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Abstract We show that the Delaunay triangulation of a set of n points distributed
nearly uniformly on a p-dimensional polyhedron (not necessarily convex) in d-

dimensional Euclidean space is O(n
d−k+1

p ), where k = � d+1
p+1�. This bound is tight

in the worst case and improves on the prior upper bound for most values of p.

Keywords Delaunay triangulation · Complexity · Upper bound · High dimension ·
Polyhedron · Annular medial axis · Sampling

1 Introduction

Overview The Delaunay triangulation of a set of points is a fundamental geometric
data structure, used in surface reconstruction, mesh generation, molecular modeling,
geographic information systems, and many other areas of science and engineering.
It is well known [12] that the complexity of the Delaunay triangulation of n points

in dimension d is O(n� d
2 �) and that this bound is achieved by distributions of points

along one-dimensional curves such as the moment curve. But points distributed uni-
formly in R

d , for instance, inside a d-dimensional ball, have Delaunay triangulations
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of complexity O(n); the constant factor is exponential in the dimension, but the de-
pendence on the number of points is linear. We are interested in filling in the picture in
between these two extremes, that is, when the points are distributed on a manifold of
dimension 2 ≤ p ≤ d − 1. In this paper we consider the easy case of a p-dimensional
polyhedron P .

Main Result We consider a fixed p-dimensional polyhedron P in d-dimensional
Euclidean space R

d . Our point set S is a sparse ε-sample from P . Sparse ε-sampling
requires the sampling to be neither too sparse nor too dense. Our sampling model
also contains the restriction that every face of P must be ε-sampled, not just those
of the highest dimension. This kind of sampling is used in low dimensions for mesh
generation, see, e.g., [4].

We consider the complexity of the Delaunay triangulation of S as ε → 0, while P

remains fixed, so that n = |S| goes to infinity. The main result in this paper is that the

number of simplices of all dimensions is O(n
d−k+1

p ) where k = � d+1
p+1�. The hidden

constant factor depends, among other things, on the geometry of P , which is constant
since P is fixed. This bound is tight in the worst case. In an earlier abstract [1], we
had an upper bound of O(n(d−1)/p) (with a simpler proof), which is weaker for the
smaller values of 1 < p ≤ d−1

2 and matches the bound in this paper for larger values
d−1

2 < p ≤ d .

Prior Work The complexity of the Delaunay triangulation of a set of points on a
two-manifold in R

3 has received considerable attention, since such point sets arise
in practice, and their Delaunay triangulations are found nearly always to have lin-
ear size. Golin and Na [8] proved that the Delaunay triangulation of a set of points
distributed uniformly at random on the surface of a fixed convex polytope in R

3 has
expected size O(n). They later [7] established an O(n lg6 n) upper bound for the case
in which the points are distributed uniformly at random on the surface of a nonconvex
polyhedron.

Attali and Boissonnat considered the problem using a sparse ε-sampling model
similar to the one we use here, rather than a random distribution. For such a set of
points distributed on a polygonal surface P , they showed that the size of the Delaunay
triangulation is O(n) [2]. In a subsequent paper with Lieutier [3] they considered
“generic” smooth surfaces and showed an upper bound of O(n lgn). A “generic”
surface is one for which every ball with interior empty of surface points has at most
a constant number of surface points on its boundary.

The genericity assumption is important. Erickson considered more general point
distributions, which he characterized by the spread, the ratio of the largest inter-
point distance to the smallest. The spread of a sparse ε-sample of n points from a
two-dimensional manifold is O(

√
n). Erickson proved that the Delaunay triangula-

tion of a set of points in R
3 with spread Δ is O(Δ3). Perhaps even more interest-

ingly, he showed that this bound is tight for Δ = √
n, by giving an example of a

sparse ε-sample of points from a cylinder that has a Delaunay triangulation of size
Ω(n3/2) [6]. This surface is not generic and has a degenerate medial axis.

To the best of our knowledge, our earlier abstract [1] is the only prior result for
d > 3.
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Outline of the Proof We begin with a simple lower bound, which illustrates the
importance of the quantity k = � d+1

p+1� and motivates the upper bound.
At the coarsest level, the proof of the upper bound is similar to that of [1]: we

map Delaunay simplices to the medial axis in such a way that each medial point
can only correspond to a constant number of Delaunay simplices, and then we use
a packing argument on the medial axis. But the tight bound seems to require us to
consider some additional phenomena which occur in higher dimensions, but not in
the familiar settings of dimensions two and three. The most important of these is the
observation that when k = � d+1

p+1� > 2, the vertices of any Delaunay simplex, which

must span R
d , have to be drawn from k > 2 faces of P . This allows us to relate

Delaunay simplices to only the lower-dimensional parts of the medial axis, generated
by k or more faces of P , the k-medial axis. This idea is embodied in Corollary 6.
Because the k-medial axis is lower-dimensional, we can pack it with fewer balls,
giving the tighter bound.

The mapping process, described in Sect. 6, takes a Delaunay ball Σ to a point z

associated with the k-medial axis. We show in Sect. 7 that all of the original sample
points inducing Σ lie near at least one of the projections of z onto the flats spanned
by the faces of P ; we say that z covers the sample points. This covering allows us
to bound the number of Delaunay simplices by the size of the packing on the medial
axis.

To motivate some of the complications in the mapping, let us sketch a simpler
version which produces a point on the k-medial axis but not necessarily one which
covers the sample points. We say that a ball is hollow if its interior does not intersect
the polyhedron P . We begin with the center z of Σ , and the largest hollow ball B

centered at z; B is tangent to at least one face of P . We choose a hyperplane H

containing all of the faces to which B is tangent. Fixing the intersection B ∩ H ,
we move z in a straight line away from H , increasing its radius as necessary, until
B becomes tangent to another face of P . We iterate, stopping when we run out of
degrees of freedom; the final z must lie on the k-medial axis.

But notice that as z moves, the part of B on one side of H grows, while the other
part shrinks. The difficulty is that B might shrink away from some of the original
sample points inducing Σ , and as B recedes the projections of z onto faces of P may
move away as well. In our earlier abstract [1], we started with a single tangent point
and used only one iteration (going only to the 2-medial axis), so that the shrinking part
was entirely within distance ε of the first point of tangency. But during the additional
iterations required for the tight bound, the multiple points of tangency can be far apart
from each other, and the shrinking part of B can be quite large.

To get around this problem, we define in Sect. 4 a new structure related to the
medial axis, the annular k-medial axis. An annulus in R

d is the symmetric difference
between two concentric balls. An annulus is tangent to the boundary of P when either
the inner bounding sphere or the outer bounding sphere of the annulus is tangent to
the boundary of P . It is hollow when the inner bounding sphere is the boundary of
a hollow ball. Just as the medial axis consists of the centers of hollow balls tangent
to the boundary of P at more than one point, the annular medial axis consists of the
centers of hollow annuli tangent to the boundary of P at more than one point.

At the beginning of the mapping process, we start with a hollow annulus with
same center z as Σ , which encloses Σ and is tangent to P in at least one point. In
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each step of the iterative process, now, we move z until either the inner sphere or the
outer sphere of the annulus becomes tangent to a new face. This prevents the spheres
bounding the annulus from shrinking away from the faces of P containing the sample
points inducing the original Delaunay ball Σ . This new mapping procedure produces
a point z on the annular k-medial axis.

The annular k-medial axis is typically unbounded, so to apply a packing argument,
we need to define (in Sect. 5) a bounded subset of it, the trimmed annular k-medial
axis. By definition, this object has dimension at most d − k + 1, and we prove that its
(d − k + 1)-dimensional volume is bounded from above by a constant that does not
depend on ε. It follows that we can construct an ε-sample M of the trimmed annular
k-medial axis with m = O(ε−(d−k+1)) points.

The mapping process in Sect. 6 produces a point z on trimmed annular k-medial
axis. We define the cover of z in Sect. 7 as

⋃

x∈Π(z)

B(x, r),

where Π(z) is the set of all orthogonal projections of z onto the flats spanned by
faces of P , and B(x, r) is the ball centered at x with radius r . We then assign z to
the nearest sample z′ ∈ M and argue that the cover of a point z′ ∈ M , with r = 5dε,
contains only a constant number of points in S. Since each z′ is charged for a constant
number of Delaunay simplices, it follows that the size of the Delaunay triangulation
is bounded from above by the size of M , which is m = O(ε−(d−k+1)). Since our
point set S is a sparse ε-sample from a p-dimensional polyhedron, its cardinality is

n = Ω(ε−p). Eliminating ε gives the O(n
d−k+1

p ) upper bound.
We carefully structure the arguments so that we can avoid making any nondegen-

eracy assumptions on either P or the vertex set S of the Delaunay triangulation. This
means that parts of the annular k-medial axis of a degenerate polyhedron may have
dimension greater than d − k + 1 (which is what one expects in the generic case).
Nonetheless we can show that any simplex of the Delaunay triangulation is mapped
to a part of the annular k-medial axis which does have dimension at most d − k + 1,
by mapping the simplex to an annulus tangent to at least k independent faces (Def-
inition 4). Lemma 5 shows that k independent faces generate a piece of the correct
dimension, and Lemma 14 shows that a simplex can be mapped to an annulus tangent
to k independent faces.

2 Statement of Theorem

To formally state the theorem, we must first define the sampling condition.

2.1 Sampling

Let P ⊆ R denote our input polyhedron, not necessarily convex or connected.1 We
assume that P itself spans R

d , since otherwise we can consider the Delaunay triangu-

1More formally, a p-dimensional polyhedron can be defined as the underlying space of any geometric
simplicial complex of dimension p.
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lation in the subspace which is spanned by P . The flat spanned at a point x is the flat
(affine subspace) H of largest dimension passing through x, such that the intersection
of a neighborhood of x with H is contained in P .

An i-face F of P is a maximal collection of points sharing the same spanning
i-flat. Notice that under this definition, faces are relatively open, faces are not neces-
sarily connected, and every point x ∈ P belongs to a unique face that we denote by
Fx . The 0-faces are the vertices of P .

We say that a set of points S ⊆ P is a λ-sparse ε-sample of P if and only if it
satisfies the following two conditions:

Density: Every point x in P is at distance ε or less to a point in S lying on the closure
of Fx . In other words,

∀x ∈ P,∃s ∈ S ∩ cl(Fx), ‖x − s‖ ≤ ε;
Sparsity: Every closed d-ball with radius 5dε contains at most λ points of S.

The density condition implies that all faces, of all dimensions, are nearly uniformly
sampled, not just the faces with maximal dimension. We treat λ as a constant. As
ε goes to zero, the number n of points in a λ-sparse ε-sample of a p-dimensional
polyhedron is related to ε by n = Θ(ε−p), i.e., n tends to infinity (to see this, consider
any packing of every face of P by balls of radius ε and then extend this packing to a
covering by increasing the radius of each ball to 2ε).

2.2 Main Theorem

We are now ready to state our main result:

Theorem 1 Let S be a λ-sparse ε-sample of a p-dimensional polyhedron P in R
d

with n = |S|. In the worst case, the Delaunay triangulation of S has size Θ(n
d−k+1

p )

where k = � d+1
p+1�.

3 The Lower Bound

We begin with the lower bound, which is comparatively simple and conveys the intu-

ition as to why Θ(n
d−k+1

p ) is the correct bound.

Proof of Lower Bound for Theorem 1 We first construct a polyhedron P and then
examine the complexity of the Delaunay triangulation of a λ-sparse ε-sample on P .

We select a set of d + 1 affinely independent points and partition them into groups
Q1, . . . ,Qk so that groups Q1, . . . ,Qk−1 contain p +1 points each, and Qk contains
between 1 and p + 1 points. Thus it must be that k = � d+1

p+1�.
Let Ci be the convex hull of Qi , and let ci be the dimension of Ci . For all 1 ≤ i <

k, this dimension ci = p, and ck ≤ p. We let the polyhedron P = ⋃k
i=1 Ci ; note that

P indeed has dimension p. Also note that each Ci spans a subspace independent of
the other Cj .
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Now let us consider a λ-sparse ε-sample of P ; let us call this point set S. Now con-
sider choosing one sample point from each of the Ci for 1 ≤ i ≤ k, producing a set X.
The point set X is linearly independent, since the Ci span independent subspaces, so
the convex hull of X is a (k − 1)-simplex σ .

Also, for any X that we can construct this way by picking one sample point si on
each Ci , there is a unique (d − 1)-sphere Σ tangent to P at the si ∈ X. To see this,
notice that being tangent to Ci at si is roughly speaking equivalent to passing through
ci + 1 coincident points, and

k∑

i=1

(ci + 1) = d + 1. (1)

Σ encloses no sample point of S in its interior, since it is tangent to each of the Ci at
a single point. Thus σ must be a Delaunay simplex.

Since Ci contains Ω(ε−ci ) points of S, the number of distinct Delaunay (k − 1)-
simplices that we can construct is at least

Ω
(
ε−c1 × · · · × ε−ck

) = Ω
(
ε−(d−k+1)

) = Ω
(
n

d−k+1
p

)
,

and this is a lower bound on the overall complexity of the Delaunay triangulation. �

4 The Annular Medial Axis

The annular medial axis A M is the key geometric object in our proof of the up-
per bound. The annular medial axis is formed by tangent annuli rather than tangent
spheres. Setting k = � d+1

p+1�, we are particularly interested in A Mk , the part of the
annular medial axis generated by at least k faces of P . If the faces of P were in
general position, it would be fairly simple to establish that A Mk had dimension at
most d − k + 1 everywhere, but when P is degenerate, this is not the case; see Fig. 2.
Instead, we identify the subset of A Mk which is guaranteed to have dimension at
most d − k + 1.

4.1 Definitions

It is clear what it means for a sphere to be tangent in the interior of an open face F

of P ; let us introduce a definition which also handles the boundaries. We denote the
closure of F by cl(F ) and write Aff(F ) for the affine space spanned by F . We say
that a (d − 1)-sphere Σ is tangent to F at point x if both cl(F ) and Aff(F ) intersect
Σ in a unique point x. Since faces are relatively open, this means that x might be
a limit point of F , so that Σ ∩ F = ∅. Note also that a sphere can be tangent to
several faces at x, only one of which is the face Fx containing x (the one of smallest
dimension).

An annulus with center z, inner radius r , and outer radius R is the set of points x

whose distance to the center satisfies r ≤ ‖x − z‖ ≤ R. The boundary of an annulus
consists of two (d − 1)-spheres, and we call the smaller one the inner sphere and the
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Fig. 1 A rectangle and its
annular 2-medial axis,
composed of 16 half-lines,
7 segments, and 8 pieces of
hyperbolas. The annulus A(z, ε)

is tangent to the rectangle at the
two hollow dots

larger one the outer sphere. We say that an annulus A is tangent to F at x if one
of the two spheres bounding A is tangent to F at x (see Fig. 1 or Fig. 6 for a more
intricate example). Point x is called a tangency point of A. An annulus is hollow if
its inner sphere bounds a d-ball whose interior does not intersect P ; notice that P

might intersect the annulus itself. The width of an annulus is the difference between
the outer and inner radii R − r . We define the penetration of an annulus to be the
maximum radius of the intersection of the annulus with a flat, such that the open ball
bounded by the inner sphere remains empty; see Fig. 1. Specifically, the penetration
is

√
R2 − r2. We are mostly concerned with annuli of penetration ε; such an annulus

has width ε2

R+r
.

Definition 2 The annular k-medial axis A Mk of P is the set of points z ∈ R
d for

which the largest hollow annulus of penetration ε centered at z is tangent to at least
k faces of P .

We write A(z, ε) for the largest hollow annulus of penetration ε centered at z.
Figure 1 pictures an example of the annular 2-medial axis in R

2. Observe that this is
a superset of the medial axis, even for ε = 0: the medial axis of the polyhedron is the
set of points z ∈ R

d for which A(z,0) touches the polyhedron in two points or more,
while the annular 2-medial axis with ε = 0 is the set of points z for which A(z,0) is
tangent to two faces of P or more (possibly at the same point).

4.2 Dimension and Degeneracy

To describe the annular medial axis, we use the language of stratifications [9, 10].
Given a subset X ⊆ R

d , a stratification of X is a filtration

∅ = X−1 ⊆ X0 ⊆ · · · ⊆ Xj = X

by subspaces such that the set difference Xi \Xi−1 is an open i-dimensional manifold
(possibly not connected), called the i-dimensional stratum Si of X. For example, the
Voronoi diagram of a point set in R

2 admits a stratification into its cells, edges, and
vertices. Semi-algebraic sets admit a stratification, and since the annular k-medial
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Fig. 2 The box is P , and we
take ε = 0. The set C 4 ⊂ AM4,
consisting of the centers of
annuli tangent to four faces, is
the segment connecting the
hollow dots. It has dimension
one, rather than dimension zero
as we would expect in the
absence of degeneracy

axes of polyhedra are piecewise semi-algebraic, they also admit a stratification. In
this section, we give conditions under which a point z ∈ A Mk belongs to a stratum
of dimension d − k + 1 or less.

If the faces of P were in general position, this would be easy: any z belonging to
the stratum of dimension d − k + 1 would be the center of an annulus tangent to k

faces. But in degenerate situations an annulus tangent to k faces might belong to a
stratum of dimension greater than d − k + 1, as illustrated in Fig. 2. So we need to
make a more careful argument.

Recall that A Mk is defined as the set of points for which A(z, ε) is tangent to at
least k faces. Let us concentrate instead in this section on the subset Ck , defined as
the set of points z such that annulus A(z, ε) is tangent to exactly k faces of P . When
does Ck form a (d − k + 1)-dimensional stratum?

We start by writing down some equations that determine Ck locally around z. Since
A(z, ε) is tangent to exactly k faces F1, . . . ,Fk , there exists δ > 0 such that every
face of the polyhedron not in {F1, . . . ,Fk} is at distance at least δ to the boundary of
A(z, ε). Using a compactness argument as in [11], it follows that for a point y close
enough to z, the only faces that might possibly be tangent to annulus A(y, ε) are
F1, . . . ,Fk . We set ei = −ε2 if Fi is tangent to the outer sphere of A(z, ε) and ei = 0
if Fi is tangent to the inner sphere of A(z, ε). Since any annulus A(y, ε) with y ∈ Ck

in the neighborhood of z is tangent to both Fi and Fk , Ck thus obeys the following
k − 1 equations:

gi(y) = d(y,Fi)
2 − d(y,Fk)

2 + ei − ek = 0

for 0 < i < k. The equations expressing the fact that A(y, ε) is tangent to any other
pair Fi,Fj are redundant. Each gi(y) is a polynomial of degree two, so every neigh-
borhood in Ck is a subset of the intersection of k − 1 quadrics. In general, k − 1
hypersurfaces meet at point z in a (d − k + 1)-manifold, but this might not hold in
the presence of degeneracies.

Lemma 3 Suppose that z ∈ Ck is the center of an annulus A(z, ε) tangent to the
polyhedron at k affinely independent points x1, . . . , xk . Then the neighborhood of z
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in Ck is a (d − k + 1)-manifold. Furthermore, the tangent space to Ck at z is the set
of vectors orthogonal to the affine space spanned by x1, . . . , xk .

Proof In a small neighborhood of z, Ck coincides with the zero-set of the functions
gi(y). Let Fi = Fxi

be the face to which xi belongs. One can check that the gradient
of gi(y) is 2(xk − xi). Since the xi are affinely independent for 1 ≤ i ≤ k, we have
that the Jacobian of the map g = (g1(y), . . . , gk−1(y)) has rank k − 1, so the implicit
function theorem implies that its zero-set g−1(0) is a (d − k + 1)-dimensional man-
ifold in a neighborhood of z. Furthermore, the tangent space of g−1(0) at z is the
null space of the derivative Dg(z), which is the set of vectors orthogonal to the affine
space spanned by x1, . . . , xk . �

While the assumption that the tangency points of A(z, ε) are independent is suf-
ficient to show that z belongs to the stratum of dimension at most d − k + 1, this
condition is not necessary. Again, this is a phenomenon that occurs only in high di-
mension. As an example of an annulus A(z, ε) for which the tangency points are not
independent but the dimension of the stratum containing z remains small, let us con-
sider the following example in R

6. The polyhedron P consists of segments of four
lines, represented parametrically by (0,0, s,0,0,0), (1,0,0, t,0,0), (0,1,0,0, u,0),
and (1,1,0,0,0, v) with −1 ≤ s, t, u, v ≤ 1. Let us take ε = 0 and consider the part
of C 4 consisting of points z with A(z, ε) tangent to the interiors of all four line seg-
ments. This is a three-dimensional manifold, as one would expect, and at most points
z in this portion of A M3, the four points of tangency span a three-dimensional sub-
space. But the point z = (1/2,1/2,0,0,0,0) also belongs to this part of C 4, and its
points of tangency all lie in a common 2-flat. Nonetheless, z is a regular point of Ck ,
and Ck has dimension three in the neighborhood of z. This example illustrates why
we need to consider not just the local points of tangency in the neighborhood of z but
also the tangent faces.

Definition 4 We say that k faces F1, . . . ,Fk are independent if none of them is con-
tained in the affine space spanned by the union of the others, that is, for 1 ≤ i ≤ k,

Fi � Aff(F1 ∪ · · · ∪ F̂i ∪ · · · ∪ Fk),

where the symbol ̂ over Fi indicates that it is omitted in the union.

For example, the four segments in R
6 which we just considered are independent.

Lemma 5 Suppose that A(z, ε) is tangent to exactly k faces. If those k faces are
independent, then Ck is a manifold of dimension at most d − k + 1 in a neighborhood
of z.

Proof Recall that Ck is the set of points z ∈ R
d such that A(z, ε) is tangent to exactly

k faces of P . We partition Ck into k pieces (some of which might be empty), as
follows. We write Si for the set of points y ∈ Ck whose tangency points span a space
of dimension i. Thus we have Ck = ⋃

i Si for 0 ≤ i ≤ k − 1. All we need to prove is
that in the neighborhood of any z ∈ Si , Si has dimension at most d − k + 1 for all
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Fig. 3 Notation for the proof of
Lemma 5. A(y,0) is tangent to
F1, F2, and Fj

0 ≤ i ≤ k − 1. By Lemma 3, we already know that Sk−1 is a (d − k + 1)-dimensional
manifold, so let us consider i < k − 1. The idea of this proof is to define Si , in the
neighborhood of z, as the intersection of a family of surfaces and to compute the
dimension of the intersection.

Let F1, . . . ,Fk be the k faces tangent to A(z, ε). Using the same compactness
argument as before, there exists a small neighborhood U of z in R

d such that for
every point in w ∈ Si ∩ U , the only faces possibly tangent to the annulus A(w) are
F1, . . . ,Fk .

For y ∈ Si ∩ U , let xi(y) be the orthogonal projection of y onto Aff(Fi)

(see Fig. 3). We can always reduce the size of U so that the tangency points
x1(y), . . . , xk(y) span an affine space of dimension i; without loss of generality, let
us assume that the first i tangency points x1(y), . . . , xi(y) are affinely independent.
The first surface we construct is the locus of annulus centers tangent just to the faces
F1, . . . ,Fi . Specifically, let P ′ = cl(F1) ∪ · · · ∪ cl(Fi) and write S ′ for the set of
points which are the center of a hollow annulus (with respect to P ′) of penetration
ε tangent to the i faces F1, . . . ,Fi . By Lemma 3, S ′ is a (d − i + 1)-manifold in a
neighborhood of y. Clearly Si ⊆ S ′.

Now, for each of the other Fj , we construct another surface containing y. For
i < j ≤ k, the point xj (y) is an affine combination of x1(y), . . . , xi(y) and therefore
belongs to

Xj = Aff(F1 ∪ · · · ∪ F̂j ∪ · · ·Fk−1).

Since Fj ∩Xj contains the tangency point xj (y), it is not empty. We define Hj as the
set of points w ∈ R

d such that the nearest point to w on Aff(Fj ) lies in Aff(Fj ∩Xj),
that is, the set of points that, like y, fall into Aff(Fj ∩Xj) when projected to Aff(Fj ).
Hj is an affine space, orthogonal to Fj , of dimension d − dimFj + dim(Fj ∩ Xj).

So all y ∈ Ck in the neighborhood of z lie in S ′ ∩ Hi+1 ∩ Hi+2 ∩ · · · ∩ Hk . Let
us prove that this intersection has dimension at most d − k + 1. In Lemma 3, we
observed that the normal space to S ′ at y is spanned by the i −1 vectors v2 = x1(y)−
xi(y), . . . , vi = xi−1(y) − xi(y). For i + 1 ≤ j ≤ k, we can always find a vector vj

in the normal space to Hj , by choosing vj in the tangent plane to Fj and orthogonal
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to Fj ∩ Xj . Because the Fj are independent faces, the vectors v2, . . . , vk are linearly
independent, and all belong to the normal space of the intersection S ′ ∩Hi+1 ∩Hi+2 ∩
· · · ∩ Hk . It follows that the intersection is a manifold of dimension at most d − k + 1
and that Si is a stratified space of dimension at most d − k + 1. �

We deduce immediately the following corollary:

Corollary 6 Let z ∈ A Mk and suppose that A(z, ε) is tangent to j faces amongst
which k faces are independent. Then, z lies on a stratum of A Mk with dimension at
most d − k + 1.

5 Trimmed Annular Medial Axis

We have established that the subset of A Mk induced by independent faces has the
“right” dimension d − k + 1, which is necessary to our plan of counting Delaunay
simplices via a packing argument. It may, however, extend to infinity and hence have
infinite (d − k + 1)-dimensional volume. In this section we define a bounded (d −
k + 1)-dimensional subset of A Mk , which we call the trimmed annular k-medial
axis T A Mk . We end this section by proving that the volume of T A Mk is bounded
by a constant that does not depend on ε.

We need some definitions. We say that a hyperplane supports X ⊆ R
d if it has

nonempty intersection with the boundary of X and empty intersection with the inte-
rior of X.

Definition 7 A point z ∈ A Mk and the corresponding annulus A(z, ε) are non-
essential if there exists a hyperplane supporting the convex hull of P and containing
all faces tangent to A(z, ε). Otherwise, the point z and the corresponding annulus
A(z, ε) are essential.

An annulus A(z, ε) may be essential because it is tangent to a face F not on
the boundary of the convex hull and/or because the union of faces tangent to A(z, ε)

spans R
d ; see Fig. 4. Since we assume that P spans R

d (Sect. 2.1), the set of essential
points is nonempty.

Definition 8 The trimmed annular k-medial axis, T A Mk , is the set of essential
points lying on the i-dimensional strata of the annular k-medial axis for i ≤ d −k+1.

We begin our proof that T A Mk is bounded and that this bound does not depend
on ε with two simple, and similar, technical lemmas.

Lemma 9 Let A be an annulus tangent to a hyperplane H at point x and whose
inner sphere does not enclose point q , with q and the center of A on the same side
of H . Let R and r be respectively the outer and inner radii of A. Suppose that there
exist two scalars D and h > 0 such that d(q,H) ≥ h, ‖x − q‖ ≤ D, and R − r ≤ h

2 .

Then, the inner radius of A satisfies r ≤ D2

h
.
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Fig. 4 A polyhedron formed of
four faces and its annular
2-medial axis, taking ε to be
zero. The set of essential points
forms the closed piece of
parabola consisting of points
equidistant to F0 and F3. The
two endpoints are essential
because the spheres centered at
the endpoints are also tangent to
F3

Fig. 5 Notation for the proof of
Lemma 9

Proof We first consider what happens when the inner sphere of A passes through q

and point x lies on the outer sphere of A (see Fig. 5). Let y be the intersection of the
inner sphere of A with the segment connecting x to the center z of A. Let c be the
midpoint of the segment yq . Since the angle between the two vectors c − z and q − z

is equal to the angle between the vector q − y and the hyperplane H , we have

‖q − y‖
2r

= d(q,H) − (R − r)

‖q − y‖ .

The bound on r follows immediately.
For the case in which x lies on the inner sphere of A, apply the same argument,

assuming that r = R and x = y. �

Lemma 10 Let A(z, ε) be tangent to two hyperplanes Hi,Hj at points xi, xj such
that their normal vectors vi, vj , pointing toward z, have angle difference ∠(vi, vj ) >

α. Let D be the diameter of P . Then the inner radius r of A(z, ε) is at most D
sinα/2 .

Proof If xi is tangent to the larger sphere of A(z, ε), we let yi be the intersection point
of segment xi, z with the inner sphere; similarly we define yj if xj is tangent to the
outer sphere. In any case, we consider the distance D′ between the two points on the
inner sphere and note that D′ ≤ D. We have sinα/2 = D′/2, so that r = d(yi, z) ≤

D
2 sinα/2 . �
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We plan to show that the radius of any essential annulus can be bounded using
one or the other of these technical lemmata. Let F = {Fi}i∈I be the set of faces
of P tangent to A(z, ε). Each Fi is tangent to A(z, ε) at a point xi , and we define
the normal vi to A(z, ε) at xi to be the unit vector with direction of z − xi , i.e.,
vi = (z − xi)/‖z − xi‖.

We will choose a constant α later; it will depend only on P and not on z or ε.
If there is a pair of normals vi, vj such that ∠(vi, vj ) > α, we bound the radius of
A(z, ε) using Lemma 10, with D taken to be the diameter of P . So it only remains to
bound the size of an essential annulus, for which every pair of normals differs by at
most α, which is done in Lemma 12.

We begin by characterizing an annulus as essential or nonessential using only its
set F of tangent faces, irrespective of z and ε. Let S

d−1 = {v ∈ R
d | ‖v‖ = 1} be the

space of direction vectors in R
d . To each face Fi of the polyhedron P , we associate

the function δFi
: S

d−1 → R which maps every unit vector v ∈ S
d−1 to

δFi
(v) = max

{〈q − x, v〉 | ∀x ∈ cl(Fi),∀q ∈ P
}
.

Roughly speaking, δFi
(v) represents the distance between an extreme point in direc-

tion v on P and an extreme point in direction −v on the closure of Fi . Notice that
because Fi ⊂ P , we have δFi

(v) ≥ 0 for all v, since zero is achieved for any x ∈ Fi

by choosing q = x. In addition, we have δFi
(v) = 0 exactly when every point x ∈ Fi

is an extreme point of P in direction v, that is, when there is a supporting plane of
the convex hull of P containing Fi . Finally, we observe that δFi

(v) is continuous,
and, since it is defined on the compact space S

d−1, it is uniformly continuous (by the
Heine–Cantor theorem).

We now consider any set F = {Fi}i∈I of faces. Let

δF (v) = max
∑

i∈I

δFi
(v).

As the maximum of a set of continuous nonnegative functions, this is again a contin-
uous nonnegative function.

Observation 11 The annulus A(z, ε) with tangent face set F is nonessential if and
only if there exists a unit vector v such that δF (v) = 0.

Proof We have δF (v) = 0 if and only if δFi
(v) = 0 for all i. This happens when the

tangent plane to P in direction v contains all of the Fi ∈ F . This means, by definition,
that A(z, ε) is nonessential. �

Thus, since A(z, ε) is essential, we must have δF (v) > 0 for all unit vectors v.
Since the map δF is continuous and defined on a compact set, it attains a global
minimum, and this minimum is positive. We define

2h = min
F

min
v

δF (v),

where v ranges over all unit vectors, and F ranges over all subsets of faces such that
F is not contained in a hyperplane supporting the convex hull of P . We have h > 0.
We use this constant, dependent on P , in the following lemma.
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Lemma 12 There exists a constant α, dependent on the geometry of P but not on ε,
such that for any essential annulus A(z, ε) for which every pair vi, vj of its normal

vectors has angle distance ∠(vi, vj ) < α, the distance d(z,P ) < D2

h
, where D is the

diameter of P .

Proof From the fact that A(z, ε) is essential, we can conclude that for any of the
Fi ∈ F , there is some vj such that δFi

(vj ) > 2h. If δFi
(vi) > 2h, we are done, but

this is not guaranteed to be the case. So now we use the fact that the lemma assumes
that the directions of the vj are all similar. Since δFi

is uniformly continuous, we can
select an αFi

(again depending on F and not on z or ε) such that

∠(vi, vj ) < αFi
=⇒ ∣∣δFi

(vi) − δFi
(vj )

∣∣ < h.

We define α = minF αF over all faces F of the polyhedron.
With this choice of α, the fact that δFi

(vj ) > 2h implies that δFi
(vi) > 2h−h = h.

This in turn implies that there exists a point q ∈ P such that d(q,Hi) ≥ h, where Hi

is the hyperplane containing Fi with normal vi . So we can apply Lemma 9 to bound
the inner radius of A(z, ε). �

Combining Lemma 10 and Lemma 12, we conclude that the set of essential points

is bounded and at distance at most max{ D
sinα/2 , D2

h
} from P . Let B(P ) be the smallest

ball containing the set of essential points. The T A Mk is a stratified set, of dimension
at most d − k + 1, in B(P ). Its i-dimensional stratum for 1 ≤ i ≤ d − k + 1 is the
union of pieces of semi-algebraic sets, each of dimension i, formed by the intersection
of at least k polynomials, each of degree at most two. The number of such pieces is
bounded by a function of P (corresponding to the choices of at least k faces producing
the polynomials) that is independent of ε. Each piece is also trimmed by B(P ). The i-
dimensional volume of the intersection of a ball of radius R with an algebraic variety
of dimension i formed by m polynomials of bounded degree is bounded by a function
of i,m, and R (see [5], Lemma 7.4). So the overall i-dimensional volume of the
stratum is at most the sum of these trimmed varieties and hence is itself bounded by
some function of the geometry of P , independent of ε.

6 Mapping Delaunay Spheres to T AMk

The goal of this section is to assign every Delaunay sphere Σ to some point z on the
trimmed annular k-medial axis. We begin with a quick geometric lemma.

Lemma 13 A Delaunay sphere Σ with center z1 is contained in the annulus A(z1, ε)

.

Proof Let x be a point in P with minimum distance to z1, and let s be the sample
point in S ∩ cl(Fx) closest to x. The distance ‖x − s‖ ≤ ε, and therefore s ∈ A(z1, ε).
Because Σ encloses no sample point, Σ ⊆ A(z1, ε). �
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It is the preceding simple lemma which requires the restrictive sampling require-
ment that the faces of all dimensions must be sampled; if Fx was a subface of some
larger-dimensional face F , and not itself sampled, a hollow annulus with center z1
could contain a large portion of Fx , extending far away from the projection x of z1
onto Fx and F . While we could find a sample s on F within distance ε of x, s would
be contained in an annulus of width ε but not however in the annulus A(z1, ε) of
penetration ε (recall Sect. 4.1).

We use the following incremental construction to associate an annulus, called
Expansion(Σ), with each Delaunay sphere Σ ; we will then prove that the center
z of Expansion(Σ) lies in T A Mk and that Σ ∩ P is contained in a set that we call
the cover of z, the definition of which depends on d,p, and ε.

Recall that we assume that P spans R
d (Sect. 2.1) and that p is the dimension of

P . Initially, we let z1 be the center of Σ . The inner sphere B(z1, r) of the annulus
A(z1, ε) is tangent to P in at least one point x, contained in a face F1 = Fx . At each
step j of the construction, we perturb the annulus to find another tangent face, and
we increase the dimension of the subspace spanned by {F1, . . . ,Fj } by at least one.

At an arbitrary step of the construction, we have a set {F1, . . . ,Fj } of j faces tan-
gent to A(zj , ε). If the dimension of Aff({F1, . . . ,Fj }) < d , we can find a hyperplane

H that contains their union
⋃j

i=1 Fi (possibly there are many such H ; we can pick
one arbitrarily). Let L be the line orthogonal to H and containing the current zj . Con-
sider any annulus A(y, ε) centered on L in the neighborhood of zj . Since A(y, ε) also
has penetration ε, its intersection A(y, ε) ∩ H = A(zj , ε) ∩ H , and A(y, ε) remains
tangent to F1, . . . ,Fj . Consider the y, nearest to zj , such that A(y, ε) is tangent to
an additional face Fj+1, not contained in H . Such a y must exist, since P spans R

d .
We set zj+1 = y.

When there is a set of faces F1, . . . ,Fj tangent to A(zj , ε) that spans R
d , we stop.

Clearly this occurs after at most d steps. We associate Σ with the final annulus: define
Expansion(Σ) = A(zj , ε) for the final zj .

Lemma 14 For every Delaunay sphere Σ , the center z of the annulus Expansion(Σ)

belongs to the trimmed annular k-medial axis T A Mk .

Proof Since we know that there is a set of faces {F1, . . . ,Fj } tangent to A(z, ε) =
Expansion(Σ) that span R

d , we know that they cannot all be contained in a hyper-
plane supporting the convex hull, and this implies that z is essential. The crux of the
proof is showing that A(z, ε) is tangent to at least k independent faces. This will es-
tablish that z belongs to the (d − k + 1)-dimensional stratum of A Mk and hence to
T A Mk .

Initially, since any single face is independent, the set {F1} is independent. The
dimension of Aff({F1, . . . ,Fj+1}) is at least one greater than the dimension of
Aff({F1, . . . ,Fj }), since Aff({F1, . . . ,Fj }) ⊂ H , and Fj+1 is not contained in H .
This also implies that at each step, Fj+1 is independent of F1, . . . ,Fj . However,
it is possible that some Fi in {F1, . . . ,Fj } may be spanned by some subset of
{F1, . . . ,Fj+1}, for instance, if Fi ⊆ Fj+1. Any such Fi can be removed, with
Aff({F1, . . . ,Fj+1} − {Fi}) = Aff({F1, . . . ,Fj+1}). Let F be the remaining set of
independent faces.
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Fig. 6 Notation for the proof of
Lemma 15. The annulus is
tangent to the four faces F0, F1,
F2, and F3

We claim that at the end of the construction, there are at least k independent
faces in F for k = � d+1

p+1�. Consider adding each Fi to the F in turn. Each face
has dimension at most p, so that adding Fi increases the dimension of the union⋃{F1, . . . ,Fi−1} by at most p + 1 (adding to the subspace basis a vector from the
previous subspace Aff({F1, . . . ,Fi−1}) to some point in Fi and then a set of at most
p vectors spanning Fi ). So the number of independent faces required to span all of
d-dimensional space is at least k = � d+1

p+1�.
This establishes that the final A(z, ε) is tangent to at least k independent faces. �

7 Covering Delaunay Simplices

Now we would like to relate the intersection Expansion(Σ) ∩ P back to the original
Delaunay sphere Σ . We do this by defining the cover of a point z (roughly its region
of influence on P ) and then showing that the intersection Σ ∩ P is contained in the
cover of the annulus Expansion(Σ) centered at a point z ∈ T A Mk .

So let us begin by defining the cover of a point z. Write πx(z) for the orthogonal
projection of z onto the flat supporting the face Fx containing x in P and let Π(z) =
{πx(z) | x ∈ P } be the set of orthogonal projections of z onto the flats supporting all
faces of P . For any nonnegative number w, called the radius of the cover, we define
the w-cover as a union of balls:

Cover(z,w) =
⋃

x∈Π(z)

B(x,w).

We say that x is an anchor point of z if x ∈ A(z, ε) and πx(z) = x. Thus, anchor
points of z form a subset of Π(z) that contains the tangency points of the annulus
with the polyhedron and possibly other points of P ∩ A(z, ε). Now we establish that
any point in P ∩ A(z, ε) must be close to an anchor point of z.
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Fig. 7 On the upper left, three
annuli centered at zi , y, and
zi+1 that share the same
intersection with a
hyperplane H . On the lower
right, intersection of the three
annuli with the tangent space
passing through xi . The
restriction of those intersections
to H− are nested

Lemma 15 For every point x ∈ P ∩ A(z, ε), there exists an anchor point y of z in
the closure of Fx such that

‖x − y‖ ≤ (dimFx − dimFy + 1)ε.

Proof The proof is by induction over the dimension dx = dimFx of the face Fx

containing x. If dx = 0, the result holds for y = x. Suppose that dx > 0 and let q =
πx(z) be the orthogonal projection of z onto Aff(Fx). We distinguish two cases: (1)
if q ∈ Fx , the segment xq lies inside A(z, ε), and therefore ‖x − q‖ ≤ ε; and the
result holds for y = q . (2) If q �∈ Fx , we consider the point y ∈ P on the segment
xq , which is closest to x on the boundary of Fx (as in Fig. 6). Since the segment
xy is contained in A(z, ε), this implies ‖x − y‖ ≤ ε. Furthermore, since y belongs
to the boundary of Fx , the dimension dy < dx . We apply our induction hypothesis:
cl(Fy) contains an anchor point w of z with ‖y − w‖ ≤ (dimFy − dimFw + 1)ε, so
‖x − w‖ ≤ ε + (dimFy − dimFw + 1)ε, which gives the result. �

The preceding lemma shows that any point in P ∩ A(z, ε) is at distance at most
(p+1)ε to an anchor point of z. Thus, P ∩A(z, ε) ⊆ Cover(z, (p+1)ε). From there,
we show how to cover a Delaunay sphere using an annulus centered on the trimmed
medial axis.

Lemma 16 For every Delaunay sphere Σ , we have Σ ∩ P ⊆ Cover(z,4dε) where z

is the center of Expansion(Σ).
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Proof Again, this follows from the construction of A(zj , ε) = Expansion(Σ). Ini-
tially, z1 is the center of Σ . By Lemma 13, Σ ∩P ⊂ A(z1, ε), and by Lemma 15, this
implies that for every point x0 ∈ Σ ∩P , there exists an anchor point x1 of z such that
‖x0 − x1‖ ≤ (dimFx0 − dimFx1 + 1)ε. In particular, Σ ∩ P ⊆ Cover(z1, (p + 1)ε).
Now we need to show that as we proceed from zi to zi+1, Σ ∩P remains covered for
1 ≤ i < j . So we construct a sequence of j points x1, x2, . . . , xj such that xi+1 is an
anchor point of zi+1 and

‖xi − xi+1‖ ≤ (dimFxi
− dimFxi+1 + 2)ε (2)

for all 1 ≤ i < j . For simplicity, we write Fi = Fxi
and di = dimFi . Let H be the hy-

perplane used during the construction of zi+1 and which contains the union
⋃i

l=1 Fl .
Let H+ be the closed half-space bounded by H in the direction zi+1 − zi , with H−
being the open half space on the other side. We consider two cases:

1. The original anchor point xi ∈ H+, including the case in which xi ∈ H . Let
Ri be the outer radius of A(zi, ε). The intersection H+ ∩ B(zi,Ri) ⊆ H+ ∩
B(zi+1,Ri+1), and xi is of course outside both inner balls, so xi remains in
the annulus A(zi+1, ε). It may no longer be an anchor point of zi+1, but by
Lemma 15, there exists an anchor point xi+1 of zi+1 on the closure of Fi such
that ‖xi − xi+1‖ ≤ (di − di+1 + 1)ε.

2. The case in which xi ∈ H− is illustrated in Fig. 7. Let us begin by considering
the intersections D = Aff(Fi) ∩ A(zi, ε) and D′ = Aff(Fi) ∩ A(zi+1, ε). Since xi

is an anchor point contained in A(zi, ε), the intersection D is a di -dimensional
ball of radius at most ε, with center xi . The annulus is shrinking on this side
of H , implying D′ ∩ H− ⊆ D ∩ H−. It is not possible for D′ ∩ cl(Fi) to be
empty, since that would require there has been some last point at which the annulus
A(y, ε), with y on the segment connecting zi and zi+1, was in contact with cl(Fi),
contradicting the choice of zi+1 as the annulus with the first new tangent point.
Since D′ ∩ cl(Fi) is nonempty, it must contain some point p, and by Lemma 15,
there exists an anchor point xi+1 of zi+1 on the closure of Fi such that ‖p −
xi+1‖ ≤ (di − di+1 + 1)ε. Since p ∈ D′ ⊆ D and D is a ball centered at xi with
radius at most ε, we have ‖xi − p‖ ≤ ε. The triangle inequality then gives us
inequality (2).

To summarize, for every point x0 ∈ Σ ∩P , we have constructed a sequence of points
x1, x2, . . . , xj such that xi is an anchor point of zi for all 1 ≤ i ≤ j , ‖x0 − x1‖ ≤
(d0 − d1 + 1)ε, and ‖xi − xi−1‖ ≤ (di − di−1 + 2)ε. Thus, ‖x0 − xj‖ ≤ (d0 − dj +
1 + 2(j − 1))ε. Since the number of steps in the construction is bounded by d , i.e.,
j − 1 ≤ d , we get ‖x0 − xj‖ ≤ (3d + 1)ε, yielding the result. �

8 Size of Delaunay Triangulation

To establish the upper bound on the number of Delaunay simplices, it remains only
to combine what we know about the size of T A Mk with our method of mapping
Delaunay simplices to T A Mk .
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We first consider a sample M of the trimmed annular k-medial axis T A Mk , such
that every point x ∈ T A Mk has a sample within distance ε and such that the number
of samples in a ball of radius O(ε) centered at x is at most λ (unlike our original sam-
ple S of P , it is not necessary to sample the lower-dimensional strata of T A Mk). The
size m = |M| is O(ε−(d−k+1)) with k = � d+1

p+1�. This follows from the fact that the

dimension of T A Mk is d − k + 1 and from the results in Sect. 5, which established
that the volume of T A Mk is bounded by a constant that does not depend on ε.

Next, we map each Delaunay simplex σ ∈ Del(S) to a point z ∈ M . Consider the
Delaunay sphere Σ passing through the vertices of σ . Lemma 14 and Lemma 16 tell
us that the Delaunay sphere Σ associated with σ belongs to Cover(z,4dε) for some
point z ∈ T A Mk , where z is an arbitrary point not belonging to M . But there must
be some z′ ∈ M at distance at most ε from z.

Lemma 17 For every pair of points z and z′ with ‖z − z′‖ ≤ ε,

Cover(z,wε) ⊆ Cover
(
z′, (w + 1)ε

)
.

Proof Recalling that πx(z) is the orthogonal projection of z onto the tangent plane to
P at x, we have ‖πx(z) − πx(z

′)‖ ≤ ‖z − z′‖ ≤ ε. The claim follows immediately. �

Using Lemma 17 and Lemma 16, we get that for d ≥ 1, there exists a point z′ ∈ M

such that

Σ ∩ P ⊆ Cover(z′,5dε).

The cover of z′ is a union of d-balls, each with radius 5dε, at most one for each
face of the polyhedron, and therefore it contains a constant number of points of S.
So the number of simplices that we can form by picking points in the cover of z′ is
also a constant. This means that only a constant number of Delaunay simplices can
be charged to each point z′ ∈ M and that the size of the Delaunay triangulation is
proportional to the size m of M .

Recall that the number of points in a λ-sparse ε-sample S of a p-dimensional
polyhedron P is n = Θ(ε−p) and that the i-faces of P have Θ(ε−i ) points of S.
Using n = Ω(ε−p), we get that the number of Delaunay simplices is

O(m) = O
(
ε−(d−k+1)

) = O
(
n

d−k+1
p

)
,

where k = � d+1
p+1�.

9 Conclusion

This paper answers only the first of many possible questions about the complexity of
the Delaunay triangulations of points distributed nearly uniformly on manifolds. It
would be interesting to establish a bound which does not require all faces of P to be
sampled. Similar bounds for smooth surfaces rather than polyhedra would be of more
practical interest. The proof in this paper seems to rely critically on some properties
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specific to polyhedra, particularly that sample points on k faces are needed to form a
simplex, so other techniques will be needed for the cases of more general manifolds
of dimension 1 < p < d .
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