orbit matrix.

Previous work on rigidity in non-Euclidean geometry has included results on the
transfer to hyperbolic space [18]. We fit this into our scheme by (a) embedding the
framework (G,p) in E

d on the hyperplane xd+1 = 1 in Minkowskian space M
d+1

and (b) coning the framework to the origin, in a way that transfers all the infinitesimal
rigidity properties. This works for an arbitrary symmetry group in E

d , carrying over
to symmetries in M

d+1, and preserving the rank of the corresponding orbit matrix.
Now, when we push the vertices onto the ‘unit sphere’, we have a framework in
hyperbolic space H

d . This preserves all the key properties including taking symmetry
regular configurations in E

d onto symmetry regular configurations of the cone in
M

d+1, and finite flexes at regular points to finite flexes at regular points.
These results suggest two directions for extensions. One is: What other metrics

can we transfer to? We recall that infinitesimal rigidity (but not symmetry) is a pro-
jective invariant [7], and can be expressed in projective terms. It is then natural to
consider other metrics layered onto projective geometry—the Cayley–Klein geome-
tries [16, 18, 25]. In Sect. 6.3 we briefly outline how the transfer process generalizes
to families of these geometries, provided that the metric is associated with a quadratic
form with a signature of all positive and negative entries, or with a sphere in such a
space. Exactly how far this transfer stretches is a topic for further explorations.
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Table 1 Summary of results about the transfer of flexibility from the framework (G,p) in the Euclidean
space E

d to the coned framework (G ∗ o, q) in E
d+1 (see Theorems 3, 7, 9, and 10)

Framework (G,p) in E
d p = π(q) Coned framework (G ∗ o, q) in E

d+1

dim (trivial infinitesimal motions of
(G,p))= m

⇔ dim (trivial infinitesimal motions of
(G ∗ o, q)) = m + (d + 1)

(G,p) has a non-trivial infinitesimal
motion

⇔ (G ∗ o, q) has a non-trivial
infinitesimal motion

(G,p) has a non-trivial self-stress ⇔ (G ∗ o, q) has a non-trivial self-stress

p is a regular point of G ⇔ q is a regular point of G ∗ o

p is a regular point with a finite motion ⇔ q is regular point a with a finite motion

A second direction for extension is the big question: when do finite motions trans-
fer from frameworks in one space to frameworks in another space? It is a hard prob-
lem to decide whether a specific framework (G,p) which is first-order flexible in
a special position is rigid or flexible. It is then at least as hard to decide whether
flexibility would transfer to another metric with, for example, the same projective
coordinates.

The results in this paper indicate that this transfer can be accomplished when we
have an algebraic variety of configurations, within which the framework moves for
regular points of the variety. The key case here is the variety of S-symmetric con-
figurations for a group S, where symmetric infinitesimal motions and the symmetry
regular configurations are detected by the orbit matrix. Further, the algebraic variety
is preserved in the transfer, as is the rank of an associated matrix which tests for the
infinitesimal motions tangent to the variety. There are some other varieties which are
candidates for such transfer. One sample is the varieties associated with ‘flatness’—
sets of points in the configuration lying in linear subspaces, which are known to gen-
erate finite motions for some classes of complete bipartite graphs. Again, the range
of extensions of these methods is an inviting question for further exploration.

1.1 Overview Tables

We summarize the key results of this paper both for frameworks without symmetry,
and frameworks with symmetry in Tables 1, 2, and 3.

2 Background

2.1 Rigidity of Frameworks in E
d

The following is standard material, following sources such as [20, 28]. We define a
framework in E

d to be a pair (G,p), where G is a finite simple graph with vertex set
V (G) and edge set E(G), and p : V (G) → E

d is an embedding of the vertices of G

in Euclidean d-space. We also say that (G,p) is a d-dimensional realization of the
underlying graph G. We often identify the function p with a row vector in E

d|V (G)|
(by using some fixed order on the vertices in V (G)), in which case we refer to p as a
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Table 2 Summary of results about the transfer of S-symmetric flexibility from the framework (G,p) with
symmetry group S in the Euclidean space E

d to the coned framework (G ∗ o, q) with symmetry group S∗
in E

d+1 (see Theorems 7, 9, and 10)

Framework (G,p) with symmetry
group S in E

d
p = π(q) Coned framework (G ∗ o, q) with

symmetry group S∗ in E
d+1

(G,p) has a non-trivial S-symmetric
infinitesimal motion

⇔ (G ∗ o, q) has a non-trivial S∗-symmetric
infinitesimal motion

(G,p) has a non-trivial S-symmetric
self-stress

⇔ (G ∗ o, q) has a non-trivial S∗-symmetric
self-stress

p is an S-regular point of G ⇔ q is an S∗-regular point of G ∗ o

p is an S-regular point with
symmetry-preserving finite motion

⇔ q is an S∗-regular point with
symmetry-preserving finite motion

Table 3 Summary of results about the transfer of S-symmetric flexibility from the framework (G,p)

with symmetry group S in the Euclidean space E
d to the framework (G,q) with symmetry group S∗ in

the spherical space S
d (see Theorems 8, 9, 10, and Corollary 1)

Framework (G,p) with symmetry group S in E
d p = π(q) Framework (G,q) with symmetry

group S∗ in S
d

(G,p) has a non-trivial S-symmetric infinitesimal
motion

⇔ (G,q) has a non-trivial S∗-symmetric
infinitesimal motion

(G,p) has a non-trivial S-symmetric self-stress ⇔ (G,q) has a non-trivial S∗-symmetric
self-stress

p is an S-regular point of G ⇔ q is an S∗-regular point of G

p is an S-regular point with symmetry-preserving
finite motion

⇔ q is an S∗-regular point with
symmetry-preserving finite motion

configuration of |V (G)| points in E
d . For i ∈ V (G), we say that p(i) is the joint of

(G,p) corresponding to i, and for e = {i, j} ∈ E(G), we say that {p(i),p(j)} is the
bar of (G,p) corresponding to e. Throughout the paper, we denote n := |V (G)|.

For a fixed ordering of the edges of a graph G, we define the edge function fG :
E

dn → R
|E(G)| by

fG(p1, . . . , pn) = (
. . . ,‖pi − pj‖2, . . .

)
,

where {i, j} ∈ E(G), pi := p(i) ∈ E
d for all i ∈ V (G), and ‖ · ‖ denotes the Eu-

clidean norm in E
d [2].

If (G,p) is a d-dimensional framework, then f −1
G (fG(p)) is the set of all con-

figurations q of n points in E
d with the property that corresponding bars of the

frameworks (G,p) and (G,q) have the same length. In particular, we clearly have
f −1

Kn
(fKn(p)) ⊆ f −1

G (fG(p)), where Kn is the complete graph on V (G).

An analytic path x : [0,1] → E
dn is called a finite motion of (G,p) if x(0) = p

and x(t) ∈ f −1
G (fG(p)) for all t ∈ [0,1]. Further, x is called a finite rigid motion (or

trivial finite motion) if x(t) ∈ f −1
Kn

(fKn(p)) for all t ∈ [0,1], and x is called a finite

flex (or non-trivial finite motion) of (G,p) if x(t) /∈ f −1
Kn

(fKn(p)) for all t ∈ (0,1].
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We say that (G,p) is rigid if every finite motion of (G,p) is trivial; otherwise
(G,p) is called flexible. It is a well established fact that the existence of an analytic
finite flex is equivalent to the existence of a continuous finite flex, and in turn to a
converging sequence of non-congruent configurations [2].

Given a framework (G,p) in E
d , the rigidity matrix of (G,p) is the |E(G)| × dn

matrix R(G,p) = 1
2dfG(p), where dfG(p) denotes the Jacobian matrix of the edge

function fG, evaluated at the point p. We have

R(G,p) =

⎛

⎜⎜
⎝

i j

...

{i, j} 0 . . . 0 (pi − pj ) 0 . . . 0 (pj − pi) 0 . . . 0
...

⎞

⎟⎟
⎠.

An infinitesimal motion of a framework (G,p) in E
d is a function u : V (G) → E

d

such that

(pi − pj ) · (ui − uj ) = 0 for all {i, j} ∈ E(G), (1)

where ui denotes the vector u(i) for each i. Note that the kernel of the rigidity matrix
R(G,p) is the space of all infinitesimal motions of (G,p).

An infinitesimal motion u of (G,p) is an infinitesimal rigid motion (or trivial in-
finitesimal motion) if there exist a skew-symmetric matrix S (a rotation) and a vector t

(a translation) such that ui = Spi + t for all i ∈ V (G). Otherwise u is an infinitesimal
flex (or non-trivial infinitesimal motion) of (G,p).

Note that if the joints of (G,p) span all of E
d (in an affine sense), then the kernel

of the rigidity matrix R(Kn,p), where Kn is the complete graph on the vertices of G,
is the space of infinitesimal rigid motions of (G,p). It is well known that this space
is of dimension

(
d+1

2

)
.

We say that (G,p) is infinitesimally rigid if every infinitesimal motion of (G,p)

is an infinitesimal rigid motion. Otherwise (G,p) is said to be infinitesimally flexi-
ble [28].

Clearly, if the joints of (G,p) affinely span all of E
d , then nullity (R(G,p)) ≥(

d+1
2

)
, and (G,p) is infinitesimally rigid if and only if nullity (R(G,p)) = (

d+1
2

)
or

equivalently, rank (R(G,p)) = dn − (
d+1

2

)
.

An infinitesimally rigid framework is always rigid. The converse, however, does
not hold in general.

A self-stress of a framework (G,p) is a function ω : E(G) → E such that at each
joint pi of (G,p) we have

∑

j :{i,j}∈E(G)

ωij (pi − pj ) = 0,

where ωij denotes ω({i, j}) for all {i, j} ∈ E(G). Note that if we identify a self-
stress ω with a row vector in R

|E(G)| (by using the order on E(G)), then we have
ωR(G,p) = 0. In structural engineering, the self-stresses are also called equilibrium
stresses as they record tensions and compressions in the bars balancing at each vertex.
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If (G,p) has a non-zero self-stress, then (G,p) is said to be dependent (since
in this case there exists a linear dependency among the row vectors of R(G,p)).
Otherwise, (G,p) is said to be independent. A framework which is both independent
and infinitesimally rigid is called isostatic [7, 28].

A configuration p of n points in E
d is called a regular point of the graph G, if

rank (R(G,p)) ≥ rank (R(G,q)) for all q ∈ E
dn. A framework (G,p) is said to be

regular if p is a regular point of G.
It follows from this definition that the set of all regular realizations of a graph G in

E
d forms a dense open subset of all possible realizations of G in E

d [10]. Moreover,
note that the infinitesimal rigidity of a regular realization of G depends only on the
underlying graph G and not on the particular realization [10].

Asimov and Roth showed in [2] that for regular frameworks, infinitesimal rigid-
ity and rigidity are equivalent. This result of Asimov and Roth provides a key tool
for detecting finite motions in frameworks. An extension of the theorem of Asimov
and Roth to symmetric frameworks has recently been established in [19]. We will
formulate this result in the next section.

2.2 Symmetric Frameworks in E
d

Let G be a graph and let Aut(G) denote the automorphism group of G. A symmetry
operation of a framework (G,p) in E

d is an isometry x of E
d such that for some

α ∈ Aut(G), we have x(pi) = pα(i) for all i ∈ V (G) [13, 20, 21].
The set of all symmetry operations of a framework (G,p) forms a group under

composition, called the point group of (G,p) [3, 13, 21]. Since translating a frame-
work does not change its rigidity properties, we may assume wlog that the point
group of any framework in this paper is a symmetry group (with the origin fixed), i.e.,
a subgroup of the orthogonal group O(Ed) [19–21].

We use the Schoenflies notation for the symmetry operations and symmetry groups
considered in this paper, as this is one of the standard notations in the literature about
symmetric structures (see [3, 11, 13–15, 19, 20], for example). In this notation, the
identity transformation is denoted by Id, a rotation about a (d − 2)-dimensional sub-
space of E

d by an angle of 2π
m

is denoted by Cm, and a reflection in a (d − 1)-
dimensional subspace of E

d is denoted by s.
While the general methods and results of this paper apply to all symmetry groups,

we will only analyze three different types of group in our examples. In the Schoenflies
notation, they are denoted by Cm, Cs , and Cmv . For any dimension d , Cm is a symmetry
group generated by an m-fold rotation Cm, and Cs is a symmetry group consisting of
the identity Id and a reflection s. The only other possible type of symmetry group in
dimension 2 is the group Cmv which is a dihedral group generated by a pair {Cm, s}.
In dimension 3, Cmv denotes any symmetry group that is generated by a rotation Cm

and a reflection s whose corresponding mirror contains the rotational axis of Cm. For
further information about the Schoenflies notation we refer the reader to [3, 13, 21].

Given a symmetry group S in dimension d and a graph G, we let R(G,S) denote
the set of all d-dimensional realizations of G whose point group is either equal to S

or contains S as a subgroup [20, 21]. In other words, the set R(G,S) consists of all
realizations (G,p) of G for which there exists a map Φ : S → Aut(G) so that

x(pi) = pΦ(x)(i) for all i ∈ V (G) and all x ∈ S. (2)
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Fig. 1 2-dimensional realizations of K2,2 in R(K2,2,Cs ) of different types: the framework in (a) is of type
Φa , where Φa : Cs → Aut(K2,2) is the homomorphism defined by Φa(s) = (1 3)(2)(4) and the framework
in (b) is of type Φb , where Φb : Cs → Aut(K2,2) is the homomorphism defined by Φb(s) = (1 4)(2 3)

A framework (G,p) ∈ R(G,S) satisfying the equations in (2) for the map Φ : S →
Aut(G) is said to be of type Φ , and the set of all realizations in R(G,S) which are of
type Φ is denoted by R(G,S,Φ) (see again [20, 21] and Fig. 1).

Since we assume that the map p of any framework (G,p) ∈ R(G,S,Φ) is always
injective (i.e., pi 	= pj if i 	= j ), it follows that (G,p) is of a unique type Φ , and
Φ is necessarily also a homomorphism (see [21] for details). This allows us (with a
slight abuse of notation) to use the terms px(i) and pΦ(x)(i) interchangeably, where
i ∈ V (G) and x ∈ S. In general, if the type Φ is clear from the context, we often
simply write x(i) instead of Φ(x)(i).

Let (G,p) ∈ R(G,S,Φ) and let x be a symmetry operation in S. Then the joint pi

of (G,p) is said to be fixed by x if Φ(x)(i) = i, or equivalently (since p is assumed
to be injective), x(pi) = pi .

Let the symmetry element corresponding to x be the linear subspace Fx of E
d

which consists of all points a ∈ E
d with x(a) = a. Then the joint pi of any framework

(G,p) in R(G,S,Φ) must lie in the linear subspace

U(pi) =
⋂

x∈S:x(pi )=pi

Fx.

The joint p1 of the framework (K2,2,p) ∈ R(K2,2,Cs ,Φa) depicted in Fig. 1(a), for
example, is fixed by the identity Id ∈ Cs , but not by the reflection s ∈ Cs , so that
U(p1) = FId = E

2. The joint p2 of (K2,2,p), however, is fixed by both the identity
Id and the reflection s in Cs , so that U(p2) = FId ∩ Fs = Fs . In other words, U(p2)

is the mirror line corresponding to s.
Note that if we choose a set of representatives Ov = {1, . . . , k} for the orbits S(i) =

{Φ(x)(i)|x ∈ S} of vertices of G, then the positions of all joints of (G,p) ∈ R(G,S,Φ)

are uniquely determined by the positions of the joints p1, . . . , pk and the symmetry
constraints imposed by S and Φ . Thus, any framework in R(G,S,Φ) may be con-
structed by first choosing positions pi ∈ U(pi) for each i = 1, . . . , k, and then letting
S and Φ determine the positions of the remaining joints.

Let P(G,S,Φ) be the subspace of configurations in E
dn which satisfy the equa-

tions in (2). Further, let f̃G : P(G,S,Φ) → E
|E(G)| denote the restriction of the edge
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Fig. 2 Infinitesimal motions of frameworks in the plane: (a) a C2-symmetric non-trivial in-
finitesimal motion of (K2,2,p) ∈ R(K2,2,C2,Φ); (b) a Cs -symmetric trivial infinitesimal motion of
(K2,2,p) ∈ R(K2,2,Cs ,Φb); (c) a non-trivial infinitesimal motion of (K2,2,p) ∈ R(K2,2,Cs ,Φb) which
is not Cs -symmetric

function fG to P(G,S,Φ). A configuration p ∈ P(G,S,Φ) is called an S-regular
point of G if rank (df̃G(p)) = max{rank (df̃G(q))|q ∈ P(G,S,Φ)}. A framework
(G,p) ∈ R(G,S,Φ) is called S-regular if the configuration p is an S-regular point
of G.

To formulate the symmetric version of the theorem of Asimov and Roth, we need
the notion of an S-symmetric infinitesimal motion which we define next. In general,
as shown in [6, 9, 19, 22], an analysis of the infinitesimal motions and stresses of
a symmetric framework which exhibit the full symmetry of the framework can give
important insight into the rigidity properties of the framework.

An infinitesimal motion u of a framework (G,p) ∈ R(G,S,Φ) is called S-symmetric
if

x(ui) = ux(i) for all i ∈ V (G) and all x ∈ S, (3)

i.e., if u is unchanged under all symmetry operations in S (see also Fig. 2(a) and (b)).
Note that it follows immediately from (3) that if u is an S-symmetric infinitesimal

motion of (G,p), then ui is an element of U(pi) for each i. Moreover, u is uniquely
determined by the velocity vectors u1, . . . , uk whenever OV (G) = {1, . . . , k} is a set
of representatives for the vertex orbits S(i) = {Φ(x)(i)|x ∈ S} of G.

A self-stress ω of a framework (G,p) ∈ R(G,S,Φ) is S-symmetric if ωe = ωf

whenever e and f belong to the same orbit S(e) = {Φ(x)(e)|x ∈ S} of edges of
G (see also Fig. 3(a)).

Note that an S-symmetric self-stress is clearly uniquely determined by the com-
ponents ωe1, . . . ,ωer , whenever OE(G) = {e1, . . . , er} is a set of representatives for
the edge orbits S(e) = {Φ(x)(e)|x ∈ S} of G.

We are now ready to state the symmetric version of the theorem of Asimov and
Roth which was proved in [19].

Theorem 1 (Schulze [19]) Let G be a graph, S be a symmetry group in dimension
d , Φ : S → Aut(G) be a homomorphism, and (G,p) be a framework in R(G,S,Φ)

whose joints span all of E
d . If (G,p) is S-regular and (G,p) has an S-symmetric
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Fig. 3 Self-stressed frameworks in the plane: (a) a C3v -symmetric self-stress of (G,p) ∈ R(G,C3v,Φ);
(b) a self-stress of (H,p) ∈ R(H,Cs ,Ψ ) which is not Cs -symmetric

non-trivial infinitesimal motion, then there also exists a non-trivial finite motion of
(G,p) which preserves the symmetry of (G,p) throughout the path.

By Theorem 1, we may test an S-regular framework (G,p) for flexibility by an-
alyzing its S-symmetric infinitesimal rigidity properties, which in turn can be done
via the ‘orbit rigidity matrix’ which was introduced in [22].

Definition 1 Let G be a graph, S be a symmetry group in dimension d , Φ : S →
Aut(G) be a homomorphism, and (G,p) be a framework in R(G,S,Φ). Further, let
OV (G) = {1, . . . , k} be a set of representatives for the orbits S(i) = {Φ(x)(i)|x ∈ S}
of vertices of G. We construct the orbit rigidity matrix (or in short, orbit ma-
trix) O(G,p,S) of (G,p) so that it has exactly one row for each orbit S(e) =
{Φ(x)(e)|x ∈ S} of edges of G and exactly ci := dim (U(pi)) columns for each
vertex i ∈ OV (G).

Given an edge orbit S(e) of G, there are two possibilities for the corresponding
row in O(G,p,S):

Case 1 The two end-vertices of the edge e lie in distinct vertex orbits. Then there
exists an edge in S(e) that is of the form {i, x(j)} for some x ∈ S, where i, j ∈
OV (G). Let a basis Bi for U(pi) and a basis Bj for U(pj ) be given and let Mi

and Mj be the matrices whose columns are the coordinate vectors of Bi and Bj

relative to the canonical basis of E
d , respectively. The row we write in O(G,p,S)

is

(
i j

0 . . . 0 (pj −x(pj ))Mi 0 . . . 0 (pj −x−1(pi))Mj 0 . . . 0
)
.

Case 2 The two end-vertices of the edge e lie in the same vertex orbit. Then there ex-
ists an edge in S(e) that is of the form {i, x(i)} for some x ∈ S, where i ∈ OV (G).
The row we write in O(G,p,S) is

(
i

0 . . . 0 (2pi − x(pi) − x−1(pi))Mi 0 . . .0
)
.
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In particular, if x(pi) = x−1(pi), this row becomes

(
i

0 . . . 0 2(pi − x(pi))Mi 0 . . . 0
)
.

Remark 1 Note that the rank of the orbit rigidity matrix O(G,p,S) is clearly inde-
pendent of the choice of bases for the spaces U(pi) (and their corresponding matrices
Mi ), i = 1, . . . , k.

Remark 2 If none of the joints of (G,p) are fixed by any non-trivial symmetry op-
eration in S, then the orbit rigidity matrix O(G,p,S) of (G,p) has dk = d|OV (G)|
columns, and each of the matrices Mi and Mj may be chosen to be the d × d iden-
tity matrix. In this case, the matrix O(G,p,S) becomes particularly easy to construct
(see also Example 1).

We illustrate the definition of the orbit rigidity matrix with two examples.

Example 1 Consider the 2-dimensional framework (K2,2,p) ∈ R(K2,2,C2) depicted
in Fig. 2(a). If we denote p1 = (0, a), p2 = (b, c), then p3 = (0,−a), and p4 =
(−b,−c), and the rigidity matrix of (K2,2,p) is the matrix

⎛

⎜⎜
⎝

1 2 3 = C2(1) 4 = C2(2)

{1,2} (−b, a − c) (b, c − a) 0 0 0 0
{1,4} (b, a + c) 0 0 0 0 (−b,−a − c)

C2{1,2} 0 0 0 0 (b, c − a) (−b, a − c)

C2{1,4} 0 0 (b, a + c) (−b,−a − c) 0 0

⎞

⎟⎟
⎠.

The orbit matrix O(K2,2,p, C2) of (K2,2,p) is the matrix

(
1 2

{1,2} (p1 − p2) (p2 − p1)

{1,C2(2)} (p1 − C2(p2)) (p2 − C−1
2 (p1))

)
=

(
1 2

(−b, a − c) (b, c − a)

(b, a + c) (b, c + a)

)

Clearly, (K2,2,p) has a one-dimensional space of C2-symmetric infinitesimal flexes
spanned by u = (−1,0, x, y,1,0,−x,−y)T , where x = − c

a
and y = b

a
. Note that

the vector (−1,0, x, y)T lies in the kernel of the orbit matrix O(K2,2,p, C2). �

Example 2 Similarly, the orbit rigidity matrix of the 2-dimensional framework
(G,p) ∈ R(G,C3v) depicted in Fig. 3(a) is the matrix

⎛

⎝

1 4

{1,4} (p1 − p4)M1 (p4 − p1)M4
{1,C3(1)} (2p1 − C3(p1) − C2

3(p1))M1 0
{4,C3(4)} 0 (2p4 − C3(p4) − C2

3(p4))M4

⎞

⎠,
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where M1 = M4 = ( 0
1
). If we denote p1 = (0, a) and p4 = (0, b), then this matrix is

equal to

⎛

⎝

1 4

(a − b) (b − a)

(3a) 0
0 (3b)

⎞

⎠.

Clearly, (G,p) has a one-dimensional space of C3v-symmetric self-stresses, spanned
by (α,α,α,β,β,β, γ, γ, γ ), where α = 1, β = b−a

3a
, and γ = a−b

3b
. Note that for

ω = (α,β, γ ), we have ωO(G,p, C3v) = 0. �

The key result for the orbit rigidity matrix is the following:

Theorem 2 (Schulze, Whiteley [22]) Let (G,p) be a framework in R(G,S,Φ). Then
the solutions to O(G,p,S)u = 0 are isomorphic to the space of S-symmetric in-
finitesimal motions of (G,p). Moreover, the solutions to ωO(G,p,S) = 0 are iso-
morphic to the space of S-symmetric self-stresses of (G,p).

As a consequence of Theorem 2 we conclude that a framework (G,p) ∈ R(G,S,Φ)

is S-regular if and only if rank (O(G,p,S)) = max{rank (O(G,q,S))|q ∈ P(G,S,Φ)}
(see [19] and [22] for details).

3 Euclidean Coning of Symmetric Frameworks

In this section we first present the basic process of coning a framework to the ori-
gin without added symmetry (Sect. 3.1). The basic result of Sect. 3.1 that coning
preserves infinitesimal rigidity and independence is also presented in [27]. Here we
describe an alternative rigidity matrix approach to this result which will permit a di-
rect generalization to symmetric frameworks (Sect. 3.2). We then move joints back
and forth along their rays to the origin (the cone joint) in Sect. 3.3. Finally in Sect. 3.4
we apply this process to move the framework onto the sphere.

In all of this, the matrix processes (row and column reductions) will be reversible,
and will permit a simple tracking of how the infinitesimal motions (kernel) and the
self-stresses (row dependencies) are modified into isomorphic spaces on the cone.

3.1 Coning a General Framework in E
d

Let (G,p) be a framework in E
d . Recall that the rigidity matrix of (G,p) is the

|E(G)| × dn matrix

R(G,p) =

⎛

⎜⎜
⎝

i j

...

{i, j} 0 . . . 0 (pi − pj ) 0 . . . 0 (pj − pi) 0 . . . 0
...

⎞

⎟⎟
⎠.
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Fig. 4 The simple cone (b) of a plane framework (a) has the same static and instantaneous kinematic
properties as the more general cone with the same cone rays (c)

We embed the framework (G,p) into the hyperplane xd+1 = 1 of E
d+1 via pi =

(pi,1) ∈ E
d+1. We then cone the resulting framework (G,p) to the origin o in E

d+1,
i.e., we connect each of the n joints of (G,p) with o (see also Fig. 4). This adds n

rows to the new rigidity matrix for the cone framework (G ∗ o,p∗) in E
d+1. We call

the underlying graph G ∗ o of (G ∗ o,p∗) the cone graph of G.
The cone rigidity matrix of the cone framework (G ∗ o,p∗) is the (|E(G)| + n) ×

(d + 1)n matrix

R∗
(
G ∗ o,p∗)

=

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

i j

...

{i, j} 0 . . . 0 (pi − pj ) 0 . . . 0 (pj − pi) 0 . . . 0
...

{0, i} 0 . . . 0 pi 0 . . . 0 0 0 . . . 0
...

{0, j} 0 . . . 0 0 0 . . . 0 pj 0 . . . 0
...

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

.

We have added n rows and n columns to R(G,p) to obtain R∗(G ∗ o,p∗). We note
that (pi −pj ) is zero in each added column. Moreover, for each added column (under
vertex i) there is exactly one added row which is non-zero in this column: pi has a 1
in this column. Thus we have increased the rank by n, and preserved the dimension
of the kernel.

We have not added the columns for the added cone vertex o—which would have
increased the dimension of the kernel by d + 1. Instead, for convenience, we have
introduced a modified cone rigidity matrix, where the kernel is reduced and the in-
finitesimal motions are restricted to those which fix the origin—the cone joint. This
will be particularly convenient for the sphere (see Sect. 3.4).
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Fig. 5 The velocity in Euclidean space ui goes to a distinct velocity ui on the cone (a). This velocity is
modified when pulled onto the hemisphere (b), (c) but if ui = uj then ‖vi‖ = ‖vj ‖

Example 3 Consider the cone framework (K2,2 ∗ o,p∗) ∈ R(K2,2∗o,C∗
2 ) of the frame-

work (K2,2,p) ∈ R(K2,2,C2) from Example 1 (see also Fig. 2(a)). The cone rigidity
matrix of (K2,2 ∗ o,p∗) is the matrix

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4

{1,2} (−b, a − c,0) (b, c − a,0) 0 0 0 0 0 0
{1,4} (b, a + c,0) 0 0 0 0 0 0 (−b,−a − c,0)

{3,4} 0 0 0 0 0 0 (b, c − a,0) (−b, a − c,0)

{2,3} 0 0 0 (b, a + c,0) (−b,−a − c,0) 0 0 0
{0,1} (0, a,1) 0 0 0 0 0 0 0 0 0
{0,2} 0 0 0 (b, c,1) 0 0 0 0 0 0
{0,3} 0 0 0 0 0 0 (0,−a,1) 0 0 0
{0,4} 0 0 0 0 0 0 0 0 0 (−b,−c,1)

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

.

If we apply this same process to the complete graph on the vertices, we see that the
trivial motions in E

d go to trivial motions in E
d+1 which fix the origin. Rotations will

go to rotations around extended axes which contain the origin, and translations will
also go to rotations around axes formed by joining the origin to the ‘implied center
of the translation’ at infinity.

What does the transfer of velocities look like, in practice? Consider Fig. 5 which
shows the process from the line to the plane. We keep the same first d coordinates
of the velocities, and add whatever last entry will make the vector perpendicular
to the bar from the origin to the joint. That is, we take the unique vector which is
perpendicular to the coning bar and projects orthogonally onto the previous velocity.
Explicitly, for a d-dimensional velocity vector ui at a joint pi , the new velocity vector
at the joint pi is the (d + 1)-dimensional vector (ui,−ui · pi).

If we consider self-stresses—row dependencies—the new rows are independent
of all previous rows, and there is a direct correspondence of self-stresses between the
two matrices (simply add 0 coefficients to all the new rows when extending, or delete
these coefficients when transferring back).
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Theorem 3 (General coning) Let (G,p) be a framework in E
d .

(i) The space of infinitesimal motions of (G,p) in E
d is isomorphic to the space of

infinitesimal motions of the cone framework (G ∗ o,p∗) in E
d+1, with the cone

joint fixed at the origin;
(ii) the space of trivial infinitesimal motions of (G,p) in E

d is isomorphic to the
space of trivial infinitesimal motions of (G ∗ o,p∗) in E

d+1, with the cone joint
fixed at the origin;

(iii) (G,p) has a non-trivial infinitesimal motion in E
d if and only if (G ∗ o,p∗) has

a non-trivial infinitesimal motion in E
d+1;

(iv) the space of self-stresses of the framework (G,p) is isomorphic to the space of
self-stresses of (G ∗ o,p∗);

(v) (G,p) is infinitesimally rigid (isostatic) in E
d if and only if (G ∗ o,p∗) is in-

finitesimally rigid (isostatic) in E
d+1.

Notice that we have stated the last three parts above without any reference to the
cone joint being fixed. This was intentional. Adding the missing d + 1 columns for
the cone vertex will add a (d + 1)-dimensional space of infinitesimal translations,
but will not add any non-trivial infinitesimal motions. The rank of the matrix will
not change, nor will the space of self-stresses. It is a general principle of statics that
an equilibrium at all but one vertex will satisfy the equilibrium equation at the final
vertex.

As a next step, for each i, we subtract the added row for the coning edge {0, i} from
each edge containing the vertex i. This yields the following modified cone rigidity
matrix:

R
(
G ∗ o,p∗) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

i j

...

{i, j} 0 . . . 0 (−pj ) 0 . . . 0 (−pi) 0 . . . 0
...

{0, i} 0 . . . 0 pi 0 . . . 0 0 0 . . . 0
...

{0, j} 0 . . . 0 0 0 . . . 0 pj 0 . . . 0
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

This modified matrix no longer has the direct appearance of a ‘rigidity matrix for a
framework’—but the form is well structured for further work throughout this section.

This row reduction preserves the rank and the solution space, so that the kernel
(the space of infinitesimal motions) remains unchanged. The row dependencies (self-
stresses), however, do take a different form.

Specifically, the former equilibrium equation for each vertex i:
∑

j |{i,j}∈E(G) ωij ×
(pi − pj ) is rewritten in the form

∑
j |ij∈E(G) ωij (−pj ) + (

∑
j |{i,j}∈E(G) ωij )pi . So

we keep the same coefficient on the rows for the edges {i, j} and the new coefficient
(
∑

j |{i,j}∈E(G) ωij ) on the row for {0, i}. We can now see the direct isomorphism of
the spaces of dependencies between the two matrices.
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Since we no longer have the explicit rigidity matrix for an identified framework,
we record these correspondences in the following form.

Proposition 1 For a given cone framework (G ∗ o,p) the matrices R(G ∗ o,p) and
R∗(G ∗ o,p) have the same rank as well as isomorphic kernels and cokernels.

3.2 Coning with Symmetry

In this section, we show that for a given framework (G,p) in R(G,S,Φ), the cone
framework (G ∗ o,p∗) has essentially the same symmetry group and the same sym-
metric infinitesimal rigidity properties as (G,p). Since the type Φ : S → Aut(G) of
a given framework (G,p) with symmetry group S is always uniquely determined
(recall Sect. 2.2), we will simply write (G,p) ∈ R(G,S) from now on.

Definition 2 Let S be a symmetry group in dimension d and let x ∈ S. We denote
the matrix which represents x with respect to the canonical basis of E

d by Mx . Then
x∗ is defined as the orthogonal transformation of E

d+1 which is represented by the
matrix

Mx∗ =

⎛

⎜⎜⎜
⎝

0

Mx

...

0
0 · · · 0 1

⎞

⎟⎟⎟
⎠

with respect to the canonical basis of E
d+1. Further, we let S∗ be the orthogonal

group in dimension (d + 1) which has the elements {x∗ : x ∈ S}.

Theorem 4 A framework (G,p) is an element of R(G,S) if and only if the cone
framework (G ∗ o,p∗) is an element of R(G∗o,S∗).

Proof Let x ∈ S. We have Mxp
T
i = pT

x(i) for all i ∈ V (G) and all x ∈ S if and only if

Mx∗pT
i =

⎛

⎜⎜⎜
⎝

0

Mx

...

0
0 · · · 0 1

⎞

⎟⎟⎟
⎠

⎛

⎜⎜
⎝

pT
i

1

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

Mxp
T
i

1

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

pT
x(i)

1

⎞

⎟⎟
⎠ = pT

x∗(i)

for all i ∈ V (G) and all x ∈ S. This gives the result. �

Theorem 5 Let (G,p) be a framework in R(G,S), and (G∗o,p∗) be the correspond-
ing cone framework in R(G∗o,S∗). Then:

(i) the space of S-symmetric infinitesimal motions of (G,p) in E
d is isomorphic to

the space of S∗-symmetric infinitesimal motions of (G ∗ o,p∗) in E
d+1, with the

cone joint of (G ∗ o,p∗) fixed at the origin;
(ii) the space of trivial S-symmetric infinitesimal motions of (G,p) in E

d is isomor-
phic to the space of trivial S∗-symmetric infinitesimal motions of (G ∗ o,p∗) in
E

d+1, with the cone joint of (G ∗ o,p∗) fixed at the origin;
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(iii) (G,p) has a non-trivial S-symmetric infinitesimal motion in E
d if and only if

(G ∗ o,p∗) has a non-trivial S∗-symmetric infinitesimal motion in E
d+1;

(iv) the space of S-symmetric self-stresses of (G,p) is isomorphic to the space of
S∗-symmetric self-stresses of (G ∗ o,p∗).

Proof We use the same basic procedure as in Sect. 3.1. Recall from Definition 1 that
for a d-dimensional framework (G,p) ∈ R(G,S) whose vertex orbits under the action
of S are represented by the vertices 1, . . . , k, the orbit rigidity matrix O(G,p,S) of
(G,p) is the r × c matrix

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

i j
...{

i, x(j)
}

0 . . . 0 (pi − x(pj ))Mi 0 . . . 0 (pj − x−1(pi))Mj 0 . . . 0
...{

i, y(i)
}

0 . . . 0 (2pi − y(pi) − y−1(pi))Mi 0 . . . 0 0 0 . . . 0
...

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

where c = ∑k
i=1 ci .

We embed the framework (G,p) into the hyperplane xd+1 = 1 of E
d+1 via

pi = (pi,1) ∈ E
d+1. We then cone this to the origin o in E

d+1. This gives rise to
k new rows in the orbit rigidity matrix O∗(G ∗ o,p∗, S∗) of the cone framework
(G ∗ o,p∗) ∈ R(G∗o,S∗).

For each i = 1, . . . , k, we let B∗
i be the basis of the space U(p∗

i ) which consists of
the basis vectors {(w,0) : w ∈ Bi} and the additional basis vector ed+1—the (d +1)st
canonical basis vector of E

d+1. Further, we let M∗
i be the matrix whose columns are

the coordinate vectors of B∗
i relative to the canonical basis of E

d+1; that is,

M∗
i =

⎛

⎜⎜⎜
⎝

0

Mi

...

0
0 · · · 0 1

⎞

⎟⎟⎟
⎠

.

The orbit rigidity matrix O∗(G ∗ o,p∗, S∗) has the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

i j
...

{i, x(j)} 0 . . . 0 (pi − x∗(pj ))M
∗
i 0 . . . 0 (pj − x∗−1(pi))M

∗
j 0 . . . 0

...

{i, y(i)} 0 . . . 0 (2pi − y∗(pi) − y∗−1(pi))M
∗
i 0 . . . 0 0 0 . . . 0

...

{0, i} 0 . . . 0 piM
∗
i 0 . . . 0 0 0 . . . 0

...

{0, j} 0 . . . 0 0 0 . . . 0 pj M∗
j 0 . . . 0

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.
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Note that we have added k rows and k columns to O(G,p,S) to obtain O∗(G ∗
o,p∗, S∗), and that for every edge {i, x(j)}, i 	= j , and every edge {i, y(i)} of G, the
vectors (pi − x∗(pj ))Mi and (2pi − y∗(pi) − y∗−1(pi))M

∗
i are zero in the added

column. Moreover, for each added column (under vertex i) there is exactly one added
row which is non-zero in this column: piM

∗
i has a 1 in this column. Thus we have

increased the rank by k, and preserved the dimension of the kernel.
If we apply this process to the complete graph on the vertices, we see that the

dimension m of the space of trivial S-symmetric infinitesimal motions of (G,p) is
equal to the dimension m∗ of the space of trivial S∗-symmetric infinitesimal motions
of (G ∗ o,p∗) (with the cone joint fixed at the origin). This gives the result. �

Similar to Theorem 3, we have stated the last two parts in Theorem 5 with-
out any reference to the cone joint being fixed. This is because the missing
c0 := dim(U(p0)) = dim(

⋂
x∗∈S∗ Fx∗) columns for the cone joint will add a c0-

dimensional space of S∗-symmetric infinitesimal translations, but will not add any
S∗-symmetric non-trivial infinitesimal motions. The rank of the matrix will not
change, nor will the space of row dependencies (symmetric self-stresses).

The transfer of symmetric velocities from the framework (G,p) to the cone frame-
work (G ∗ o,p∗) is the same as the one described in Sect. 3.1: we keep the same
first d coordinates of the velocities, and add whatever last entry will make the vec-
tor perpendicular to the bar from the origin to the joint. Note that this transfers an
S-symmetric infinitesimal motion of (G,p) to an S∗-symmetric infinitesimal motion
of (G ∗ o,p∗). Similarly, since the new rows in O∗(G ∗ o,p∗, S∗) are independent of
all previous rows, there is a direct correspondence of row dependencies (symmetric
self-stresses) between the two matrices O(G,p,S) and O∗(G ∗ o,p∗, S∗) (simply
add 0 coefficients to all the new rows when extending, or delete these coefficients
when transferring back).

Note that in the case where S is the identity group, Theorem 5 simply restates
Theorem 3.

Analogous to the process described in Sect. 3.1, we now carry out a row reduction
in the cone orbit matrix O∗(G ∗ o,p∗, S∗) (using the added row corresponding to
coning edge {0, i} to subtract from edges containing the vertex i). This produces a
modified cone orbit matrix O(G ∗ o,p∗, S∗) which is equal to

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜
⎝

i j

...{
i, x(j)

}
0 . . . 0 (−x∗(pj ))M

∗
i 0 . . . 0 (−x∗−1(pi))M

∗
j 0 . . . 0

...{
i, y(i)

}
0 . . . 0 (pi − y∗(pi) − y∗−1(pi))M

∗
i 0 . . . 0 0 0 . . . 0

...
{0, i} 0 . . . 0 piM

∗
i 0 . . . 0 0 0 . . . 0

...
{0, j} 0 . . . 0 0 0 . . . 0 pj M∗

j 0 . . . 0
...

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.
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Analogous to the matrix R(G ∗ o,p) in Sect. 3.1, the matrix O(G ∗ o,p∗, S∗) no
longer has the direct appearance of an ’orbit rigidity matrix for a framework’. How-
ever, we will be using this matrix as a starting point for further work throughout this
section.

This row reduction preserves the rank and the solution space, so that the kernel
(the space of symmetric infinitesimal motions) remains unchanged. The row depen-
dencies (symmetric self-stresses), however, change in the analogous way as described
in Sect. 3.1. Specifically, we keep the same coefficients, ωij , on the rows for the orig-
inal edges (i.e., the edges of the form {i, x(j)} and {i, y(i)}) and the new coefficient
(
∑

j |{i,j}∈OE(G)
ωij ) on the row for {0, i}.

We summarize these observations in the following theorem:

Theorem 6 For a given cone framework (G∗o,p) ∈ R(G∗o,S∗), the matrices O∗(G∗
o,p∗, S∗) and O(G∗o,p∗, S∗) have the same rank as well as isomorphic kernels and
cokernels.

We conclude this section with two examples, illustrating Theorem 5.

Example 4 Consider the framework (K2,2,p) from Examples 1 and 3. The orbit
rigidity matrix O∗(K2,2 ∗ o,p∗, C∗

2 ) of the cone framework (K2,2 ∗ o,p∗) is the ma-
trix

⎛

⎜
⎜⎜
⎝

1 2

{1,2} (p1 − p2) (p2 − p1)

{1,C∗
2 (2)} (p1 − C∗

2 (p2)) (p2 − C∗−1
2 (p1))

{0,1} p1 0 0 0

{0,2} 0 0 0 p2

⎞

⎟
⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

1 2

(−b, a − c,0) (b, c − a,0)

(b, a + c,0) (b, c + a,0)

(0, a,1) 0 0 0

0 0 0 (b, c,1)

⎞

⎟⎟⎟
⎠

and the modified matrix O(K2,2 ∗ o,p∗, C∗
2 ) is the matrix

⎛

⎜⎜⎜
⎝

1 2

{1,2} (−p2) (−p1)

{1,C∗
2 (2)} (−C∗

2 (p2)) (−C∗−1
2 (p1))

{0,1} p1 0 0 0

{0,2} 0 0 0 p2

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

1 2

(−b,−c,−1) (0,−a,−1)

(b, c,−1) (0, a,−1)

(0, a,1) 0 0 0

0 0 0 (b, c,1)

⎞

⎟⎟⎟
⎠

.

The C∗
2 -symmetric infinitesimal flex of (K2,2 ∗ o,p∗) corresponding to the C2-

symmetric infinitesimal flex u = (−1,0, x, y,1,0,−x,−y)T of (K2,2,p) defined
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in Example 1 is u∗ = (−1,0,0, x, y,0,1,0,0,−x,−y,0)T . (Note that the vector
(−1,0,0, x, y,0)T lies in the kernel of the matrix O∗(K2,2 ∗ o,p∗, C∗

2 ).)

Example 5 Consider the 2-dimensional framework (G,p) ∈ R(G,C3v) from Exam-
ple 2 which is depicted in Fig. 3(a). The orbit rigidity matrix O∗(G ∗ o,p∗, C∗

3v) of
the cone framework (G ∗ o,p∗) is the matrix

⎛

⎜⎜
⎜⎜⎜⎜
⎝

1 4

{1,4} (p1 − p4)M
∗
1 (p4 − p1)M

∗
4

{1,C∗
3 (1)} (2p1 − C∗

3 (p1) − C2∗
3 (p1))M

∗
1 0 0

{4,C∗
3 (4)} 0 0 (2p4 − C∗

3 (p4) − C2∗
3 (p4))M

∗
4

{0,1} p1M∗
1 0 0

{0,4} 0 0 p4M∗
4

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

With the notation of Example 2, this matrix is equal to

⎛

⎜⎜⎜⎜⎜
⎝

1 4

(a − b,0) (b − a,0)

(3a,0) 0 0

0 0 (3b,0)

(a,1) 0 0

0 0 (b,1)

⎞

⎟⎟⎟⎟⎟
⎠

.

The C∗
3v-symmetric self-stress of (G ∗ o,p∗) corresponding to the C3v-symmetric

self-stress ω of (G,p) defined in Example 2 is ω∗ = (α,β, γ,0,0). Finally, note that
the modified matrix O(G ∗ o,p∗, C∗

3v) is the matrix

⎛

⎜⎜⎜⎜⎜
⎝

1 4

(−b,−1) (−a,−1)

(2a,−1) 0 0

0 0 (2b,−1)

(a,1) 0 0

0 0 (b,1)

⎞

⎟⎟⎟⎟⎟
⎠

.

A row dependency of this matrix is given by the vector (α,β, γ,α + β,α + γ ).

3.3 Pulling Vertex Orbits

If we move an orbit of joints off of the hyperplane xd+1 = 1, along the correspond-
ing rays to the cone joint, then this amounts to multiplying the coordinates pi by
a scalar αi 	= 0 to create qi := αipi . In the orbit matrix O(G ∗ o,p∗, S∗), we mul-
tiply the rows {i, x(j)}, i 	= j , by αiαj , and the rows {i, y(i)} and {0, i} by α2

i to
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produce

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

i j
...{

i, x(j)
}

0 . . . 0 αiαj (−x∗(pj ))M∗
i

0 . . . 0 αiαj (−x∗−1(pi))M
∗
j

0 . . . 0

...{
i, y(i)

}
0 . . . 0 α2

i
(pi − y∗(pi) − y∗−1(pi))M

∗
i

0 . . . 0 0 0 . . . 0
...

{0, i} 0 . . . 0 α2
i
piM

∗
i

0 . . . 0 0 0 . . . 0
...

{0, j} 0 . . . 0 0 0 . . . 0 α2
j
pj M∗

j
0 . . . 0

...

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This is equivalent to multiplying the orbit matrix O(G ∗ o,p∗, S∗) on the left
by an invertible matrix. We can then multiply the columns for vertex i by 1

αi
to

get

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎝

i j
...{

i, x(j)
}

0 . . . 0 (−x∗(qj ))M
∗
i 0 . . . 0 (−x∗−1(qi))M

∗
j 0 . . . 0

...{
i, y(i)

}
0 . . . 0 (qi − y∗(qi) − y∗−1(qi))M

∗
i 0 . . . 0 0 0 . . . 0

...
{0, i} 0 . . . 0 qiM

∗
i 0 . . . 0 0 0 . . . 0

...
{0, j} 0 . . . 0 0 0 . . . 0 qj M∗

j 0 . . . 0
...

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎠

.

This is equivalent to multiplying the orbit matrix on the right by an invertible ma-
trix.

Since all of these changes are reversible equivalences, representable by invertible
matrix multiplication, we see that the general cone framework has no S∗-symmetric
infinitesimal flex (S∗-symmetric self-stress) if and only if the projection onto a hy-
perplane has no S-symmetric infinitesimal flex (S-symmetric self-stress). More gen-
erally, coning gives an isomorphism of the spaces of S∗-symmetric self-stresses of
the coned framework and S-symmetric self-stresses of the framework projected into
a hyperplane not containing the cone joint, as well as an isomorphism of the space of
S∗-symmetric first-order motions of the coned framework which fix the cone joint,
and the S-symmetric first-order motions of the projected framework, an isomorphism
which takes the trivial motions to the trivial motions.
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Theorem 7 (Transfer for coning with symmetry) Let q be a configuration of n + 1
points (including the origin) in E

d+1 such that the projection π(q) from the origin
onto the hyperplane and then projected back to E

d , is equal to p ∈ E
dn. Then

(i) the space of S-symmetric infinitesimal motions of (G,p) in E
d is isomorphic to

the space of S∗-symmetric infinitesimal motions of (G ∗ o, q) in E
d+1, with the

cone joint of (G ∗ o, q) fixed at the origin;
(ii) the space of S-symmetric trivial infinitesimal motions of (G,p) in E

d is isomor-
phic to the space of S∗-symmetric trivial infinitesimal motions of (G ∗ o, q) in
E

d+1, with the cone joint of (G ∗ o, q) fixed at the origin;
(iii) (G,p) has a non-trivial S-symmetric infinitesimal motion in E

d if and only if
(G ∗ o, q) has a non-trivial S∗-symmetric infinitesimal motion in E

d+1;
(iv) the space of S-symmetric self-stresses of (G,p) is isomorphic to the space of

S∗-symmetric self-stresses of (G ∗ o, q).

For S = Id, this is the original result given in [27], using different techniques.

3.4 Hemispherical Realizations

In particular, we could scale all joints onto the sphere of radius 1 using scalars
αi > 0, producing an isomorphism of the spaces of S-symmetric stresses and in-
finitesimal motions of the original framework (G,p) on the hyperplane and the
spaces of S∗-symmetric stresses and infinitesimal motions of the framework (G,q)

on the corresponding upper half-hypersphere (hemi-hypersphere) S
d+. There is no

current standard form for the (orbit) rigidity matrix on the sphere that we have en-
countered. Implicitly, these frameworks are often modeled as cone frameworks with
a cone joint at their center.

Theorem 8 (Transfer between E
d and S

d+, with symmetry) Let q be a configuration
of n points in S

d+ such that the projection π(q) from the origin (the center of the
sphere) onto the hyperplane and then projected back to E

d , is equal to p ∈ E
dn.

Then

(i) the space of S-symmetric infinitesimal motions of (G,p) in E
d is isomorphic to

the space of S∗-symmetric infinitesimal motions of (G,q) in S
d+;

(ii) the space of S-symmetric trivial infinitesimal motions of (G,p) in E
d is iso-

morphic to the space of S∗-symmetric trivial infinitesimal motions of (G,q) in
S

d+;
(iii) (G,p) has a non-trivial S-symmetric infinitesimal motion in E

d if and only if
(G,q) in S

d+ has a non-trivial S∗-symmetric infinitesimal motion in S
d+;

(iv) the space of S-symmetric self-stresses of (G,p) in E
d is isomorphic to the space

of S∗-symmetric self-stresses of (G,q) in S
d+.

For S = Id, we have given an alternative proof of the basic correspondence be-
tween spherical and Euclidean frameworks given in [18]. An alternative way of de-
scribing the corresponding frameworks (without symmetry) is saying that they have
the same projective coordinates.
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4 Coning Finite Flexes

One of our goals in working out the details of coning and symmetry has been the
opportunity coning offered for transferring finite flexes from E

d to E
d+1 and to S

d .
In Sect. 4.1 we confirm that this transfer of finite flexes occurs when we cone with
symmetry at a regular point for the class of S-symmetric realizations (including when
we simply cone at a regular point—the case of the trivial symmetry).

Section 4.2 includes some cautionary examples showing that at points that are not
regular (for the trivial symmetry group) we cannot expect a transfer of finite flexes.
That is, there are cones of finitely flexing frameworks which are not finitely flexible,
as well as cones which are finitely flexible even when their projections are not finitely
flexible. The larger search for more conditions that guarantee flexibility of generically
infinitesimally rigid graphs remains an important area for continuing research.

4.1 Transfer of Finite Flexes at Regular Points, Under Coning

We recall that one guarantee of a finite flex is that we have a non-trivial infinitesimal
motion at a regular point of the graph, or a non-trivial S-symmetric infinitesimal
motion at an S-regular point of the graph (Theorem 1). The previous sections have
confirmed the correspondence of non-trivial infinitesimal motions between cones and
their projections, with and without symmetry. We now confirm the correspondence
of regular points.

Theorem 9 Let q be a configuration of n + 1 points (including the origin) in E
d+1

such that the projection from the origin, π(q), through the hyperplane and back to
E

d is equal to p ∈ E
dn.

(i) The configuration p ∈ E
dn is a regular point of G if and only if q ∈ E

(d+1)(n+1)

is a regular point of G ∗ o, where the cone joint is fixed at the origin;
(ii) if (G,p) ∈ R(G,S) and (G∗ o, q) ∈ R(G∗o,S∗), then p is an S-regular point of G

if and only if q is an S∗-regular point of G ∗ o, where the cone joint is fixed at
the origin;

(iii) if (G,p) ∈ R(G,S) and (G ∗ o, q) ∈ R(G∗o,S∗), where q ∈ S
d+, then p is an

S-regular point of G if and only if q is an S∗-regular point of G, where the
cone joint is fixed at the origin.

Proof (i) From the basic theorems on coning, we know that a configuration p gives
the maximum rank for the rigidity matrix for G if and only if q gives the maximum
rank for the rigidity matrix for G ∗ o, where the cone joint is fixed at the origin.

Moreover, moving in an open neighborhood of p in E
dn, the rank of the rigidity

matrix of G cannot drop immediately, but must be maintained over an open set. The
rank is determined by a maximal minor with non-zero determinant, and small changes
cannot switch this polynomial from non-zero to zero. Similarly, if we are moving
within an open neighborhood of q (minus the origin) in E

(d+1)n, the rank of the cone
rigidity matrix does not drop. This confirms that p is a regular point of G if and only
if q is a regular point of G ∗ o.



644 Discrete Comput Geom (2012) 48:622–657

(ii), (iii) The arguments for these are entirely analogous to the previous argu-
ment. �

While the following result is essentially a corollary to the accumulated results, we
collect it as a theorem for general referencing.

Theorem 10 (Transfer of finite flexes through coning) If p is an S-regular point of
G, and (G ∗ o, q) has symmetry S∗ with π(q) = p, then (G,p) has an S-symmetric
finite flex if and only if (G,q) has an S∗-symmetric finite flex.

Remark 3 (Generic implies regular) In rigidity theory, it is common to define a con-
figuration p of n points in E

d to be generic if the determinant of any submatrix of
the rigidity matrix R(Kn,p), where Kn is the complete graph on n vertices, is zero
only if it is (identically) zero as a polynomial in the variables p′

i . A framework (G,p)

is called generic if the configuration p is. Similarly, a framework (G,p) ∈ R(G,S,Φ)

is defined to be S-generic if any submatrix of the rigidity matrix R(Kn,p) is zero
only if it is zero for all p′

i satisfying the symmetry equations in (2) [21]. In other
words, we obtain an S-generic realization of G by placing the representatives of the
vertex orbits under the action of S into ‘generic’ positions within their associated
subspaces U(pi). Notice that it follows immediately from the definitions that the set
of all generic realizations of G in E

d forms a dense open subset of all possible real-
izations of G in E

d , and that the set of all S-generic realizations of G forms a dense
open subset of the set R(G,S,Φ). Moreover, every generic (S-generic) realization of
G is also a regular (S-regular) realization of G in E

d [19]. Thus, Theorem 10 applies
in particular to generic and S-generic frameworks.

4.2 When Finite Flexes Do Not Transfer Under Coning

It is cautionary to recognize that the results of the previous section depend on two
properties of coning: (a) the operations of coning and projecting preserve the sym-
metries of the configuration, and (b) the configurations are at regular points for those
symmetries.

Example 6 Consider the complete bipartite graph K4,4 in E
2 with each of the partite

sets of vertices positioned on a line (and none of the vertices lies on the point of
intersection of the two lines). This framework has a finite flex in E

2 if and only if
the two lines are perpendicular in E

2. This same general condition transfers up to the
sphere, as the condition that such a framework is flexible is that the two great circles
are perpendicular. Note that these properties do not require symmetry.

However, if the framework has the symmetry generated by these two lines as mir-
rors, the symmetry does predict the finite flexes [22]. So the failure of such transfer
also gives insights into failures of the transfer of finite flexes induced by symmetry.

(a) With the mirrors (and perpendicular lines) aligned at the origin in E
2 the finite

flexes transfer using the prior results.
(b) If we have perpendicular great circles on the sphere, and then rotate the sphere,

the finite flex is preserved by the isometry. However, if we re-project with the
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ray through the intersection point not vertical, we can arrange that the projected
image does not have perpendicular lines. As a result, the finite flex on the sphere
does not project to a finite flex in the plane.

(c) On the other hand, if we translate the framework in the plane so that the inter-
section point is a general point off the origin, then coning up the framework will
create a framework on the sphere without perpendicular lines. While the infinites-
imal flex will be preserved, there will be no finite flex on the sphere.

5 Hyperbolic Space as Coning in Minkowskian Geometry

We can extend the processes of the previous sections to a process which will transfer
results for Euclidean frameworks in E

d through to the corresponding frameworks
in hyperbolic space H

d . This process involves embedding E
d into a hyperplane in

Minkowskian geometry, and then coning to the origin so that this cone framework
lies on a hyper-hyperboloid which carries the metric of hyperbolic geometry.

Again the entire process extends to symmetry groups, provided we are careful
about the orientation of the plane we use in the Minkowskian geometry. We begin
with the basic structure of rigidity in Minkowskian space.

5.1 Minkowskian Frameworks

In this section we will focus on frameworks embedded in the (d + 1)-dimensional
Minkowskian space M

d+1. This will follow precisely the steps in Sect. 2.1. However,
since the rigidity theory in Minkowskian space is not widely studied [1], we state the
basic definitions and results.

As a basic geometry, the (d + 1)-dimensional Minkowskian space M
d+1 is the

(d + 1)-dimensional metric space with the metric

∥∥(a1, . . . , ad, ad+1)
∥∥2

M
= a2

1 + · · · + a2
d − a2

d+1.

A bar and joint framework in Minkowskian (d + 1)-space is a graph G, with vertices
V (G) and edges E(G), and a map p : V (G) → M

d+1 such that for i, j ∈ V (G), we
have pi 	= pj (the joints are distinct).

This slight change in the metric means that we make a slight change in the equa-
tions defining an infinitesimal motion and the corresponding rigidity matrix. For a
fixed ordering of the edges of a graph G with vertex set V (G) = {1, . . . , n}, we de-
fine the edge function f M

G : M
(d+1)n → R

|E(G)| by

f M

G (p1, . . . , pn) = (
. . . ,‖pi − pj‖2

M
, . . .

)
,

where {i, j} ∈ E(G), pi := p(i) ∈ M
d+1 for all i = 1, . . . , n, and ‖ · ‖M denotes the

Minkowskian norm in M
d+1.

If (G,p) is a (d+1)-dimensional framework with n vertices, then (f M

G )−1(f M

G (p))

is the set of all configurations q of n points in M
d+1 with the property that corre-

sponding bars of the frameworks (G,p) and (G,q) have the same length. In particu-
lar, we clearly have (f M)−1

Kn
(f M

Kn
(p)) ⊆ (f M

G )−1(f M

G (p)), where Kn is the complete
graph on V (G).
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An analytic path x : [0,1] → M
(d+1)n is called a finite motion of (G,p) if x(0) =

p and x(t) ∈ (f M

G )−1(f M

G (p)) for all t ∈ [0,1]. Further, x is called a finite rigid
motion (or trivial finite motion) if x(t) ∈ (f M

Kn
)−1(f M

Kn
(p)) for all t ∈ [0,1], and x is

called a finite flex (or non-trivial finite motion) of (G,p) if x(t) /∈ (f M

Kn
)−1(f M

Kn
(p))

for all t ∈ (0,1]. While all of the translations are trivial motions (as in E
d+1) the

‘rotations’ take a different form, moving a point along a hyperbolic path of ‘constant
distance’ rather than a circular path, because of the modified metric.

We say that (G,p) is rigid in M
d+1 if every finite motion of (G,p) is trivial;

otherwise (G,p) is called flexible in M
d+1.

Given a framework (G,p) in M
d+1, the rigidity matrix of (G,p) is the |E(G)| ×

(d + 1)n matrix RM(G,p) = 1
2df M

G (p), where df M

G (p) denotes the Jacobian ma-
trix of the edge function f M

G , evaluated at the point p. However, if we are more
explicit, we see that the entries are not quite (pi − pj ). Rather if we write â =
(a1, . . . , ad,−ad+1), they have the form ̂(pi − pj ) = (p̂i − p̂j ). So the Minkowskian
rigidity matrix for the framework (G,p) in M

d+1 has the form

RM(G,p)

=

⎛

⎜⎜
⎝

i j

...

{i, j} 0 . . . 0 (p̂i − p̂j ) 0 . . . 0 (p̂j − p̂i) 0 . . . 0
...

⎞

⎟⎟
⎠.

The solutions to the equation RM(G,p)u = 0 are the infinitesimal motions in
Minkowskian space. Provided the joints of the framework affinely span the space
M

d+1, the trivial infinitesimal motions are the solutions to the equation: RM(Kn,p)u.
It remains true that this space is of dimension

(
(d+1)+1

2

) = (
d+2

2

)
.

We say that (G,p) is infinitesimally rigid in M
d+1 if every infinitesimal motion of

(G,p) is an infinitesimal rigid motion. Otherwise (G,p) is said to be infinitesimally
flexible.

Clearly, if the joints of (G,p) affinely span all of M
d+1, then nullity (RM(G,p)) ≥(

d+2
2

)
, and (G,p) is infinitesimally rigid in M

d+1 if and only if nullity (RM(G,p)) =
(
d+2

2

)
or equivalently, rank (RM(G,p)) = (d + 1)n − (

d+2
2

)
.

An infinitesimally rigid framework is always rigid. As for Euclidean space, the
converse, however, does not hold in general.

A self-stress of a framework (G,p) with V (G) = {1, . . . , n} remains a row depen-
dence of the modified rigidity matrix. That makes it a function ω : E(G) → R such
that at each joint pi of (G,p) we have

∑

j :{i,j}∈E(G)

ωij (p̂i − p̂j ) = 0,

where ωij denotes ω({i, j}) for all {i, j} ∈ E(G). Note that if we identify a self-
stress ω with a row vector in R

|E(G)| (by using the order on E(G)), then we have
ωRM(G,p) = 0.
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If (G,p) has a non-zero self-stress, then (G,p) is said to be dependent in
M

d+1 (since in this case there exists a linear dependency among the row vectors
of RM(G,p)). Otherwise, (G,p) is independent in M

d+1. A framework which is
both independent and infinitesimally rigid is called isostatic in M

d+1.
A configuration p of n points in M

d+1 is called a regular point of the graph G,
if rank (RM(G,p)) ≥ rank (RM(G,q)) for all q ∈ M

(d+1)n. A framework (G,p) is
said to be regular if p is a regular point of G.

It follows immediately from this definition that the set of all regular realizations
of a graph G in M

d+1 forms a dense open subset of all possible realizations of G

in M
d+1. Moreover, note that the infinitesimal rigidity of a regular realization of G

depends only on the underlying graph G and not on the particular realization.
The results of Asimov and Roth in [2] generalize in a natural way so that for

regular frameworks in M
d+1, infinitesimal rigidity and rigidity are equivalent. This

result continues to provide a key tool for detecting finite flexes in frameworks in
M

d+1.

5.2 Coning from Euclidean Space into Minkowskian Space

In this section, we will embed the Euclidean space E
d as the hyperplane xd+1 = 1

in the Minkowskian space M
d+1. Notice that the metric among points within this

hyperplane is the same as the metric in the Euclidean space, since the final coordinate
cancels out. Given a framework (G,p) in E

d , we embed (G,p) into the hyperplane
xd+1 = 1 of M

d+1 via pi = (pi,1) ∈ M
d+1, and then cone the resulting framework

to the origin o in M
d+1 with n new edges, adding n rows to the new rigidity matrix

in M
d+1, creating the cone graph, G ∗ o, and the cone framework (G ∗ o,p∗). This

procedure follows the basic steps of Sect. 3.1.
The cone rigidity matrix in M

d+1 of the cone framework (G ∗ o,p∗) is the
(|E(G)| + n) × (d + 1)n matrix

R∗M
(
G ∗ o,p∗)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

i j

...

{i, j} 0 . . . 0 (p̂i − p̂j ) 0 . . . 0 (p̂j − p̂i) 0 . . . 0
...

{0, i} 0 . . . 0 p̂i 0 . . . 0 0 0 . . . 0
...

{0, j} 0 . . . 0 0 0 . . . 0 p̂j 0 . . . 0
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

.

As before, we have added n rows and n columns to RM(G,p) to obtain R∗M(G ∗
o,p∗), and (p̂i − p̂j ) is zero in each added column. Moreover, for each added column
(under vertex i) there is exactly one added row which is non-zero in this column: p̂i

has a −1 in this column. Thus we have increased the rank by n, and preserved the
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Fig. 6 Transferring a velocity under coning into the Minkowskian space requires that we use the
Minkowskian measure of ‘right angle’ (φ = 90) (a). We then push the vertices (and velocities) onto the
hyperboloid (b), (c). If ui = uj then the new velocities have the same length in the Minkowskian metric
(‖vi‖M = ‖vj ‖M)

dimension of the kernel. For convenience, we have given a modified cone rigidity
matrix which omits columns for the cone joint (the origin), and the infinitesimal mo-
tions are restricted to those which fix the origin. This takes infinitesimal motions of
(G,p) in E

d to infinitesimal motions of (G ∗ o,p∗) in M
d+1.

When we apply this same process to a complete graph on the vertices, we see
that the trivial infinitesimal motions in E

d go to trivial infinitesimal motions in M
d+1

which fix the origin.
What does the transfer of velocities look like, in practice? Consider Fig. 6(a) which

shows the process from the line to the plane. We keep the same first d coordinates of
the velocities, and add whatever last entry will make the vector perpendicular to the
bar from the origin to the joint, in the measure of angle in Minkowskian space. That
is, we take the unique vector which is perpendicular to the coning bar and projects
orthogonally onto the previous velocity.

5.3 Coning with Symmetry in M
d+1

This subsection will follow the steps in Sect. 3.2. As before, we first show that for a
given framework (G,p) in R(G,S) in E

d , the cone framework (G ∗ o,p∗) in M
d+1

has the equivalent symmetry group S∗, lying in the corresponding space RM

(G,S∗)
. It

also has the same symmetric infinitesimal rigidity properties as (G,p).

Definition 3 Let S be a symmetry group in dimension d and let x ∈ S. Recall that
we denote the matrix which represents x w.r.t. the canonical basis of E

d by Mx . We
define x∗ to be the transformation of M

d+1 which is represented by the matrix

Mx∗ =

⎛

⎜⎜⎜
⎝

0

Mx

...

0
0 · · · 0 1

⎞

⎟⎟⎟
⎠
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w.r.t. the canonical basis of M
d+1. This is still an isometry in M

d+1, since

∥∥(
(a1, . . . , ad, ad+1)M

T
x∗

)∥∥2
M

= ∥∥(
aMT

x , ad+1
)∥∥2

M

= ∥∥π(a)MT
x

∥∥2
E

− a2
d+1

= ∥∥π(a)
∥∥2

E
− a2

d+1

= ∥∥(a1, . . . , ad, ad+1)
∥∥2

M
,

where a = (a1, . . . , ad) and π(a1, . . . , ad, ad+1) := (a1, . . . , ad). We let S∗ be the
group in dimension (d + 1) which has the elements {x∗ : x ∈ S}.

We immediately have the corresponding version of Theorem 4:

Theorem 11 A framework (G,p) is an element of R(G,S) if and only if the cone
framework (G ∗ o,p∗) is an element of RM

(G∗o,S∗).

We now can present the complete analog of the previous results, for coning from
E

d into M
d+1, provided that E

d is placed as a hyperplane orthogonal to the one
negative component in the signature of the metric.

Theorem 12 Given a d-dimensional Euclidean framework (G,p) in R(G,S) and
the corresponding (d + 1)-dimensional Minkowskian cone framework (G ∗ o,p∗)
in RM

(G,S∗), we have

(i) the space of S-symmetric infinitesimal motions of (G,p) in E
d is isomorphic to

the space of S∗-symmetric infinitesimal motions of (G ∗ o,p∗) in M
d+1, with

the cone joint of (G ∗ o,p∗) fixed at the origin;
(ii) the space of trivial S-symmetric infinitesimal motions of (G,p) in E

d is isomor-
phic to the space of S∗-symmetric trivial infinitesimal motions of (G ∗ o,p∗) in
M

d+1, with the cone joint of (G ∗ o,p∗) fixed at the origin;
(iii) (G,p) has a non-trivial S-symmetric infinitesimal motion in E

d if and only if
(G ∗ o,p∗) has a non-trivial S∗-symmetric infinitesimal motion in M

d+1;
(iv) the space of S-symmetric self-stresses of (G,p) in E

d is isomorphic to the space
of S∗-symmetric self-stresses of (G ∗ o,p∗) in M

d+1.

Theorem 12 can be proved using the same procedure as in the proofs of Theo-
rems 3 and 5.

5.4 Pushing Vertex Orbits in Minkowskian Space

Following the same steps as used in Sects. 3.2–3.4, we can push and pull orbits of
joints along the cone rays to create the framework (G ∗ o, q,S∗). All of the steps
involve simple row reductions in the orbit matrix O∗M(G ∗ o,p∗, S∗) of the cone
framework (G∗o,p∗) plus multiplying the rows and columns by non-zero constants.
Without repeating all the details, we can conclude with the analog of Theorem 7.
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Fig. 7 The Minkowskian sphere of radius squared equal to −1 projects to an interval on the line (a) and
the Minkowskian sphere of radius squared equal to 1 projects to the exterior of that interval (b)

Theorem 13 (Symmetry coning from Euclidean into Minkowskian space) Given a
configuration q of n+1 points (including the origin) in M

d+1 such that the projection
π(q) from the origin onto the hyperplane and then back to E

d , is equal to p ∈ E
dn,

we have:

(i) the space of S-symmetric infinitesimal motions of (G,p) in E
d is isomorphic to

the space of S∗-symmetric infinitesimal motions of (G ∗ o, q) in M
d+1, with the

cone joint of (G ∗ o, q) fixed at the origin;
(ii) the space of S-symmetric trivial infinitesimal motions of (G,p) in E

d is isomor-
phic to the space of S∗-symmetric trivial infinitesimal motions of (G ∗ o, q) in
M

d+1, with the cone joint of (G ∗ o, q) fixed at the origin;
(iii) (G,p) has a non-trivial S-symmetric infinitesimal motion in E

d if and only if
(G ∗ o, q) has a non-trivial S∗-symmetric infinitesimal motion in M

d+1;
(iv) the space of S-symmetric self-stresses of (G,p) in E

d is isomorphic to the space
of S∗-symmetric self-stresses of (G ∗ o, q) in M

d+1.

5.5 Pushing Vertex Orbits onto the Hyper-hyperboloid

By carefully selecting the scalars αi , we can ensure that all orbits of joints are placed
on the hyper-hyperboloid ‖a‖2

M
= a2

1 +· · ·+a2
d −a2

d+1 = −1, provided that the orig-
inal points in E

d satisfy ‖π(a)‖E < 1 (Fig. 7(a)). When we achieve this placement,
the metric within the hyper-hyperboloid is the hyperbolic metric of the space H

d .
Moreover, the symmetries of S remain as S∗—symmetries of the hyper-hyperboloid,
or symmetries within the hyperbolic space H

d . Together, this translation and the basic
coning results give the following equivalence.

Theorem 14 (Transfer between E
d and H

d , with symmetry) Given a configuration
q of n points in H

d such that the projection π(q) from the origin onto the hyperplane
and then back to E

d is equal to p ∈ E
dn, we have:

(i) the space of S-symmetric infinitesimal motions of (G,p) in E
d is isomorphic to

the space of S∗-symmetric infinitesimal motions of (G,q) in H
d ;

(ii) the space of S-symmetric trivial infinitesimal motions of (G,p) in E
d is iso-

morphic to the space of S∗-symmetric trivial infinitesimal motions of (G,q) in
H

d ;
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(iii) (G,p) has a non-trivial S-symmetric infinitesimal motion in E
d if and only if

(G,q) has a non-trivial S∗-symmetric infinitesimal motion in H
d ;

(iv) the space of S-symmetric self-stresses of (G,p) in E
d is isomorphic to the space

of S∗-symmetric self-stresses of (G,q) in H
d .

Note that for any framework in E
d it is just a matter of dilating the framework

towards the origin to ensure that the framework lives within the disc ‖a‖E < 1.
There is a second geometry which lives on the alternative hyper-hyperboloid

‖a‖2
M

= a2
1 + · · · + a2

d − a2
d+1 = 1 (Fig. 7(b)). This is called the de Sitter geometry

dS
d [8]. If the original framework (G,p) has no fixed joints, then we can instead ex-

pand (G,p) so that the entire set of joints and bars lives outside of the disc ‖a‖E ≤ 1.
We can then push the expanded framework onto the de Sitter space. All of the results
for pushing from cones shift to this second surface without any extra effort, including
Theorem 14.

5.6 Finite Flexes in Hyperbolic Space

It is now clear that the methods and results of Sect. 4.1 for the transfer of finite flexes
at regular points between E

d and S
d immediately extend to a transfer of finite flexes

at regular points between E
d and H

d . We do not repeat the arguments, but simply
state the final conclusion.

Theorem 15 (Transfer of finite flexes through coning) If p is an S-regular point of
G in E

dn, and (G,q) in H
d has symmetry S∗ with π(q) = p, then (G,p) has an

S-symmetric finite flex in E
d if and only if (G,q) has an S∗-symmetric finite flex

in H
d .

6 Further Discussion

6.1 Transfer of Body-Bar Flexibility Between Spaces

Recently, there has been an increasing attention to a special class of frameworks,
the body-bar frameworks, including work on symmetries of body-bar frameworks
[12, 26]. The results presented here can be used to provide a transfer of infinitesimal
rigidity results for these frameworks between E

d , S
d+, and H

d . The idea is to record
a body-bar framework as a special form of a bar-and-joint framework.

Let H be a multigraph with minimum degree at least one. The body-bar graph
induced by H , denoted by GH , is the graph obtained from H by replacing each vertex
v ∈ V (H) by a complete graph Bv (a ‘body’) on degH (v) vertices and replacing each
edge {u,v} of H by an edge (a ‘bar’) between Bu and Bv in such a way that the bars
are pairwise disjoint.

Notice that this is a combinatorial correspondence, so the graph GH can be built
as a framework in E

d , S
d+, or H

d . Since these are bar-and-joint frameworks, they can
have symmetries, and can be coned in exactly the way we have discussed through-
out this paper. This permits the full transfer of infinitesimal rigidity results among
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the metrics. The coned framework is not a body-bar framework, but the cone vertex
disappears in the explicit graph when we move on to the frameworks in S

d+ or H
d .

Moreover, if we have specific configurations for the vertices of the bars, we can define
regular realizations, and transfer finite motions, with and without symmetry.

The one caution is that in the setting of infinitesimal and generic rigidity, we often
consider two body-bar frameworks (GH ,p) and (GH ,p′) equivalent provided that
the lines of the edges are the same in the two frameworks. Such equivalence does
not necessarily preserve all of the symmetry, nor does it necessarily preserve finite
motions. For this reason we state the transferred results for explicit choices of the
configuration of the joints on the ends of the bars.

Theorem 16 Given a body-bar framework (GH ,p) with symmetry group S in E
d ,

a body-bar framework (GH ,q) with the corresponding symmetry group S∗ in S
d+,

where π(q) = p, and a body-bar framework (GH , r) with symmetry group S∗ in H
d ,

where π(r) = p, the following are equivalent:

(i) (GH ,p) has a non-trivial S-symmetric infinitesimal motion in E
d ;

(ii) (GH ,q) has a non-trivial S∗-symmetric infinitesimal motion in S
d+;

(iii) (GH , r) has a non-trivial S∗-symmetric infinitesimal motion in H
d .

If p is an S-regular point of GH , then the following are equivalent:

(i) (GH ,p) has an S-symmetric finite flex in E
d ;

(ii) (GH ,q) has an S∗-symmetric finite flex in S
d+;

(iii) (GH , r) has an S∗-symmetric finite flex in H
d .

6.2 Inversion and the Whole Sphere

When we consider the range of frameworks on the sphere, and of symmetries of
frameworks on the sphere, it is not natural to restrict the joints to the upper half-
sphere S

d+. We want to include joints which are on the lower half-sphere, and the
symmetries which move points around on the entire sphere.

The processes of pulling and pushing orbits of joints on the cone include such
points, provided we scale orbits of joints on the upper half-sphere by α = −1. An
alternative interpretation of this process is that we are applying the inversion I (q) =
−q to selected orbits.

It is clear from the analysis above that inverting an orbit of joints preserves the
symmetries in the group S∗. It has no impact on the rank of the corresponding cone
orbit matrix, though the infinitesimal velocities will be multiplied by −1. Applying
this to a single orbit of vertices will also multiply the scalars of the self-stress for
edges incident with the vertex representing the orbit in the cone orbit matrix by −1.
We then have the following extension of Theorem 8:

Corollary 1 (Transfer between Euclidean and spherical spaces) Given a configura-
tion q of n points in S

d such that the projection π(q) from the origin is equal to
p ∈ E

dn, we have

(i) the space of S-symmetric infinitesimal motions of (G,p) in E
d is isomorphic to

the space of S∗-symmetric infinitesimal motions of (G,q) in S
d ;
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(ii) the space of S-symmetric trivial infinitesimal motions of (G,p) in E
d is iso-

morphic to the space of S∗-symmetric trivial infinitesimal motions of (G,q) in
S

d ;
(iii) (G,p) has a non-trivial S-symmetric infinitesimal motion in E

d if and only if
(G,q) has a non-trivial S∗-symmetric infinitesimal motion in S

d ;
(iv) the space of S-symmetric self-stresses of (G,p) in E

d is isomorphic to the space
of S∗-symmetric self-stresses of (G,q) in S

d .

While inverting entire orbits of joints cannot reduce the symmetry group of the
framework, it can increase the symmetry group of the framework. Consider the
framework (K4, q) realized as the vertices of a regular tetrahedron, with one face
horizontal in the upper hemisphere. This still projects to a framework (K4,p) which
has C3 symmetry (there is a threefold rotational axis through the bottom joint and the
midpoint of the horizontal face of (K4, q)).

The added symmetries of the tetrahedron do not survive the projection, as isome-
tries of the projection. However, they are still projective transformations within the
projected space—and can play into the infinitesimal rigidity properties of the pro-
jected framework, since infinitesimal rigidity is a projective invariant [7, 27].

When we consider finite motions of a coned framework, we recall the general
property that pulling and pushing joints (or orbits of joints) along the cone rays leaves
the finite motions unchanged. This is true without reference to symmetry or any other
analysis which originally predicted the finite motion of one of the cones (and there-
fore all of the cone-equivalent frameworks).

What is more surprising is that we could invert some, but not all joints of an or-
bit without any impact on the infinitesimal rigidity properties, or the finite flexibility.
Looked at in the other direction, when examining a framework on the sphere which
may have no symmetries, we might still predict flexibility by noticing that the projec-
tion into the plane does have symmetry! This says that key properties can be predicted
by ‘seeing’ the apparent symmetry of the structure when viewed from the center of
the sphere!

6.3 Other Cayley–Klein Metrics

The shared infinitesimal rigidity properties of frameworks in E
d , S

d , and H
d , as well

as the connections to coning, all have a common geometric basis—a shared projec-
tive geometry. For more than 150 years, there has been a recognition that infinitesimal
rigidity is projectively invariant [7]. In fact, the process of coning, applying an isome-
try, then reprojecting generates the projective transformations of a space (if repeated).

Given this shared projective geometry, it is natural to consider the other metrics
which can be layered onto the projective geometry—the Cayley–Klein geometries
[16, 25]. One approach to a number of these geometries is through quadratic forms.
In Sect. 5 we described the Minkowskian geometry as the metric with signature
(+, . . . ,+,−). We then brought in the hyperbolic and de Sitter spaces as the ge-
ometry on ‘spheres’ in this space.

There are analogous Minkowskian geometries M
d+1
p,q for other signatures (p, q) =

(+, . . . ,+,−, . . . ,−) (by convention p ≥ q). (Notice that we do not include cases,
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such as the Galilean geometry, with some 0’s in the signature.) These geometries
M

d+1
p,q have analogous rigidity matrices. The hyperplane xd+1 = 1 in M

d+1
p,q has the

geometry of M
d
p,q−1. Each of these spaces has a distinct group of isometries—and

therefore distinct point group symmetries. However, the entire process used in Sect. 5
can be applied to show that the symmetric infinitesimal rigidity, and symmetry in-
duced finite flexes at regular points, are equivalent in the Cayley–Klein geometries
M

d
p,q−1 and in the corresponding Cayley–Klein geometries on spheres in M

d+1
p,q [25].

For simple infinitesimal flexibility, there is an additional transfer between the
spaces M

d+1
p,q and M

d+1
p+k,q−k for any q − p ≤ k ≤ q . This is proven by simply writ-

ing down the corresponding rigidity matrices and multiplying the corresponding k

columns by −1, which switches their signature by −1. The rank of the matrices
remains unchanged, and the kernels are isomorphic: we simply multiply the corre-
sponding entries of an infinitesimal motion by −1 to respect the change in signature.
This further emphasizes the underlying projective nature of the infinitesimal rigidity
[7, 18]. One overview of this connection involves the projective form of the rigidity
matrix from which the transfer to these metrics is just a matter of taking the appropri-
ate form of ‘perpendicular’ for the metric in question, and writing a modified rigidity
matrix of the same rank (see [18] for some background on this).

Transferring the symmetry results is more subtle—particularly the results for finite
flexibility. The first issue is whether the same symmetry group is even available in the
corresponding spaces, as we move across signatures. Two key examples of symme-
tries which always transfer are half-turn symmetry in M

d+1
p,q about an axis which is

aligned with d − 1 of the coordinate axes, or a reflection about a hyperplane with
xi = 0. Notice that the transfer of half-turn symmetry is significant for predicting
flexibility of structures such as one class of the Bricard octahedra in spaces of di-
mension 3 [1, 22, 24]. Similarly, mirror symmetry is key to predicting the flexibility
of a second class of Bricard octahedra in these spaces of dimension 3. On the other
hand, 3-fold rotation about the origin, for example, does not transfer from E

2 to the
Minkowskian plane M

2. There is a great deal to explore in these general transfers—
though the significance of rigidity in those spaces remains to be established.

6.4 Tensegrity Frameworks

We first present a few basic definitions and some standard results for tensegrity frame-
works in the symmetric setting.

A tensegrity graph Ĝ has a partition of the edges of G into three disjoint parts
E(G) = E+(G) ∪ E−(G) ∪ E0(G). E+(G) are the edges that are cables, E−(G) are
the struts and E0(G) are the bars. For a tensegrity framework (Ĝ,p), a proper self-
stress is a self-stress on the underlying framework (G,p) with the added condition
that ωij ≥ 0, {i, j} ∈ E+, ωij ≤ 0, {i, j} ∈ E− [17].

Given a symmetric framework (G,p) ∈ R(G,S), it is possible to use an S-symmetric
self-stress on the bar-and-joint framework (G,p) to investigate both the infinitesimal
rigidity of (G,p), and the infinitesimal rigidity of an associated S-symmetric tenseg-
rity framework (Ĝ,p) (i.e., the edges of an edge orbit are either all cables, or all
struts, or all bars), with all members with ωij > 0 as cables and all members with
ωij < 0 as struts [22].
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The standard result for the infinitesimal rigidity of such tensegrity frameworks is
as follows.

Theorem 17 (Roth, Whiteley [17]) A tensegrity framework (Ĝ,p) is infinitesimally
rigid if and only if the underlying bar framework (G,p) is infinitesimally rigid as a
bar-and-joint framework and (G,p) has a self-stress which has ωij > 0 on cables
and ωij < 0 on struts.

Translated in terms of the orbit matrix for a symmetric framework, this becomes
[22]:

Corollary 2 An S-symmetric tensegrity framework (Ĝ,p) is infinitesimally rigid if
and only if the underlying bar framework (G,p) ∈ R(G,S) is infinitesimally rigid as
a bar-and-joint framework and the orbit matrix O(G,p,S) has an S-symmetric self-
stress which has ωij > 0 on cables and ωij < 0 on struts.

For this paper, what is of interest is the transfer through coning, with and with-
out symmetry. We have seen that the two conditions of Theorem 17 and Corollary 2
are transferred by coning from E

d to E
d+1, provided that we are pulling and push-

ing orbits of joints within the upper half-space: (1) the infinitesimal rigidity of the
underlying bar framework is preserved by the coning, and (2) the coefficients of the
self-stress are multiplied by positive scalars so that the signs of the self-stress on or-
bits of original edges remain the same. The signs of the self-stress (if any) on the
edges to the cone joint are not as easily predicted, though they retain the symmetry
of S∗. In this simple coning of a tensegrity framework we will assume that the par-
tition of the original edges into cables, struts, and bars are maintained, and that the
edges to the cone joint become bars, creating (Ĝ ∗ o, q).

This gives the following result:

Theorem 18 (Tensegrity coning) Given an S-symmetric tensegrity framework
(Ĝ,p), and a corresponding S∗-symmetric cone framework (Ĝ ∗ o, q) with q in
the upper half-space and π(q) = p, then (Ĝ,p) is infinitesimally rigid as a tenseg-
rity framework in E

d if and only if (Ĝ ∗ o, q) is infinitesimally rigid as a tensegrity
framework in E

d+1.

Clearly, Theorem 18 has a corollary for the transfer to the upper hemisphere. We
can also immediately extend Theorem 18 to cones into the upper half of Minkowskian
space, giving a corollary in hyperbolic space.

Corollary 3 (Tensegrity transfer) Given an S-symmetric tensegrity framework
(Ĝ,p) in E

d , and corresponding S∗-symmetric cone tensegrity frameworks (Ĝ, q)

and (Ĝ, r) in S
d+ and H

d , respectively, with q and r in the upper half-space and
π(q) = p = π(r), then the following are equivalent:

(i) (Ĝ,p) is infinitesimally rigid as a tensegrity framework in E
d ;

(ii) (Ĝ, q) is infinitesimally rigid as a tensegrity framework in S
d+;
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(iii) (Ĝ, r) is infinitesimally rigid as a tensegrity framework in H
d .

If we want to work on the whole sphere, using inversion of orbits as described
above, we need to track the sign changes in the self-stress and make the corresponding
changes in the partition of the edge orbits. Specifically,

– if exactly one end-vertex of an edge is inverted, then there is a change in the sign of
the stress and we switch the assignment of the edge orbit in the partition of cables
or struts;

– if both end-vertices of an edge are inverted, then there is no net change in the sign
of the stress and we make no change in the assignment of the edge orbit in the
partition;

– if neither end-vertex of an edge is inverted, then there is no change in the sign of the
stress and we make no change in the assignment of the edge orbit in the partition.

While there is more that can be said, we hope this brief summary provides the
flavor of how coning impacts the rigidity properties of tensegrity frameworks.
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