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Abstract We compute all isomorphism classes of simplicial arrangements in the real
projective plane with up to 27 lines. It turns out that Grünbaum’s catalogue is com-
plete up to 27 lines except for four new arrangements with 22, 23, 24, 25 lines, re-
spectively. As a byproduct we classify simplicial arrangements of pseudolines with
up to 27 lines. In particular, we disprove Grünbaum’s conjecture about unstretch-
able arrangements with at most 16 lines, and prove the conjecture that any simplicial
arrangement with at most 14 pseudolines is stretchable.

Keywords Arrangement of hyperplanes · Simplicial · Pseudoline · Wiring

1 Introduction

A simplicial arrangement is a finite set A = {H1, . . . ,Hn} of hyperplanes in R
r such

that the connected components of R
r\⋃

H∈A H are simplicial cones (compare [11,
Definition 5.14]). For r = 3, it may be visualized as a triangulation of the plane by
lines (for example Fig. 1). The classification of simplicial arrangements is still an
open problem. There is an impressive catalogue [7, 9] of the known simplicial ar-
rangements in dimension three: the many sporadic cases are probably the main reason
why a classification appears to be so difficult (see Conjecture 1.3).

But let us assume that we have some theorem stating that a given catalogue is
complete. Then it would be desirable to find a short proof. However, it is possible
that a shortest proof of such a theorem is very long, so long that it would take several
thousand pages to print it. In such a situation we nowadays take advantage of a com-
puter: if the proof consists of a case-by-case analysis, i.e. we have to comb through a
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large tree with branches mostly leading to contradictions, then a computer is exactly
the right tool to use.

In a previous work [3], together with Heckenberger we have classified the large
class of crystallographic arrangements (see [5] for a definition). The method used
there is an algorithm which enumerates them all. This algorithm terminates because
it exploits several strong theorems. But still, a computer has to check billions of
branches of the enumerating tree. We do not claim that a short proof does not exist,
but any other proof would need to address the large number of sporadic arrangements
arising here.

The algorithm we propose does not appear to have polynomial runtime in the
number of lines of the arrangement.1 However, since it is conjectured that the largest
sporadic simplicial arrangement has 37 lines, one idea for a classification could be to
determine all the simplicial arrangement with up to 37 lines, and then prove in some
other way that any simplicial arrangement with more than 37 lines belongs to one
of the infinite series. With this plan in mind, we are talking about algorithms with
constant runtime, and thus we “only” need to make this constant small enough.

We should also note here that although we concentrate on the case of dimension
three (or the projective plane), I believe that one can deduce a complete classification
for all dimensions based upon a classification in dimension three. This was the case
for the crystallographic arrangements mentioned above, see [2].

The most important result of our computation is:

Result 1.1 We have a complete list of all simplicial arrangements in the real projec-
tive plane with at most 27 lines.

We achieve this by enumerating wiring diagrams (or allowable sequences) and
using the correspondence of Goodman and Pollack to arrangements of pseudolines.
As a byproduct, we find further examples of simplicial arrangements (of pseudolines)
disproving the following two conjectures:

Conjecture 1.2 ([10, Conjecture 2]) Up to isomorphism, there are only 5 simplicial
unstretchable arrangements of 15 or 16 pseudolines.

Conjecture 1.3 ([9] or [10, Conjecture 3]) There are no simplicial arrangements of
straight lines besides the three infinite families and 90 sporadic arrangements listed
in [9].

We further obtain a proof for:

Conjecture 1.4 ([8, Conjecture 1], [1, 6.3] or [10, 3.1]) All simplicial arrangements
with at most 14 pseudolines are stretchable.

The new arrangements have 22, 23, 24 and 25 lines and are all contained in the
largest one with 25 lines, see Fig. 1 for a picture and Sect. 5.5 for an explicit real-
ization. To obtain the smaller arrangements, remove the thicker lines. Notice that the

1Remark that there is (see [12]) an efficient enumeration algorithm for simple arrangements of pseudolines.
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Fig. 1 A new simplicial
arrangement with 25 lines. The
symbol “∞” stands for the line
at infinity; removing the thicker
lines gives further new
simplicial arrangements with 22,
23 and 24 lines, respectively.
See Sect. 5.5 for explicit
coordinates

three thicker lines play the same role in the incidence, and that the ordering in which
they are removed does not matter.

In view of the (to my eyes) bizarre structure of the Hasse diagram, Fig. 6 or [9,
Fig. 4], and considering the great amount of computations needed for our result, it is
very impressive that Grünbaum missed only four arrangements. Notice that there are
a few connections missing in [9, Fig. 4]; in particular it turns out that the arrangement
A(21,4) is not maximal but contained in the arrangement A(26,4). We reproduce the
table [9, pp. 6–10] here (up to 27 lines) because of the new arrangements and because
of a new column containing the automorphism groups of the arrangements.

This article is organized as follows: We first review some properties of wirings in
general. After several preparations we then give an algorithm to enumerate simplicial
wirings. Finally, we discuss stretchability and summarize the results.

2 Wiring Diagrams

We first recall some definitions (compare [1, 6.4]).

Definition 2.1 A sequence Σ = (σ0, . . . , σm) of permutations in Sn is an allowable
sequence if

(1) σ0 = idSn = [1, . . . , n],
(2) σm = (1n)(2(n − 1)) · · · = [n, . . . ,1],
(3) for each i = 0, . . . ,m − 1 there are a, b with 1 ≤ a < b ≤ n and

σi(a) < σi(a + 1) < · · · < σi(b),

σi+1(c) = σi(a + b − c) for a ≤ c ≤ b,

σi+1(c) = σi(c) for c < a or c > b.
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Fig. 2 The unstretchable
wirings with 15 lines (see
Sect. 5.4 for more information)

We will encode an allowable sequence by the sequence of a’s and b’s, i.e., Σ is
uniquely determined by the sequence of pairs

Ψ = (
(a1, b1), (a2, b2), . . . , (am, bm)

)

with

σi+1 = (
σi(ai+1)σi(bi+1)

)(
σi(ai+1 + 1)σi(bi+1 − 1)

) · · ·σi.

Allowable sequences are in one-to-one correspondence to wiring diagrams (for
example Fig. 2). These are a very useful representation for arrangements of pseudo-
lines (for a proof see [6, Theorem 2.9] or [1, Theorem 6.3.3]):

Theorem 2.2 (Goodman and Pollack) Every arrangement of pseudolines is isomor-
phic to a wiring diagram arrangement.

Remark 2.3 It is easy to give an algorithm which computes a wiring for a given
arrangement of straight lines, see [6, Sect. 2] or Lemma 2.11 for more details.

Figure 2 shows examples of unstretchable wirings, i.e., the cell decompositions of
P

2 induced by the wirings are not combinatorially isomorphic to the cell decompo-
sitions induced by some arrangements of straight lines (see Sect. 4 for more details).
Notice that these examples are simplicial which means that all 2-cells have exactly
three vertices. We will see that there is no unstretchable simplicial wiring with less
than 15 lines.

Our goal is to design an algorithm to enumerate simplicial arrangements, or more
generally simplicial arrangements of pseudolines. By the above theorem, we may
enumerate certain wiring diagrams instead. However, there are many different wiring
diagrams which yield isomorphic arrangements. So the most important part will be
to recognize symmetries to avoid computations producing no “new” wirings.

But let us first look at a naive version of such an algorithm. Let Wn denote the set
of allowable sequences in Sn, equivalently the set of wiring diagrams with n rows.2

2We will write “rows” for the “wires” in the diagram.
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During the algorithm, we will successively enlarge a sequence Ψ until it becomes an
element of Wn. More precisely, we encode an allowable sequence in construction by
the following data.

Definition 2.4 A wiring fragment ω consists of:

• m ∈ N,
• σm = [σm(1), . . . , σm(n)] ∈ {1, . . . , n}n,
• Ψ = ((a1, b1), (a2, b2), . . . , (am, bm)),
• Number of lines εi

m going through the last junction in row i for i = 1, . . . , n: εi
m :=

bk − ak + 1 where k is maximal with ak ≤ i ≤ bk .
• For each i, the actual number vi

m of vertices of the last 2-cell between row i and
i + 1 (let v0

m be the number of vertices of the polygon between row n and 1),
• For each i, the actual number si of vertices of the first 2-cell between row i and

i + 1 (we define s0 := 0),
• The maximal n ≥ dm ∈ N such that σm(i) = n + 1 − i for all i = 1, . . . , dm − 1,
• The minimal 1 ≤ um ∈ N such that σm(i) = n + 1 − i for all i = um + 1, . . . , n,

where σm and Ψ are being interpreted as the beginning of an allowable sequence and
have to satisfy the corresponding axioms.

We will call ω complete if σm = [n, . . . ,1]. In this case, ω “is” an allowable se-
quence (or a wiring), and dm ≥ um.

The wiring fragment is continuously updated during the algorithm. Note that we
will need most variables of the wiring fragment later but mention them already in this
section to avoid a second definition.

Example 2.5 Figure 3 shows a wiring fragment with the following data:

σm = [5,4,11,8,13,9,6,16,10,19,14,20,12,7,17,18,15,3,2,1],
Ψ = (

(1,5), (5,6), (6,8), (8,9), (9,11), (11,13), (13,14), (14,16),

(16,17), (17,19), (19,20), (4,6), (6,9), (9,11), (11,14), (14,17),

(17,19), (16,17), (8,9), (5,6), (3,5), (5,8), (8,11), (11,12),

(12,14), (14,16), (16,18), (10,12), (12,14)
)
,

si = 0,1,1,1,1,2,2,1,2,2,1,2,1,2,2,1,2,2,1,2,

vi
m = 2,1,2,1,2,1,1,2,1,2,1,2,1,1,2,2,1,1,2,2,

εi
m = 5,5,3,3,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,2,

dm = 1,

um = 17.

Calling the following function with an initial “empty” wiring fragment ω will
enumerate all wirings with n rows:
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Fig. 3 A wiring fragment

Algorithm 2.7 EnumerateWirings(ω)
Enumerates all allowable sequences in Wn

Input: A wiring fragment ω

Output: List of completions of the fragment ω to a wiring

1. If σm = [n, . . . ,1] then return {ω}.
2. R ← ∅.
3. For all 1 ≤ i < j ≤ n do:
4. If σm(i) < σm(i +1) < · · · < σm(j −1) < σm(j), then update all the data to a new

fragment ω′ with Ψ ′(m + 1) = (i, j), and call R := R ∪ EnumerateWirings(ω′).
5. Return R.

Of course, this algorithm will not lead very far. But let Ln be the set of isomor-
phism classes of arrangements with n pseudolines. We have a surjective map

π : Wn → Ln,

mapping a wiring to an arrangement up to isomorphisms. The most important im-
provements to our algorithm will be to find a smaller set W ′

n ⊆ Wn such that π |W ′
n

is
still surjective.

Lemma 2.8 Let W ′
n be the set of allowable sequences

Ψ = (
(a1, b1), (a2, b2), . . . , (am, bm)

)

such that for each 1 ≤ i < m we have

bi = ai+1 or bi+1 ≤ ai .

Then π |W ′
n

is surjective.

Proof Observe that if Ψ (i) = (ai, bi), Ψ (i + 1) = (ai+1, bi+1), and either ai > bi+1
or ai+1 > bi , then we may interchange Ψ (i) and Ψ (i + 1) without changing the
image under π . Moreover, the intervals [ai, bi] and [ai+1, bi+1] may intersect in only
one point by Definition 2.1(3). �
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This gives a new version of the algorithm:

Algorithm 2.10 EnumerateWirings2(ω)
Enumerates all allowable sequences in W ′

n

Input: A wiring fragment ω

Output: List of completions of the fragment ω

1. If σm = [n, . . . ,1], then return {ω}.
2. R ← ∅.
3. For all i = bm + 1, . . . , n do:
4. If σm(bm) < σm(bm +1) < · · · < σm(i), then update all the data to a new fragment

ω′ with Ψ ′(m + 1) = (bm, i), and call R := R ∪ EnumerateWirings2(ω′).
5. For all 1 ≤ i < j ≤ am do:
6. If σm(i) < σm(i +1) < · · · < σm(j −1) < σm(j), then update all the data to a new

fragment ω′ with Ψ ′(m+1) = (i, j), and call R := R∪EnumerateWirings2(ω′).
7. Return R.

Further, we may reduce the symmetries by requiring a certain beginning:

Lemma 2.11 Let W ′′
n be the set of allowable sequences

Ψ = (
(a1, b1), (a2, b2), . . . , (am, bm)

)

such that there exists an m0 with

a1 = 1, bi = ai+1, bm0 = n,

for i = 1, . . . ,m0 − 1. Then π |W ′′
n

is surjective.

Proof This holds by [6, Lemma 2.4]. We sketch here a construction: For a given
arrangement A, choose a line H ∈ A. Modifying this line slightly we may assume
that we have a line H ′ on which no vertex of the arrangement lies. After the choice of
a line at infinity, we rotate the line H ′ and pass each vertex exactly once. By choosing
a line H ′ close enough to H , we ensure that the vertices on H are passed first. �

So we call EnumerateWirings2 with all possible fragments ω with m0 junctions
as in Lemma 2.11 instead of the empty fragment. Moreover, these fragments are
uniquely determined by the sequences

(b1 − a1, . . . , bm0 − am0).

Considering that the procedure in the proof of Lemma 2.11 depends on the choice of
a line at infinity and on the orientation, we obtain:

Lemma 2.12 It suffices to start the algorithm with one representative of the orbit
under the action of the dihedral group Dm0 on the sequence (b1 −a1, . . . , bm0 −am0).
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Remark 2.13 It is quite important to choose a “good” representative σ ∈ Dm0 for
the algorithm. The following is a choice that has proved to be best to average: Let
(p1, . . . , pm0) = (b1 − a1, . . . , bm0 − am0). Then choose a σ ∈ Dm0 such that pσ(1) =
1 and pσ(m0) = 1, or choose a lexicographically greatest (pσ(1), . . . , pσ(m0)), σ ∈
Dm0 with pσ(1) = 1 or pσ(m0) = 1.

Remark 2.14 For a vertex v, let �(v) be the number of lines incident with v. Without
loss of generality we may assume that the line H chosen in Lemma 2.11 contains a
vertex v with maximal �(v). This means that we only need to consider junctions of
at most �(v) lines during the algorithm.

3 Simplicial Wirings

Definition 3.1 A simplicial wiring is a wiring in which all 2-cells have exactly 3
vertices. A near pencil consists of n − 1 lines having one point in common and one
further line which is not incident with that point.

Simplicial wirings are much easier to enumerate than arbitrary wirings because
simpliciality gives many break conditions for the algorithm. The easiest one is given
by the following lemma which should be folklore:

Lemma 3.2 If a simplicial wiring has two neighboring ordinary vertices (intersec-
tion points where exactly two pseudolines meet), then it is a near pencil arrangement.

Proof Assume that lines a and b intersect a line c at neighboring ordinary vertices.
By simpliciality, the edge (a ∩ c, b ∩ c) is an edge of a triangle. This triangle can
only have a ∩ b as third vertex because a ∩ c and b ∩ c are ordinary vertices. But
then any further line necessarily meets a and b at a ∩ b, thus we have a near pencil
arrangement. �

So since the near pencil arrangements may be ignored without loss of generality,
we can stop the enumeration when two neighboring vertices are ordinary.

The following trivial relation has more applications than expected:

Lemma 3.3 If a simplicial wiring fragment is complete, i.e. σm = [n, . . . ,1], then
vi
m + sn−i = 3 for all i = 0, . . . , n.

A further important improvement is:

Lemma 3.4 If we only enumerate simplicial wirings with Algorithm 2.10, then in
steps 4 and 6 it suffices to consider new pairs (k, �) such that vk−1

m < 2 and v�
m < 2.

Proof Otherwise vi−1
m resp. v

j
m would get greater than 2 after the next move, contra-

dicting simpliciality. �

Here are some more conditions:
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Lemma 3.5 In Algorithm 2.10, arriving at junction k the enumeration will never
yield a simplicial wiring if one of the following conditions is satisfied:

(1) ak ≥ 2 and σk(ak) < σk(ak − 1) and (σk(ak − 1) = n + 2 − ak or σk(ak) =
n + 1 − ak),

(2) bk < n and σk(bk + 1) < σk(bk) and (σk(bk − 1) = n + 1 − bk or σk(bk + 1) =
n − bk).

Proof Notice first that since the last move concerned the lines in the rows ak, . . . , bk ,
the actual numbers of vertices vi

k between the rows i and i + 1 for ak ≤ i < bk are all

equal to 1 whereas v
ak−1
k = 2 = v

bk

k .
Now if σk(ak) < σk(ak −1), then the rows k and k −1 will not be moved anymore

since otherwise v
ak−1
k > 2 which is contradicting the simpliciality. Thus in this case

we know that σk(ak − 1) = n + 2 − ak and σk(ak) = n + 1 − ak , hence (1). The case
(2) is similar. �

Lemma 3.6 In Algorithm 2.10, arriving at junction k the enumeration will never
yield a simplicial wiring if one of the following conditions is satisfied:

(1) there is a j ∈ {ak, . . . , bk} with σk(j) = σk(j +1)+1 and σk(j) = n+1− j and
sσk(j+1) = 2,

(2) there is a j ∈ {ak + 1, . . . , bk} with σk(j) = σk(j + 1) + 1 and σk(j − 1) =
σk(j) + 1 and sσk(j) = 2 and sσk(j+1) = 2,

(3) there is a j ∈ {ak, . . . , bk − 1} with σk(j) = σk(j + 1) + 1 and σk(j + 2) =
σk(j) − 2 and sσk(j)−2 = 2 and sσk(j+1) = 2.

Proof We prove (1); (2) and (3) are similar. If j ∈ {ak, . . . , bk} and σk(j) = σk(j +
1) + 1, then either the labels σk(j) and σk(j + 1) are at their terminal position in
which case σk(j) = n + 1 − j , or they are not, but then the cell that these labels
will enclose at the end will have at least 2 vertices which implies sσk(j+1) = 1 by
Lemma 3.3. �

Lemma 3.7 In Algorithm 2.10, arriving at junction k the enumeration will never
yield a simplicial wiring if one of the following conditions is satisfied:

(1) sn−uk
+ v

uk

k = 3,

(2) dk > 1 and sn−1−dk
+ v

dk−1
k = 3.

Proof The cells at the end of the rows (uk, uk + 1) and (dk − 1, dk) are not finished
yet, future change will increase v

uk

k resp. v
dk−1
k , contradicting Lemma 3.3. �

Lemma 3.8 In Algorithm 2.10, arriving at junction k the enumeration will never
yield a simplicial wiring if one of the following conditions is satisfied:

(1) σk(bk) > σ(bk + 1) and bk ≤ uk ,
(2) dk < ak ≤ uk and σk(ak − 1) > σ(ak) and (vk(n + 1 − ak) = 1 or σk(dk) <

σk(ak) or σk(ak −2) < σk(ak −1) or there is a j ∈ {bk +1, . . . , uk} with σk(j) >

σk(ak)).
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Proof (1) If σk(bk) > σ(bk + 1) and bk ≤ uk then by Lemma 3.5(2), the rows bk and
bk + 1 will not change anymore. Thus Algorithm 2.10 would only perform moves
(i, j) with i < j ≤ ak from now on. This would never complete the fragment since
bk ≤ uk .

(2) If dk < ak ≤ uk and σk(ak − 1) > σ(ak) then the situation is slightly different
because Algorithm 2.10 also jumps past ak . But what we know is that the rows ak −1
and ak are finished, so all future moves will take place above or below ak . This
means that the fragment can only be completed if σk(j) > σk(ak) for all j > bk and
σk(j) < σk(ak) for all j < ak , which explains the last part (these two conditions are
equivalent). The other conditions are easy to check. �

Notice that one has to carefully choose the obstructions in the implementation be-
cause some of them do not spare enough time to compensate the time they consume.
For example, the following are apparently not good enough (we therefore omit the
proof):

Lemma 3.9 In Algorithm 2.10, arriving at junction k the enumeration will never
yield a simplicial wiring if one of the following conditions is satisfied:

(1) ak = dk + 1 and σk(dk + 1) = n − 1 − dk ,
(2) uk > 1 and σk(uk) = n + 2 − uk and σk(uk − 1) = n + 3 − uk ,
(3) dk ≤ n − 1 and σk(dk) = n − dk and σk(dk + 1) = n − 1 − dk ,
(4) σk(1) = 2 and bk +2 < n and σk(bk) = 3 and σk(bk +1) = 4 and σk(bk +2) = n.

We now give the algorithm for the simplicial case. It proceeds in two steps:

• Compute a list of beginnings as described in Lemma 2.11 and choose best repre-
sentatives as proposed in Lemma 2.12 and Remark 2.13.

• For each representative of beginnings, create a wiring fragment ω. Call
“EnumerateSimplicialWirings (ω, �)” defined below, where � is the maximum
of the �(v) for v a vertex in ω (see Remark 2.14). Notice that this step can easily
be parallelized.

Algorithm 3.11 EnumerateSimplicialWirings(ω, �)
Enumerates simplicial wirings starting by ω with maximal �(v) = �, at least one from
each isomorphism class
Input: A wiring fragment ω, � ∈ N

Output: List of completions of the fragment ω

1. Compute the numbers dm and um for ω.
2. If dm = um, then if vi

m + εn−i
m = 3 for all i = 0, . . . , n return {ω}, else return ∅.

3. Check the obstructions of Lemmas 3.5, 3.6, 3.7, 3.8 and return ∅ if one of them is
satisfied.

4. R ← ∅.
5. If bm ≤ um and v

bm−1
m ≤ 1 then find the greatest i with σm(bm) < σm(bm + 1) <

· · · < σm(i) (see Lemma 3.4).
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If i − bm < �, update all the data to a new fragment ω′ with Ψ ′(m + 1) = (bm, i),
and call

R := R ∪ EnumerateSimplicialWirings
(
ω′, �

)
.

Use si to ensure that Lemma 3.2 is satisfied.
6. If σm(bm) = n − um or dm ≥ am then return R.
7. For all dm ≤ i < j ≤ am with j − i < � do:
8. If σm(i) < σm(i + 1) < · · · < σm(j − 1) < σm(j), vi−1

m = 1 and v
j
m = 1 (see

Lemma 3.4), then update all the data to a new fragment ω′ with Ψ ′(m+1) = (i, j),
and call

R := R ∪ EnumerateSimplicialWirings
(
ω′, �

)
.

9. Return R.

When the enumeration is complete, one still has to collect the wirings up to iso-
morphisms. We use the following observation:

Lemma 3.12 Let A and A′ be simplicial arrangements of lines. Then A and A′ are
isomorphic if and only if the graphs given by the corresponding triangulations are
isomorphic (we do not need to require a bijection between the 2-cells preserving the
incidence).

Proof It suffices to prove that for vertices v1, v2, v3 such that (v1, v2), (v2, v3),
(v1, v3) are edges, the triple (v1, v2, v3) is always a 2-cell. But a pseudoline crossing
(v1, v2, v3) would have to go through two of the three vertices which is impossible.

�

In other words, we just need to test whether certain graphs are isomorphic. Such a
test is implemented in most computer algebra systems that include combinatorics and
is good enough to compute the isomorphism classes of the small subset of stretchable
simplicial wirings (see Sect. 4 for details).

4 Stretchable Simplicial Arrangements

We now assume that we have a complete list of simplicial wirings of n lines. A very
valuable necessary condition for stretchability is Pappus’ Theorem:

Theorem 4.1 (Pappus) Let x, y, z,u, v,w ∈ R
3 with

dim〈x, y, z〉 = 2 = dim〈u,v,w〉.
Then

dim
((〈x, v〉 ∩ 〈y,u〉) + (〈x,w〉 ∩ 〈z,u〉) + (〈z, v〉 ∩ 〈y,w〉)) = 2.



Discrete Comput Geom (2012) 48:682–701 693

We use this theorem in the following way for a wiring ω (compare [8, Theo-
rem 3.1]): Assume that x, y, z are distinct vertices on one line and u,v,w are distinct
vertices on another line. If there are lines 〈x, v〉, 〈y,u〉, 〈x,w〉, 〈z,u〉, 〈z, v〉, 〈y,w〉
in ω, and exactly two of the intersection points

〈x, v〉 ∩ 〈y,u〉, 〈x,w〉 ∩ 〈z,u〉, 〈z, v〉 ∩ 〈y,w〉
lie on a line of ω, then stretchability of ω would contradict Pappus’ Theorem.

This is an expensive test in terms of running time when implemented, because we
essentially have to check the theorem for all subarrangements in question. Therefore
it is not possible to include it into the above algorithm to exclude incomplete wiring
fragments. However, it turns out that almost all unstretchable completed simplicial
wirings of up to 27 lines do not satisfy Pappus’ Theorem. Thus it appears to be the
best (known) tool to rule out wirings a posteriori: After performing the enumeration,
we have a huge list of partly isomorphic simplicial wirings. It is faster to test Pappus’
Theorem on these wirings and to compute the isomorphism classes afterwards than
the other way round (which explains the entries marked “?” in Fig. 4).

For the very few remaining simplicial wirings we use [4, Algorithm 4.4]: For
all our wirings, we always find five vertices p1, . . . , p5 in the incidence with the
following properties:

• p1, . . . , p4 are in general position by the incidence (these may then be chosen
arbitrarily in general position in P

2 up to projectivity),
• starting with p1, . . . , p5 and repeatedly including lines through two points and

intersections of two lines, we obtain all other vertices and lines.

Writing p5 = (X : Y : Z) with variables X,Y,Z, the incidence constraints define
an ideal I in R[X,Y,Z]. For our wirings, this either yields a real realization of the
wiring as arrangement of straight lines (if dim I ≥ 0), or it proves that the wiring is
unstretchable (if I = (1)).

5 Results

We now summarize the output of the computation. The running time is exponential
in the number of lines: It takes only 4 seconds to find all simplicial arrangements of
pseudolines with 20 lines, but for 26 lines an ordinary PC needs about two weeks.
Note that this is an implementation in C and C++; the resulting data is then pro-
cessed by several functions implemented in MAGMA. Notice also that using Lemma
2.11, it is easy to parallelize the algorithm. This way we also classify the simplicial
arrangements with 27 lines in approximately one week, but to reach an enumeration
of all simplicial arrangements with 28 lines one would require some new idea (or
even more computational resources). But just one step further would not be a great
benefit.

Figure 4 shows the numbers of simplicial arrangements of pseudolines up to iso-
morphisms. The entries marked “?” could, in principle, be computed easily but would
require a better implementation of the function collecting the wirings up to isomor-
phisms or possibly just more computational resources.



694 Discrete Comput Geom (2012) 48:682–701

F
ig

.4
N

um
be

rs
of

is
om

or
ph

is
m

cl
as

se
s

of
si

m
pl

ic
ia

la
rr

an
ge

m
en

ts
(w

ith
ou

tt
he

ne
ar

pe
nc

il
ar

ra
ng

em
en

ts
)

N
um

be
r

of
lin

es
2

3
4

5
6

7
8

9
10

11
12

13
14

St
re

tc
ha

bl
e

0
0

0
0

1
1

1
1

3
1

3
4

4
U

ns
tr

et
ch

ab
le

0
0

0
0

0
0

0
0

0
0

0
0

0

N
um

be
r

of
lin

es
15

16
17

18
19

20
21

22
23

24
25

26
27

St
re

tc
ha

bl
e

5
7

8
8

7
5

7
5

2
4

8
4

4
U

ns
tr.

by
Pa

pp
us

2
6

7
28

35
13

6
16

8
97

8
12

76
12

72
0

?
?

?
U

ns
tr.

bu
tP

ap
pu

s
0

1
1

1
1

0
0

1
0

0
0

1
0



Discrete Comput Geom (2012) 48:682–701 695

Fig. 5 A Hasse diagram (compare [9, Fig. 4])

5.1 Hasse Diagram

Figure 5 is a Hasse diagram of the stretchable simplicial arrangements with up to 27
lines. An edge between two arrangements means that one can remove lines from the
larger one to obtain the smaller one. We have included this diagram here because it
appears to be slightly different from [9, Fig. 4]. It is less well-arranged than [9, Fig. 4]
because it includes the connections to the infinite series A(n,1) and some more edges
for instance to A(7,1). It appears that A(21,4) is not maximal; it is contained in the
arrangement A(26,4).
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5.2 Invariants

The following Table 1 is a list of the invariants of all (stretchable) simplicial arrange-
ments with up to 27 lines except the near pencil (compare [9, pp. 6–10]). The numbers
f0, f1, f2 are the numbers of vertices, edges and 2-cells; ti is the number of vertices
which lie on exactly i lines; ri is the number of lines on which exactly i vertices lie.

The last column shows the automorphism groups of the cell complexes given by
the arrangements. The symbols An, Bn, G2, H3 are reflection groups of the corre-
sponding type, Dn is the dihedral group of order 2n, Altn is the alternating group,
and Z4 is the cyclic group of order 4. The automorphism groups were computed us-
ing the simplicial wiring diagrams obtained by our enumeration. It appears that for
any known simplicial arrangement, a realization of its incidence is unique up to pro-
jectivity. Thus the computed automorphism groups are isomorphic to the groups of
linear symmetries.

Notice that the pairs (A(17,2), A(17,4)), (A(18,4), A(18,5)), and (A(19,4),
A(19,5)) are not uniquely determined by their invariants. We distinguish A(17,2)

and A(17,4) by their position in the Hasse diagram. A(19,4) and A(19,5)) are not
distinguishable in [9, Fig. 4]; however, they have different automorphism groups.
The realization of A(19,5) in [9] reveals the existence of an automorphism of order
4 which does not exist for A(19,4). The arrangements A(18,4) and A(18,5) are not
distinguishable by their invariants, they even have isomorphic automorphism groups.
But since their role in both Hasse diagrams is the same, the tables in [9] and Table 1
are consistent.

5.3 Unstretchable Simplicial Arrangements That Satisfy Pappus’ Theorem

Table 2 contains the invariants for the unstretchable simplicial arrangements that sat-
isfy Pappus’ theorem. Corresponding wirings are displayed in Fig. 6.

5.4 Unstretchable Simplicial Arrangements with 15 Lines

Figure 2 shows the wiring diagrams of the two unstretchable simplicial arrangements
with 15 lines. The first one is called B1(15) in [10], the second one is new, we call it
B2(15). Their invariants are in Table 3 (compare [10, Table 1]).

Here, Z6 denotes the cyclic group of order 6.

5.5 The New Simplicial Arrangements

A realization of the new simplicial arrangement with 25 lines is the set of orthogonal

complements of the following elements of R
3, where τ =

√
5+1
2 :

{

(0,0,1), (0,1,0), (1,−1,−1),

(

1,−1,
1

2
(−τ − 1)

)

, (1,−τ + 2, τ − 3),

(

0,1,
1

5
(τ − 3)

)

,

(

1,
1

2
(τ − 1),

1

2
(−τ − 1)

)

,

(

1,−τ + 2,
1

2
(−τ − 1)

)

,
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Table 1 Invariants of simplicial arrangements with up to 27 lines

Label (f0, f1, f2) (t2, t3, . . .) (r2, r3, . . .) Aut(A)

(6, 1) (7, 18, 12) (3, 4) (0, 6) B3

(7, 1) (9, 24, 16) (3, 6) (0, 4, 3) B3

(8, 1) (11, 30, 20) (4, 6, 1) (0, 2, 6) A1 × B2

(9, 1) (13, 36, 24) (6, 4, 3) (0, 0, 9) B3

(10, 1) (16, 45, 30) (5, 10, 0, 1) (0, 0, 5, 5) D10

(10, 2) (16, 45, 30) (6, 7, 3) (0, 0, 6, 3, 1) A1 × A2

(10, 3) (16, 45, 30) (6, 7, 3) (0, 1, 3, 6) A1 × G2

(11, 1) (19, 54, 36) (7, 8, 4) (0, 0, 4, 4, 3) A1 × A1 × A1

(12, 1) (22, 63, 42) (6, 15, 0, 0, 1) (0, 0, 3, 3, 6) A1 × G2

(12, 2) (22, 63, 42) (8, 10, 3, 1) (0, 0, 3, 3, 6) A1 × A1 × A1

(12, 3) (22, 63, 42) (9, 7, 6) (0, 0, 3, 3, 6) A1 × A2

(13, 1) (25, 72, 48) (9, 12, 3, 0, 1) (0, 0, 3, 0, 10) A1 × G2

(13, 2) (25, 72, 48) (12, 4, 9) (0, 0, 3, 0, 10) B3

(13, 3) (25, 72, 48) (10, 10, 3, 2) (0, 0, 1, 4, 8) A1 × A1 × A1

(13, 4) (27, 78, 52) (6, 18, 3) (0, 0, 0, 0, 13) A1 × Alt4

(14, 1) (29, 84, 56) (7, 21, 0, 0, 0, 1) (0, 0, 0, 7, 0, 7) D14

(14, 2) (29, 84, 56) (11, 12, 4, 2) (0, 0, 1, 4, 4, 4, 1) A1 × A1

(14, 3) (30, 87, 58) (9, 16, 4, 1) (0, 0, 0, 0, 11, 3) A1 × A1

(14, 4) (29, 84, 56) (10, 14, 4, 0, 1) (0, 0, 0, 4, 6, 4) A1 × A1 × A1

(15, 1) (31, 90, 60) (15, 10, 0, 6) (0, 0, 0, 0, 15) H3

(15, 2) (33, 96, 64) (13, 12, 6, 2) (0, 0, 1, 4, 2, 4, 4) A1 × B2

(15, 3) (34, 99, 66) (12, 13, 9) (0, 0, 0, 0, 9, 3, 3) A1 × A2

(15, 4) (33, 96, 64) (12, 14, 6, 0, 1) (0, 0, 0, 0, 10, 4, 1) A1 × A1 × A1

(15, 5) (34, 99, 66) (9, 22, 0, 3) (0, 0, 0, 0, 9, 3, 3) A1 × A2

(16, 1) (37, 108, 72) (8, 28, 0, 0, 0, 0, 1) (0, 0, 0, 4, 4, 0, 8) A1 × D8

(16, 2) (37, 108, 72) (14, 15, 6, 1, 1) (0, 0, 1, 2, 4, 2, 7) A1 × A1 × A1

(16, 3) (37, 108, 72) (15, 13, 6, 3) (0, 0, 0, 0, 10, 0, 6) A1 × A2

(16, 4) (36, 105, 70) (15, 15, 0, 6) (0, 0, 0, 0, 10, 5, 0, 0, 1) D10

(16, 5) (37, 108, 72) (14, 16, 3, 4) (0, 0, 0, 2, 4, 8, 0, 2) A1 × A1 × A1

(16, 6) (37, 108, 72) (15, 12, 9, 0, 1) (0, 0, 0, 0, 7, 6, 3) A1 × A2

(16, 7) (38, 111, 74) (12, 19, 6, 0, 1) (0, 0, 0, 3, 3, 2, 8) A1 × A1 × A1

(17, 1) (41, 120, 80) (12, 24, 4, 0, 0, 0, 1) (0, 0, 0, 0, 8, 0, 9) A1 × D8

(17, 2) (41, 120, 80) (16, 16, 7, 0, 2) (0, 0, 1, 0, 6, 0, 10) A1 × B2

(17, 3) (41, 120, 80) (18, 12, 7, 4) (0, 0, 0, 0, 8, 0, 9) A1 × B2

(17, 4) (41, 120, 80) (16, 16, 7, 0, 2) (0, 0, 1, 0, 6, 0, 10) A1 × B2

(17, 5) (41, 120, 80) (16, 18, 1, 6) (0, 0, 0, 0, 6, 8, 1, 0, 2) A1 × A1 × A1

(17, 6) (42, 123, 82) (16, 15, 10, 0, 1) (0, 0, 0, 0, 6, 3, 7, 0, 1) A1 × A1
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Table 1 (Continued)

Label (f0, f1, f2) (t2, t3, . . .) (r2, r3, . . .) Aut(A)

(17, 7) (43, 126, 84) (13, 22, 7, 0, 1) (0, 0, 0, 0, 6, 0, 10, 0, 1) A1 × A1 × A1

(17, 8) (43, 126, 84) (14, 20, 7, 2) (0, 0, 0, 0, 1, 8, 8) A1 × A1 × A1

(18, 1) (46, 135, 90) (9, 36, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 9, 0, 0, 9) D18

(18, 2) (46, 135, 90) (18, 18, 6, 3, 1) (0, 0, 0, 0, 3, 3, 12) A1 × G2

(18, 3) (46, 135, 90) (19, 16, 6, 5) (0, 0, 0, 0, 6, 2, 6, 3, 1) A1 × A1

(18, 4) (46, 135, 90) (18, 19, 3, 6) (0, 0, 0, 0, 3, 9, 3, 0, 3) A1 × A2

(18, 5) (46, 135, 90) (18, 19, 3, 6) (0, 0, 0, 0, 3, 9, 3, 0, 3) A1 × A2

(18, 6) (47, 138, 92) (18, 16, 12, 0, 1) (0, 0, 0, 0, 5, 2, 7, 2, 2) A1 × A1

(18, 7) (46, 135, 90) (18, 18, 6, 3, 1) (0, 0, 0, 3, 3, 0, 6, 6) A1 × A2

(18, 8) (47, 138, 92) (16, 22, 6, 2, 1) (0, 0, 0, 0, 6, 0, 7, 4, 1) A1 × A1

(19, 1) (49, 144, 96) (21, 18, 6, 0, 4) (0, 0, 0, 0, 4, 0, 15) A1 × G2

(19, 2) (51, 150, 100) (21, 18, 6, 6) (0, 0, 0, 0, 1, 8, 6, 0, 4) A1 × A1 × A1

(19, 3) (49, 144, 96) (24, 12, 6, 6, 1) (0, 0, 0, 0, 4, 0, 15) A1 × G2

(19, 4) (51, 150, 100) (20, 20, 6, 4, 1) (0, 0, 0, 0, 4, 4, 4, 4, 3) A1 × A1 × A1

(19, 5) (51, 150, 100) (20, 20, 6, 4, 1) (0, 0, 0, 0, 4, 4, 4, 4, 3) A1 × Z4

(19, 6) (51, 150, 100) (20, 20, 6, 4, 1) (0, 0, 0, 0, 6, 0, 6, 4, 3) A1 × A1 × A1

(19, 7) (52, 153, 102) (21, 15, 15, 0, 1) (0, 0, 0, 0, 4, 3, 3, 6, 3) A1 × A2

(20, 1) (56, 165, 110) (10, 45, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 5, 5, 0, 0, 10) A1 × D10

(20, 2) (56, 165, 110) (25, 15, 10, 6) (0, 0, 0, 0, 0, 5, 10, 0, 5) D10

(20, 3) (56, 165, 110) (21, 24, 6, 4, 0, 1) (0, 0, 0, 0, 4, 2, 4, 6, 3, 1) A1 × A1

(20, 4) (56, 165, 110) (23, 20, 7, 5, 1) (0, 0, 0, 0, 5, 1, 4, 4, 6) A1 × A1

(20, 5) (55, 162, 108) (20, 26, 4, 4, 0, 0, 1) (0, 0, 0, 2, 2, 0, 4, 12) A1 × B2

(21, 1) (61, 180, 120) (15, 40, 5, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 5, 0, 5, 0, 11) A1 × D10

(21, 2) (61, 180, 120) (30, 10, 15, 6) (0, 0, 0, 0, 0, 0, 15, 0, 6) H3

(21, 3) (61, 180, 120) (24, 24, 9, 0, 4) (0, 0, 0, 0, 6, 0, 3, 0, 12) B3

(21, 4) (61, 180, 120) (22, 28, 6, 4, 0, 0, 1) (0, 0, 0, 0, 4, 0, 4, 8, 4, 0, 1) A1 × B2

(21, 5) (61, 180, 120) (26, 20, 9, 4, 2) (0, 0, 0, 0, 5, 0, 3, 4, 9) A1 × A1 × A1

(21, 6) (63, 186, 124) (25, 20, 15, 2, 1) (0, 0, 0, 0, 1, 0, 11, 0, 8, 0, 1) A1 × A1 × A1

(21, 7) (64, 189, 126) (24, 22, 15, 3) (0, 0, 0, 0, 0, 0, 12, 0, 6, 3) A1 × A2

(22, 1) (67, 198, 132) (11, 55, 0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 11, 0, 0, 0, 11) D22

(22, 2) (70, 207, 138) (24, 30, 12, 3, 1) (0, 0, 0, 0, 1, 0, 6, 3, 9, 0, 3) A1 × A2

(22, 3) (67, 198, 132) (27, 28, 0, 12) (0, 0, 0, 0, 0, 0, 12, 0, 9, 0, 1) A1 × A2

(22, 4) (67, 198, 132) (27, 25, 9, 3, 3) (0, 0, 0, 0, 4, 0, 6, 0, 6, 6) A1 × A2

(22, 5) (73, 216, 144) (12, 58, 0, 0, 3) (0, 0, 0, 0, 0, 0, 0, 12, 6, 0, 4) B3

(23, 1) (75, 222, 148) (27, 32, 10, 4, 2) (0, 0, 0, 0, 1, 0, 6, 2, 7, 4, 3) A1 × A1

(23, 2) (77, 228, 152) (16, 56, 2, 0, 1, 2) (0, 0, 0, 0, 0, 0, 1, 8, 10, 0, 4) A1 × B2

(24, 1) (79, 234, 156) (12, 66, 0, 0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 12) A1 × D12

(24, 2) (77, 228, 152) (32, 32, 0, 12, 0, 0, 1) (0, 0, 0, 0, 0, 4, 0, 0, 20) A1 × D8
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Table 1 (Continued)

Label (f0, f1, f2) (t2, t3, . . .) (r2, r3, . . .) Aut(A)

(24, 3) (80, 237, 158) (31, 32, 9, 5, 3) (0, 0, 0, 0, 1, 0, 6, 1, 6, 6, 4) A1 × A1

(24, 4) (81, 240, 160) (20, 54, 4, 0, 0, 2, 1) (0, 0, 0, 0, 0, 0, 2, 4, 14, 0, 4) A1 × B2

(25, 1) (85, 252, 168) (18, 60, 6, 0, 0, 0, 0,
0, 0, 0, 1)

(0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 13) A1 × D12

(25, 2) (85, 252, 168) (36, 28, 15, 0, 6) (0, 0, 0, 0, 4, 0, 3, 0, 6, 0, 12) B3

(25, 3) (91, 270, 180) (30, 40, 15, 6) (0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 10) H3

(25, 4) (85, 252, 168) (36, 30, 9, 6, 4) (0, 0, 0, 0, 1, 0, 9, 0, 3, 0, 12) A1 × G2

(25, 5) (81, 240, 160) (36, 32, 0, 8, 4, 0, 1) (0, 0, 0, 0, 0, 0, 5, 0, 20) A1 × D8

(25, 6) (85, 252, 168) (36, 30, 9, 6, 4) (0, 0, 0, 0, 1, 0, 6, 0, 6, 6, 6) A1 × A2

(25, 7) (85, 252, 168) (33, 34, 12, 2, 3, 0, 1) (0, 0, 0, 0, 2, 0, 4, 4, 4, 0, 11) A1 × A1 × A1

(25, 8) (85, 252, 168) (24, 52, 6, 0, 0, 0, 3) (0, 0, 0, 0, 0, 0, 3, 0, 18, 0, 4) B3

(26, 1) (92, 273, 182) (13, 78, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1)

(0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 13) D26

(26, 2) (96, 285, 190) (35, 40, 10, 11) (0, 0, 0, 0, 0, 0, 0, 0, 11, 5, 10) D10

(26, 3) (92, 273, 182) (37, 36, 9, 6, 3, 1) (0, 0, 0, 0, 1, 0, 7, 2, 2, 1, 8, 4, 1) A1 × A1

(26, 4) (92, 273, 182) (35, 39, 10, 4, 3, 0, 1) (0, 0, 0, 0, 1, 1, 4, 4, 2, 2, 7, 4, 1) A1 × A1

(27, 1) (101, 300, 200) (40, 40, 6, 14, 1) (0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 11) A1 × A1 × A1

(27, 2) (99, 294, 196) (39, 40, 10, 6, 2, 2) (0, 0, 0, 0, 1, 0, 5, 4, 1, 2, 4, 8, 2) A1 × A1

(27, 3) (99, 294, 196) (39, 40, 10, 6, 2, 2) (0, 0, 0, 0, 1, 0, 6, 2, 2, 2, 5, 6, 3) A1 × A1

(27, 4) (99, 294, 196) (38, 42, 9, 6, 3, 0, 1) (0, 0, 0, 0, 1, 0, 5, 4, 2, 0, 7, 4, 4) A1 × A1 × A1

Table 2 Invariants of unstretchable simplicial arrangements that satisfy Pappus’ Theorem

Lines (f0, f1, f2) (t2, t3, . . .) (r2, r3, . . .) Aut(A)

16 (38, 111, 74) (12, 20, 3, 3) (0, 0, 0, 0, 5, 7, 4) A1 × A1

17 (42, 123, 82) (13, 22, 6, 0, 0, 1) (0, 0, 0, 3, 1, 4, 7, 2) A1 × A1

18 (46, 135, 90) (14, 25, 6, 0, 0, 0, 1) (0, 0, 0, 3, 1, 2, 8, 4) A1 × A1 × A1

19 (55, 162, 108) (15, 28, 12) (0, 0, 0, 0, 1, 0, 12, 0, 6) A1 × A2

22 (67, 198, 132) (18, 40, 8, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 6, 4, 0, 8, 4) A1 × A1 × A1

26 (101, 300, 200) (25, 60, 10, 6) (0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 20) D10

Table 3 Invariants of the unstretchable simplicial arrangements with 15 lines

(f0, f1, f2) (t2, t3, . . .) (r2, r3, . . .) Aut(A)

B1(15) (33, 96, 64) (12, 14, 6, 0, 1) (0, 0, 1, 0, 8, 4, 2) A1 × A1 × A1

B2(15) (33, 96, 64) (12, 15, 3, 3) (0, 0, 0, 3, 3, 9) Z6
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Fig. 6 The unstretchable
simplicial wirings with 16, 17,
18, 19, 22, and 26 lines that
satisfy Pappus’ theorem
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To obtain the other new arrangements, remove the following vectors (in any order-
ing):
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