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Abstract Let R be a real closed field, P , Q ⊂ R[X1, . . . ,Xk] finite subsets of poly-
nomials, with the degrees of the polynomials in P (resp., Q) bounded by d (resp.,
d0). Let V ⊂ Rk be the real algebraic variety defined by the polynomials in Q and
suppose that the real dimension of V is bounded by k′. We prove that the number
of semi-algebraically connected components of the realizations of all realizable sign
conditions of the family P on V is bounded by

k′∑

j=0

4j

(
s + 1

j

)
Fd,d0,k,k′(j),

where s = card P , and

Fd,d0,k,k′(j) =
(

k + 1

k − k′ + j + 1

)
(2d0)

k−k′
dj max{2d0, d}k′−j + 2(k − j + 1).

In case 2d0 ≤ d , the above bound can be written simply as

k′∑

j=0

(
s + 1

j

)
dk′

dk−k′
0 O(1)k = (sd)k

′
dk−k′

0 O(1)k
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(in this form the bound was suggested by Matousek 2011). Our result improves in
certain cases (when d0 � d) the best known bound of

∑

1≤j≤k′

(
s

j

)
4j d(2d − 1)k−1

on the same number proved in Basu et al. (Proc. Am. Math. Soc. 133(4):965–974,
2005) in the case d = d0.

The distinction between the bound d0 on the degrees of the polynomials defining
the variety V and the bound d on the degrees of the polynomials in P that appears in
the new bound is motivated by several applications in discrete geometry (Guth and
Katz in arXiv:1011.4105v1 [math.CO], 2011; Kaplan et al. in arXiv:1107.1077v1
[math.CO], 2011; Solymosi and Tao in arXiv:1103.2926v2 [math.CO], 2011; Zahl in
arXiv:1104.4987v3 [math.CO], 2011).

Keywords Semi-algebraic sets · Sign conditions · Connected components · Betti
numbers

1 Introduction

Let R be a real closed field. We denote by C the algebraic closure of R. Let P be a
finite subset of R[X1, . . . ,Xk]. A sign condition on P is an element of {0,1,−1}P .

The realization of the sign condition σ in a semi-algebraic set V ⊂ Rk is the semi-
algebraic set

R(σ,V ) =
{
x ∈ V

∣∣ ∧

P∈P
sign

(
P(x)

) = σ(P )

}
. (1.1)

More generally, given any first order formula Φ(X1, . . . ,Xk), the realization of Φ

in a semi-algebraic set V ⊂ Rk is the semi-algebraic set

R(Φ,V ) = {
x ∈ V | Φ(x)

}
. (1.2)

We denote the set of zeros of P in Rk (resp., in Ck) by

Zer
(

P ,Rk
) =

{
x ∈ Rk

∣∣ ∧

P∈P
P(x) = 0

}

(
resp., Zer

(
P ,Ck

) =
{
x ∈ Ck

∣∣ ∧

P∈P
P(x) = 0

})
.

The main problem considered in this paper is to obtain a tight bound on the number
of semi-algebraically connected components of the realizations of all realizable sign
conditions of a family of polynomials P ⊂ R[X1, . . . ,Xk] in a variety Zer(Q,Rk)

having dimension k′ ≤ k, in terms of s = card P , k, k′ and the degrees of the polyno-
mials in P and Q.

http://arxiv.org/abs/arXiv:1011.4105v1
http://arxiv.org/abs/arXiv:1107.1077v1
http://arxiv.org/abs/arXiv:1103.2926v2
http://arxiv.org/abs/arXiv:1104.4987v3
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1.1 History and Prior Results

The problem of bounding the number of semi-algebraically connected components
(as well as the higher Betti numbers) has a long history. The initial results were ob-
tained by Oleı̆nik and Petrovskiı̆ [20], and later by Thom [23] and Milnor [19], who
proved a bound of O(d)k on the sum of the Betti numbers of any real algebraic variety
in Rk defined by polynomials of degree at most d . This result has been generalized
to arbitrary semi-algebraic sets in several different ways. The reader is referred to [8]
for a survey of results in this direction and the references therein.

In [21], Pollack and Roy proved a bound of
(
s
k

)
O(d)k on the number of semi-

algebraically connected components of the realizations of all realizable sign condi-
tions of a family of s polynomials of degrees bounded by d . The proof was based
on Oleı̆nik–Petrovskiı̆–Thom–Milnor bounds for algebraic sets, as well as some de-
formation techniques and general position arguments. Similar results due to Alon [1]
and Warren [26] only on the number of realizable sign conditions were known before.

It was soon realized that in some applications, notably in geometric transversal
theory, as well as in bounding the complexity of the configuration space in robotics,
it is useful to study the realizations of sign conditions of a family of s polynomials in
R[X1, . . . ,Xk] restricted to a real variety Zer(Q,Rk) where the real dimension of the
variety Zer(Q,Rk) can be much smaller than k. In [6], it was shown that the number
of semi-algebraically connected components of the realizations of all realizable sign
condition of a family, P ⊂ R[X1, . . . ,Xk] of s polynomials, restricted to a real variety
of dimension k′, where the degrees of the polynomials in P ∪ {Q} are all bounded
by d , is bounded by

(
s
k′
)
O(d)k . This last result was made more precise in [5] where

the authors bound (for each i) the sum of the ith Betti number over all realizations
of realizable sign conditions of a family of polynomials restricted to a variety of
dimension k′ by

∑

0≤j≤k′−i

(
s

j

)
4j d(2d − 1)k−1.

Notice that there is no undetermined constant in the above bound, and that it general-
izes the bound in [6] which is the special case with i = 0. The technique of the proof
uses a generalization of the Mayer–Vietoris exact sequence in conjunction with the
Oleı̆nik–Petrovskiı̆–Thom–Milnor bounds on the Betti numbers of real varieties.

In a slightly different direction, an asymptotically tight bound (asymptotic with
respect to the number of polynomials with fixed degrees and number of variables)

∑

σ∈{0,1,−1}P

b0
(
σ,Rk

) ≤ (2d)k

k! sk + O
(
sk−1)

was proved in [10]. This bound has the best possible leading term (as a function
of s) but is not optimal with regards to the dependence on d , and thus is not directly
comparable to the results in the current paper.
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1.2 Main Result

In this paper, we prove a bound on the number of semi-algebraically connected com-
ponents over all realizable sign conditions of a family of polynomials in a variety.
However, unlike in the above bound the role of the degrees of the polynomials defin-
ing the variety V is distinguished from the role of the degrees of the polynomials
in the family P . This added flexibility seems to be necessary in certain applications
of these bounds in combinatorial geometry (notably in the recent paper by Solymosi
and Tao [22]). We give another application in the theory of geometric permutations
in Sect. 4.

Our main result is the following theorem.

Theorem 1.1 Let R be a real closed field, and let Q, P ⊂ R[X1, . . . ,Xk] be finite
subsets of polynomials such that deg(Q) ≤ d0 for all Q ∈ Q, degP = dP for all
P ∈ P , and the real dimension of Zer(Q,Rk) is k′ ≤ k. Suppose also that card P = s,
and for I ⊆ P let dI = ∏

P∈I dP . Then,

∑

σ∈{0,1,−1}P

b0
(

R
(
σ,Zer

(
Q,Rk

)))

is at most

∑

I⊂P
#I≤k′

4#I
((

k + 1

k − k′ + #I + 1

)
(2d0)

k−k′
dI max

P∈I
{2d0, dP }k′−#I + 2(k − #I + 1)

)
.

In particular, if dP ≤ d for all P ∈ P , we have that
∑

σ∈{0,1,−1}P

b0
(

R
(
σ,Zer

(
Q,Rk

)))

is at most

k′∑

j=0

4j

(
s + 1

j

)((
k + 1

k − k′ + j + 1

)
(2d0)

k−k′
dj max{2d0, d}k′−j + 2(k − j + 1)

)
.

1.3 A Few Remarks

Remark 1.2 The bound in Theorem 1.1 is tight (up to a factor of O(1)k). It is in-
structive to examine the two extreme cases, when k′ = 0 and k′ = k − 1, respectively.
When, k′ = 0, the variety Zer(Q,Rk) is zero-dimensional, and is a union of at most
O(d0)

k isolated points. The bound in Theorem 1.1 reduces to O(d0)
k in this case,

and is thus tight.
When k′ = k − 1 and 2d0 ≤ d , the bound in Theorem 1.1 is equal to

k−1∑

j=0

4j

(
s + 1

j

)((
k + 1

j + 2

)
2d0d

j + 2(k − j + 1)

)
= d0O(sd)k−1.
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The following example shows that this is the best possible (again up to O(1)k).

Example 1.3 Let P be the set of s polynomials in X1, . . . ,Xk each of which is a
product of d generic linear forms. Let Q = {Q}, where

Q =
∏

1≤i≤d0

(Xk − i).

It is easy to see that in this case the number of semi-algebraically connected compo-
nents of all realizable strict sign conditions of P (i.e., sign conditions belonging to
{−1,+1}P ) on Zer(Q,Rk) is equal to

d0

k−1∑

i=0

(
sd

i

)
= d0

(
Ω(sd)

)k−1
,

since the intersection of
⋃

P∈P Zer(P,Rk) with the hyperplane defined by Xk = i

for each i, i = 1, . . . , d0, is homeomorphic to an union of sd generic hyperplanes in
Rk−1, and the number of connected components of the complement of the union of
sd generic hyperplanes in Rk−1 is precisely

∑k−1
i=0

(
sd
i

)
.

Remark 1.4 Most bounds on the number of semi-algebraically connected compo-
nents of real algebraic varieties are stated in terms of the maximum of the degrees
of the polynomials defining the variety (rather than in terms of the degree sequence).
One reason behind this is the well-known fact that a “Bezout type” theorem is
not true for real algebraic varieties. The number of semi-algebraically connected
components (indeed even isolated zeros) of a set of polynomials {P1, . . . ,Pm} ⊂
R[X1, . . . ,Xk,Xk+1] with degrees d1, . . . , dm can be greater than the product
d1 · · ·dm, as can be seen in the following example.

Example 1.5 Let P = {P1, . . . ,Pm} ⊂ R[X1, . . . ,Xk+1] be defined as follows:

P1 =
k∑

i=1

d∏

j=1

(Xi − j)2,

Pj =
m−j+2∏

i=1

(Xk+1 − i), 2 ≤ j ≤ m.

Let Pi = {P1, . . . ,Pi}. Notice that for each i,1 ≤ i < m, Zer(Pi ,Rk+1) strictly con-
tains Zer(Pi+1,Rk+1). Moreover, b0(Zer(P ,Rk+1)) = 2dk , while the product of the
degrees of the polynomials in P is 2dm!. Clearly, for d large enough 2dk > 2dm!.

Remark 1.6 Most of the previously known bounds on the Betti numbers of realiza-
tions of sign conditions relied ultimately on the Oleı̆nik–Petrovskiı̆–Thom–Milnor
bounds on the Betti numbers of real varieties. Since in the proofs of these bounds
the finite family of polynomials defining a given real variety is replaced by a single



582 Discrete Comput Geom (2012) 47:577–597

polynomial by taking a sum of squares, it is not possible to separate out the different
roles played by the degrees of the polynomials in P and those in Q. The technique
used in this paper avoids using the Oleı̆nik–Petrovskiı̆–Thom–Milnor bounds, but
uses directly classically known formulas for the Betti numbers of smooth, complete
intersections in complex projective space. The bounds obtained from these formulas
depend more delicately on the individual degrees of the polynomials involved (see
Corollary 2.3), and this allows us to separate the roles of d and d0 in our proof.

1.4 Outline of the Proof of Theorem 1.1

The main idea behind our improved bound is to reduce the problem of bounding
the number of semi-algebraically connected components of all sign conditions on
a variety to the problem of bounding the sum of the Z2-Betti numbers of certain
smooth complete intersections in complex projective space. This is done as follows.
First, assume that Zer(Q,Rk) is bounded. The general case is reduced to this case by
an initial step using the conical triviality of semi-algebraic sets at infinity.

Assuming that Zer(Q,Rk) is bounded, and letting Q = ∑
F∈Q F 2, we consider

another polynomial Def(Q,H, ζ ) which is an infinitesimal perturbation of Q. The
basic semi-algebraic set, T , defined by Def(Q,H, ζ ) ≤ 0 is a semi-algebraic subset
of R〈ζ 〉k (where R〈ζ 〉 is the field of algebraic Puiseux series with coefficients in R,
see Sect. 2.5 below for properties of the field of Puiseux series that we need in this
paper). The semi-algebraic set T has the property that for each semi-algebraically
connected component C of Zer(Q,Rk) there exists a semi-algebraically connected
component D of T , which is bounded over R and such that limζ D = C (see Sect. 2.5
for definition of limζ ). The semi-algebraic set T should be thought of as an infinitesi-
mal “tube” around Zer(Q,Rk), which is bounded by a smooth hypersurface (namely,
Zer(Def(Q,H, ζ ),R〈ζ 〉k)). We then show it is possible to cut out a k′-dimensional
subvariety, W in Zer(Def(Q,H, ζ ),R〈ζ 〉k), such that (for generic choice of coor-
dinates) in fact limζ W = Zer(Q,Rk) (Proposition 3.4), and moreover the homoge-
nizations of the polynomials defining W define a non-singular complete intersection
in P

k
C〈ζ 〉 (Proposition 3.6). W is defined by k − k′ forms of degree at most 2d0. In

order to bound the number of semi-algebraically connected components of realiza-
tions of sign conditions of the family P on Zer(Q,Rk), we need to bound the number
of semi-algebraically connected components of the intersection of W with the ze-
ros of certain infinitesimal perturbations of polynomials in P (see Proposition 3.9
below). The number of cases that we need to consider is bounded by

(
O(s)
k′

)
, and

again each such set of polynomials define a non-singular complete intersection of
p,k − k′ ≤ p ≤ k hypersurfaces in k-dimensional projective space over an appropri-
ate algebraically closed field, k − k′ of which are defined by forms having degree
at most 2d0 and the remaining m = p − k + k′ of degree bounded by d . In this sit-
uation, there are classical formulas known for the Betti numbers of such varieties,
and they imply a bound of

(
k+1
m+1

)
(2d0)

k−k′
dk′ + O(k) on the sum of the Betti num-

bers of such varieties (see Corollary 2.3 below). The bounds on the sum of the Betti
numbers of these projective complete intersections in the algebraic closure imply
using the well-known Smith inequality (see Theorem 2.4) a bound on the number
of semi-algebraically connected components of the real parts of these varieties, and
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in particular the number of bounded components. The product of the two bounds,
namely the combinatorial bound on the number of different cases and the algebraic
part depending on the degrees, summed appropriately lead to the claimed bound.

1.5 Connection to Prior Work

The idea of approximating an arbitrary real variety of dimension k′ by a complete in-
tersection was used in [7] to give an efficient algorithm for computing sample points
in each semi-algebraically connected component of all realizable sign conditions of
a family of polynomials restricted to the variety. Because of complexity issues re-
lated to algorithmically choosing a generic system of co-ordinates however, instead
of choosing a single generic system of co-ordinates, a finite universal family of dif-
ferent co-ordinate systems was used to approximate the variety. Since in this paper
we are not dealing with algorithmic complexity issues, we are free to choose generic
coordinates. Note also that the idea of bounding the number of semi-algebraically
connected components of realizable sign conditions or of real algebraic varieties,
using known formulas for Betti numbers of non-singular, complete intersections in
complex projective spaces, and then using Smith inequality, have been used before
in several different settings (see [4] in the case of semi-algebraic sets defined by
quadrics and [11] for arbitrary real algebraic varieties).

The rest of the paper is organized as follows. In Sect. 2, we state some known
results that we will need to prove the main theorem. These include explicit recur-
sive formulas for the sum of Betti numbers of non-singular, complete intersections of
complex projective varieties (Sect. 2.1), the Smith inequality relating the Betti num-
bers of complex varieties defined over R with those of their real parts (Sect. 2.2),
some results about generic choice of coordinates (Sects. 2.4, 2.3), and finally a few
facts about non-archimedean extensions and Puiseux series that we need for making
perturbations (Sect. 2.5). We prove the main theorem in Sect. 3.

2 Certain Preliminaries

2.1 The Betti Numbers of a Non-Singular Complete Intersection in Complex
Projective Space

If P is a finite subset of R[X1, . . . ,Xk] consisting of homogeneous polynomials we
denote the set of zeros of P in P

k
R (resp., in P

k
C) by

Zer
(

P ,P
k
R

) =
{
x ∈ P

k
R

∣∣ ∧

P∈P
P(x) = 0

}

(
resp., Zer

(
P ,P

k
C

) =
{
x ∈ P

k
C

∣∣ ∧

P∈P
P(x) = 0

})
.

For P ∈ R[X1, . . . ,Xk] we will denote by Zer(P,Rk) (resp., Zer(P,Ck), Zer(P,P
k
R),

Zer(P,P
k
C)) the variety Zer({P },Rk) (resp., Zer({P },Ck), Zer({P },P

k
R),

Zer({P },P
k
C)).
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For any locally closed semi-algebraic set X, we denote by bi(X) the dimension of

Hi (X,Z2),

the ith homology group of X with coefficients in Z2. We refer to [9, Chap. 6] for
the definition of homology groups in case the field R is not the field of real numbers.
Note that b0(X) equals the number of semi-algebraically connected components of
the semi-algebraic set X.

For σ ∈ {0,1,−1}P and V ⊂ Rk a closed semi-algebraic set, we will denote by
bi(σ,V ) the dimension of

Hi

(
R(σ,V ),Z2

)
.

We will denote by

b(σ,V ) =
∑

i≥0

bi(σ,V ).

Definition 2.1 A projective variety X ⊂ P
k
C of codimension n is a non-singular com-

plete intersection if it is the intersection of n non-singular hypersurfaces in P
k
C that

meet transversally at each point of the intersection.

Fix an m-tuple of natural numbers d̄ = (d1, . . . , dm). Let XC = Zer({Q1, . . . ,Qm},
P

k
C), such that the degree of Qi is di , denote a complex projective variety of codi-

mension m which is a non-singular complete intersection. It is a classical fact that the
Betti numbers of XC depend only on the degree sequence and not on the specific XC.
In fact, it follows from Lefshetz theorem on hyperplane sections (see, for example,
[25, Sect. 1.2.2]) that

bi(XC) = bi

(
P

k
C

)
, 0 ≤ i < k − m.

Also, by Poincaré duality we have that

bi(XC) = b2(k−m)−i (XC), 0 ≤ i ≤ k − m.

Thus, all the Betti numbers of XC are determined once we know bk−m(XC), or equiv-
alently the Euler–Poincaré characteristic

χ(XC) =
∑

i≥0

(−1)ibi(XC).

Denoting χ(XC) by χk
m(d1, . . . , dm) (since it only depends on the degree se-

quence) we have the following recurrence relation (see, for example, [11]).

χk
m(d1, . . . , dm)

=

⎧
⎪⎨

⎪⎩

k + 1 if m = 0,

d1 · · ·dm if m = k,

dmχk−1
m−1(d1, . . . , dm−1) − (dm − 1)χk−1

m (d1, . . . , dm) if 0 < m < k.

(2.1)
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We have the following inequality.

Proposition 2.2 Suppose 1 ≤ d1 ≤ d2 ≤ · · · ≤ dm. The function χk
m(d1, . . . , dm) sat-

isfies

∣∣χk
m(d1, . . . , dm)

∣∣ ≤
(

k + 1

m + 1

)
d1 · · ·dm−1d

k−m+1
m .

Proof The proof is by induction in each of the three cases of (2.1).
Case m = 0:

χk
0 = k + 1 ≤

(
k + 1

1

)
= k + 1.

Case m = k:

χk
m(d1, . . . , dm) = d1 · · ·dm−1dm ≤

(
k + 1

k + 1

)
d1 · · ·dm−1dm = d1 · · ·dm−1dm.

Case 0 < m < k:
∣∣χk

m(d1, . . . , dm)
∣∣

= ∣∣dmχk−1
m−1(d1, . . . , dm−1) − (dm − 1)χk−1

m (d1, . . . , dm)
∣∣

≤ dm

∣∣χk−1
m−1(d1, . . . , dm−1)

∣∣ + dm

∣∣χk−1
m (d1, . . . , dm)

∣∣

≤ dm

(
k

m

)
d1 · · ·dm−2d

(k−1)−(m−1)+1
m−1 + dm

(
k

m + 1

)
d1 · · ·dm−1d

(k−1)−m+1
m

∗≤
(

k

m

)
d1 · · ·dm−1d

k−m+1
m +

(
k

m + 1

)
d1 · · ·dm−1d

k−m+1
m

=
(

k + 1

m + 1

)
d1 · · ·dm−1d

k−m+1
m ,

where the inequality
∗≤ follows from the observation

d
(k−1)−(m−1)+1
m−1 ≤ dm−1d

k−m
m ,

since dm−1 ≤ dm by assumption, and the last equality is from the identity
(

k+1
m+1

) =(
k
m

) + (
k

m+1

)
. �

Now let βk
m(d1, . . . , dm) denote

∑
i≥0 bi(XC).

The following corollary is an immediate consequence of Proposition 2.2 and the
remarks preceding it.

Corollary 2.3

βk
m(d1, . . . , dm) ≤

(
k + 1

m + 1

)
d1 · · ·dm−1d

k−m+1
m + 2(k − m + 1).
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2.2 Smith Inequality

We state a version of the Smith inequality which plays a crucial role in the proof of
the main theorem. Recall that for any compact topological space equipped with an
involution, inequalities derived from the Smith exact sequence allows one to bound
the sum of the Betti numbers (with Z2 coefficients) of the fixed point set of the in-
volution by the sum of the Betti numbers (again with Z2 coefficients) of the space
itself (see, for instance, [24, p. 131]). In particular, we have for a complex projective
variety defined by real forms, with the involution taken to be complex conjugation,
the following theorem.

Theorem 2.4 (Smith inequality) Let Q ⊂ R[X1, . . . ,Xk+1] be a family of homoge-
neous polynomials. Then,

b
(
Zer

(
Q,P

k
R

)) ≤ b
(
Zer

(
Q,P

k
C

))
.

Remark 2.5 Note that we are going to use Theorem 2.4 only for bounding the num-
ber of semi-algebraically connected components (that is, the zeroth Betti number) of
certain real varieties. Nevertheless, to apply the inequality we need a bound on the
sum of all the Betti numbers (not just b0) on the right-hand side.

The following theorem used in the proof of Theorem 1.1 is a direct consequence
of Theorem 2.4 and the bound in Corollary 2.3.

Theorem 2.6 Let R be a real closed field and P = {P1, . . . ,Pm} ⊂ R[X1, . . . ,Xk]
with deg(Pi) = di, i = 1, . . . ,m, and 1 ≤ d1 ≤ d2 ≤ · · · ≤ dm. Let P h =
{P h

1 , . . . ,P h
m} be the corresponding set of homogenized polynomials, and suppose

that P h
1 , . . . ,P h

m define a non-singular complete intersection in P
k
C. Then,

b0
(
Zer

(
P h,P

k
R

)) ≤
(

k + 1

m + 1

)
d1 · · ·dm−1d

k−m+1
m + 2(k − m + 1).

In case Zer(P ,Rk) is bounded,

b0
(
Zer

(
P ,Rk

)) ≤
(

k + 1

m + 1

)
d1 · · ·dm−1d

k−m+1
m + 2(k − m + 1).

Proof Proof is immediate from Theorem 2.4 and Corollary 2.3. �

Remark 2.7 Note that the bound in Theorem 2.6 is not true if we omit the assump-
tion of being a non-singular complete intersection. A counter-example is provided by
Example 1.5.

Remark 2.8 Another possible approach to the proof of Theorem 2.6 is to use the
critical point method and bound directly the number of critical points of a generic
projection using the multi-homogeneous Bézout theorem (see, for example, [14]).
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2.3 Generic Coordinates

Unless otherwise stated, for any real closed field R, we are going to use the Euclidean
topology (see, for example, [12, p. 26]) on Rk . Sometimes we will need to use (the
coarser) Zariski topology, and we explicitly state this whenever it is the case.

Notation 2.9 For a real algebraic set V = Zer(Q,Rk) we let reg V denote the non-
singular points in dimension dimV of V [12, Definition 3.3.9].

Definition 2.10 Let V = Zer(Q,Rk) be a real algebraic set. Define V (k) = V , and
for 0 ≤ i ≤ k − 1 define

V (i) = V (i+1) \ reg V (i+1).

Set dimV (i) = d(i).

Remark 2.11 Note that V (i) is Zariski-closed for each 0 ≤ i ≤ k.

Notation 2.12 We denote by GrR(k, j) the real Grassmannian of j -dimensional lin-
ear subspaces of Rk .

Notation 2.13 For a real algebraic variety V ⊂ Rk , and x ∈ reg V where
dim reg V = p, we denote by TxV the tangent space at x to V (translated to the
origin). Note that TxV is a p-dimensional subspace of Rk , and hence an element
of GrR(k,p).

Definition 2.14 Let V = Zer(Q,Rk) be a real algebraic set, 1 ≤ j ≤ k, and � ∈
Gr(k, k − j). We say the linear space � is j -good with respect to V if either:

1. j /∈ d([0, k]), or
2. d(i) = j , and

A� := {
x ∈ reg V (i) | dim

(
TxV

(i) ∩ �
) = 0

}

is a nonempty dense Zariski-open subset of reg V (i).

Remark 2.15 Note that the semi-algebraic subset A� is always a (possibly empty)
Zariski-open subset of reg V (i), hence of V (i). In the case where V (i) is an irreducible
Zariski-closed subset (see Remark 2.11), the set A� is either empty or a nonempty
dense Zariski-open subset of reg V (i).

Definition 2.16 Let V = Zer(Q,Rk) be a real algebraic set and B = {v1, . . . , vk} ⊂
Rk a basis of Rk . We say that the basis B is good with respect to V if for each j ,
1 ≤ j ≤ k, the linear space span{v1, . . . , vk−j } is j -good.

Proposition 2.17 Let V = Zer(Q,Rk) be a real algebraic set and {v1, . . . , vk} ⊂
Rk a basis of Rk . Then, there exists a nonempty open semi-algebraic subset
of linear transformations O ⊂ GL(k,R) such that for every T ∈ O the basis
{T (v1), . . . , T (vk)} is good with respect to V .
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The proof of Proposition 2.17 uses the following notation and lemma.

Notation 2.18 For any � ∈ GrR(k, k − j), 1 ≤ j ≤ k, we denote by Ω(�) the real
algebraic subvariety of GrR(k, j) defined by

Ω(�) = {
�′ ∈ GrR(k, j) | � ∩ �′ �= 0

}
.

Lemma 2.19 For any nonempty open semi-algebraic subset U ⊂ GrR(k, k − j), 1 ≤
j ≤ k, we have

⋂

�∈U

Ω(�) = ∅.

Proof We use a technique due to Chistov et al. (originally appearing in [13]) who
explicitly constructed a finite family of elements in GrR(k, k − j) such that every
�′ ∈ GrR(k, j) is transversal to at least one member of this family. More precisely, let
e0, . . . , ek−1 be the standard basis vectors in Rk , and let for any x ∈ R,

vk(x) =
k−1∑

i=0

xiei .

Then the set of vectors vk(x), vk(x+1), . . . , vk(x+k−j −1) are linearly indepen-
dent and span a (k − j)-dimensional subspace of Rk . Denote by �x the corresponding
element in GrR(k, k − j). An easy adaptation of the proof of Proposition 13.27 [9]
now shows that, for ε > 0, the set

Lε,k,j := {
�mε | 0 ≤ m ≤ k(k − j)

} ⊂ Gr(k, k − j)

has the property that, for any �′ ∈ GrR(k, j), there exists some m, 0 ≤ m ≤ k(k − j),
such that �′ ∩ �mε = 0. In other words, for every ε > 0,

⋂

0≤m≤k(k−j)

Ω(�mε) = ∅.

By rotating coordinates, we can assume that �0 ∈ U , and then by choosing ε small
enough we can assume that Lε,k,j ⊂ U . This finishes the proof. �

Proof of Proposition 2.17 We prove that for each j,0 ≤ j ≤ k, the set of � ∈
GrR(k, k − j) such that � is not j -good for V is a semi-algebraic subset of
GrR(k, k − j) without interior. It then follows that its complement contains an
open dense semi-algebraic subset of GrR(k, k − j), and hence there is an open
semi-algebraic subset Oj ⊂ GLn(R) such that for each T ∈ Oj , the linear space
span{T (v1), . . . , T (vk−j )} is j -good with respect to V .

Let j = d(i), 0 ≤ i ≤ k. Seeking a contradiction, suppose that there is an open
semi-algebraic subset U ⊂ GrR(k, k − j) such that every � ∈ U is not j -good with
respect to V . Let V

(i)
1 , . . . , V

(i)
n be the distinct irreducible components of the Zariski-

closed set V (i). For each � ∈ U , � is not j -good for some V
(i)
r , 1 ≤ r ≤ n (otherwise
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� would be j -good for V ). Let U1, . . . ,Un denote the semi-algebraic sets defined by

Ur := {
� ∈ U | � is not j -good for V (i)

r

}
.

We have U = U1 ∪ · · · ∪ Un, and U is open in GrR(k, k − j). Hence, for some r ,
1 ≤ r ≤ n, we have Ur contains an non-empty open semi-algebraic subset. Replacing
U by this (possibly smaller) subset we have that the set A� ∩ reg V

(i)
r is empty for

each � ∈ U (cf. Definition 2.14, Remark 2.15). So, reg V
(i)
r ⊂ reg V (i) \ A� for every

� ∈ U , and

∅ �= reg V (i)
r ⊂

⋂

�∈U

reg V (i) \ A�.

Let z ∈ ⋂
�∈U reg V (i) \ A�, but then the linear space �′ = Tz(reg V (i)) is in⋂

�∈U Ω(�), contradicting Lemma 2.19. �

2.4 Non-Singularity of the Set Critical of Points of Hypersurfaces for Generic
Projections

Notation 2.20 Let H ∈ R[X1, . . . ,Xk]. For 0 ≤ p ≤ k, we will denote by Crp(H)

the set of polynomials
{
H,

∂H

∂X1
, . . . ,

∂H

∂Xp

}
.

We will denote by Crhp(H) the corresponding set

{
Hh,

∂Hh

∂X1
, . . . ,

∂Hh

∂Xp

}

of homogenized polynomials.

Notation 2.21 Let d be even. We will denote by PosR,d,k ⊂ R[X1, . . . ,Xk] the set
of non-negative polynomials in R[X1, . . . ,Xk] of degree at most d . Denoting by
R[X1, . . . ,Xk]≤d the finite dimensional vector subspace of R[X1, . . . ,Xk] consist-
ing of polynomials of degree at most d , we have that PosR,d,k is a (semi-algebraic)
cone in R[X1, . . . ,Xk]≤d with non-empty interior.

Proposition 2.22 Let R be a real closed field and C the algebraic closure of R. Let
d > 0 be even. Then there exists H ∈ PosR,d,k , such that for each p, 0 ≤ p ≤ k,
Crhp(H) defines a non-singular complete intersection in P

k
C.

Proof The proposition follows from the fact that the generic polar varieties of non-
singular complex hypersurfaces are non-singular complete intersections [2, Proposi-
tion 3], and since PosR,d,k has non-empty interior, we can choose a generic polyno-
mial in PosR,d,k having this property. �

Remark 2.23 The fact that generic polar varieties of a non-singular complex variety
are non-singular complete intersections is not true in general for higher codimension
varieties, see [2, 3], in particular [3, Sect. 3].
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2.5 Infinitesimals and Puiseux Series

In our arguments, we are going to use infinitesimals and non-archimedean extensions
of a given real closed field R. A typical non-archimedean extension of R is the field
R〈ε〉 of algebraic Puiseux series with coefficients in R, which coincide with the germs
of semi-algebraic continuous functions (see [9], Chap. 2, Sect. 6 and Chap. 3, Sect. 3).
An element x ∈ R〈ε〉 is bounded over R if |x| ≤ r for some 0 ≤ r ∈ R. The subring
R〈ε〉b of elements of R〈ε〉 bounded over R consists of the Puiseux series with non-
negative exponents. We denote by limε the ring homomorphism from R〈ε〉b to R
which maps

∑
i∈N

aiε
i/q to a0. So, the mapping limε simply replaces ε by 0 in a

bounded Puiseux series. Given S ⊂ R〈ε〉k , we denote by limε(S) ⊂ Rk the image
by limε of the elements of S whose coordinates are bounded over R. We denote by
R〈ε1, ε2, . . . , ε�〉 the real closed field R〈ε1〉〈ε2〉 · · · 〈ε�〉, and we let limεi

denote the
ring homomorphism limεi

limεi+1 · · · limε�
.

More generally, let R′ be a real closed field extension of R. If S ⊂ Rk is a semi-
algebraic set, defined by a boolean formula Φ with coefficients in R, we denote by
Ext(S,R′) the extension of S to R′, i.e., the semi-algebraic subset of R′k defined by
Φ . The first property of Ext(S,R′) is that it is well defined, i.e., independent on the
formula Φ describing S [9, Proposition 2.87]. Many properties of S can be transferred
to Ext(S,R′): for example, S is non-empty if and only if Ext(S,R′) is non-empty, S

is semi-algebraically connected if and only if Ext(S,R′) is semi-algebraically con-
nected [9, Proposition 5.24].

3 Proof of the Main Theorem

Remark 3.1 Most of the techniques employed in the proof of the main theorem are
similar to those found in [9], see [9, Sect. 13.1 and Sect. 13.3].

Throughout this section, R is a real closed field, Q, P are finite subsets of
R[X1, . . . ,Xk], with degP = dP for all P ∈ P , and deg(Q) ≤ d0 for all Q ∈ Q.
We denote by k′ the real dimension of Zer(Q,Rk). Let Q = ∑

F∈Q F 2.
For x ∈ Rk and r > 0, we will denote by Bk(0, r) the open ball centered at x of

radius r . For any semi-algebraic subset X ⊂ Rk , we denote by X the closure of X

in Rk . It follows from the Tarski–Seidenberg transfer principle (see, for example, [9,
Chap. 2, Sect. 5]) that the closure of a semi-algebraic set is again semi-algebraic.

We suppose using Proposition 2.17 that after making a linear change in coordi-
nates if necessary the given system of coordinates is good with respect to Zer(Q,Rk).

Using Proposition 2.22, suppose that H ∈ PosR,2d0,k satisfies

Property 3.2 For any p,0 ≤ p ≤ k, Crhp(H) defines a non-singular complete inter-

section in P
k
C.

Let Def(Q,H, ζ ) be defined by

Def(Q,H, ζ ) = (1 − ζ )Q − ζH.

We first prove several properties of the polynomial Def(Q,H, ζ ).
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Proposition 3.3 Let R̃ be any real closed field containing R〈1/Ω〉, and let C be a
semi-algebraically connected component of

Zer
(
Q, R̃

k) ∩ Bk(0,Ω).

Then, there exists a semi-algebraically connected component, D ⊂ R̃〈ζ 〉k , of the
semi-algebraic set

W = {
x ∈ Bk(0,Ω) | Def(Q,H, ζ )(x) ≤ 0

}

such that C = limζ D.

Proof It is clear that Zer(Q, R̃〈ζ 〉k) ∩ Bk(0,Ω) ⊂ W , since H(x) ≥ 0 for all x ∈
R̃〈ζ 〉k . Now let C be a semi-algebraically connected component of Zer(Q, R̃

k
) ∩

Bk(0,Ω) and let D be the semi-algebraically connected component of W containing
Ext(C, R̃〈ζ 〉). Since D is bounded over R̃ and semi-algebraically connected, we have
that limζ D is semi-algebraically connected (using, for example, Proposition 12.43

in [9]), and contained in Zer(Q, R̃
k
) ∩ Bk(0,Ω). Moreover, limζ D contains C. But

C is a semi-algebraically connected component of Zer(Q, R̃
k
) ∩ Bk(0,Ω) (using the

conical structure at infinity of Zer(Q, R̃
k
)), and hence limζ D = C. �

Proposition 3.4 Let R̃ be any real closed field containing R〈1/Ω〉, and

W = Zer
(
Crk−k′−1

(
Def(Q,H, ζ )

)
, R̃〈ζ 〉k) ∩ Bk(0,Ω).

Then, limζ W = Zer(Q, R̃
k
) ∩ Bk(0,Ω).

We will use the following notation.

Notation 3.5 For 1 ≤ p ≤ q ≤ k, we denote by π[p,q] : Rk = R[1,k] → R[p,q] the
projection

(x1, . . . , xk) �→ (xp, . . . , xq).

Proof of Proposition 3.4 By Proposition 3.3, it is clear that limζ W ⊂ Zer(Q, R̃
k
) ∩

Bk(0,Ω). We prove the other inclusion.

Let V = Zer(Q, R̃
k
), and suppose that x ∈ reg V (i) ∩Bk(0,Ω) for some i, k−k′ ≤

i ≤ k. Every open semi-algebraic neighborhood U of x in V ∩ Bk(0,Ω) contains a
point y ∈ reg V (i′) ∩ Bk(0,Ω) for some i′ ≥ i, such that the local dimension of V at
y is equal to d(i′). Moreover, since the given system of coordinates is assumed to be
good for V , we can also assume that the tangent space Ty(reg V (i′)) is transverse to
the span of the first k − d(i′) coordinate vectors.

It suffices to prove that there exists z ∈ W such that limζ z = y. If this is true for
every neighborhood U of x in V , this would imply that x ∈ limζ W .
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Let p = d(i′). The property that Ty(reg V (i′)) is transverse to the span of the first
k − p coordinate vectors implies that y is an isolated point of V ∩ π−1

[k−p+1,k](y). Let

T ⊂ R̃〈ζ 〉k denote the semi-algebraic subset of Bk(0,Ω) defined by

T = {
x ∈ Bk(0,Ω) | Def(Q,H, ζ )(x) ≤ 0

}
,

and Dy denote the semi-algebraically connected component of T ∩ π−1
[k−p+1,k](y)

containing y. Then, Dy is a closed and bounded semi-algebraic set, with limζ Dy = y.
The boundary of Dy is contained in

Zer
(
Def(Q,H, ζ ), R̃〈ζ 〉k) ∩ π−1

[k−p+1,k](y).

Let z ∈ Dy be a point in Dy for which the (k−p)th coordinate achieves its maximum.
Then, z ∈ Zer(Crk−p−1(Def(Q,H, ζ )), R̃〈ζ 〉k), and since p ≤ k′,

Zer
(
Crk−p−1

(
Def(Q,H, ζ )

)
, R̃〈ζ 〉k) ⊂ Zer

(
Crk−k′−1

(
Def(Q,H, ζ )

)
, R̃〈ζ 〉k)

and hence, z ∈ W . Moreover, limζ z = y. �

Proposition 3.6 Let R̃ be any real closed field containing R and C̃ the algebraic
closure of R̃. For every p, 0 ≤ p ≤ k, Crhp(Def(Q,H, ζ )) defines a non-singular

complete intersection in P
k

C̃〈ζ 〉.

Proof By Property 3.2 of H , we have that for each p, 0 ≤ p ≤ k, Crhp(H) de-

fines a non-singular complete intersection in P
k

C̃
. Thus, for each p, 0 ≤ p ≤ k,

Crhp(Def(Q,H,1)) defines a non-singular complete intersection in P
k

C̃
. Since the

property of being non-singular complete intersection is first-order expressible, the
set of t ∈ C̃ for which this holds is constructible, and since the property is also stable
there is an open subset containing 1 for which it holds. But since a constructible sub-
set of C̃ is either finite or co-finite, there exists an open interval to the right of 0 in R̃
for which the property holds, and in particular it holds for infinitesimal ζ . �

Proposition 3.7 Let σ ∈ {0,+1,−1}P , and let C be a semi-algebraically connected
component of R(σ,Zer(Q,R〈1/Ω〉k) ∩ Bk(0,Ω)). Then, there exists a unique semi-
algebraically connected component, D ⊂ R〈1/Ω,ε, δ〉k , of the semi-algebraic set
defined by

(Q = 0) ∧
∧

P∈P
σ(P )=0

(−δ < P < δ) ∧
∧

P∈P
σ(P )=1

(P > ε) ∧
∧

P∈P
σ(P )=−1

(P < −ε) ∧ (|X|2 < Ω2)

such that C = D ∩ R〈1/Ω〉k . Moreover, if C is a semi-algebraically connected com-
ponent of R(σ,Zer(Q,R〈1/Ω〉k) ∩ Bk(0,Ω)), C′ is a semi-algebraically connected
component of R(σ ′,Zer(Q,R〈1/Ω〉k) ∩ Bk(0,Ω)), and D,D′ are the unique semi-
algebraically connected components as above satisfying C = D ∩ R〈1/Ω〉k, C′ =
D′ ∩ R〈1/Ω〉k , then we have D ∩ D′ = ∅ if C �= C′.
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Proof The first part is clear. To prove the second part, suppose, seeking a contradic-
tion, that x ∈ D ∩ D′. Notice that limδ x ∈ Ext(C,R〈1/Ω,ε〉) ∩ Ext(C′,R〈1/Ω,ε),
but Ext(C,R〈1/Ω,ε〉) ∩ Ext(C′,R〈1/Ω,ε〉) = ∅ since C ∩ C′ = ∅. �

We denote by R′ the real closed field R〈1/Ω,ε, δ〉 and by C′ the algebraic closure
of R′.

We also denote

G =
k∑

i=1

X2
i − Ω2. (3.1)

Let P ′ ⊂ R′[X1, . . . ,Xk] be defined by

P ′ =
⋃

P∈P
{P ± ε,P ± δ} ∪ {G}.

By Proposition 3.7, we will henceforth restrict attention to strict sign conditions
on the family P ′.

Let H = (HF ∈ PosR′,deg(F ),k)F∈P ′ be a family of polynomials with generic co-
efficients. More precisely, this means that H is chosen so that it avoids a certain
Zariski-closed subset of the product ×F∈P ′PosR′〈ζ 〉,deg(F ),k of codimension at least
one, defined by the condition that

Crhk−k′−1

(
Def(Q,H, ζ )

) ∪
⋃

F∈P ′′

{
Hh

F

}

is not a non-singular, complete intersection in P
k
C′〈ζ 〉 for some P ′′ ⊂ P ′.

Proposition 3.8 For each j, 0 ≤ j ≤ k′, and subset P ′′ ⊂ P ′ with card P ′′ = j , and
τ ∈ {−1,+1}P ′′

the set of homogeneous polynomials

Crhk−k′−1

(
Def(Q,H, ζ )

) ∪
⋃

F∈P ′′

{
(1 − ε′)F h − τ(F )ε′Hh

F

}

defines a non-singular, complete intersection in P
k
C′〈ζ,ε′〉.

Proof Consider the family of polynomials,

Crhk−k′−1

(
Def(Q,H, ζ )

) ∪
⋃

F∈P ′′

{
(1 − t)F h − τ(F ) t Hh

F

}
,

obtained by substituting t for ε′ in the given system. Since, by Proposition 3.6, the set
Crh

k−k′−1(Def(Q,H, ζ )) defines a non-singular complete intersection in PC′〈ζ 〉, and
the HF ’s are chosen generically, the above system defines a non-singular complete
intersection in PC′〈ζ 〉 when t = 1. The set of t ∈ C′〈ζ 〉 for which the above system
defines a non-singular, complete intersection is constructible, contains 1, and since
being a non-singular, complete intersection is a stable condition, it is co-finite. Hence,
it must contain an open interval to the right of 0 in R′〈ζ 〉, and hence in particular if we
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substitute the infinitesimal ε′ for t we obtain that the system defines a non-singular,
complete intersection in P

k
C′〈ζ,ε′〉. �

Proposition 3.9 Let τ ∈ {+1,−1}P ′
with τ(F ) = −1, if F = G (3.1), and let C be

a semi-algebraically connected component of R(τ,Zer(Q,R′k)).
Then, there exist a subset P ′′ ⊂ P ′ with card P ′′ ≤ k′ and a bounded semi-

algebraically connected component D of the algebraic set

Zer
(
Crk−k′−1

(
Def(Q,H, ζ )

) ∪
⋃

F∈P ′′

{
(1 − ε′)F − τ(F )ε′HF

}
,R′〈ζ, ε′〉k)

such that limζ D ⊂ C, and limζ D ∩ C �= ∅.

Proof Let V = Zer(Q,R′k). By Proposition 3.4, with R̃ substituted by R′, we have
that, for each x ∈ C, there exists y ∈ Zer(Crk−k′−1(Def(Q,H, ζ ),R′〈ζ 〉k) such that
limζ y = x.

Moreover, using the fact that R(τ,R′k) is open we have that

y ∈ Zer
(
Crk−k′−1

(
Def(Q,H, ζ )

)
,R′〈ζ 〉k) ∩ R

(
τ,R′k).

Thus, there exists a semi-algebraically connected component C′ of

Zer
(
Crk−k′−1

(
Def(Q,H, ζ )

)
,R′〈ζ 〉k) ∩ R

(
τ,R′k)

such that limζ C′ ⊂ C, and limζ C′ ∩ C �= ∅.
Note that the closure C is a semi-algebraically connected component of

R
(
τ ,Zer

(
Q,R′k)),

where τ is the formula
∧

F∈P ′(τ (F )F ≥ 0).
The proof of the proposition now follows the proof of Proposition 13.2 in [9],

and uses the fact that the set of polynomials
⋃

F∈P ′ {(1 − ε′)F − τ(F )ε′HP } has the
property that no k′ + 1 of distinct elements of this set can have a common zero in
Zer(Crk−k′−1(Def(Q,H, ζ )),R′〈ζ, ε′〉k) by Proposition 3.8. �

Proof of Theorem 1.1 Using the conical structure at infinity of semi-algebraic sets,
we have the following equality:

∑

σ∈{−1,1,0}P

b0
(

R
(
σ,Zer

(
Q,Rk

)))

=
∑

σ∈{−1,1,0}P

b0
(

R
(
σ,Zer

(
Q,R〈1/Ω〉k) ∩ Bk(0,Ω)

))
.

By Proposition 3.7, it suffices to bound the number of semi-algebraically con-
nected components of the realizations R(τ,Zer(Q,R′k) ∩ Bk(0,Ω)), where τ ∈
{−1,1}P ′

satisfying

τ(F ) = −1 if F = G,
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τ(F ) = 1 if F = P − ε or F = P + δ for some P ∈ P , (3.2)

τ(F ) = −1 otherwise.

Using Proposition 3.9, it suffices to bound the number of semi-algebraically con-
nected components which are bounded over R′ of the real algebraic sets

Zer

(
Crk−k′−1

(
Def(Q,H, ζ )

) ∪
⋃

F∈P ′′

{
(1 − ε′)F + τ(F )ε′HF

}
,R′〈ζ, ε′〉k

)

for all P ′′ ⊂ P ′ with card P ′′ = j ≤ k′ and all τ ∈ {−1,1}P ′′
satisfying (3.2).

Using Theorem 2.6, we get that the number of such components is bounded by
(

k + 1

k − k′ + #P ′′ + 1

)
(2d0)

k−k′
dP ′′ max

F∈P ′′
{
2d0,deg(F )

}k′−#P ′′ + 2(k − #P ′′ + 1),

where dP ′′ = ∏
F∈P ′′ deg(F ).

Each F ∈ P ′ \ {G} is of the form F ∈ {P ± ε,P ± δ} for some P ∈ P , and the
algebraic sets defined by each of these four polynomials are disjoint. Thus, we have
that

∑

σ∈{0,1,−1}P

b0
(

R
(
σ,Zer

(
Q,Rk

)))

is bounded by

∑

I⊂P
#I≤k′

4#I
((

k + 1

k − k′ + #I + 1

)
(2d0)

k−k′
dI max

P∈I
{2d0, dP }k′−#I + 2(k − #I + 1)

)
.

�

4 Applications

There are several applications of the bound on the number of semi-algebraically con-
nected components of sign conditions of a family of real polynomials in discrete
geometry. We discuss below an application for bounding the number of geometric
permutations of n well separated convex bodies in R

d induced by k-transversals.
In [15], the authors reduce the problem of bounding the number of geometric

permutations of n well separated convex bodies in R
d induced by k-transversals to

bounding the number of semi-algebraically connected components realizable sign
conditions of

(
2k+1 − 2

k

)(
n

k + 1

)

polynomials in d2 variables, where each polynomial has degree at most 2k, on an
algebraic variety (the real Grassmannian of k-planes in R

d ) in R
d2

defined by poly-
nomials of degree 2. The real Grassmannian has dimension k(d − k). Applying The-
orem 1.1, we obtain that the number of semi-algebraically connected components of
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all realizable sign conditions in this case is bounded by

(
k

(
2k+1 − 2

k

)(
n

k + 1

))k(d−k) (
O(1)

)d2
,

which is a strict improvement of the bound,

((
2k+1 − 2

k

)(
n

k + 1

))k(d−k) (
O(k)

)d2
,

in [15, Theorem 2] (especially in the case when k is close to d).
As mentioned in the introduction, our bound might also have some relevance in

a new method which has been developed for bounding the number of incidences
between points and algebraic varieties of constant degree, using a decomposition
technique based on the polynomial ham-sandwich cut theorem [16, 17, 22, 27].
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