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Abstract We prove almost tight bounds on the number of incidences between points
and k-dimensional varieties of bounded degree in Rd . Our main tools are the polyno-
mial ham sandwich theorem and induction on both the dimension and the number of
points.
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1 Introduction

Given a collection P of points in some space, and a collection L of sets in that same
space, let I (P,L) := {(p, �) ∈ P × L : p ∈ �} be the set of incidences. One of the
objectives in combinatorial incidence geometry is to obtain good bounds on the car-
dinality |I (P,L)| on the number of incidences between finite collections P,L, sub-
ject to various hypotheses on P and L. For instance, we have the classical result of
Szemerédi and Trotter [48]:

Theorem 1.1 (Szemerédi–Trotter Theorem [48]) Let P be a finite set of points in Rd

for some d ≥ 2, and let L be a finite set of lines in Rd . Then
∣
∣I (P,L)

∣
∣ ≤ C

(|P |2/3|L|2/3 + |P | + |L|) (1.1)

for some absolute constant C.
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This theorem is usually stated in the two-dimensional setting d = 2, but the higher-
dimensional case is an immediate consequence by applying a generic projection from
Rd to R2 (see Sect. 5.1 for a discussion of this argument). It is known that this bound
is sharp except for the constant C; see [48].

Various mathematical problems can be transformed to a question about incidence
bounds of Szemerédi–Trotter-type. For instance, Elekes [11] used the above theorem
in an unexpected fashion to obtain new bounds on the sum-product problem. In the
1990s, Wolff [53] observed that bounds on the number of incidences might be used in
problems related to the Kakeya conjecture, one of the central conjectures in harmonic
analysis. Bennett, Carbery and Tao [6] established a connection between multilinear
Kakeya estimates and bounds on number of incidences between points and lines in
three dimensions. Very recently, Guth and Katz [18] used bounds on the number of
incidences between points and lines in three dimensions as part of their solution to
the Erdős Distinct Distances Problem. They used an important tool, the so-called
polynomial ham sandwich theorem. This theorem will be a crucial part of this paper
as well. The applicability of the polynomial ham sandwich theorem to Szemerédi–
Trotter-type theorems was also recently emphasized in [25].

Further applications of Szemerédi–Trotter-type incidence bounds in mathematics
and theoretical computer science, as well as several open problems, are discussed
in the surveys and books of Elekes [12], Székely [47], Pach and Sharir [36], Brass,
Moser, and Pach [7], and Matoušek [29].

In the survey [12], Elekes listed some nice applications of point-line incidence
bounds in the complex plane C

2, where the lines are now complex lines (and thus
are also real planes). In this paper he referred to a (then) recent result of Tóth [52]
which proves the point-line incidence bound (1.1) in this situation (with a different
constant C). Up to this constant multiplier, this bound is optimal. Our argument is
different from and simpler than the one in Tóth’s paper; however, the bounds in this
paper are slightly weaker than those in [52].

The main goal of our paper is to establish near-sharp Szemerédi–Trotter-type
bounds on the number of incidences between points and k-dimensional algebraic
varieties in Rd for various values of k and d , under some “pseudoline” hypotheses
on the algebraic varieties; see Theorem 2.1 for a precise statement. In particular, we
obtain near-sharp bounds for point-line incidences in C

2, obtaining a “cheap” version
of the result of Tóth mentioned previously.

Our argument is based on the “polynomial method” as used by Guth and Katz [18],
combined with an induction on the size of the point set P . The inductive nature of
our arguments causes us to lose an arbitrarily small epsilon term in the exponents, but
the bounds are otherwise sharp.

As in [18], our arguments rely on an efficient cell decomposition provided to us by
the polynomial ham sandwich theorem (see Corollary 5.3). However, the key innova-
tion here, as compared to the arguments in [18], is that this decomposition will only
be used to partition the point set into a bounded number of cells, rather than a large
number of cells. (Similar recursive space partitioning techniques were used by Agar-
wal and Sharir [1].) This makes the contribution of the cell boundaries much easier
to handle (as they come from varieties of bounded degree, rather than large degree).
The price one pays for using this milder cell decomposition is that the contribution
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of the cell interiors can no longer be handled by “trivial” bounds. However, it turns
out that one can use a bound coming from an induction hypothesis as a substitute for
the trivial bounds, so long as one is willing to concede an epsilon factor in the induc-
tive bound. This technique appears to be quite general, and suggests that one can use
induction to significantly reduce the need for quantitative control of the geometry of
high-degree algebraic varieties when applying the polynomial method to incidence
problems, provided that one is willing to lose some epsilons in the final bounds.

Our results have some similarities with existing results in the literature; we discuss
these connections in Sect. 2.2.

Notation We use the usual asymptotic notation X = O(Y) or X � Y to denote the
estimate X ≤ CY for some absolute constant C. If we need the implied constant C to
depend on additional parameters, we indicate this by subscripts, thus for instance X =
Od(Y ) or X �d Y denotes the estimate X ≤ CdY for some quantity Cd depending
on d .

2 Main Theorem

In what follows we are going to use some standard notations and definitions from
algebraic geometry. In Sect. 4 we provide the basic definitions and tools we will need
from algebraic geometry, although this is only the barest of introductions and we refer
the reader to standard textbooks like [16, 20, 21, 32] (or general reference works such
as [15, 22]) for a detailed treatment.

Our main result (proven in Sect. 5) is as follows.

Theorem 2.1 (Main Theorem) Let k, d ≥ 0 be integers such that d ≥ 2k, and let
ε > 0 and C0 ≥ 1 be real numbers. Let P be a finite collection of distinct points in Rd ,
let L be a finite collection of real algebraic varieties in Rd , and let I ⊂ I (P,L) be a
set of incidences between P and L. Assume the following “pseudoline-type” axioms:

(i) For each � ∈ L, � is a real algebraic variety, which is the restriction to Rd of a
complex algebraic variety �C of dimension k and degree at most C0.

(ii) If �, �′ ∈ L are distinct, then there are at most C0 points p in P such that
(p, �), (p, �′) ∈ I .

(iii) If p,p′ ∈ P are distinct, then there are at most C0 varieties � in L such that
(p, �), (p′, �) ∈ I . (Note that for C0 = 1, this is equivalent to (ii).)

(iv) If (p, �) ∈ I , then p is a smooth (real) point of �, with a real tangent space. In
other words, for each (p, �) ∈ I , there is a unique tangent space Tp� of � at p,
which is a k-dimensional real affine space containing p.

(v) If �, �′ ∈ L are distinct, and p ∈ P are such that (p, �), (p, �′) ∈ I , then the
tangent spaces Tp� and Tp�′ are transverse, in the sense that they only intersect
at p.

Then one has

|I| ≤ A|P | 2
3 +ε|L| 2

3 + 3

2
|P | + 3

2
|L| (2.1)

for some constant A = Ak,ε,C0 that depends only on the quantities k, ε,C0.
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Remark 2.2 The condition d ≥ 2k is natural, as we expect the tangent spaces Tp�,
Tp�′ in Axiom (v) to be k-dimensional;1 if d < 2k, such spaces cannot be transverse
in Rd . As we will see shortly, the most interesting applications occur when d = 2k

and k ≥ 1, with C0 being an extremely explicit constant such as 1, 2, or 4, the varieties
in L being smooth (e.g. lines, planes, or circles), and the incidences I comprising all
of I (P,L); but for inductive reasons it is convenient to consider the more general
possibilities for d , k, C0, L, and I allowed by the above theorem. The constants 3

2
could easily be replaced in the argument by any constant greater than 1. We choose
the constant here to be less than 2 so that the bound (2.1) can be used to control r-rich
points and lines for r as low as 2 (though in that particular case, the trivial bounds in
Lemma 5.1 already suffice).

In Sect. 3 we will sketch a simplified special case of the above theorem which can
be proven using less of the machinery from algebraic geometry; it is conceivable that
many of our applications can be handled by this simpler method. On the other hand
we expect that there are further applications where the whole generality of our result
is needed.

2.1 Applications

Suppose we specialize Theorem 1.1 to the case when the varieties in L are k-di-
mensional affine subspaces, such that any two of these subspaces meet in at most
one point. Then one easily verifies that Axioms (i)–(v) hold with C0 = 1 and

I := I (P,L). We conclude:

Corollary 2.3 (Cheap Szemerédi–Trotter for k-Flats) Let ε > 0, k ≥ 1, and d ≥ 2k.
Then there exists a constant A = Aε,k > 0 such that

∣
∣I (P,L)

∣
∣ ≤ A|P |2/3+ε|L|2/3 + 3

2
|P | + 3

2
|L| (2.2)

whenever P is a finite set of points in Rd , and L is a finite set of k-dimensional affine
subspaces in Rd , such that any two distinct spaces in L intersect in at most one point.

Except for the ε loss, this answers a conjecture of Tóth [52, Conjecture 3] affirma-
tively. The hypothesis d ≥ 2k can be dropped for the trivial reason that it is no longer
possible for the k-dimensional subspaces in L to intersect each other transversely for
d < 2k, but of course the result is not interesting in this regime.

If r ≥ 2, and L is a collection of k-dimensional affine subspaces, define an r-rich
point to be a point that is incident to at least r subspaces in L. If we apply (2.2) to the
set P of r-rich points in a standard manner, we have

r|P | ≤ ∣
∣I (P,L)

∣
∣ ≤ A|P |2/3+ε|L|2/3 + 3

2
|P | + 3

2
|L|.

1It is possible for these real tangent spaces to have dimension less than k, because they are the restriction

of the k-dimensional complex tangent spaces Tp�C , Tp�′
C

to Rd . In applications, the complex tangent
spaces will be complexifications of the real tangent spaces, which are then necessarily k-dimensional; see
Proposition 4.6.
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As r ≥ 2 > 3
2 , we may absorb the 3

2 |P | term onto the left-hand side, and conclude that
if L is any finite collection k-dimensional affine subspaces in Rd , any two of which

intersect in at most one point, then the number of r-rich points is Oε(
|L|2+ε

r3 + |L|
r

) for
any ε > 0 and r ≥ 2.

As special cases of Corollary 2.3, we almost recover (but for epsilon losses)
the classic Szemerédi–Trotter theorem (Theorem 1.1), as well as the complex
Szemerédi–Trotter theorem of Tóth [52]. More precisely, from the k = 2 case of
Corollary 2.3, we have

Corollary 2.4 (Cheap Complex Szemerédi–Trotter) Let ε > 0 and d ≥ 2. Then there
exists a constant A = Aε > 0 such that

∣
∣I (P,L)

∣
∣ ≤ A|P |2/3+ε|L|2/3 + 3

2
|P | + 3

2
|L| (2.3)

whenever P is a finite set of points in C
2, and L is a finite set of complex lines in C

2.

We will sketch a separate proof of this corollary in Sect. 3, in order to motivate the
more complicated argument needed to establish Theorem 1.1 in full generality.

One can also establish the same bound for the quaternions H. Define a quar-
ternionic line to be any set in H

2 of the form {(a, b) + t (c, d) : t ∈ H} for some
a, b, c, d ∈ H with (c, d) �= (0,0). Because H is a division ring, we see that any two
distinct quarternionic lines meet in at most one point. After identifying H with R4,
we conclude:

Corollary 2.5 (Cheap Quaternionic Szemerédi–Trotter) Let ε > 0. Then there exists
a constant A = Aε > 0 such that

∣
∣I (P,L)

∣
∣ ≤ A|P |2/3+ε|L|2/3 + 3

2
|P | + 3

2
|L| (2.4)

whenever P is a finite set of points in H
2, and L is a finite set of quaternionic lines

in H2.

We can also replace lines with circles. Define a complex unit circle to be a set of
the form {(z,w) ∈ C

2 : (z − z0)
2 + (w − w0)

2 = 1} for some z0,w0 ∈ C. It is easy
to verify that complex unit circles are real algebraic varieties in C

2 ≡ R4 of (real)
dimension 2 and (real) degree 2 × 2 = 4 (because the real and imaginary parts of
the defining equation (z − z0)

2 + (w − w0)
2 = 1 are both quadratic constraints), that

two complex unit circles meet in at most two points, and that two points determine at
most two complex unit circles. It is possible for a point to be incident to two distinct
complex unit circles in such a fashion that their tangent spaces (which are complex
lines, or real planes) coincide, when the two circles are reflections of each other across
their common tangent space; however, if we first pigeonhole the incidences into O(1)

classes, based on the orientation of the radial vector (z − z0,w − w0) connecting the
center (z0,w0) of the complex unit circle to the point (z,w), then we can eliminate
these unwanted tangencies. We conclude
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Corollary 2.6 (Cheap Szemerédi–Trotter for Complex Unit Circles) Let ε > 0. Then
there exist constants C > 0 and A = Aε such that

∣
∣I (P,L)

∣
∣ ≤ A|P |2/3+ε|L|2/3 + C|P | + C|L| (2.5)

for all finite sets of points P and complex unit circles L in C
2.

This gives the following application to the complex unit distance problem:

Corollary 2.7 (Complex Unit Distances) Let ε > 0. Then there exists a constant
A = Aε > 0 such that

∣
∣
{(

(z,w),
(

z′,w′)) ∈ P × P : (z − z′)2 + (

w − w′)2 = 1
}∣
∣ ≤ Aε|P | 4

3 +ε

for any finite set of points P in C
2.

Indeed, this claim follows from applying (2.5) to the family L of complex unit
circles with centers in P . We remark that the real-variable analogue of this result was
established by Spencer, Szemerédi, and Trotter [44].

Elekes used the Szemerédi–Trotter theorem to give a good bound on the Sum-
Product problem of Erdős and Szemerédi in [12]. A variant of the original Sum-
Product problem was considered by Chang who proved the following in [10]. Let us
suppose that A is an n-element set of k × k matrices with real coefficients such that
det(A − B) �= 0 for any distinct A,B elements of A. Then2

|A + A| + |A A| ≥ g
(|A|)|A|,

where g(n) goes to infinity as n grows. In [49], the second author showed that g(n)

grows polynomially with n.

Corollary 2.8 (Sum-Product) Let us suppose that A is an n-element set of k × k ma-
trices with real coefficients such that det(A − B) �= 0 for any distinct A,B elements
of A and V,W ⊂ Rk are n-element sets of k dimensional vectors. Then for every
ε > 0 there exists a constant ck,ε > 0 independent of A and n such that

|V + W | + |AW | ≥ cn5/4−ε.

Proof We will apply Corollary 2.3, where the k-flats are given by {(
x, 
y) ∈
Rk × Rk : 
y = A(
x − 
v)} with 
v ∈ V and A ∈ A and the points are the elements
of the Cartesian product {V + W } × {AW }. Any two flats have at most one common
point since det(A − B) �= 0 and each of them has dimension k in the 2k-dimensional
real space. Any point with coordinates ( 
w + 
v,A 
w) is incident to 
y = A(
x − 
v). So,
we have n2 k-dimensional flats and |V + W ||AW | points where each flat is incident
to at least n points. We can apply Corollary 2.3 now to prove our bound. �

2Here we use the usual notation: C + D = {a + b|a ∈ C,b ∈ D} and CD = {ab|a ∈ C,b ∈ D}.
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Remark 2.9 The same argument also applies to matrices and point sets with complex
coefficients; we omit the details. In the complex case with k = 1, we almost obtain
the complex version of the sum-product estimate

|A + A| + |A · A| ≥ c|A|5/4

obtained by Elekes [12], but with an epsilon loss in the exponents.

We show yet another application which is similar to the previous one. It is about
r-rich affine transformations. Elekes proposed in [13] a systematic investigation of
the following general problem:

. . . Given a group G of transformations of Rd and a finite pointset P ⊂ Rd we
shall be interested in the number of transformations ϕ ∈ G which map many
points of P to some other points of P . . .

Here we consider affine transformations in Rd . We need some notation. An affine
transformation is r-rich with respect to P if |A(P ) ∩ P | ≥ r . Elekes’ question is
to bound the number of r-rich transformations. A finite set of affine transforma-
tions, A is said to be pairwise independent if A−1B has at most one fixpoint for
any A,B ∈ A.

Corollary 2.10 (Affine Transformations) Given an n-element pointset P ⊂ Rd , and
let ε > 0 and r ≥ 2. Any set X of pairwise independent r-rich affine transformations
has cardinality at most An4+ε/r3, where A = Aε,d > 0 depends only on ε and d .

Proof Each affine transformation in X can be written as 
x → A
x + 
v, which we can
view as a d-flat {(
x, 
y) ∈ Rd × Rd : 
y = A
x + 
v} in Rd × Rd . Each such flat is inci-
dent to at least r points of the Cartesian product P × P . There are |X| d-dimensional
flats and n2 points where each flat is incident to at least r points. Any two flats have
at most one common point since the transformations are pairwise independent (two
or more common points would mean that the corresponding affine transformations
are identical on a line). One can apply Corollary 2.3 again to prove the bound |X| �
n4+ε/r3. �

2.2 Comparison with Existing Results

The polynomial partitioning method is not the only method to establish incidence
bounds between points and varieties. In particular, there are other methods to obtain
cell decompositions which can achieve a similar effect to the decomposition given by
the polynomial Ham Sandwich theorem, though the hypotheses on the configuration
of points and varieties can be quite different from those considered here. A model
case is when the point set is assumed to be homogeneous, which roughly speaking
means that the point set resembles a perturbation of a grid. In such cases one can
use the cubes of the grid to form the cells. For instance, in [42] and [43] sharp in-
cidence bounds between a homogeneous set of points and k-dimensional subspaces
were given. In [27] sharp point-pseudoplane incidence bounds were proved in R3.
Similar bounds on point-surface incidences were proved for the non-homogeneous
case by Zahl [54].
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Elekes [13], Sharir and Welzl [40], and Guth and Katz [17] gave bounds on the
number of joints. We omit the details but we should mention that the latter paper in
particular uses the polynomial space partition method to give a satisfactory bound on
the number of joints.

Pach and Sharir [34, 35] considered incidences between points and pseudolines in
the plane—curves which obey axioms similar to Axioms (ii) and (iii) in Theorem 2.1,
using crossing number inequalities. Such methods work particularly well in the plane,
but are somewhat difficult to extend to higher dimensions; for some partial results in
three and higher dimensions, see [3].

In the hyperplane case k = d − 1, sharp incidence bounds were obtained in [14]
(of course, the transversality hypothesis needs to be modified in this regime).

In [24], Fourier-analytic methods were used to obtain incidence bounds of
Szemerédi–Trotter-type. In this method, the manifolds � are not required to be al-
gebraic varieties, but they are required to obey certain regularity hypotheses relating
to the smoothing properties an associated generalized Radon transform (which usu-
ally forces them to be fairly high dimensional. Also, the point set P is assumed to
obey a homogeneity assumption.

In [41] a simple proof was given to a Szemerédi–Trotter-type bound for incidences
between complex points and lines, however, the point set is assumed to be of Carte-
sian product of the form A × B ⊂ C

d .

3 A Special Case

Before we prove Theorem 2.1, we illustrate the key elements of the proof by sketch-
ing the proof of the (cheap) complex Szemerédi–Trotter Theorem which was stated
earlier as Corollary 2.4. In this low-dimensional setting one can avoid an induction on
dimension, instead using the crossing number machinery of Székely [46] to deal with
the contribution of various lower dimensional objects. The reader who is impatient to
get to the proof of the full theorem may skip this section if desired.

Let C1 be a large constant to be chosen later, and let C3 be an even larger constant
(depending on C1) to be chosen later. (The subscripts here are chosen to conform to
the notation of subsequent sections.) We will show that

|I| ≤ C3n
2/3+εm2/3 + C1(n + m) (3.1)

for all n,m ≥ 0 and sets P , L of points and complex lines in C2 with |P | = n and
|L| = m, by induction on n. The claim is trivial when n = 0, so suppose that n ≥ 1,
and that the claim has already been proven for smaller n.

A well-known Cauchy–Schwarz argument (based on the fact that two lines deter-
mine at most one point) gives the bounds

|I| � n1/2m + n,m1/2n + m

(see Lemma 5.1 below). As a consequence, we may restrict attention to the regime

m1/2 � n � m2 (3.2)

for the purposes of establishing (3.1).
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One can suppose that every point has at least half of the average incident lines
w.l.o.g. (If a point has less than |I|/2m lines incident to it then simply remove it
from P .) Then counting the points gives a lower bound on the incidences, e.g. if a
region of C

2 contains k points then there are at least k|I|/2m incidences between the
k points and the set L.

Let us identify C with R2 and partition C
2 = R4 into M cells plus a boundary

hypersurface, where M is to be determined later. One can use a degree D < (12M)1/4

polynomial Q so that R4 \ {Q = 0} has M components and no component contains
more than n/M points:

R4 = {Q = 0} ∪ Ω1 ∪ · · · ∪ ΩM.

The existence of such polynomial follows from Corollary 5.3 below.
If most of the incidences are in R4 \ {Q = 0} (inside a cell) then a simple double-

counting argument gives the desired bound. This is the case when we are going to
use the induction hypothesis. If most of the incidences are on {Q = 0} then we will
bound the number of incidences directly.

Let � ∈ L be one of the complex lines. Assume first that � is not on the surface
{Q = 0}. We will now bound the number of cells that � intersects as follows. We can
parameterize � in C

2 as

� = {

(z,Az + B) : z ∈ C
}

for some complex numbers A,B (ignoring for the sake of the sketch the “vertical”
case when A is infinite). Writing C

2 as R4, this becomes

� = {

(s, t, as − bt + c, at + bs + d) : s, t ∈ R
}

for some real numbers a, b, c, d . The polynomial Q(x1, x2, x3, x4) restricted to � is
then a degree D polynomial of variables s and t . As {Q = 0} is a degree D curve,

the number of connected components of � \ {Q = 0} is at most 2(
(
D−1

2

) + 1) by the
Harnack curve theorem [19] (note that each component of � \ {Q = 0} will contain
a component of {Q = ±ε} if ε is small enough); thus each line � meets at most D2

cells Ωi .
Let Li denotes the set of lines in L that have non-empty intersection with Ωi . By

(3.1), the number of incidences in each cell is bounded by

∣
∣I ∩ I (P ∩ Ωi,Li)

∣
∣ ≤ C3|P ∩ Ωi | 2

3 +ε|Li | 2
3 + C1

(|P ∩ Ωi | + |Li |
)

≤ C3(n/M)
2
3 +ε|Li | 2

3 + C1
(

n/M + |Li |
)

.

On the other hand, as each line � meets at most D2 cells, we have

M
∑

i=1

|Li | ≤ D2|L|
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and hence by Hölder’s inequality

M
∑

i=1

|Li | 2
3 ≤ (

D2|L|) 2
3 M

1
3 .

Inserting this into our preceding bound and using the fact that D ≤ (12M)1/4, we
conclude that

M
∑

i=1

∣
∣I ∩ I (P ∩ Ωi,Li)

∣
∣ ≤ 12

1
3 M−εC3n

2
3 +εm

2
3 + C1(n + Mm).

Using the hypothesis, we thus conclude (if we choose M ≥ (4 × 12
1
3 )

1
ε , and then

choose C3 large enough depending on C1,M so that the C1(n + Mm) term here can
be absorbed into the main term using (3.2)) that

M
∑

i=1

∣
∣I ∩ I (P ∩ Ωi,Li)

∣
∣ ≤ 1

2
C3n

2
3 +εm

2
3 .

The above estimate handles all the incidences that lie outside of {Q = 0}. To close
the induction, it will thus suffice (if C3,C1 are chosen large enough) to show that

∣
∣I ∩ I

(

P ∩ {Q = 0},L)∣
∣ �M n

2
3 +εm

2
3 + n + m. (3.3)

To establish this, we first perform a technical decomposition to avoid the issue
of singular points on the hypersurface {Q = 0}. More specifically, we introduce a
sequence of hypersurfaces S0, S1, . . . , SD by setting S0 := {Q = 0}, Q0 := Q, and

Qi+1 :=
4

∑

j=1

α
(i)
j

∂

∂xj

Qi

for 1 ≤ i ≤ D, which defines the surface Si+1 = {Qi+1 = 0}; here the α
(i)
j are generic

reals. All of the Si have degree at most D. For each point p ∈ P ∩{Q = 0} there is an
index i = ind(p) between 0 and D which is the first i when p �∈ Si+1. Note that this
implies that p is a smooth point of Si , so that the tangent space to Si at p is three-
dimensional, and in particular can contain at most one complex line. In particular,
at most one complex line incident to p is on the hypersurface Si ; all other incident
complex lines intersect Si in a one-dimensional curve. Let us consider the set of
points Pi = {p ∈ P, ind(p) = i}. We bound the number of incidences Ii between Pi

and L. We will follow Székely’s method [46]. The complex lines on the surface Si

give no more than |Pi | incidences, so it is enough to consider incidences between Pi

and complex lines intersecting Si in a curve. The degree of the intersection curve is at
most D. Let us project the points Pi and the intersection curves onto a generic plane.
We will define a geometric graph G(i) drawn on this generic plane so that the vertex
set is the projection of Pi . If a curve is incident to s +D2/2 vertices then we can draw
at least s edges along (a component of) the curve without multiple edges. The total
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number of edge intersections is bounded by Bézout’s theorem, it is not more than
(
m
2

)

D2. On the other hand one can apply the crossing number inequality [2, 28] to get
a lower bound on the number of crossings. The graph G(i) has at least |Ii | − mD2/2
edges. If |Ii | − mD2/2 ≥ 4|Pi | then

(
m

2

)

D2 ≥ (|Ii | − mD2/2)3

64|Pi |2 .

So either |Ii | ≤ mD2/2 + 4|Pi | or |Ii | ≤ 4(mD|Pi |)2/3. Summing the number of
incidences over the Pi , i = 1, . . . ,D gives the desired inequality (3.3) (noting that
the implied constants can depend on M and hence on D).

Remark 3.1 One can also view this argument from a recursive perspective rather
than an inductive one. With this perspective, one starts with a collection of n points
and m lines and repeatedly passes to smaller configurations of about n/M points
and a smaller number of lines as well. Thus, one expects about logM n iterations
in procedure. Collecting all the bounds together to obtain a final bound of the form
An2/3m2/3 (ignoring the lower order terms n,m for now), we see that with each itera-
tion, the constant A increases by a bounded multiplicative factor (independent of M),
assuming that A was chosen sufficiently large depending on M . Putting together these
increases, one obtains a final value of A of the shape CM ×ClogM n; letting M become
large, this gives bounds of the shape Cεn

ε as claimed. The key point is that the main
term in the estimate only grows by a constant factor independent of M with each step
of the iteration; the lower order terms, on the other hand, are permitted to grow by
constants depending on CM , as they can be absorbed into the main term (using the
reduction to the regime (3.2)).

4 Some Algebraic Geometry

In this section we review some notation and facts from algebraic geometry that we
will need here. Standard references for this material include [16, 20] or [32].

It will be convenient to define algebraic geometric notions over the field C, as it is
algebraically complete. However, for our applications we will only need to deal with
the real points of algebraic sets.

Definition 4.1 (Algebraic Sets) Let d ≥ 1 be a dimension. An algebraic set in C
d is

any set of the form

{

x ∈ C
d : P1(x) = · · · = Pm(x) = 0

}

,

where P1, . . . ,Pm : C
d → C are polynomials. If one can take m = 1, we call the

algebraic set a hypersurface. An algebraic set is irreducible if it cannot be expressed
as the union of two strictly smaller algebraic sets. An irreducible algebraic set will be
referred to as an algebraic variety, or variety for short.
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The intersection of any subset of C
d with Rd will be referred to as the real points

of that subset. A real algebraic variety is the real points VR of a complex algebraic
variety V .3

If V is a variety in C
d , we can define the dimension dim(V ) = r of V to be the

largest natural number for which there exists a sequence

∅ �= V0 � V1 � · · · � Vr = V

of varieties between ∅ and V . There are many alternate definitions of this quantity.
For instance, r is also the transcendence degree of the function field C(V ) of V

(see [32, Sect. I.7]). Thus, for instance dim(Cd) = d , and one has dim(V ) ≤ dim(W)

whenever V ⊂ W are varieties, with the inequality being strict if V �= W ; in particu-
lar, for V ⊂ C

d , dim(V ) is an integer between 0 and d . The quantity d − dim(V ) is
called the codimension of V .

It is known (see e.g. [16, Sect. 1.3]) that to any r-dimensional variety one can
associate a unique natural number D, called the degree of V , with the property that
almost every codimension r affine subspace of C

d intersects V in exactly D points.
Thus, for instance, if P : C

d → C is an irreducible polynomial of degree D, then the
hypersurface {P = 0} has dimension d − 1 (and thus codimension 1) and degree D.

We do not attempt to define the notions of degree and dimension directly for
real algebraic varieties, as there are some subtle issues that arise in this setting (see
e.g. [37]). However, in our applications every real algebraic variety will be associated
with a complex one, which of course will carry a notion of degree and dimension.
Later on (by using Proposition 4.6 below) we will see that we may easily reduce to
the model case in which the real algebraic varieties have full dimension inside their
complex counterparts, in the sense that the real tangent spaces have the same dimen-
sion as the complex ones.

Every algebraic set can be uniquely decomposed as the union of finitely many
varieties, none of which are contained in any other (see e.g. [32, Proposition I.5.3]).
We define the dimension of the algebraic set to be the largest dimension of any of its
component varieties.

If V is an r-dimensional variety in C
d , and P : C

d → V is a polynomial which is
not identically zero on V , then every component of V ∩ {P = 0} has dimension r − 1
(see [32, Sect. I.8]).

A basic fact is that the degree of a variety controls its complexity:4

Lemma 4.2 (Degree Controls Complexity) Let V be an algebraic variety in C
d of

degree at most D. Then we can write

V = {

x ∈ C
d : P1(x) = · · · = Pm(x) = 0

}

for some m = Od,D(1) and some polynomials P1, . . . ,Pm of degree at most D.

3Strictly speaking, because two different complex varieties may have the same real points, a real algebraic
variety should really be viewed as a pair (VR,V ) rather than just the set VR; however, we will abuse
notation and identify a real algebraic variety with the set VR of real points.
4Here, we use the term “complexity” informally to refer to the number and degree of polynomials needed
to define the variety.
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Proof See [8, Theorem A.3] or [31]. Indeed, one can take P1, . . . ,Pm to be a linear
basis for the vector space of all the polynomials of degree at most D that vanish
identically on V . �

We have the following converse:

Lemma 4.3 (Complexity Controls Degree) Let

V = {

x ∈ C
d : P1(x) = · · · = Pm(x) = 0

}

for some m ≥ 0 and some polynomials P1, . . . ,Pm : C
d → C of degree at most D.

Then V is the union of Om,D,d(1) varieties of degree Om,D,d(1).

Proof See [8, Lemma A.4] (to obtain the decomposition) and [8, Lemma 3.5]
(to bound the degree). �

A smooth point of a k-dimensional algebraic variety V is an element p of V such
that V can be locally described by a smooth k-dimensional complex manifold in a
neighbourhood of p. Points in V that are not smooth will be called singular. We let
V smooth denote the smooth points of V , and V sing := V \V smooth denote the singular
points.

It is well known that “most” points in an algebraic variety V are smooth (see
e.g. [50, Theorem 5.6.8]). In fact, we have the following quantitative statement:

Proposition 4.4 (Most Points Smooth) Let V be a k-dimensional algebraic variety
in C

d of degree at most D. Then V sing can be covered by OD,d(1) algebraic varieties
in V of dimension at most k − 1 and degree OD,d(1).

Proof We will prove the more general claim that for any integer r with k ≤ r ≤ d ,
there exists an algebraic variety W in C

d containing V of dimension at most r and
degree OD,d(1), such that V ∩ W sing can be covered by OD,d(1) algebraic varieties
of dimension at most k − 1 and degree OD,d(1). If we apply this claim with r = k,
then W must equal V , giving the proposition (after restricting the algebraic varieties
produced by the claim to V ).

We establish the claim by downward induction on r . The case r = d is trivial, as
we can set W = C

d , so assume now that k ≤ r < d and that the claim has already
been established for r + 1. Thus there exists an algebraic variety W containing V of
dimension at most r + 1 and degree OD,d(1) such that V ∩ W sing can be covered by
OD,d(1) algebraic varieties of dimension at most k − 1 and degree OD,d(1).

If W has dimension r or less, then we are already done, so we may assume that W

has dimension exactly r + 1; in particular W is not equal to V . By Lemma 4.2, we
may write

V = {

x ∈ C
d : P1(x) = · · · = Pm(x) = 0

}

for some m = Od,D(1) and some polynomials P1, . . . ,Pm of degree Od,D(1).
Since V is not equal to W , the polynomials Pi cannot all vanish identically on W .

Without loss of generality we may assume that P1 does not vanish identically on W .
We then subdivide into three cases:
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(i) The gradient ∇P1 does not vanish identically on V .
(ii) ∇P1 vanishes identically on V , but does not vanish identically on W .

(iii) ∇P1 vanishes identically on W .

Suppose we are in case (i). Let W ′ := {x ∈ W : P1(x) = 0}. This algebraic set is
strictly contained in W and thus has dimension precisely r , by the discussion prior
to Lemma 4.2. By Lemma 4.2, W ′ is cut out by OD,d(1) polynomials of degree
OD,d(1). By Lemma 4.3, W ′ is thus the union of OD,d(1) varieties of dimension r

and degree OD,d(1). One of these varieties, call it W ′′, must contain V .
Let x be a point in V ∩ W smooth with ∇P1(x) �= 0, then by the (complex)5 inverse

function theorem, the set {x ∈ W : P1(x) = 0} is a smooth r-dimensional complex
manifold in a neighbourhood of x. As such, we see that x is a smooth point of W ′′.
On the other hand, by Lemma 4.3, the set {x ∈ V : ∇P1(x) = 0} can be covered by
OD,d(1) varieties of dimension at most k − 1 and degree OD,d(1). We thus see that
the claim holds for r by using W ′′ in place of W .

Now suppose we are in case (ii). Then there is a partial derivative ∂xi
P1 of P1 that

vanishes identically on V but does not vanish identically on W . We then replace P1
by ∂xi

P1 (lowering the degree by one) and return to the above subdivision of cases.
We continue doing this until we end up in case (i) or case (iii). Since case (ii) cannot
hold for polynomials of degree zero or one, we see that we must eventually leave
case (ii) and end up in one of the other cases.

Finally, suppose we are in case (iii). Then, by the fundamental theorem of calculus,
P1 is constant in a neighbourhood of every smooth point of W . In particular, there
is some constant c for which set {P1 = c} is non-empty and has the same dimension
as W , and thus (by irreducibility of W ) we conclude that P1 is constant on W ; since
P1 vanishes on V , it thus vanishes on W , a contradiction. Thus case (iii) cannot
actually occur, and we are done. �

We may iterate this proposition (performing an induction on the dimension k) to
obtain

Corollary 4.5 (Decomposition into Smooth Points) Let V be a k-dimensional al-
gebraic variety in C

d of degree at most D. Then one can cover V by V smooth and
OD,d(1) sets of the form W smooth, where each W is an algebraic variety in V of
dimension at most k − 1 and degree OD,d(1).

Finally, we address a technical point regarding the distinction between real and
complex algebraic varieties. If p ∈ � ⊂ Rd is a smooth real point of a k-dimensional
complex algebraic variety �C ∈ C

d , then it must have a k-dimensional complex
tangent space Tp�C ⊂ C

d , by definition. However, its real tangent space Tp� :=
Tp�C ∩Rd may have dimension smaller than k. For instance, in the case k = 1, d = 2,
the complex line �C := {(z,w) ∈ C

2 : z = iw} has a smooth point at (0,0) with a one-
dimensional complex tangent space (also equal to �C), but the real tangent space is

5One can also use the real inverse function theorem here, by viewing P1 as a map from R2d to R2 instead

of from C
d to C, and noting that the hypothesis ∇P1(x) �= 0 ensures that the real derivative of P1 (which

is a 2d × 2 real matrix) has full rank.
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only zero-dimensional. Of course, in this case, the real portion � := �C ∩ R2 of the
complex line is just a zero-dimensional point. This phenomenon generalizes:

Proposition 4.6 Let V be a k-dimensional algebraic variety in C
d of degree at

most D. Then at least one of the following statements is true:

(i) The real points VR of V are covered by the smooth points W smooth of OD,d(1)

algebraic varieties W of dimension at most k − 1 and degree OD,d(1) which are
contained in V .

(ii) For every smooth real point p ∈ V smooth
R of V , the real tangent space TpVR :=

TpV ∩ Rd is k-dimensional (and thus TpV is the complexification of TpVR). In
particular, V smooth

R is k-dimensional.

Proof By Lemma 4.2, V can be cut out by polynomials P1, . . . ,Pm of degree
OD,d(1) with m = OD,d(1). Let Ṽ be the algebraic set cut out by both P1, . . . ,Pm

and their complex conjugates P1, . . . ,Pm, defined as the complex polynomials whose
coefficients are the conjugates of those for P1, . . . ,Pm. Clearly V and Ṽ have the
same real points. If Ṽ is strictly smaller than V , then it has dimension at most k − 1,
and by Lemma 4.3 and Corollary 4.5 we are thus in case (i). Now suppose instead
that V is equal to Ṽ . Then at every smooth point p of V (or Ṽ ), the k-dimensional
complex tangent space TpV = TpṼ is cut out by the orthogonal complements of
the gradients ∇P1, . . . ,∇Pm and their complex conjugates. As such, it is manifestly
closed with respect to complex conjugation, and is thus the complexification of its
real counterpart TpṼR. We are thus in case (ii). �

Note that by iterating the above proposition, we may assume that each of the vari-
eties W occurring in case (i) obey the properties stated in case (ii).

5 Proof of Main Theorem

We now prove Theorem 2.1. We will prove this theorem by an induction on the quan-
tity d + k. The case d + k = 0 is trivial, so we assume inductively that d + k ≥ 1 and
that the claim has already been proven for all smaller values of d + k.

We can dispose of the easy case k = 0, because in this case L consists entirely
of points, and in particular each � in L is incident to at most one point in P , giving
the bound |I| ≤ |L| which is acceptable. Hence we may assume that k ≥ 1, and thus
d ≥ 2.

We now perform a technical reduction to eliminate some distinctions between
the real and complex forms of the variety �. We may apply Proposition 4.6 to each
variety �. Those varieties � which obey conclusion (i) of that proposition can be
easily handled by the induction hypothesis, since the varieties W arising from that
conclusion have dimension strictly less than k. Thus we may restrict attention to
varieties which obey conclusion (ii), namely that for every smooth real point p in �

(and in particular, for all (p, �) ∈ I ), the real tangent space Tp� has full dimension k.
We now divide into two subcases: the case d > 2k and the case d = 2k, and deduce

each case from the induction hypothesis. The main case is the latter; the former case
will be obtainable from the induction hypothesis by a standard projection argument.
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5.1 The Case of Excessively Large Ambient Dimension

We first deal with the case d > 2k. Here, we can use a generic projection argument
to deduce the theorem from the induction hypothesis. Indeed, fix ε,C0,P ,L, and let
π : Rd → R2k be a generic linear transformation (avoiding a finite number of positive
codimension subvarieties of the space Hom(Rd ,R2k) ≡ R2kd of linear transforma-
tions from Rd to R2k). Since k ≥ 1, we see that for any two distinct points p,p′ ∈ P ,
the set of transformations π for which π(p) = π(p′) has positive codimension in
Hom(Rd ,R2k). Hence for generic π , the map from P to π(P ) is bijective.

Similarly, let �, �′ be two distinct k-dimensional varieties in L. Then generically
π(�),π(�′) will be k-dimensional varieties in R2k . We claim that for generic π , the
varieties π(�),π(�′) are distinct. Indeed, since �, �′ are distinct varieties of the same
dimension, there exists a point p on �′ that does not lie on �. Since � has codimen-
sion d − k > d − 2k, we conclude that for generic π , the d − 2k-dimensional plane
π−1(π(p)) does not intersect �′, and the claim follows. Thus the map π : L → π(L)

is bijective.
Next, let (p, �) ∈ I . Clearly, π(p) ∈ π(�), and so π induces a bijection from I to

some set of incidences π(I) ⊂ I (π(P ),π(L)).
To summarize, we have established that for generic π ,

∣
∣π(P )

∣
∣ = |P |,

∣
∣π(L)

∣
∣ = |L|,

∣
∣π(I)

∣
∣ = |I|.

We would now like to apply the induction hypothesis to the configuration of points
π(P ), varieties π(L), and incidences π(I), which will clearly establish the desired
claim. To do this, we need to verify that π(P ), π(L), π(I) obey Axioms (i)–(v) for
generic π .

If � ∈ L, then � is a k-dimensional variety of degree at most C0, and so gener-
ically π(�) will also be a k-dimensional variety of degree at most C0, which gives
Axiom (i).

Axioms (ii) and (iii) for π(P ),π(L),π(I) are generically inherited from those of
P,L, I thanks to the bijection between I and π(I).

Now we turn to Axiom (iv). Fix (p, �) ∈ I , then p is a smooth point of �. Since
d > 2k and k ≥ 1, it will generically hold that the codimension 2k affine space
π−1(π(p)) will intersect the codimension d − k variety � only at p. Thus, π(p)

will generically be a smooth point of π(�), which gives Axiom (iv).
Finally, if (p, �), (p, �′) ∈ I , then by hypothesis, the k-dimensional tangent spaces

Tp�,Tp�′ are transverse and thus span a 2k-dimensional affine space through p.
Generically, π will be bijective from this space to C

2k , and thus Tπ(p)π(�) = π(Tp�)

and Tπ(p)π
′(�′) = π(Tp�′) remain transverse. This gives Axiom (v).

Now that all the axioms are verified, the induction hypothesis gives

∣
∣π(I)

∣
∣ ≤ A

∣
∣π(P )

∣
∣

2
3 +ε∣

∣π(L)
∣
∣

2
3 + 3

2

∣
∣π(P )

∣
∣ + 3

2

∣
∣π(L)

∣
∣

for generic π and some A depending only on k, ε,C0, and the claim follows.
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5.2 The Case of Sharp Ambient Dimension

It remains to handle the case when d = 2k and k ≥ 1. Here we fix d, k,C0, ε, and
allow all implied constants in the asymptotic notation to depend on these parameters.
We will need some additional constants

C3 > C2 > C1 > C0,

where

• C1 is assumed to be sufficiently large depending on C0, k and ε;
• C2 is assumed to be sufficiently large depending on C1,C0, k, and ε; and
• C3 is assumed to be sufficiently large depending on C2,C1,C0, k, and ε.

For suitable choices of C1,C2,C3, we will establish the inequality

|I| ≤ C3|P |2/3+ε|L|2/3 + 3

2
|P | + 3

2
|L| (5.1)

by an induction on the number of points P . The inequality is trivial for |P | = 0, so
we assume that |P | ≥ 1 and that the claim has been proven for all smaller sets of
points P .

Suppose P,L, I obey all the specified axioms. We begin with two standard trivial
bounds:

Lemma 5.1 (Trivial Bounds) We have

|I| ≤ C
1/2
0 |P ||L|1/2 + |L| (5.2)

and

|I| ≤ C
1/2
0 |L||P |1/2 + |P |.

Proof Consider the set Σ of triples (p,p′, �) ∈ P ×P ×L such that (p, �), (p′, �) ∈ I .
If p �= p′, then from Axiom (iii) this pair contributes at most C0 triples to Σ , while
the case p = p′ contributes exactly |I| triples. We thus have

|Σ | ≤ C0|P |2 + |I|.
On the other hand, from Cauchy–Schwarz

|Σ | ≥ |I|2
|L|

and thus

|I|2 − |L||I| ≤ C0|P |2|L|.
We rearrange this as

(

|I| − |L|
2

)2

≤ |L|2
4

+ C0|P |2|L|.
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The right-hand side is bounded by (
|L|
2 + C

1/2
0 |P ||L|1/2)2, which gives (5.2). The

second bound is proven similarly by swapping the roles of P and L (and using Ax-
iom (ii) instead of Axiom (iii)). �

One can also view this lemma as a special case of the classical Kővári–Sós–Turán
theorem [26].

In view of this lemma, we can obtain the desired bound (5.1) whenever we are
outside the regime

C2|P |1/2 ≤ |L| ≤ C−1
2 |P |2 (5.3)

provided that C2 is large enough depending on C0, and C3 is large enough depend-
ing on C0,C2. Thus we may assume without loss of generality that we are in the
regime (5.3).

Following Guth and Katz [18], the next step is to apply the polynomial ham sand-
wich theorem of Stone and Tukey [45]. We will sketch their argument here. For more
details we refer to the excellent review of the polynomial decomposition method
in [25].

Theorem 5.2 (Polynomial Ham Sandwich Theorem) Let D,M,d ≥ 1 be integers
with M = (

D+d
d

) − 1, and let S1, . . . , SM be finite sets of points of Rd . Then there
exists a polynomial Q : Rd → R of degree at most D such that the real algebraic
hypersurface {x ∈ Rd : Q(x) = 0} bisects each of the S1, . . . , SM , in the sense that

∣
∣
{

x ∈ Si : Q(x) < 0
}∣
∣ ≤ 1

2
|Si |

and
∣
∣
{

x ∈ Si : Q(x) > 0
}∣
∣ ≤ 1

2
|Si |

for all i = 1, . . . ,M .

As observed in [18], we may iterate this to obtain

Corollary 5.3 (Cell Decomposition [18]) Let D,d ≥ 1 be integers, and let P be a
finite set of points in Rd . Then there exists a decomposition

Rd = {Q = 0} ∪ Ω1 ∪ · · · ∪ ΩM,

where Q : Rd → R is a polynomial of degree at most D, M = Od(Dd), and
Ω1, . . . ,ΩM are open sets bounded by {Q = 0} (i.e. the topological boundary of any
Ωi is contained in {Q = 0}), such that |P ∩ Ωi | = Od(|P |/Dd) for each 1 ≤ i ≤ M .

Proof We may assume that D is large depending on d , as the claim is trivial other-
wise. By Theorem 5.2 and induction on M , there is a constant A = Ad > 0 such that
for every power of two M ≥ 1 we can find a partition

Rd = {QM = 0} ∪ ΩM,1 ∪ · · · ∪ ΩM,M,
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where QM : Rd → R is a polynomial of degree at most AM1/d , and ΩM,1, . . . ,ΩM,M

are open sets bounded by {QM = 0} such that |P ∩Ωi | ≤ |P |/M for each 1 ≤ i ≤ M .
The claim follows by selecting M comparable to a large multiple of D1/d . �

We apply this corollary to our situation with D := C1, to give a decomposition

R2k = {Q = 0} ∪ Ω1 ∪ · · · ∪ ΩM,

where Q : R2k → R has degree at most C1, M = O(C2k
1 ), and the Ωi are open sets

bounded by {Q = 0} such that |P ∩ Ωi | = O(|P |/C2k
1 ) for each i. (Recall that we

allow implied constants in the O() notation to depend on k.) In particular, we have
|P ∩ Ωi | < |P | for each i, which will allow us to apply the induction hypothesis to
each P ∩ Qi .

For each 1 ≤ i ≤ M , let Li be the sets � in L that have non-empty intersection
with Ωi . Clearly

|I| = ∣
∣I ∩ I

(

P ∩ {Q = 0},L)∣
∣ +

M
∑

i=1

∣
∣I ∩ I (P ∩ Ωi,Li)

∣
∣.

We first estimate the latter sum. Applying the induction hypothesis, we have

∣
∣I ∩ I (P ∩ Ωi,Li)

∣
∣ ≤ C3|P ∩ Ωi | 2

3 +ε|Li | 2
3 + 3

2
|P ∩ Ωi | + 3

2
|Li |

≤ C
− 4k

3 −2kε

1 C3|P | 2
3 +ε|Li | 2

3 + 3

2
|P/M| + 3

2
|Li |.

Note the factor of C−2kε
1 in the main term, which will be crucial in closing the induc-

tion.
Let � be a variety in L, then � is k-dimensional and has degree O(1). Mean-

while, the set {Q = 0} is a hypersurface of degree at most C1. We conclude that �

either lies in {Q = 0}, or intersects {Q = 0} in an algebraic set of dimension at most
k − 1. In the former case, � cannot belong to any of the Li . In the latter case we
apply a generalization of a classical result established independently by Oleinik and
Petrovsky [33], Milnor [30], and Thom [51], such that the number of connected com-
ponents of �\{Q = 0} is at most O(Ck

1 ); we give a proof of this fact in Theorem A.2.
Recently a more general bound was proved by Barone and Basu [4].

From Theorem A.2 we will use here that � can belong to at most O(Ck
1 ) of the

sets Li .
This implies that

M
∑

i=1

|Li | � Ck
1 |L|

and thus by Hölder’s inequality and the bound M = O(C2k
1 )

M
∑

i=1

|Li | 2
3 � C

4k
3

1 |L| 2
3 .
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Inserting this into our preceding bounds, we conclude that

M
∑

i=1

∣
∣I ∩ I (P ∩ Ωi,Li)

∣
∣ � C−2kε

1 C3|P | 2
3 +ε|L| 2

3 + |P | + Ck
1 |L|.

Using the hypothesis (5.3), we thus conclude (if C1 is large enough depending on
k, ε, and C2 is large enough depending on C1, k, ε) we have

M
∑

i=1

∣
∣I ∩ I (P ∩ Ωi,Li)

∣
∣ ≤ 1

2
C3|P | 2

3 +ε|L| 2
3 .

To close the induction, it will thus suffice (again by using (5.3)) to show that

∣
∣I ∩ I

(

P ∩ {Q = 0},L)∣
∣ �C1 |P | 2

3 +ε|L| 2
3 + |P | + |L|. (5.4)

Remark 5.4 A modification of the above argument shows that if one applied Corol-
lary 5.3 not with a bounded degree D = C1, but instead with a degree D comparable
to (|P |2/3|L|−1/3)1/k , then one could control the contribution of the cell interiors Ωi

by the trivial bound (5.2), rather than the inductive hypothesis, thus removing the
need to concede an epsilon in the exponents. However, the price one pays for this
is that the hypersurface {Q = 0} acquires a much higher degree, and the simple ar-
guments given below to handle the incidences on this hypersurface are insufficient
to give good bounds (except in the original Szemerédi–Trotter context when k = 1
and d = 2). Nevertheless, it may well be that a more careful analysis, using efficient
quantitative bounds on the geometry of high-degree varieties, may be able to recover
good bounds for this strategy, and in particular in removing the epsilon loss in Theo-
rem 2.1.

For inductive reasons, it will be convenient to prove the following generalisation:

Proposition 5.5 Let the notation and hypotheses be as above. (In particular, we are
assuming Theorem 2.1 to already be proven for all smaller values of d + k, and
continue to allow all implied constants to depend on k.) Let 0 ≤ r < 2k, and let Σ be
an r-dimensional variety in R2k of degree at most D. Then

∣
∣I ∩ I (P ∩ Σ,L)

∣
∣ �D |P | 2

3 +ε|L| 2
3 + |P | + |L|.

Clearly, (5.4) follows by specialising to the case r = 2k − 1, D = C1, and Σ =
{Q = 0}.

Proof We induct on r . If r = 0, then Σ is a single point, and so each set � in L has
at most one incidence in P ∩ Σ , giving the net bound |I| ≤ |L|, which is acceptable.

Now suppose that 1 ≤ r < 2k − 1, and that the claim has already been proven for
smaller values of r .

We may of course delete all points of P outside of Σ . If p is a point in Σ , then
p is either a smooth point in Σ or a singular point. Let us first deal with the contri-
bution of the latter case. As Σ is an r-dimensional variety of degree at most D, the
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singular points in Σ lie in a union of OD(1) varieties Σ1, . . . ,Σm of degree OD(1)

and dimension strictly less than r (see Proposition 4.4). By the induction hypothesis,
we have

∣
∣I ∩ I (P ∩ Σi,L)

∣
∣ �D |P | 2

3 +ε|L| 2
3 + |P | + |L|

for each such variety Σi , and so on summing in i we see that the contribution of the
singular points is acceptable.

By deleting the singular points of Σ from P , we may thus assume without loss of
generality that all the points in P are smooth points of Σ . For each � ∈ L, consider
the intersection � ∩ Σ . As � is a variety of degree k, we see that � is either contained
in Σ , or � ∩ Σ will be a algebraic set of dimension strictly less than k.

Consider the contribution of the first case when � is contained in Σ . If we have
two distinct incidences (p, �), (p, �′) ∈ I such that �, �′ both lie in Σ , then the
k-dimensional tangent spaces Tp�,Tp�′ lie in the r-dimensional space TpΣ . On the
other hand, by Axiom (iv), Tp� and Tp�′ are transverse. Since r < 2k, this is a contra-
diction. Thus, each point in P is incident to at most one variety � ∈ L that lies in Σ ,
and so there are at most |L| incidences that come from this case.

We may thus assume that each variety � ∈ L intersects Σ in an algebraic set of
dimension strictly less than k. Since � has degree at most C0, and Σ has degree at
most D, we see from Corollary 4.5 that � ∩ Σ is the union of the smooth points of
OD(1) algebraic varieties of dimension between 0 and k − 1 and degree OD(1).

Thus we may write � ∩ Σ = ⋃k−1
k′=0

⋃J
j=1 �smooth

k′,j for some J = OD(1), where for
each 0 ≤ k′ < k − 1 and 1 ≤ j ≤ J , �k′,j is either empty, or is an algebraic variety
of dimension k′ and degree OD(1), and �smooth

k′,j are the smooth points of �k′,j . Note
that by padding the decomposition with empty varieties, we may assume that J is
independent of �. We may then estimate

∣
∣I ∩ I (P ∩ Σ,L)

∣
∣ ≤

k−1
∑

k′=0

J
∑

j=1

|Ik′,j |,

where Ik′,j is the set of all incidences (p, �) ∈ I such that p ∈ �smooth
k′,j . It thus suffices

to show that

|Ik′,j | �D |P | 2
3 +ε|L| 2

3 + |P | + |L| (5.5)

for each k′ and j .
Fix k′ and j . Those varieties � ∈ L for which |I ∩ (P × {�})| ≤ C0 will contribute

at most C0|L| incidences to (5.5), so we may assume that |I ∩ (P × {�})| > C0 for
all � ∈ L. By Axiom (ii), this forces the �k′,j to be distinct. If we then let L′ = L′

k′,j
be the set of all the �k′,j , we can thus identify Ik′,j with a subset I ′ of I (P,L′).
However, by induction hypothesis, Theorem 2.1 is already known to hold if k is
replaced by k′ (keeping d = 2k fixed). So, to conclude the argument, it suffices to
show that P,L′, I ′ obey the axioms of Theorem 2.1, with C0 replaced by OC0,D(1).
But Axiom (i) is clear from construction, while Axioms (ii), (iii), (iv), and (v) are
inherited from the corresponding axioms for P,L, I . This closes the induction and
proves the lemma. �
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The proof of Theorem 2.1 is now complete.

Remark 5.6 It is reasonable to conjecture that one can set ε = 0 in Theorem 2.1.
From k = 1, this can be established using the crossing number inequality [2, 28]
and the Harnack curve theorem [19], following the arguments of Székely [46]; it
is also possible to establish this inequality via the polynomial partitioning method.
For k = 2, a more careful analysis of the above arguments (using the refinement
to the k = 1 case mentioned above) eventually shows that one can take A to be of
the shape exp(OC0(1/ε)); optimizing in ε, one can thus replace the A|P |ε factor by

exp(OC0(
√

log |P |)). However, for k > 2, the highly inductive nature of the argument
causes A to depend on ε in an iterated exponential manner.

Remark 5.7 One can construct many examples in which |I (P,L)| is comparable to

|P | 2
3 |L| 2

3 + |P | + |L| by taking k of the standard point-line configurations in R2 that
demonstrate that the original Szemerédi–Trotter theorem (Theorem 1.1) is sharp, and
then taking Cartesian products (and increasing the ambient dimension if desired). It
is natural to conjecture that the ε loss in (2.1) can be eliminated, but our methods do
not seem to easily give this improvement.

It is possible to drop Axiom (iv), at the cost of making Axiom (v) more compli-
cated. For any point p on a real algebraic variety � ⊂ Rd , define the tangent cone
Cp� to be the set of all elements in Rd of the form γ ′(0), where γ : [−1,1] → � is
a smooth map with γ (0) = p. Note that at a smooth point p of �, the tangent cone
is nothing more than the tangent space Tp� (translated to the origin). However, the
tangent cone continues to be well-defined at singular points, while the tangent space
is not.

Corollary 5.8 The conclusions of Theorem 2.1 continue to hold if Axiom (iv) is
dropped, but the tangent space Tp� in Axiom (v) is replaced by the tangent cone,
but where the constant A is now allowed to depend on the ambient dimension d in
addition to k and ε.

Proof (Sketch) We perform strong induction on k, assuming that the claim has al-
ready been proven for smaller k. For those incidences (p, �) in I for which p is a
smooth point of �, one can apply Theorem 2.1 to get a good bound, so we may restrict
attention to those incidences in which p is a singular point of �. But then we can use
Corollary 4.5 to cover the singular portion of � by OC0,k,d (1) irreducible components
in � of dimension at most k − 1 and degree OC0,k,d (1). Applying the induction hy-
pothesis to each of these components (noting that Axioms (i)–(iii) and the modified
Axiom (v) are inherited by these components, increasing C0 if necessary) we obtain
the claim. �
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Appendix: Connected Components of Real Semi-algebraic Sets

In this appendix we give some standard bounds on the number of connected com-
ponents of various real semi-algebraic sets. We first bound the number of connected
components cut out by a hypersurface {P = 0} of bounded degree. This result was
proved by independently by Oleinik and Petrovsky [33], Milnor [30], and Thom [51].
(They proved the stronger result that under the conditions of the theorem below the
sum of the Betti numbers of X is Od(Dd). See further refinements of the statement
in [5].) Recently a more general bound was presented by Barone and Basu [4]. They
gave tight estimates on the dependence on the various parameters which are hidden
in the big-Oh notation in Theorem A.2.

Theorem A.1 Let P : Rd → R be a polynomial of degree at most D for some D ≥ 1
and d ≥ 0. Then the set {x ∈ Rd : P(x) �= 0} has Od(Dd) connected components.

Proof We proceed by induction on d . The case d = 0 is trivial, so suppose that d ≥ 1
and that the claim is already proven for d − 1. By a limiting argument, it suffices to
show that for any cube Q in Rd , the number of components of {x ∈ Q : P(x) �= 0}
has Od(Dd) connected components, uniformly in Q. The number of components
that intersect the boundary ∂Q of Q is Od(Dd−1) by the induction hypothesis, so it
suffices to control the number of components that lie completely in the interior of Q.

Let C1, . . . ,Cm be the components of {x ∈ Q : P(x) �= 0} that avoid ∂Q; our
task is to show that m = Od(Dd). Observe that each Ci is an open set, with P

non-zero in Ci and vanishing on the boundary of Ci . By the continuity of P , we
can thus find a compact subset Ki of Ci such that on Ki , at least one of the max-
imum or minimum of P is attained only in the interior of Ki (i.e. one either has
supx∈Ki

P (x) > supx∈∂Ki
P (x) or infx∈Ki

P (x) < infx∈∂Ki
P (x)). In particular, P

has at least one critical point in the interior of Ki , and so ∇P has at least one zero
in the interior of Ki , and so the preimage ∇P −1({0}) of 0 under the gradient map
∇P : Rd → Rd has cardinality at least m.

To avoid degeneracy issues we now perform a perturbation argument. Let u ∈ Rd

be a sufficiently small vector, then we see that the function x �→ P(x)−u · x also has
the property that at least one of the maximum or minimum of this function is attained
only in the interior of Ki . In particular, ∇P − u has at least one zero in the interior
of Ki , and so the preimage ∇P −1({u}) of u under ∇P also has cardinality at least m.

Now take u to be a sufficiently small generic vector. As the domain and range of
the polynomial map ∇P have the same dimension, we see that ∇P −1({u}) is finite
for generic u (even when P is extended to the complex domain C

d ). As such, we
can invoke Bézout’s theorem (considering the complex zeros) and conclude that the
number of solutions is in fact bounded by (D − 1)d = O(Dd) for generic u, as each
component of ∇P has degree at most D − 1. The claim follows. �

A more complicated version of the above argument also works on general alge-
braic sets:
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Theorem A.2 Let d ≥ k ≥ 0, let V be a k-dimensional real algebraic set in Rd of
complexity at most M , let W be another real algebraic set in Rd of complexity at
most M , and let P : Rd → R be a polynomial of degree at most D, for some D ≥ 1.
Then the set {x ∈ V \W : P(x) �= 0} has OM,d,k(D

k) connected components.

Proof We allow all implied constants to depend on M , d , and k. To give some addi-
tional flexibility we allow P to have degree O(D), rather than just having degree at
most D.

We induct on the quantity k + d . The case k = 0 follows from Lemma 4.3, so
suppose that k ≥ 1 and the claim has already been proven for smaller values of k + d .
By Lemma 4.3 we may assume V to be irreducible. We may assume that P is non-
vanishing on V , as the claim is trivial otherwise.

By Proposition 4.6 and the induction hypothesis we may assume that V smooth
R is

k-dimensional, and by Proposition 4.4 and the induction hypothesis we can handle
the contribution of the singular points of V . Thus, by enlarging W if necessary, we
may assume without loss of generality that all real points of V \W are smooth.

In particular, all connected components of {x ∈ V \W : P(x) �= 0} are now full
dimensional in V . This has the following consequence: if P ′ is any multiple of P

that is still of degree O(D) and still not vanishing identically on V , and {x ∈ V \W :
P ′(x) �= 0} is known to have O(Dk) components, then {x ∈ V \W : P(x) �= 0} also
has O(Dk) components (since any component of the latter contains a component
of the former). As such, we now have the freedom to multiply P at will by any
polynomial of degree O(D) that does not vanish identically on V . In particular, by
using polynomials on the bounded complexity set W that do not vanish on V , we
may assume that P vanishes on W , at which point we can remove the role of W ; thus
we now assume that P vanishes at all singular points of V , and our task is to show
that X = {x ∈ V : P(x) �= 0} has O(Dk) components.

As V has complexity O(1), it is not difficult to show (for instance, using an ultra-
limit compactness argument as in [8]) that the (Zariski closure of the) normal bundle

NV := {

(x, v) ∈ Rd × Rd : x ∈ V smooth
R ;v ⊥ TxV

smooth
R

}

of V has complexity O(1) as well.
Now we repeat the argument used to prove Theorem A.1. It suffices to show for

each cube Q that the set
{

x ∈ V ∩ Q : P(x) �= 0
}

has O(Dk) components. The components that touch the boundary of the cube can
again be handled by the induction hypothesis, so we may restrict attention to the
components that are in the interior of the cube. By arguing as in the proof of Theo-
rem A.1, it suffices to show that for generic u ∈ Rd , the function x �→ P(x) − u · x
on V smooth

R ∩ Q has O(Dk) interior critical points.
By the method of Lagrange multipliers, a point x ∈ V smooth

R is a critical point of
x �→ P(x) − u · x if and only if the point (x,∇P(x) − u) lies in NV . On the other
hand, for generic u, the set {x ∈ V : (x,∇P(x)−u) ∈ NV } (which is the intersection
of the codimension k set NV with a generic translate of the graph of ∇P on the



Discrete Comput Geom (2012) 48:255–280 279

dimension k set V ) is finite. As ∇P − u has degree O(D) and NV has complexity
O(1), an application of Bézout’s theorem6 shows that this set has cardinality O(Dk),
and the claim follows. �
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