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Abstract We present a general and novel approach for the reconstruction of any con-
vex d-dimensional polytope P , assuming knowledge of finitely many of its integral
moments. In particular, we show that the vertices of an N -vertex convex polytope
in R

d can be reconstructed from the knowledge of O(DN) axial moments (w.r.t. to
an unknown polynomial measure of degree D), in d + 1 distinct directions in gen-
eral position. Our approach is based on the collection of moment formulas due to
Brion, Lawrence, Khovanskii–Pukhlikov, and Barvinok that arise in the discrete ge-
ometry of polytopes, combined with what is variously known as Prony’s method, or
the Vandermonde factorization of finite rank Hankel matrices.

Keywords Inverse moment problem · Polytopes ·
Brion–Lawrence–Khovanskii–Pukhlikov–Barvinok formula · Axial moments

1 Introduction

The inverse problem of recognizing an object from its given moments is a funda-
mental and important problem in both applied and pure mathematics. For example,
this problem arises quite often in computer tomography, inverse potentials, signal
processing, and statistics and probability. In computer tomography, for instance, the
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X-ray images of an object can be used to estimate the moments of the underlying
mass distribution, from which one seeks to recover the shape of the object that appear
on some given images. In gravimetry applications, the measurements of the gravita-
tional field can be converted into information concerning the moments, from which
one seeks to recover the shape of the source of the anomaly.

The goal of this paper is to present a general and novel approach for the recon-
struction of any convex d-dimensional polytope P , from knowledge of its moments.
Our approach is quite different from the quadrature-based approach that is currently
used in the literature. Our starting point is the collection of moment formulas, due
to Brion–Barvinok–Khovanskii–Lawrence–Pukhlikov (in what follows referred for
brevity as BBaKLP) that arises in the discrete geometry of polytopes, and is valid
for all dimensions [1, 2, 8, 15], and [7, Chap. 10]. We then set up a matrix equation
involving a variable Vandermonde matrix, with an associated Hankel matrix whose
kernel helps us reconstruct the vertices of P . We are also able to reconstruct the
vertices of a convex polytope with variable density, using similar methods [17].

This new approach permits us to reconstruct exactly the vertices of P , using very
few moments, relative to the vertex description of P . While the computation of inte-
grals over polytopes has received attention recently (see e.g. [4]), our work appears
to be the first to provide tools to treat the inverse moment problem in general.

A nice feature of our algorithm is that we do not need to know a priori the number
of vertices of P , only a rough upper bound for their number. The algorithm automat-
ically retrieves the number of vertices of P as the rank of a certain explicit Hankel
matrix.

In fact, a surprising corollary is that we only require O(Nd) moments in order
to reconstruct all of the N vertices of P ⊂ R

d . Suppose we are solving the inverse
moment problem in the context of an unknown density function ρ. An interesting
consequence of our algorithm is that even though ρ is unknown, we may easily adapt
our algorithm to recover the vertices of P in O(Ndod) steps, where do is an upper
bound on the degree of ρ.

Now suppose we simply solve the direct problem of writing down the moments of
a given vertex set of a known polytope, with a known polynomial density function ρ.
In this direct problem, it would take

(
do+d

d

)
data to describe the polynomial ρ func-

tion, because the space of possible polynomials ρ has this dimension. However, for
the inverse problem, where ρ is unknown, perhaps a counter-intuitive consequence
of our algorithm is that we only require O(Ndod) data to recover the vertex set of P ,
which might be smaller than

(
do+d

d

)
.

In the existing literature on inverse problems from moments, one immediately
encounters a sharp distinction between the 2-dimensional case and the general d-
dimensional case, with d > 2. While in the former case a well-known quadrature for-
mula allows us to solve the problem exactly for so-called quadrature domains, where
for the latter case one has to “slice up” the domain of interest into thin 2-dimensional
pieces, solve the resulting 2-dimensional problems, and patch up an approximate so-
lution from these 2-dimensional solutions. On the other hand, in the recent work of
Cuyt et al. [9] the authors can approximately recover a general n-dimensional shape
by using an interesting property of multi-dimensional Padé approximants.
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For z ∈ R
d and each non-negative integer j , we define the j th moment of P with

respect to the density ρ by

μj (z) := μj,ρ(z) :=
∫

P

〈x, z〉j ρ(x) dx.

In this text we restrict ourselves to any density function ρ which is given by a poly-
nomial measure, and which does not vanish on the vertices Vert(P ) of P .

We note that only in the appendix, when we give proofs of the known BBaKLP
moment formulas below, we will need to replace the real vector z by a complex
vector, in order to allow convergence of some Fourier–Laplace transforms of cones,
but otherwise z will always be a real vector. We say that z is in general position if it
is chosen at random from the continuous Gaussian distribution on R

d .
Our main result may be formulated as follows.

Main Theorem Let P ⊂ R
d be a d-dimensional polytope with N vertices, and sup-

pose we are only given the data in the form of O(dρN) moments μj,ρ(z), for an
unknown density ρ ∈ R[x] of degree dρ , and for each of d + 1 vectors z ∈ R

d in gen-
eral position. Then the data determine P uniquely, using the following algorithm:

1. Given 2m − 1 ≥ 2N + 1 moments c1, . . . , c2m−1 for z, construct a square Hankel
matrix H(c1, . . . , c2m−1).

2. Find the vector v = (a0, . . . , aM−1,1,0, . . . ,0) in Ker(H) with the minimal possi-
ble M . It turns out that the number of vertices N is in fact equal to M .

3. The set of roots {xi(z) = 〈vi , z〉|vi ∈ Vert(P )} of the polynomial pz(t) = tN +∑N−1
i=0 ait

i then equals the set of projections of Vert(P ) onto z.

By contrast with a choice of a general position vector z, we also define, for a
simple polytope P , a generic vector z ∈ Q

d to be a vector that lies in the complement
of the finite union of hyperplanes which are orthogonal to all of the edges of P .
For non-simple polytopes P , we will later extend this definition of a generic vector
z ∈ Q

d , in Sect. 7.
We furthermore prove in Sect. 8 that the vertex set Vert(P ) ⊂ Q

d of any rational
convex polytope P can be found in polynomial time with a probability arbitrary close
to 1, from the exact measurements of O(dρN) moments in carefully chosen 2d − 1
random generic directions z ∈ Q

d .
In Sect. 6, we indicate how Vert(P ) ⊂ R

d can also be efficiently approximated
even when the data are noisy.

One punchline of the proof is that an appropriate scaling of the sequence of the
moments μj,ρ(z) (j = 0,1, . . . ) for a fixed z is a finite sum of exponential functions,
and thus satisfies a linear recurrence relation (cf. e.g. [19, Theorem 4.1.1(iii)]). Then
an application of what is variously known as Prony’s method, or Vandermonde fac-
torization of a finite rank Hankel matrix (cf. e.g. [5]), allows one to find 〈z,v〉 for
v ∈ Vert(P ). As these methods are scattered along quite a number of sources, we
have chosen to present a self-contained exposition for clarity and for ease of efficient
implementation.

Reconstructing Vert(P ) from the 〈z,v〉 is then relatively straightforward, provided
that we know these projections for sufficiently many z in general position. For the
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latter, we present an exact procedure as well as a parametric one—the latter with the
focus being less noise-sensitive.

The remainder of the paper is organized as follows. In Sect. 2, we define the ob-
jects we are dealing with, as well as the appropriate background for ease of reading.
We also give the known formulas for the moments of simple polytopes. In Sect. 3
we construct a polynomial whose roots correspond to the projections of the vertices
onto directions z in general positions, by using the moment formulas and an associ-
ated Hankel matrix. In Sect. 4 we extend the latter to the case of unknown polynomial
measures. In Sects. 5 and 6, we extend the algorithm from Sects. 3 and 4, which deals
with simple polytopes, to all convex polytopes. This completes the proof of the first
claim of Main Theorem. In Sect. 4 we also discuss the question of reconstructing ρ

after Vert(P ) is found.
In Sect. 8 we use univariate polynomials to paste together the projections retrieved

from Sect. 3 to build up all of the coordinates of each vertex, not just their projections,
completing the proof of the second claim of Main Theorem. In Appendix 9 we outline
some proofs of the known BBaKLP moment formulas from Sect. 2, using Fourier
techniques.

2 Definitions and Moment Formulas for Convex, Rational Polytopes

Here we describe an explicit set of formulas for the moments of any convex polytope
P ⊂ R

d . We begin with some combinatorial-geometric definitions of the objects in-
volved. To fix notation, our convex polytope P will always have N vertices. We say
that P is simple if each vertex v of P is incident with exactly d edges of P . We first
treat the case of a simple convex polytope and then later, in Sect. 5 we provide an
extension to non-simple convex polytopes.

There is an elegant and useful formulation, originally due to BBaKLP [15], for
the moments of any simple polytope in R

d , in terms of its vertex and edge data.
Specifically, let the set of all vertices of P be given by Vert(P ). For each v ∈ Vert(P ),
we consider a fixed set of vectors, parallel to the edges of P that are incident with
v, and call these edge vectors w1(v), . . . ,wd(v). Geometrically, the polyhedral cone
generated by the non-negative real span of these edges at v is called the tangent cone
at v, and is written as Kv. For each simple tangent cone Kv, we let |detKv| be the
volume of the parallelepiped formed by the d edge vectors w1(v), . . . ,wd(v). Thus,
|detKv| = |det(w1(v), . . . ,wd(v))|, the determinant of this parallelepiped.

The following results of BBaKLP [15] give the moments of a simple polytope P

in terms of the local vertex and tangent cone data that we described above. For each
integer j ≥ 0, we have

μj (z) = j !(−1)d

(j + d)!
∑

v∈Vert(P )

〈v, z〉j+dDv(z), (1)

where

Dv(z) := |detKv|
∏d

k=1〈wk(v), z〉 , (2)
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for each z ∈ R
d such that the denominators in Dv(z) do not vanish. Moreover, we

also have the following companion identities:

0 =
∑

v∈Vert(P )

〈v, z〉jDv(z), (3)

for each 0 ≤ j ≤ d − 1. Thus, for example, if z = (1,0, . . . ,0), (1) and (3) deal with
the first coordinate of each of the vertices v ∈ Vert(P ). We also note that all of these
formulas involve only homogeneous, rational functions of z = (z1, . . . , zd).

In the more general case of non-simple polytopes, we may triangulate each tangent
cone into simple cones, thereby getting a slightly more general form of (1) above,
namely:

μj (z) = j !(−1)d

(j + d)!
∑

v∈Vert(P )

〈v, z〉j+dD̃v(z), (4)

where each D̃v(z) is a rational function that now comes from the non-simple tangent
cone at v. We note that D̃v(z) is in fact a sum of the relevant rational functions Dv(z)
that are associated to each simple cone in the triangulation of the non-simple tangent
cone Kv.

Throughout the paper, we will mainly work in the context of a continuous domain
for our choices of admissible z vectors. To be precise, we say that a vector z is in
general position if none of the following conditions is true:

(a) z is a zero or a pole of D̃v(z), for any v ∈ Vert(P ).
(b) There exist two vertices v1,v2 ∈ Vert(P ) such that 〈v1, z〉 = 〈v2, z〉.
In the penultimate section, we indicate how to implement our algorithm by transi-
tioning all of our formulas to a rational context, and picking our z vectors to lie in a
finite, rational d-dimensional cube.

The goal here is to reconstruct the polytope P from a given sequence of moments
{μj (z) | j = 1,2,3, . . .}. That is, we wish to find an explicit algorithm that locates
the vertices v of the polytope P , in terms of the moments of P . To emphasize the fact
that the moment equations above can be put into matrix form, we define our scaled
vector of moments by

(c1, . . . , ck+1) =
(

0, . . . ,0,
d!(−1)d

0! μ0,
(1 + d)!(−1)d

1! μ1, . . . ,
k!(−1)d

(k − d)!μk−d

)
,

(5)
so that the vector c = (c1, . . . , ck+1) has zeros in the first d coordinates, and scaled
moments in the last k + 1 − d coordinates. Thus, putting the moment identities (1)
and (3) above into matrix form, we have

⎛

⎜⎜⎜⎜
⎜
⎝

1 1 . . . 1
〈v1, z〉 〈v2, z〉 . . . 〈vN, z〉
〈v1, z〉2 〈v2, z〉2 . . . 〈vN, z〉2

...
... . . .

...

〈v1, z〉k 〈v2, z〉k . . . 〈vN, z〉k

⎞

⎟⎟⎟⎟
⎟
⎠

⎛

⎜
⎝

Dv1(z)
...

DvN
(z)

⎞

⎟
⎠=

⎛

⎜
⎝

c1
...

ck+1

⎞

⎟
⎠ . (6)



Discrete Comput Geom (2012) 48:596–621 601

Recalling that we seek to find the vertices of the convex polytope P with these
given scaled moments ci , we answer this question completely, giving an efficient
algorithm to recover the vertices of such an object P .

We will treat each Dvi
(z) as a nonzero constant, which we have not yet discovered,

and each 〈vj , z〉 as a variable, for a fixed real vector z ∈ R
d . Moreover, we realize

below that, given our algorithm, only finitely many moments μ1(z), . . . ,μM(z) are
needed in order to completely recover the full vertex set Vert(P ), a rather useful fact
for applications.

We recall that our j th moment of P is defined, for the uniform measure ρ ≡ 1, by

μj (z) =
∫

P

〈x, z〉j dx. (7)

We note that μ0(z) = Vol(P ), the volume of P with respect to the usual Lebesgue
measure.

It is very natural to study moments in this form, because they are “basis-free” and
also appear as moments of inertia in physical applications. It is worth noting that
there are other types of moments in the literature, and we mention some connections
here. For each integer vector m, we define

μm =
∫

P

xm dx, (8)

with the usual convention that xm =∏d
i=1 x

mi

i and |m| = m1 + · · · + md . The usual
application of the binomial theorem gives us a trivial relation between these moments:

〈z,x〉k =
∑

m1,...,md :
m1+···+md=k

(
k

m1, . . . ,md

)
z
m1
1 · · · zmd

d x
m1
1 · · ·xmd

d . (9)

In fact, given Vert(P ) and μ|m|(z) as a function of z, we can also compute μm, as
following Lemma shows. Its proof is trivial , but it nevertheless offers an interesting
relation between the moments (7) and (8).

Lemma 1 Let m ∈ Z
d+, Vert(P ), and μ|m|(z) be given. Then

|m|!μm = ∂ |m|

∂zm μ|m|(z).

3 The Inverse Moment Problem for Polytopes—Computing Projections of
Vert(P )

In this section we show how, for a given general position vector z, to retrieve the
projections 〈v, z〉 for each vertex v of P , using a certain Hankel matrix that we define
below. For the sake of convenience we let xi = 〈vi , z〉, for each 1 ≤ i ≤ N . Thus, our
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goal for this section is to find all xi , given a number of moments. Due to our choice
of z, we may assume that xi 	= xj for i 	= j . From (6) we have

⎛

⎜⎜
⎜⎜⎜
⎝

1 1 . . . 1
x1 x2 . . . xN

x2
1 x2

2 . . . x2
N

...
... . . .

...

xk
1 xk

2 . . . xk
N

⎞

⎟⎟
⎟⎟⎟
⎠

⎛

⎜
⎝

Dv1(z)
...

DvN
(z)

⎞

⎟
⎠=

⎛

⎜
⎝

c1
...

ck+1

⎞

⎟
⎠ , (10)

where c is defined by (5) above. To streamline notation further, we define a
(k + 1) × N Vandermonde matrix Vk(x1, . . . , xN), with ij th entry equal to xi−1

j :

Vk(x1, . . . , xN) =

⎛

⎜⎜⎜⎜⎜
⎝

1 1 . . . 1
x1 x2 . . . xN

x2
1 x2

2 . . . x2
N

...
... . . .

...

xk
1 xk

2 . . . xk
N

⎞

⎟⎟⎟⎟⎟
⎠

. (11)

We also define a column vector D(z) = (Dv1(z), . . . ,DvN
(z))
, so that (6) reads

Vk(x1, . . . , xN) · D(z) = c.

We may multiply both sides of (10) on the left by a row vector a = (a0, a1, . . . , ak).
First, we see that

a · Vk(x1, x2, . . . , xN) = (
qa(x1), qa(x2), . . . , qa(xN)

)
, where qa(t) =

k∑

�=0

a�t
�.

Therefore, taking a to be the coefficient vector of the polynomial

pz(t) =
N∏

i=1

(t − xi) =
∏

v∈Vert(P )

(
t − 〈v, z〉)= tN +

N−1∑

i=0

ait
i , (12)

and multiplying (10) by a, we obtain the identity 0 = a · c. Moreover, for each 0 ≤
� ≤ k − N we substitute for a the vector a� corresponding to t�pz(t), to obtain zero
in (10), when multiplying on the left by a�. We thus obtain k − N + 1 equations of
the form

a� · c = 0. (13)

As � increases, the coefficient vector of t�pz(t) gets shifted to the right, and it is
convenient to capture all of its shifts simultaneously by the m × m Hankel matrix
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H := H(c1, . . . , c2m−1), where we fix m ≥ N + 1, defined by

H(c1, . . . , c2m−1) =

⎛

⎜⎜⎜
⎝

c1 c2 . . . cm

c2 c3 . . . cm+1
...

... . . .
...

cm cm+1 . . . c2m−1

⎞

⎟⎟⎟
⎠

. (14)

Theorem 1 The Hankel matrix H has rank N and its kernel is spanned by the m−N

linearly independent vectors

a� = (0, . . . ,0︸ ︷︷ ︸
� times

, a0, . . . , aN−1,1, 0, . . . ,0︸ ︷︷ ︸
m−N−1−�

), 0 ≤ � ≤ m − N − 1. (15)

Proof For each � in the range 0 ≤ � ≤ 2m − 2 − N we use (13), with a vector a� of
length 2m − 1. Putting all of these equations together in a more compact form, we
can write a�H = 0, where now the length of a� is m.

It remains to show that the vectors a� generate the full kernel Ker(H) of H.
Let b′ ∈ Ker(H). Without loss of generality, there exists an L < N such that b′ =
(b0, . . . , bL−1,1,0, . . . ,0), because we may use the various vectors a�, which lie in
the kernel of H to get the appropriate zeros in this b′ vector.

Now let us define a number of row vectors of the size 2m − 1:

b� = (0, . . . ,0︸ ︷︷ ︸
� times

, b0, . . . , bL−1,1, 0, . . . ,0︸ ︷︷ ︸
2m−2−L−�

), 0 ≤ � ≤ 2m − L − 2. (16)

By definition of the Hankel matrix and since m > L + 1, we have b� · c = 0.
Consider the polynomial pb(t) = b0 + b1t + · · · + bL−1t

L−1 + tL corresponding
to b0.

Taking k = 2m−2 in (10), we multiply both sides of (10) on the left by b�. Hence,
we get b� · V2m−2(x1, . . . , xN) · D = 0. Therefore, for every 0 ≤ � ≤ 2m − L − 2 we
have

(
x�

1pb(x1), . . . , x
�
Npb(xN)

) · D = 0. (17)

Combining the first N of the latter equations into a matrix form (note that N −1 <

2m − L − 2) we get

⎛

⎜⎜⎜⎜
⎜
⎝

pb(x1) . . . pb(xN)

x1pb(x1) . . . xNpb(xN)

x2
1pb(x1) . . . x2

Npb(xN)
... . . .

...

xN−1
1 pb(x1) . . . xN−1

N pb(xN)

⎞

⎟⎟⎟⎟
⎟
⎠

⎛

⎜
⎝

Dv1(z)
...

DvN
(z)

⎞

⎟
⎠=

⎛

⎜
⎝

0
...

0

⎞

⎟
⎠ ,
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which can be rewritten as
⎛

⎜⎜⎜⎜⎜
⎝

1 . . . 1
x1 . . . xN

x2
1 . . . x2

N
... . . .

...

xN−1
1 . . . xN−1

N

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

pb(x1) 0 . . . 0
0 pb(x2) . . . 0
...

... . . .
...

0 0 . . . pb(xN)

⎞

⎟⎟⎟
⎠

⎛

⎜
⎝

Dv1(z)
...

DvN
(z)

⎞

⎟
⎠=

⎛

⎜
⎝

0
...

0

⎞

⎟
⎠ .

Since VN−1(x1, . . . , xN) is invertible, we get

⎛

⎜
⎝

pb(x1)Dv1(z)
...

pb(xN)DvN
(z)

⎞

⎟
⎠=

⎛

⎜
⎝

0
...

0

⎞

⎟
⎠ .

As L < N and pb(t) 	= 0, we deduce that x1, . . . , xN cannot all be roots of pb(t).
It remains to mention that Dvi

(z) 	= 0 for every 1 ≤ i ≤ N , by the choice of the vector
z in general position. We therefore arrive at a contradiction. �

Once we construct the kernel of H, we will pick a vector (a0, . . . , aN−1,1,0, . . . ,0)

in Ker(H), and then define the polynomial pz(t) = a0 + a1t + · · · + aN−1t
N−1 + tN .

We note that this is the unique vector with the largest number of zeros on the right
(in algebraic terms, all the remaining vectors in the kernel can be obtained as coef-
ficients of polynomials in the principal ideal (pz) ⊂ C[t]). By Theorem 1, the roots
xi (= 〈vi , z〉) of this polynomial are precisely the projections 〈vi , z〉 that we are seek-
ing:

pz(t) = a0 + a1t + · · · + aN−1t
N−1 + tN =

∏

v∈Vert(P )

(
t − 〈v, z〉). (18)

In summary we have proved the following:

Theorem 2 Given the moments (7) for a direction z ∈ R
d in general position, all

the projections 〈v, z〉, v ∈ Vert(P ) are the real roots of the univariate polynomial pz
defined in (18).

Finding the kernel of H and then computing the coefficients of pz(t) can be done
efficiently in polynomial time. After having computed the projections onto z of all
the vertices, the next step is to find the projections on each of the d coordinates of all
N vertices of P . However, there is still an inherent ambiguity in this process because
we will not know from which vertex a specific projection came from. We resolve
this problem in Sect. 6 and also in alternative way in Sect. 8 by using univariate
representations.

Remark 3.1

(a) An analog of the BBaKLP formula for d = 2 was known for quite a long time (see
e.g. P. Davis [10]), and the system of equations corresponding to (10) was solved



Discrete Comput Geom (2012) 48:596–621 605

by what is known as Prony’s method, see e.g. Elad, Milanfar, and Golub [12, 13].
The solution method described above can also be considered as a variation of
Prony’s method.

(b) Importantly, the quantities Dvi
(z) play no role for computing the projections

〈vi , z〉! This is why we will be able to extend the present methodology to general
convex polytopes P (i.e., non necessarily simple).

4 Polynomial Density

In this section we address the case of non-uniform measures. That is, our moments
are now defined as

μj (z) =
∫

P

〈x, z〉j ρ(x) dx, (19)

where the density function ρ is a homogeneous polynomial of fixed known degree
do. We note that, intuitively, if ρ is not a homogeneous polynomial the change of
a physical scale (e.g. meters to centimeters) will cause complicated changes in the
formulas for moments. Therefore, the case of a homogeneous polynomial measure is
a very natural one, and we begin with this case in order to develop the proper formulas
for it. We then notice, in the next subsection, that the results for the general case of a
polytope with any polynomial density follows exactly the same analysis as the case
of the homogeneous density.

To set notation, we let P be a convex polytope with a density function ρ(x). We
separate ρ into its homogeneous polynomial pieces, by writing ρ(x) =∑do

s=0 ρs(x),
where ρs(x) is a homogeneous polynomial of degree s. We will require the physically
natural assumption that ρ(x) > 0 for each x ∈ P , and in fact we will only need the
assumption ρ(v) 	= 0 for v ∈ Vert(P ).

We define Vk = Vk(〈v1, z〉, . . . , 〈vN, z〉) = Vk(x1, . . . , xN), the standard Vander-
monde matrix. We further define the lth derivative of the Vandermonde matrix,
namely V(l)

k , whose ij th entry is equal to (i − 1) · (i − 2) · · · (i − l)xi−1−l
j :

V(l)
k (x1, . . . , xN) =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
l! l! . . . l!
...

... . . .
...

k!
(k−l)!x

k−l
1

k!
(k−l)!x

k−l
2 . . . k!

(k−l)!x
k−l
N

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

. (20)

As mentioned above, we first assume here that ρ(x) is a homogeneous polynomial
of degree do. However, in the following subsection we will discuss how the follow-
ing formulas also work in the more general case of variable but non-homogeneous
polynomial density measures. We recall the moment formulas for variable density,
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for a simple polytope P , from Theorem 9 in the Appendix:

μj (z) = j !(−1)d

(j + d + do)!
∑

v∈Vert(P )

ρ

(
∂

∂z1
, . . . ,

∂

∂zd

)
〈v, z〉j+d+do

Dv(z), (21)

where

Dv(z) := |detKv|
∏d

k=1〈wk(v), z〉 , (22)

and the identity is valid for each z ∈ C
d such that the denominators in Dv(z) do not

vanish. In addition, we also have the following companion identities:

0 = ρ

(
∂

∂z1
, . . . ,

∂

∂zd

) ∑

v∈Vert(P )

〈v, z〉jDv(z), (23)

for each 0 ≤ j ≤ d + do − 1.
We now repeat the same procedure of putting the new moment formulas above into

matrix form, as in (5). Here, the definition of the vector c is only slightly different,
namely:

(c1, . . . , ck+1) = (−1)d
(

0, . . . ,0,
(d + do)!

0! μ0,
(1 + d + do)!

1! μ1, . . . ,

k! · μk−d−do

(k − d − do)!
)

. (24)

We arrive at the following interesting matrix ODE for moments with homogeneous
polynomial density:

ρ

(
∂

∂z1
, . . . ,

∂

∂zd

)

⎡

⎢⎢⎢⎢⎢
⎣

⎛

⎜⎜⎜⎜⎜
⎝

1 1 . . . 1
〈v1, z〉 〈v2, z〉 . . . 〈vN, z〉
〈v1, z〉2 〈v2, z〉2 . . . 〈vN, z〉2

...
... . . .

...

〈v1, z〉k 〈v2, z〉k . . . 〈vN, z〉k

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜
⎝

Dv1(z)
...

DvN
(z)

⎞

⎟
⎠

⎤

⎥⎥⎥⎥⎥
⎦

=
⎛

⎜
⎝

c1
...

ck+1

⎞

⎟
⎠ , (25)

where the differentiation is taken separately for each entry of the vector on the left
hand side.

One may check that a single partial derivative of a matrix product obeys the same
rule as the derivative of a product of two functions, that is, ∂

∂x
(M1(x) · M2(x)) =

∂
∂x

(M1(x) · M2(x)) + M1(x) · ∂
∂x

M2(x).
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We compute a partial derivative ∂
∂zi

of Vk(〈v1, z〉, . . . , 〈vN, z〉):

∂

∂zi

Vk =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0 . . . 0
v(i)

1 . . . v(i)
N

2v(i)
1 〈v1, z〉 . . . 2v(i)

N 〈vN, z〉
... . . .

...

kv(i)
1 〈v1, z〉k−1 . . . kv(i)

N 〈vN, z〉k−1

⎞

⎟⎟⎟⎟
⎟⎟
⎠

= V(1)
k ·

⎛

⎜⎜⎜⎜
⎝

v(i)
1 0 . . . 0
0 v(i)

2 . . . 0
...

... . . .
...

0 0 . . . v(i)
N

⎞

⎟⎟⎟⎟
⎠

.

By repeating the partial derivative in each variable zi , we arrive at

ρ

(
∂

∂z1
, . . . ,

∂

∂zd

)
Vk = V(do)

k ·

⎛

⎜
⎜⎜
⎝

ρ(v1) 0 . . . 0
0 ρ(v2) . . . 0
...

... . . .
...

0 0 . . . ρ(vN)

⎞

⎟
⎟⎟
⎠

. (26)

Now expanding the matrix ODE formula (25), and using the product rule for dif-
ferentiation of matrices, we may write it in the following form:

do∑

i=0

V(i)
k ·

⎛

⎜
⎝

f
(i)
1 (z)

...

f
(i)
N (z)

⎞

⎟
⎠=

⎛

⎜
⎝

c1
...

ck+1

⎞

⎟
⎠ , (27)

where each entry f
(i)
j (z) is a rational function of z, and the highest vector term,

comprised of the rational functions f
(do)
j (z), has the nice form

⎛

⎜⎜
⎝

f
(do)
1 (z)

...

f
(do)
N (z)

⎞

⎟⎟
⎠=

⎛

⎜⎜⎜
⎝

ρ(v1) 0 . . . 0
0 ρ(v2) . . . 0
...

... . . .
...

0 0 . . . ρ(vN)

⎞

⎟⎟⎟
⎠

·
⎛

⎜
⎝

Dv1(z)
...

DvN
(z)

⎞

⎟
⎠ . (28)

For the proof of the following theorem we construct a certain vector as follows.
Define the polynomial

pz(t) =
∏

v∈Vert(P )

(
t − 〈v, z〉)do+1 = tN(do+1) +

(do+1)N−1∑

i=0

ait
i , (29)

We define the vector a� to be the coefficient vector of the polynomial t�pz(t).
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Theorem 3 The Hankel m × m matrix H, with m ≥ (do + 1)N + 1 corresponding
to the moment formulas with variable density, has rank (do + 1)N , and its kernel is
spanned by the linearly independent vectors a�.

Proof We repeat the procedure that we used in Sect. 3, using a corresponding m × m

Hankel matrix and its kernel, but this time the dimension is m ≥ (do + 1)N + 1.
Similarly to the case of uniform density ρ(x) = 1, we may again multiply both sizes
of (27) on the left by a row vector a0 = (a0, a1, . . . , ak). First, we see that

a0 · V(i)
k (x1, x2, . . . , xN) = (

p(i)
z (x1),p

(i)
z (x2), . . . , p

(i)
z (xN)

)
,

where p
(i)
z (t) is ith derivative of pz(t).

Now, multiplying (27) by a0, we obtain the identity 0 = a0 · c. Similarly, for each
0 ≤ � ≤ k − N(do + 1), we substitute for a0 the vector a� corresponding to t�pz(t),
to obtain 0 = a� · c. Hence the vector a0 lies in the kernel of H.

On the other hand, we now claim that no other vector b different from those
spanned by a� could be in Ker(H). If, contrary to hypothesis, we could find such a
vector b, we may assume without loss of generality that b = (b0, . . . , bl,1,0, . . . ,0),
with l < (do + 1)N − 1, by reducing it with appropriate linear combinations of a�.

Recall that c = (c1, . . . , ck+1), where k ≥ 2m − 2 ≥ 2(do + 1)N . Let us consider
polynomial pb(t) with coefficients of b. Now let b� corresponds to the polynomials
t�pb(t), for 0 ≤ � ≤ m. Then we have b� · c = 0, because b is in the Ker(H) and each
vector b� has the same entries as b only shifted by � to the right.

Since a degree of pb(t) is smaller than that of pz(t), we have pz(t) � pb(t). There-
fore, there exists v ∈ Vert(P ) such that (t −〈z,v〉)do+1

� pb(t). Without loss of gener-
ality, we may assume that v = v1. We now construct a polynomial q(t) by multiply-
ing pb(t) by sufficiently many linear factors of the form (t − 〈z,v〉), where v varies
over all of the vertices of Vert(P ). We will treat the particular vertex v1 differently,
by multiplying by a slightly different power of (t − 〈z,v1〉), to insure that a certain
derivative, explicated below, does not vanish at x1, thus giving us a nonzero vector in
the kernel of H. The desired polynomial q(t) satisfies the following properties:

(1) pb(t)|q(t).
(2) (t − 〈z,v1〉)do+1

� q(t).
(3) (t − 〈z,v1〉)do | q(t).
(4) (t − 〈z,v〉)do+1 | q(t), for ∀v ∈ Vert(P ) : v 	= v1.
(5) deg(q) ≤ deg(p) + N(do + 1).

We now write the coefficients of polynomial q(t) as a vector bo. Next, we multiply
(27) on each side by the row vector bo.

do∑

i=0

bo · V(i)
k ·

⎛

⎜
⎝

f
(i)
1 (z)

...

f
(i)
N (z)

⎞

⎟
⎠= bo ·

⎛

⎜
⎝

c1
...

ck+1

⎞

⎟
⎠ . (30)

The vector bo may be represented as a linear combination of vectors b�, where
0 ≤ � ≤ m. Therefore, we get bo · c = 0.
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On the other hand, since
∏N

i=1(t − xi)
do |q(t), we have bo · V�

k = 0 for each 0 ≤
� < do. Then

bo · V(do)
k = (

q(do)(x1), . . . , q
(do)(xN)

)
,

where xj = 〈z,vj 〉. We have q(do)(x1) = γ 	= 0, by property ((2)), and q(do)(xi) = 0
for each 2 ≤ i ≤ N , because

∏N
i=2(t − xi)

do+1|q(t). Therefore, we get

(γ,0, . . . ,0) ·

⎛

⎜⎜⎜
⎝

ρ(v1) 0 . . . 0
0 ρ(v2) . . . 0
...

... . . .
...

0 0 . . . ρ(vN)

⎞

⎟⎟⎟
⎠

·
⎛

⎜
⎝

Dv1(z)
...

DvN
(z)

⎞

⎟
⎠= 0. (31)

Thus γ · ρ(v1) · Dv1(z) = bo · c = 0, where none of the quantities γ,ρ(v1) and
Dv1(z) is zero, so that we have arrived at a contradiction. �

Therefore, we have proved the following result, the analog of Theorem 2 for the
homogeneous polynomial density case.

Theorem 4 Given moments (19) for a direction z ∈ R
d in general position and

where ρ is a unknown homogeneous polynomial of degree d0, all projections 〈v, z〉,
v ∈ Vert(P ), are the real roots of the univariate polynomial pz defined in (29).

4.1 Non-homogeneous Measure

We start with the moment formulas for a polytope with variable, but homogeneous
density, namely (54). Now we let do be the maximal degree of the monomials of
ρ(x). Then the formula (21) can be rewritten as follows:

do∑

s=0

ρs(∇z)t−s
∑

v∈Vert(P )

∞∑

j=0

〈v, z〉j
j ! (−1)dDv(z)tj−d =

∞∑

j=0

μj

j ! tj . (32)

Following the same reasoning that was used for the homogeneous variable density
case, we first collect all the coefficients of tj−d−do

on both sides of (32), to get

do∑

s=0

ρs(∇z)
∑

v∈Vert(P )

j (j − 1) · · · (j − do + s + 1)

j ! 〈v, z〉j−do+s · Dv(z) = cj+1

j ! ,

(33)

where cj+1 = (−1)d
j !·μj−d−do

(j−d−do)! , as in the formula (24). Next, we put everything into
a matrix form and get

do∑

s=0

ρs(∇z) · [V(do−s)
k (x1, . . . , xd) · D

]=
⎛

⎜
⎝

c1
...

ck+1

⎞

⎟
⎠ . (34)
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The latter matrix ODE can be brought into the same form as (27), with exactly
the same coefficient of Vdo

k (x1, . . . , xN) that appears in (28). Therefore, our method
works for general polynomial density measures as well, with precisely the same al-
gorithm.

5 General Convex Polytopes

In the previous discussion we considered only simple polytopes, because the
BBaKLP formula takes a particularly nice simple form when P is a simple polytope.
However, it is natural to extend our approach to non-simple polytopes. Indeed, it is al-
ways possible to triangulate P , that is, decompose P into a union of non overlapping
simplices, without adding any extra vertices (see, for example, [7, Theorem 3.1]).

We now fix one such triangulation of P , and denote it by T(P ). We may then
rewrite the formula for each moment μj (z) as follows:

μj (z) =
∫

P

〈x, z〉j dx =
∑

Δ∈T(P )

∫

Δ

〈x, z〉j dx. (35)

Triangulating the general convex polytope P into simplices, we reduce the general
moment problem to the moment problem for each simplex Δ of the triangulation.
Although triangulations may be expensive to construct in practice, we only need to
consider a theoretical non-vanishing result, given in Lemma 2 below, for any such
triangulation. Given such a triangulation, we may then apply the formulas (1) and (3)
to each of the simplices Δ in the equation above:

cj (z) =
∑

Δ∈T(P )

∑

v∈Vert(Δ)

〈v, z〉jDv(Δ, z)

=
∑

v∈Vert(P )

〈v, z〉j
∑

Δ∈{T(P )|v∈Vert(Δ)}
Dv(Δ, z),

where we have interchanged the order of summation in the last equality above. We
now define D̃v(z) for this fixed triangulation T(P ) by

D̃v(z) :=
∑

Δ∈{T(P )|v∈Vert(Δ)}
Dv(Δ, z). (36)

Then we have

cj (z) =
∑

v∈Vert(P )

〈v, z〉j D̃v(z). (37)

This gives us

(j + d)!(−1)d

j ! μj (z) =
∑

v∈Vert(P )

〈v, z〉j+dD̃v(z). (38)
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Note that in Sect. 3 we never used the explicit formula for Dv(z). The only fact we
exploited was that Dv(z) 	= 0 for a general position vector z. Therefore, we can apply
the same approach for non-simple polytopes, if we are able to prove that D̃v(z) 	= 0
for a general position vector z.

Lemma 2 For any vertex v ∈ Vert(P ), any fixed triangulation T(P ) and a general
position vector z we have D̃v(z) 	= 0.

Proof We begin by noting that D̃v(z) is a finite linear combination of rational func-
tions of z. In fact, according to the Lemma 8.3 and Chap. 9 of [3], D̃v(z) is a rational
function that is the analytic continuation, in z, of the function

1̂Kv−v(z) =
∫

Kv

e〈z,x−v〉 dx,

when this integral converges. We define the dual cone to Kv − v as follows: K∗
v :=

{y ∈ R
d | 〈y,x〉 < 0, for all x ∈ Kv − v}. Indeed, the latter integral converges for all

z lying in the interior of the dual cone K∗
v . Since Kv is a tangent cone of a convex

polytope, the dual cone K∗
v is non-empty. Clearly e〈z,x〉 is positive for all x ∈ Kv − v,

if z ∈ K∗
v . We obtain the result that 1̂Kv−v(z) > 0 for all such z, and we may therefore

conclude that the analytic continuation of 1̂Kv−v(z) cannot vanish. �

6 An Exact Algorithm

In Sect. 3 we have learned how to find the projections of vertices of P onto a general
position axis z. A short summary of the procedure for such a randomly picked z ∈ R

d

is as follows:

Algorithm 1 Computing projections
(1) Given 2m− 1 ≥ 2N + 1 moments c1, . . . , c2m−1 for z, construct a square Hankel

matrix H(c1, . . . , c2m−1).

(2) Find the vector v = (a0, . . . , aM−1,1,0, . . . ,0) in Ker(H) with the minimal pos-
sible M . It turns out that the number of vertices N = M .

(3) The set of roots {xi(z) = 〈vi , z〉|vi ∈ Vert(P )} of polynomial pz(t) = a0 + a1t +
· · · + aN−1t

N−1 + tN then equals the set of projections of Vert(P ) onto z.

Remark 6.1 Note that N is an essential part of the input. One cannot rule out ex-
istence of another polytope P ′ with |Vert(P ′)| > N and the same moments, up to
certain degree.

Remark 6.2 If we work in the context of exact measurements, with rational vertices
and rational choices of z vectors, then pz has only rational roots. In this rational
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context, we may analyze the complexity issues involved by using the LLL-algorithm
due to Lenstra, Lenstra, and Lovász [16], because now the rational roots of pz can be
found in time which is polynomial in N and in the bitsize of Vert(P ).

In this section, we describe below an exact algorithm to compute Vert(P ) that
runs in polynomial time given the latter assumptions. When the roots of pz are not
available exactly, the algorithm still works, producing approximate results. However,
it seems nontrivial to control the precision of root-finding, as we need to find the
roots of d univariate polynomials. In Sect. 8 we present a different procedure, where,
in contrast, roots of only one polynomial parametrize Vert(P ), and which conceivably
is more robust against numerical errors.

We use the assumption that z is in general position (it suffices to require that z
is not perpendicular to the lines uv, for u,v ∈ Vert(P )) to maintain bijectivity of
projection onto z, as well as to avoid division by zero in the terms Dvi

(z). Choosing
z at random from the Gaussian distribution on R

d , we get a z in general position with
probability 1. Further, to reconstruct the locations of Vert(P ) given the projections of
vertices on a number of axes we match all projections of the same vertex as follows.

• Take d linearly independent vectors z1, . . . , zd , each chosen in general position.
• For every 2 ≤ i ≤ d match projections of Vert(P ) onto zi with projections onto z1.

(1) Pick a general position vector z = αz1 + βzi in the plane generated by z1 and
zi .

(2) Compute the coefficients of the polynomial pz(t) using extra 2N +1 moments
in direction z.

(3) For each pair of projections xj (z1), xk(zi ) onto z1 and zi match them whenever
pz(αxj + βxk) = 0, for 1 ≤ j, k ≤ N .

(4) With probability 1 all vertices will be matched correctly, that is, xk(zi ) is
matched with xk(z1).

• For each 1 ≤ k ≤ N reconstruct vk ∈ Vert(P ) from its projections xk(zi ) for 1 ≤
i ≤ d .

Indeed, the degree N polynomial

pz(t) =
∏

k

(
t − αxk(z1) − βxk(zi )

)

has N distinct roots. We evaluate it at the N2 values αxj (z1) + βx�(zi ). With proba-
bility 1, by choice of α and β , pz will only vanish when xj (z1) and x�(zi ) correspond
to the projections of the same vertex. (In fact, this part is easy to de-randomize: fixing
α = 1 and choosing more that N3 different values of β gives one a “good” pair α, β .)

Note that in total we have used (2d − 1)(2N + 1 − d) distinct moments, while
the description of vertices of P requires d · N real numbers. That is, our procedure is
quite frugal in terms of the moment’s measurements.

As claimed in Main Theorem, we can still improve on the latter (albeit the corre-
sponding procedure is not polynomial time any more). Indeed, we only have moments
for d + 1 directions z1, . . . , zd , z = ∑

j αj zj in general position, we can still carry
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out a similar procedure, although one would need to compute
(
N
d

)
test values (for all

the possible d-fold matchings) of

pz0(t) =
∏

k

(

t −
d∑

j=1

αjxk(zj )

)

.

7 An Analysis of Our Algorithm in the Rational Case

In Sect. 6 we described our algorithm under the global assumption that each direction
z is chosen at random from the continuous domain R

d , thus getting a general posi-
tion vector z with probability 1. However, in any practical implementation, all the
coordinates of z have to be rational numbers with bounded denominators and numer-
ators. In this case the probability that z does not lie in general position will be strictly
smaller than 1. In what follows we describe a way to pick our z-directions and argue
that the probability for choosing a “bad set” of z-directions (which are not in general
position) is indeed small.

We will always pick our z vectors to be rational vectors, with denominator equal
to r , and lying in the unit cube [0,1]d . If we knew the vertex description of a simple
polytope P , we would only need to make sure that z lies in the complement of the
finite union of hyperplanes that are orthogonal to all lines between any two vertices
of P . We call such a rational z a generic vector. The probability of picking such a
generic z tends to 1 as r → ∞.

We now extend the definition of a generic vector z to a non-simple polytope P .
In this case, in addition to our previous restriction that z is not orthogonal to any line
between vertices of P , in particular to the edges of P , it might occur that z is a zero
of the rational function D̃v(z), defined by (36) in Sect. 5, and we need to avoid such
a choice of z. Hence we define a generic vector in the general case of non-simple
polytopes to be a vector that is simultaneously not orthogonal to any line between
vertices of P , and also not a zero of any rational function D̃v(z). In particular, we
shall avoid zeros and poles of the complex function D̃v(z) in z.

In what follows, we refer to the algorithm of Sect. 6. By the Schwartz–Zippel
Lemma [11, 18, 20], we have an upper bound for the probability that the numera-
tor and denominator of the multivariable rational function D̃v(z) vanishes for a ran-
dom rational z ∈ [0,1]d , where z has denominator r . In fact, by our construction,
we have rd such rational vectors z, and the Schwartz–Zippel Lemma tells us the fol-
lowing: for sufficiently large prime r Prob[z is a zero of D̃v(z)] ≤ N

r
and similarly

Prob[z is a pole of D̃v(z)] ≤ N
r

. Indeed, both the numerator and the denominator of
D̃v(z) are homogeneous polynomials in d variables z1, . . . , zd of degree at most N

with integer coefficients; none of these polynomials vanish when taken over the finite
field Fr , for all sufficiently large r .

We remark that our algorithm picks either arbitrary generic vectors (we pick them
uniformly at random from the rational unit cube), or takes an integer linear combi-
nation of two independent random vectors. In the former case by taking r of order
2poly(N,d) one can make the above probabilities for all D̃v(z) to be negligibly small.
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In the latter case, we need to be more careful, as the sum of two random vectors uni-
formly distributed over the rational unit cube is no longer a random vector distributed
uniformly over the unit cube. However, we may now consider the vector αz1 + βzi ,
as well as the numerator and denominator of D̃v(z), over the finite field Fr . We note
that, once we fix 0 < α < r and 0 < β < r , the linear combination of two indepen-
dent, uniformly distributed vectors, namely αz1 + βzi , is again uniformly distributed
over F

d
r .

Therefore, we may assume that each particular direction z that appeared in the
algorithm 1 is generic with a very high probability. On the other hand, a generic
vector z = αz1 + βzi in the plane spanned by z1, zi , matches the set of projections
onto z1 and the set of projections onto zi uniquely at very high probability. Indeed,
given the projection onto z1 and zi there are N2 possible projections of Vert(P ) onto
the plane spanned by z1 and zi and at most N4 different lines between these points.
In other words, there are altogether at most N4 directions that do not help us match
projections onto z1 and zi . In the algorithm we pick one of the r distinct directions
for z = αz1 + βzi for any fixed α. Thus the chance that our algorithm did make a
mistake in a particular step is negligibly small.

8 Univariate Representations for Vert(P )

In this section, we present an alternative procedure that is conceivably more robust
than the algorithm in Sect. 6, where given a finite collection of projections of the
vertices, we presented an exact procedure to reconstruct them. That is, we were given
some data described in Algorithm 1, assuming that Vert(P ) ⊂ Q and the measure-
ments are exact. When at least one of the latter assumptions does not hold, the poly-
nomial pz, whose roots are projections of Vert(P ), may not have rational roots. Even
its coefficients might be known only approximately. Thus it might be hard to control
numerical errors.

We construct univariate representations (see e.g. [6]) of v ∈ Vert(P ). The lat-
ter are typically used to compute solutions of systems of multivariate polynomial
equations—here this appears to be the first use of these representations for purposes
other than solving systems of polynomial equations. That is, we will express the co-
ordinates of v ∈ Vert(P ) as univariate rational functions of ϑ , where ϑ is a root of
pa(t) in (18).

We introduce bivariate polynomials fab ∈ R[s, t] defined by

(s, t) �→ fab(s, t) =
∏

v∈Vert(P )

(
t − 〈v,a + sb〉), a,b ∈ R

d . (39)

Upon transitioning to rational vectors a and b, generic in the sense of Sect. 7, and
with a 	= b, we can compute the coefficients of fab(s, t) by interpolating, with respect
to s, the coefficients of the polynomials fab(s, t) = pa+sb(t), with s = 0,1, . . . ,N ,
and pa+sb in (18) computed using Theorem 1. Define

gab(t) := ∂fab(s, t)

∂s

∣∣∣∣
s=0

. (40)
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Then

gab(t) = −
∑

v∈Vert(P )

〈v,b〉
∏

v	=u∈Vert(P )

(
t − 〈u,a〉).

In particular for w ∈ Vert(P ) one obtains

gab
(〈w,a〉) = −

∑

v∈Vert(P )

〈v,b〉
∏

v	=u∈Vert(P )

〈w − u,a〉

= −〈w,b〉
∏

w 	=u∈Vert(P )

〈w − u,a〉.

On the other hand, for pa in (18), its derivative p′
a reads

p′
a(t) =

∑

v∈Vert(P )

∏

v	=u∈Vert(P )

(
t − 〈u,a〉)

and thus

p′
a
(〈w,a〉)=

∑

v∈Vert(P )

∏

v	=u∈Vert(P )

〈w − u,a〉 =
∏

w 	=u∈Vert(P )

〈w − u,a〉.

Hence

〈w,b〉 = gab(〈w,a〉)
p′

a(〈w,a〉) = gab(ϑ)

p′
a(ϑ)

, for some ϑ s.t. pa(ϑ) = 0.

In particular, assuming that a set of basis vectors e1, . . . , ed of R
d are generic, we

obtain

Theorem 5 The set of vertices of P is given by

Vert(P ) =
{(

gae1(ϑ)

p′
a(ϑ)

, . . . ,
gaed

(ϑ)

p′
a(ϑ)

) ∣∣∣ for each ϑ s.t. pa(ϑ) = 0

}
, (41)

provided that a, e1, . . . , ed ∈ R
d are ‘sufficiently general’ w.r.t. P —that is, the poly-

nomial pa(t) from (18) and the polynomials gaej
(t) from (40) have no multiple root.

We remark that the assumption of being “sufficiently general” in Theorem 5 is
equivalent to the fact that each of the vectors a, e1, . . . , ed does not lie in the discrim-
inant varieties of the polynomial pa(t) and the set of polynomials gaej

(t).
Assuming that computation is done with arbitrary precision, the vertices of P can

be obtained by evaluating the vectors of rational functions in ϑ at the roots of pa,
as in (41). Therefore, we have transformed the delicate computations of the roots of
the polynomials pz for all projections onto a number of axis vectors z, into just one
calculation given by (41).

We note that here we need to use O(dN2) moments, which is typically much less
frugal than the method of Sect. 6, which only uses O(dN) of them.
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Remark 8.1 A similar computation of the univariate representation can be carried out
even without the genericity assumptions, when the corresponding univariate polyno-
mials have multiple roots. See [14] for details.

9 An Application to Physics

Here we discuss an application of our results to a classical problem of mathematical
physics—reconstruction of an object from the potential of a field that it creates. For
concreteness, we limit ourselves to the 3-dimensional potential of the gravitational
field. The potential function u(x) := u(x1, x2, x3) of the gravitational field F(x) is
defined by

F(x) = ∇u(x).

In turn, for a body T ⊂ R
3 with density ρ(x) the potential is given by

u(x) =
∫

T

ρ(t)

‖x − t‖ dt, for any x 	∈ T .

A typical physics problem is to reconstruct T and ρ from u, i.e. from the measure-
ments of u. That is, we can assume that ‖x − t‖−1 = ∑

a fa(x)ta is an expansion
in a Taylor series w.r.t. t = (t1, t2, t3), and the fa(x) depend upon x only. Then the
expansion

u(x) =
∑

a

fa(x)

∫

T

taρ(t) dt, for any x 	∈ T

encodes information of the moments
∫
T

taρ(t) dt of the measure ρ(t) supported on
T . Thus reconstructing T and ρ from u is an inverse moment problem. For instance,
when ρ is a polynomial and T is a polytope, the approach described in this paper can
be applied to this inverse potential problem and will provide an exact reconstruction.
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N. Gravin, D.V. Pasechnik and S. Robins were supported by Singapore Ministry of Education ARF Tier 2
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Appendix: Proof of the BBaKLP Identities for Moments of Polytopes

Here we recall the proof of the moment formulas of BBaKLP, as well as some useful
facts that arise in combinatorial geometry, and which we have used in the present pa-
per, but which may not be well-known yet to the mathematical community at large.
Although some of the proofs here may not be completely self-contained, they give the
reader the proper background for understanding where the moment formulas come
from, and the tools that are used for handling them. For more detailed proofs of some
of these results, the reader may consult the book [3], as well as the book [7, Corol-
lary 11.9]. We begin with a very useful geometric identity, which has an inclusion-
exclusion structure, due to Brianchon and Gram.
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We let 1P (x) denote the indicator function of any convex polytope P . For any
d-dimensional convex polytope P , we have the following Brianchon–Gram identity:

1P (x) =
∑

F⊂P

(−1)dim(F )1KF
(x), (42)

valid for all x ∈ R
d . Here we are using the tangent cone KF at each face F of P .

Lemma 3

1̂P (x) =
∑

v∈Vert(P )

1̂Kv(x).

Proof We simply take the Fourier–Laplace transform of both sides of the Brianchon–
Gram identity above, and we recall that it is defined by f̂ (z) := ∫

Rd f (x)e〈x,z〉 dx,
valid for all z ∈ C

d for which the integral converges. By definition, we have

1̂P (z) =
∫

P

e〈x,z〉 dx,

the Fourier–Laplace transform of the indicator function of P . It turns out that we may
define the Fourier–Laplace transform 1̂KF

(x) = 0, for any tangent cone KF which
contains a line (isomorphic to R

1). Since all tangent cones KF contain a line, except
for the vertex tangent cones, we are left only with the Fourier–Laplace transforms of
the vertex tangent cones. Precisely, we get

1̂P (x) =
∑

v∈Vert(P )

1̂Kv(x).
�

Using the theory of valuations, one can make the proof of the former Lemma more
rigorous (see [3]). However, for the purposes of this appendix, it is not necessary to
consider the subtle issues of convergence that arise here.

Lemma 4 Let Kv be a vertex tangent cone of a simple polytope P . Then

1̂Kv(z) = (−1)d
e〈v,z〉 detKv

∏d
k=1〈wk(v), z〉 ,

for all z ∈ C
d such that the denominator does not vanish.

Proof The main idea here is to use the fact that there is a linear transformation
that maps the simple tangent cone Kv bijectively onto the positive orthant Korth :=
{(x1, . . . , xd) ∈ R

d | xj ≥ 0}. To be explicit, let Kv − v := K0 be the translated copy
of our tangent cone Kv, so that the vertex of K0 lies at the origin. Let M be the
invertible matrix whose columns are the d linearly independent edge vectors wk(v)

of Kv. Then the linear transformation T : Korth → Kv − v, defined by T (x) = Mx,
gives us the desired bijection from the positive orthant onto the translated tangent
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cone Kv − v := K0. Now we use the explicit computation for the Fourier–Laplace
transform of the positive orthant Korth, namely:

1̂Korth(z) =
d∏

j=1

1̂R≥0(zj ) = (−1)d
d∏

j=1

(
1

zj

)
.

Finally, the standard Fourier identity ̂(f ◦ T )(z) = |detT |f̂ (T tz), valid for any
invertible linear transformation T , allows us to finish the computation:

1̂Kv(z) = 1̂K0+v(z)

= e〈v,z〉1̂K0(z)

= e〈v,z〉1̂M(Korth)(z)

= e〈v,z〉|detM|1̂Korth

(
Mtz

)

= e〈v,z〉(−1)d detKv

d∏

j=1

(
1

〈wk(v), z〉
)

.
�

Theorem 6 Let P be a simple convex polytope. An explicit formula for the Fourier–
Laplace transform of P is given by

∫

P

e〈x,z〉dx = (−1)d
∑

v∈Vert(P )

e〈v,z〉 detKv
∏d

k=1〈wk(v), z〉 , (43)

for all z that are not orthogonal to any edge of P .

Proof From Lemma 3, we know that the Fourier–Laplace transform of P is given
by the sum of the Fourier–Laplace transforms of the vertex tangent cones Kv, over
all vertices v of P . Using Lemma 4 to rewrite the Fourier–Laplace transform of each
vertex tangent cone explicitly, we are done. �

Theorem 7 For any convex polytope P and any polynomial ρ ∈ R[x], there exist
rational functions qv(z) such that

∫

P

e〈x,z〉ρ(x)dx =
∑

v∈Vert(P )

e〈v,z〉qv(z), (44)

for all z such that the function e〈v,z〉qv(z) is analytic at z.

Proof We may first employ the fact that every convex polytope P has a triangula-
tion into some M simplices Δi , with no new vertices. We therefore have 1̂P (z) =∑M

i=1 1̂Δi
(z), because the d-dimensional Fourier transform vanishes on all of the

lower-dimensional intersections of the various simplices Δi . We observe that
∫

P

e〈x,z〉ρ(x) dx = ρ

(
∂

∂z1
, . . . ,

∂

∂zd

)∫

P

e〈x,z〉 dx, (45)
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because due to the compactness of P , differentiation under the integral sign is valid.
Thus

ρ

(
∂

∂z1
, . . . ,

∂

∂zd

)∫

P

e〈x,z〉 dx = ρ

(
∂

∂z1
, . . . ,

∂

∂zd

) M∑

i=1

1̂Δi
(z). (46)

Now by Theorem 6, applied to each simple polytope Δi , we finally have

∫

P

e〈x,z〉ρ(x) dx = ρ

(
∂

∂z1
, . . . ,

∂

∂zd

) M∑

i=1

(−1)d
∑

v∈Vert(Δi)

e〈v,z〉 detKv
∏d

k=1〈wk(v), z〉 , (47)

giving us the desired conclusion upon applying the differential operator to each ra-
tional function. �

We recall from the introduction that the basis-free moments for uniform density
were defined by

μj (z) :=
∫

P

〈x, z〉j dx.

The following set of moment formulas can also be found in [8, Sect. 3.2], as well
as in [7, Sect. 10.3].

Theorem 8 (Moments formula for uniform density) Given a simple polytope P , with
uniform density ρ ≡ 1, we have the moment formulas:

μj (z) = j !(−1)d

(j + d)!
∑

v∈Vert(P )

〈v, z〉j+dDv(z), (48)

for each integer j ≥ 0, where

Dv(z) := |detKv|
∏d

k=1〈wk(v), z〉 , (49)

for each z ∈ C
d such that the denominators in Dv(z) do not vanish. Moreover, we

also have the following companion identities:

0 =
∑

v∈Vert(P )

〈v, z〉jDv(z), (50)

for each 0 ≤ j ≤ d − 1.

Proof We begin with the explicit identity for the Fourier–Laplace transform of any
convex polytope, namely (43), and we replace z by tz, where t > 0 is now treated as
a real variable:

∫

P

et〈x,z〉 dx = (−1)d
∑

v∈Vert(P )

et〈v,z〉 detKv

td
∏d

k=1〈wk(v), z〉 .
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Now we expand both sides in their Laurent series about t = 0, and equate the coeffi-
cient of tj on both sides to obtain the desired moment identities. �

Theorem 9 (Moments formula for polynomial density and any convex polytope)
Suppose we have a homogeneous polynomial density function ρ(x), of degree do,
defined over any convex polytope P . For each integer j ≥ 0, we have the density
moments formulas

μj (z) = j !(−1)d

(j + d + do)!
M∑

i=1

∑

v∈Vert(Δi)

ρ

(
∂

∂z1
, . . . ,

∂

∂zd

)
〈v, z〉j+d+do

Dv(z), (51)

where

Dv(z) := |detKv|
∏d

k=1〈wk(v), z〉 . (52)

These identities are valid for each z ∈ C
d such that the denominators in Dv(z) do not

vanish. In addition, we also have the following companion identities:

0 = ρ

(
∂

∂z1
, . . . ,

∂

∂zd

) M∑

i=1

∑

v∈Vert(Δi)

〈v, z〉jDv(z), (53)

for each 0 ≤ j ≤ d + do − 1.

Proof We begin with (47), and replace z by tz, for any fixed t > 0. Again, expanding
both sides in their Laurent expansions about t = 0 gives us:

∞∑

j=0

μj

j ! tj = ρ

(
∂

t · ∂z1
, . . . ,

∂

t · ∂zd

) M∑

i=1

∑

v∈Vert(Δi)

∞∑

j=0

〈v, z〉j
j ! (−1)dDv(z)tj−d

= ρ

(
∂

∂z1
, . . . ,

∂

∂zd

) M∑

i=1

∑

v∈Vert(Δi)

∞∑

j=0

〈v, z〉j
j ! (−1)dDv(z)tj−d−do

. (54)

We now equate the coefficient of tj , for each j ≥ 0, on both sides of the former
identity (54), to obtain the desired moment formulas for variable density:

μj (z) = j !(−1)d

(j + d + do)!
M∑

i=1

∑

v∈Vert(Δi)

ρ

(
∂

∂z1
, . . . ,

∂

∂zd

)
〈v, z〉j+d+do

Dv(z). (55)

Moreover, we also obtain the desired companion identities (53), by equating the first
d + do coefficients of (54), for each 0 ≤ j ≤ d + do − 1. �
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