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Abstract Matroids are combinatorial abstractions for point configurations and hy-
perplane arrangements, which are fundamental objects in discrete geometry. Matroids
merely encode incidence information of geometric configurations such as collinear-
ity or coplanarity, but they are still enough to describe many problems in discrete
geometry, which are called incidence problems. We investigate two kinds of inci-
dence problem, the points–lines–planes conjecture and the so-called Sylvester–Gallai
type problems derived from the Sylvester–Gallai theorem, by developing a new algo-
rithm for the enumeration of non-isomorphic matroids. We confirm the conjectures of
Welsh–Seymour on ≤11 points in R

3 and that of Motzkin on ≤12 lines in R
2, extend-

ing previous results. With respect to matroids, this algorithm succeeds to enumerate a
complete list of the isomorph-free rank 4 matroids on 10 elements. When geometric
configurations corresponding to specific matroids are of interest in some incidence
problems, they should be analyzed on oriented matroids. Using an encoding of ori-
ented matroid axioms as a boolean satisfiability (SAT) problem, we also enumerate
oriented matroids from the matroids of rank 3 on n ≤ 12 elements and rank 4 on
n ≤ 9 elements. We further list several new minimal non-orientable matroids.
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1 Introduction

A central topic in discrete geometry is the combinatorial structure of point configu-
rations and hyperplane arrangements. It is often difficult to characterize the possible
combinatorial structures of these geometric models, hence one strategy is to consider
combinatorial abstractions such as matroids and oriented matroids, where particu-
larly computational approaches tend to be much simplified. In this paper we focus on
matroids, which model only incidence properties. This introduction, and the remain-
der of the paper are divided into three main parts. First we discuss some new results
in incidence geometry obtained via an expanded catalog of matroids. Second we ex-
plain the algorithm used to generate this catalog. Third, we consider how to generate
oriented matroids from matroids.

1.1 Incidence Problems in Discrete Geometry

Matroids and oriented matroids are important as combinatorial abstractions for point
configurations and hyperplane arrangements, which are fundamental objects in dis-
crete geometry. While oriented matroids describe relative positions of objects, ma-
troids merely encode incidence information such as collinearity or coplanarity. If two
of these geometric configurations determine the same matroid, we say they are M-
equivalent. Similarly, if they determine the same oriented matroid, we say they are
OM-equivalent. We mention that OM-equivalency is the usual definition of equiva-
lency for these geometric configurations, although we use the term OM-equivalency
for precision.

Because no direct method is known for enumeration of combinatorial structures of
point configurations or hyperplane arrangements, the generation of these combinato-
rial abstractions is a promising approach. Note that there exist matroids and oriented
matroids which cannot be realized by any point configuration or any hyperplane ar-
rangement. At least for oriented matroids, several studies have been made on practical
methods for the realizability problem which work satisfactorily for small instances [1,
2, 21]. On the other hand, in some cases, there is no need to identify the realizable
matroids or oriented matroids. For instance, if a particular conjecture for point con-
figurations or hyperplane arrangements is true for all matroids or oriented matroids, it
is also true for realizable ones, which correspond to actual geometric configurations.

Although matroids encode only part of the combinatorial properties contained in
oriented matroids, they are still enough to describe many problems in discrete geome-
try. We call such problems incidence problems. For incidence problems, enumeration
of matroids is more useful than that of oriented matroids because it can offer infor-
mation on configurations of a larger number of objects. Furthermore, when geometric
configurations corresponding to specific matroids are of interest, we can investigate
their structures at the OM-equivalency level by enumerating oriented matroids from
the matroids.

In Sect. 2.1, we study the points–lines–planes conjecture by Welsh [40], an in-
equality relating the number of points to the number of lines and planes spanned by
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those points. This inequality is also conjectured to hold for (not necessarily realiz-
able) matroids. We confirm this conjecture for matroids of rank 4 (and thus for point
configurations in R

3) on n ≤ 11 elements, by restricting our search to extensions of a
small subset of the rank 4 matroids on ten elements.

In Sect. 2.2, we analyze so-called Sylvester–Gallai type problems. This is a col-
lection of problems derived from the Sylvester–Gallai theorem [15, 16, 30, 39]: any
point configuration has an ordinary line, which passes exactly two of the given points,
unless all points are on the same line. A lower bound �n/2� on the number of ordinary
lines was conjectured by Motzkin [13, 24, 31]. We determine all extremal instances
on n ≤ 12 points in R

2 (confirming the conjecture of Motzkin), and for n ≤ 10 points
in R

4.
The advantage of the matroid-based approach is shown by the fact that our re-

sults in Sect. 2 are on configurations of a larger number of objects compared other
computational approaches. In the next section, we discuss a new algorithm for the
enumeration of non-isomorphic matroids.

1.2 Enumeration of Matroids

For many extremal problems in discrete geometry, the only known computational ap-
proach is one based on enumeration of possible (abstract) configurations. Even when
the complete search space is not visited, more efficient techniques for enumeration
can be useful as part of some other algorithm. In this paper we focus on incidence
problems, where matroids are a good model. We are able to find the new results dis-
cussed above thanks to an improved algorithm for the enumeration of matroids.

The enumeration of matroids has been studied as part of the effort to classify ma-
troids with small rank and ground set. Mainly isomorph-free enumeration has been
considered because many properties of matroids are invariant under isomorphism.
Since Blackburn, Crapo and Higgs [5] enumerated all isomorph-free simple matroids
on n ≤ 8 elements in 1973, many studies have been done to extend the classification
of matroids. For rank 3 simple matroids, Betten and Betten [3] reached n ≤ 12 el-
ements by exploiting special properties of them. Recently Mayhew and Royle [28]
achieved the enumeration of all isomorph-free matroids of any rank on n ≤ 9 ele-
ments. For a special class of matroids called paving matroids, Mayhew and Royle
determined all isomorph-free (paving) matroids of rank 4 on ten elements by using
the correspondence between paving matroids and independent sets in a Johnson graph
and its extensions. However, non-paving matroids of rank 4 on ten elements were not
enumerated.

In this paper we propose a new algorithm for enumeration of matroids and com-
plete the enumeration of matroids of rank 4 on ten elements with this algorithm.

Theorem 1 There are 4,886,380,924 isomorph-free matroids of rank 4 on ten ele-
ments.

Table 1 summarizes the number of matroids of rank r on n elements determined by
our enumeration. The case (r, n) = (4,10) and its dual (r, n) = (6,10) are essentially
new results by our enumeration. Other cases are confirmation of the previous studies
and their dual or extension to non-simple ones.
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Table 1 Number of non-isomorphic matroids

r\n 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 3 4 5 6 7 8 9 10 11 12

2 1 3 7 13 23 37 58 87 128 183 259

3 1 4 13 38 108 325 1275 10037 298491 31899134

4 1 5 23 108 940 190214 4886380924 ∗ ∗
5 1 6 37 325 190214 ∗ ∗ ∗
6 1 7 58 1275 4886380924 ∗ ∗
7 1 8 87 10037 ∗ ∗
8 1 9 128 298491 ∗
9 1 10 183 31899134

10 1 11 259

11 1 12

12 1

Notes: r : rank n: size of the ground set
∗Enumeration not completed

Here we mention that Mayhew and Royle’s experiment using random generation
suggests there are at least 2.5 × 1012 matroids of rank 5 on ten elements. Enumera-
tion of all matroids on ten elements is an attractive task but it seems difficult under
the computational power of current computers. In that sense, our results may be con-
sidered as reaching the current limit.

1.3 From Matroids to Oriented Matroids

We use our results on the matroid enumeration to improve enumerative study of ori-
ented matroids. An oriented matroid can be described roughly as a matroid in which
every basis is signed. The oriented matroid is called an orientation of the underlying
matroid. On the other hand, not every matroid has an orientation. Matroids with at
least one orientation (i.e., which are underlying matroids of some oriented matroid),
are called orientable matroids.

In general, orientable matroids have many orientations. Therefore the number of
oriented matroids is much larger than that of matroids. Oriented matroids of rank
r on n elements are determined for r = 3, n ≤ 10 and r = 4, n ≤ 8 by Finschi
and Fukuda [18–20]. In the case of uniform oriented matroids, those of rank 3 on
n ≤ 11 elements were determined by Aichholzer and Krasser [2]. Compared with the
enumeration of matroids, these enumerations of oriented matroids cover those with
relatively small ground sets. This difference in coverage arises from the much larger
number of oriented matroids with given parameters. For example, in the case of rank 3
and the ground set with ten elements, there are 95,052,532 simple oriented matroids
while there are only 5249 simple matroids. The relative completeness of the classi-
fication of (unoriented) matroids motivates us to utilize it in computational analysis
of oriented matroids with larger ground sets. We are thus concerned with two further
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Table 2 Results on orientability of matroids

Rank r 3 4

Size n 7 8 9 10 11 12 7 8 9 10*

# simple matroids 23 68 383 5249 232928 28872972 49 617 185981 1000000

# orientable 22 65 365 5048 223515 26873051 48 583 173697 696710

# non-orientable 1 3 18 201 9413 1999921 1 34 12284 303290

Ratio of non-orientable 0.043 0.044 0.046 0.038 0.040 0.069 0.020 0.055 0.066 0.303

# minimal non-orientable 1 1 2 23 1458 397240 1 10 8481

*For the case with r = 4 and n = 10, we test a random sample of 1000000 matroids

problems: testing orientability and generating orientations of matroids. Orientability
of matroids is a fundamental problem in understanding the gap between the model
of matroids and that of oriented matroids. Generating orientations also serves as a
new oriented matroid generation method. This local generation method is useful in
cases where we are interested in oriented matroids with specific underlying matroids.
Such cases are common because there are many properties of an oriented matroid
determined by its underlying matroid.

We propose a method for testing orientability of matroids based on known [6, 37]
ideas for oriented matroid generation using the Boolean Satisfiability (SAT) problem.
Although testing orientability of matroids is known to be NP-complete [35], experi-
mentally our method achieves satisfactory results. The motivation for this approach
is the fact that although SAT is also NP-complete, practical heuristics [11, 12] and
fast implementations [14] are known. Using our method we determine orientability
of matroids with r = 3, n ≤ 12 and r = 4, n ≤ 9. This classification—more extensive
than that obtained from existing enumeration of oriented matroids—is summarized
in Table 2.

It has been conjectured that asymptotically most matroids are non-orientable [4,
p. 279]. If this conjecture is true, it is expected that the ratio of non-orientable ma-
troids is higher among matroids on larger ground sets. In a case of rank 3, the ratio
of non-orientable matroids does not show clear increasing tendency according to n

for n ≤ 11, but the case n = 12 may be a start of growth. In the rank 4 case, we can
observe a clearer increasing tendency. This behavior is consistent with the conjecture.

Non-orientable matroids have been studied because show the gap between ma-
troids and oriented matroids. We list minimal non-orientable matroids following the
known examples such as the Fano matroid and the MacLane matroid. We also investi-
gate the strength of existing certificates of non-orientability [4, p. 273] by classifying
non-orientable matroids according to them.

We can apply the previously noted oriented matroid generation methods using
SAT [6, 37] to find all orientations of an orientable matroid. This works well if a
matroid does not have too many orientations. We present a computational experiment
that suggests while uniform matroids have many orientations, most other matroids,
especially highly degenerate ones, have many fewer orientations. The result suggests
generating all orientations via SAT is a practical approach for many inputs.
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2 Incidence Problems in Discrete Geometry

In this section, we present new results in discrete geometry obtained from enumer-
ation of matroids (Sect. 3) and analysis of their orientations (Sect. 4). Section 2.1
confirms the points–lines–planes conjecture for n ≤ 11 points. In this case, the de-
rived bounds for matroids directly imply those for the geometric case. Section 2.2
analyzes the number of ordinary lines in point configurations in R

2 and the number
of ordinary planes in point configurations in R

3. We also obtain results for the more
general (dual) problem of simple crossings in pseudohyperplane arrangements.

Before proceeding to these results, we discuss the matroid setting in which we
obtain them. We start by describing some of main ideas and notation we need from
the matroid literature. For more background on matroids, we refer to the book by
Oxley [33]. There are many equivalent ways to define matroids. In this paper, we
regard a matroid as an ordered pair (E, r) where E is a ground set and r : 2E → Z is
a rank function satisfying 0 ≤ r(X) ≤ |X|, X ⊂ Y ⇒ r(X) ≤ r(Y ), and r(X ∪ Y) +
r(X ∩ Y) ≤ r(X) + r(Y ). The last property is called submodularity. The rank of a
matroid M = (E, r) is r(E). The closure of X, denoted by cl(X), is the set of all
e ∈ E such that r(X ∪ { e }) = r(X). X is a flat if cl(X) = X.

Two matroids M1 = (E1, r1) and M2 = (E2, r2) are isomorphic if there is a bi-
jection ψ from E1 to E2 such that r1(X) = r2(ψ(X)) for all X ⊆ E1. The set of
isomorphism classes of rank r matroids on n elements is denoted by IC(n, r).

From the definition, a flat of a matroid is a maximal set of elements of a given
rank. Here we give geometric interpretations of this notion for point configurations
and arrangements of hyperplanes. First, consider a point configuration P in R

d . It
determines a matroid of rank d + 1 in a following manner: a subset S of these points
is a flat if there is an affine subspace passing through all points in S but no other.
The set of such flats determines the matroid. See Fig. 1 (left) for an example of the
set of flats defined by a point configuration. It should be noted here that the term
flat is also used to mean an affine subspace of R

d . If a flat S lies in a k-dimensional
affine subspace but not in a (k − 1)-dimensional one, S is a flat of rank k + 1 (the
empty set is a flat of rank 0). By analogy with the geometric case, flats of a matroid
of rank 1, 2, and 3 of a matroid are called points, lines, and planes. Next, consider
a hyperplane arrangement. Here we consider one not in R

d but in a real projective
space P

d where parallel hyperplanes intersect at infinity. This is because we want to
avoid the hassle of treating parallel hyperplanes as special. We call a maximal set S

of these hyperplanes a flat of rank k if its intersection is a (d − k)-dimensional affine
subspace. Again the set of flats determines the matroid. The line arrangement in the
right of Fig. 1 determines the same matroid as a point configuration in the left of
Fig. 1.

On the other hand, there is not always a point configuration or a hyperplane ar-
rangement which determines a given matroid M . Let A be a matrix A on a field
F , and c(A) the set of columns of A. A determines a matroid M = (E, r) where
E = c(A) and r(X) is the linear rank of X ⊆ c(A). M is called the vector matroid
of A. If M is isomorphic to the vector matroid of a matrix A over a field F , M is
said to be representable over F or F -representable. A is called a representation for
M over F . Given a matroid M , there exists a matrix A which is a representation for
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Fig. 1 Point configuration and hyperplane arrangement with corresponding flats

M over R, if and only if there exists an arrangement of hyperplanes whose normal
vectors are the |E| columns of A. Thus M is representable if and only if M is realized
by a hyperplane arrangement. Similarly if a matroid is realized by an affine point set
of dimension d , then there is an isomorphic vector matroid of rank d + 1, and M

is R-representable. We will thus use the terms representable matroid and realizable
matroid interchangeably to mean R-representable.

In Sect. 2.2 we study certain ordinary flats, i.e. rank r flats F that are single-
element extensions of some rank r − 1 flat G. Since the underlying questions there
are about the existence of certain point configurations, we need to consider orientabil-
ity of any discovered matroids, and realizability of any discovered oriented matroids.
In order to understand the orientable, but not necessarily realizable case, it will be
convenient here to consider the model of oriented matroids provided by arrange-
ments of oriented pseudospheres or oriented pseudohyperplanes. We follow the def-
initions of Richter-Gebert and Ziegler [23, Chap. 6]. A pseudosphere is the image of
a (d − 2)-sphere C ⊂ S

d−1 under some self homeomorphism of S
d−1. An arrange-

ment of pseudospheres is a set of pseudospheres where every subset of j < d + 3
decompose S

d−1 in a way isomorphic to that induced by j linear hyperplanes. We
define a projective pseudohyperplane arrangement by identifying antipodal points of
a (centrally symmetric representation of a) pseudosphere arrangement. We call ver-
tices of a pseudosphere arrangement simple crossings if all but one of the defining
pseudohyperplanes define a 1-face (i.e. a (d − 1)-flat). We can obtain an oriented
matroid from a pseudosphere arrangement as follows. Each pseudosphere partitions
S

d−1 into two (open) parts; we label one side as +, and one side as −. Given pseudo-
spheres e1 . . . ek forming an arrangement A, each face of A is thus labeled by some
vector in {+,−,0}k (see Fig. 2). These vectors, along with the zero vector, define the
covectors of an oriented matroid (see e.g. [4, Chap. 3] for the transformation between
the chirotope and the covectors). The topological representation theorem of Folkman
and Lawrence [22], shows that every loop-free oriented matroid arises in this way. An
oriented matroid M is called realizable if M is isomorphic to the oriented matroid of
some hyperplane arrangement. As in the matroid case, matrices and affine point sets
can be considered as realizing oriented matroids by interpreting them as hyperplane
arrangements.

Since orientable matroids thus correspond exactly to classes of M-equivalent pseu-
dohyperplane arrangements, in addition to the specific results discussed here, our
enumeration of orientable matroids can be used to confirm arbitrary incidence prop-
erties of small pseudohyperplane arrangements.
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Fig. 2 Sign vectors in
a (pseudo)hyperplane
arrangement

2.1 On the Points–Lines–Planes Conjecture

In this section we study the following conjecture of Welsh and Seymour:

Conjecture 1 (Points–lines–planes [38, 40])

(Point configuration version) If W1 points in R
3 determine W2 lines and W3 planes,

then W 2
2 ≥ (3/2)((W1 − 1)/(W1 − 2))W1W3 with equality if and only if the points

are in general position.
(Matroid version) If W1, W2 and W3 are the numbers of points, lines and planes of

a matroid then W 2
2 ≥ (3/2)((W1 − 1)/(W1 − 2))W1W3, with equality if and only if

every plane contains exactly three points.

Note that the point configuration version is equivalent to a special case of the
matroid version where the matroid is rank 4 and realizable.

Originally, Welsh [40] introduced the phrase points–lines–planes conjecture as
the point configuration version with a weaker inequality W 2

2 ≥ (3/2)W1W3. Sey-
mour [38] generalized the conjecture to matroids and proved the following special
case (an i+-point line denotes a line containing i or more points):

Theorem 2 (Seymour [38]) The matroid version of the points–lines–planes conjec-
ture is true for all matroids without a 5+-point line.

We obtain the following result by enumeration of matroids which do not satisfy
the condition in Theorem 2.

Theorem 3 The matroid version of the points–lines–planes conjecture is true for all
matroids of rank 4 on n ≤ 11 elements. Thus, the point configuration version is also
true for n ≤ 11 points.

From Theorem 2 by Seymour, we have only to confirm the inequality for matroids
with a 5+-point line. Although we enumerate matroids of rank 4 only on n ≤ 10
elements, we can go up to n = 11 by enumerating only matroids with a 5+-point line.
Indeed, there are only 1,637,504 rank 4 matroids on eleven elements with a 5+-point
line.

This enumeration is obtained as follows. First, note that every single-element dele-
tion of a matroid with a 5+-point line is a matroid with a 4+-point line. It follows that
enumeration of rank 4 matroids on eleven elements with a 5+-point line is obtained
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by applying our matroid enumeration algorithm only to rank 4 matroids on ten ele-
ments with a 4+-point line.

2.2 On the Number of Ordinary Lines and Planes

The Sylvester–Gallai theorem is known as an outstanding theorem in discrete geom-
etry:

Theorem 4 (Sylvester–Gallai [15, 16, 30, 39])

(Original version) Any configuration of n ≥ 2 points in a plane, not all of which are
on the same line, determines at least one ordinary line that passes through exactly
two of the given points.

(Dual version) Any arrangement of n ≥ 2 lines in a plane, not all of which through
the same point, have at least one simple crossing (i.e. crossing of exactly two lines).

Again this theorem can be described in terms of matroids. However, the theorem
does not hold for all matroids; the Fano matroid is a counterexample. On the other
hand, the theorem also holds for orientable matroids, i.e., pseudoline arrangements
in P

2.
Let m2(n) and m̃2(n) be the minimum number of simple crossings in an arrange-

ment of n lines and n pseudolines. The current best lower bound is proven by Csima
and Sawyer [10]; 6n/13 (n �= 7) both for line arrangements and pseudoline arrange-
ments.

For n even (n ≥ 6), n/2 is the best possible lower bound for m2(n), because ar-
rangements of n lines with exactly n/2 simple crossings are constructed by Böröczky
(see [9]). The arrangements consist of n/2 lines containing the edges of a regular
n/2-gon and together with n/2 lines of reflective symmetry. Böröczky’s example for
n = 12 is shown in Fig. 3. Moreover, for n = 12, another arrangement of n lines with
n/2 simple crossings is known as shown in Fig. 4 (together with the line at infinity,
Fig. 4 is the “McKee configuration” of 13 lines with six simple crossings) [9].

Hansen [27] conjectured that the arrangement shown in Fig. 4 and one by
Böröczky are the only line arrangements with n/2 simple crossings. We proved
Hansen’s conjecture for n ≤ 12; in fact, we obtained the following stronger result
on pseudoline arrangements:

Theorem 5 For n ≤ 12 even, there are no arrangements of n lines with exactly
n/2 simple crossings other than the arrangement of 12 lines shown in Fig. 4 and
Böröczky’s arrangements. Furthermore, the same statement is also true for arrange-
ments of pseudolines.

We describe how we obtain this result. Recall that simple crossings in pseudoline
arrangements correspond to 2-point lines in orientable matroids. First, we enumerate
all orientable matroids on n elements with n/2 2-point lines. As a result, we deter-
mine that there is one such matroid for n = 6, 8, 10 and two for n = 12. Next, we
generate all orientations of them and obtain the result that each of these matroids has
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Fig. 3 Böröczky’s arrangement
of n = 12 lines

Fig. 4 Another arrangement of
twelve lines with six simple
crossings (two of them are at
infinity line)

Table 3 Minimum number of
ordinary planes in
configurations of n points in R

3

(m3(n)) and rank 4 oriented
matroids on n elements (m̃3(n))

n 4 5 6 7 8 9 10

m3(n) 4 5 6 7 8 6 8

m̃3(n) 4 5 6 7 8 6 8

unique orientation up to isomorphism. Finally, we confirm that they correspond to
line arrangements, as stated in Theorem 5.

In three or more dimensions, there may not be a hyperplane containing the min-
imum possible number of points; consider two skew lines each with three points.
Motzkin [32] defined an ordinary hyperplane in d dimensions as one with all but
one contained points in a (d − 2)-flat, and showed that any non-collinear point con-
figuration in P

3 contains an ordinary plane (Hansen [26] generalized this to P
d ). In

(oriented) matroid terms, define an ordinary hyperplane as a d-flat that is a single-
element extension of a (d − 1)-flat. Let m3(n) and m̃3(n) be the minimum number of
ordinary planes in a configuration of n points in P

3 and in a rank 4 oriented matroid
on n-elements, respectively. We obtain m3(n) and m̃3(n) for n ≤ 10 and summarize
the result in Table 3. Note that we do not need to determine orientability of all rank 4
matroids on ten elements because we have only to investigate those with at most 10
ordinary planes.

For n ≤ 8, m3(n) = m̃3(n) = n, but not for n = 9 and 10. In the same way as the
2-dimensional case, we determine cases giving m3(n) and m̃3(n) for n = 9 and 10. In
both cases, a unique R-representable oriented matroid, i.e., a point configuration in



Discrete Comput Geom (2012) 47:17–43 27

Fig. 5 Configuration nine
points with six ordinary planes:
ABI , CDI , AFG, BEH ,
CGH , DEF

Fig. 6 Configuration of ten
points with eight ordinary
planes: ACF , ACH , BDE,
BDG, AFH , CFH , BEG,
DEG

R
3 gives the lower bound. We show these extremal examples in Figs. 5 and 6. These

are the first examples satisfying m3(n) = m̃3(n) < n.

3 Matroid Enumeration

In this section, we describe our matroid enumeration algorithm and present the com-
putational result. Section 3.1 introduces the basic notions and terminology. Sec-
tion 3.2 explains the characterization of all possible single-element extensions in
terms of so-called modular cuts, which encode the incidence of the new element.
Section 3.3 presents the outline of the enumeration algorithm. Sections 3.4 and 3.5
describe two key elements of the algorithm. Section 3.6 presents the results of ma-
troid enumeration.

Firstly, we describe the idea of our matroid enumeration algorithm and its features
in comparison with other algorithms. Blackburn, Crapo and Higgs’s algorithm [5]
gives a basis for Mayhew and Royle’s [28] and ours. The key in their algorithm is
construction of matroids on n elements from one on n − 1 elements by a single-
element extension, which is the reverse of deletion of an element from a matroid.
Starting from the root matroid on the empty set, all matroids are generated by repeated
single-element extensions and elimination of extra isomorphic copies. We show a step
in their algorithm in the left of Fig. 7.
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Fig. 7 Difference between the three matroid enumeration algorithms from an isomorphism testing stand-
point

When the number of generated matroids becomes large, isomorphism testing be-
comes a bottleneck. In general, for efficient isomorph-free enumeration of combina-
torial objects, a desirable algorithm is one which produces one object in each iso-
morphism class without pairwise isomorphism testing. Such algorithms are called
orderly algorithms (Reed [34] introduced this term first in a slightly more restricted
sense). Orderly algorithms are memory efficient and easy to parallelize. However,
constructing orderly algorithms for individual problems is not necessarily easy.

There are several approaches to construct orderly algorithms. One is the canonical
representation orderly algorithm, developed by Read [34] and Faradzev [17] indepen-
dently and also called Read/Faradzev-type orderly algorithm. Our matroid enumera-
tion algorithm falls into this class of algorithm. For enumeration of oriented matroids
(a signed extension of matroids) Finschi and Fukuda [18–20] succeeded in this ap-
proach. This encourages us to apply their idea to enumeration of matroids. Figure 8
shows the idea of our algorithm. In the canonical representation orderly algorithm, a
canonically labeled object called the canonical object is chosen as the representation
of each isomorphism class. A key in the canonical representation algorithm is the
choice of canonical objects. It must satisfy the following condition: a canonical ob-
ject must be generated from another canonical object via an augmentation, which is
a single-element extension in a case of matroid enumeration. This condition ensures
all canonical objects are generated. We propose as a choice of canonical matroids an
unsigned version of the canonical oriented matroids used by Finschi and Fukuda [18,
19] which in-turn are an encoding of oriented matroids by its chirotope with reverse
lexicographic order of r-subsets of the ground set.

There are other approaches to orderly algorithms. One is the canonical construc-
tion path orderly algorithm, developed by McKay [29] and also called the McKay-
type orderly algorithm. Mayhew and Royle’s matroid enumeration algorithm [28] is
based on this approach. In the canonical construction path algorithm, only objects
generated via a canonical augmentation are output. The canonical construction path
orderly algorithm shares the idea of traversing the tree with the canonical representa-
tion orderly algorithm but differs in that it does not define canonically labeled objects
in each isomorphism class. Unlike the canonical representation algorithm, it is essen-
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Fig. 8 Canonical representation
orderly algorithm

tially unlabeled and intermediate objects may be relabeled freely. On the other hand,
if an object has multiple isomorphic augmentations, they cannot be distinguished by
the technique of canonical augmentation. Extra isomorphic augmentations must be
rejected in another way. In a case of matroids, direct rejection of isomorphic single-
element extensions is difficult because of their complex structure. Therefore, Mayhew
and Royle took a two-step approach as shown in the middle of Fig. 7. They allow iso-
morphic single-element extensions at a step of generating single-element extensions
and eliminate extra ones by pairwise isomorphism testing. Because of this isomor-
phism testing, they call their algorithm partially orderly. Although this isomorphism
testing is restricted to matroids that are generated as single-element extensions of the
same matroid and accepted as canonical augmentations, it still becomes a bottleneck
when the number of such matroids is large. In comparison, our algorithm does not
need such pairwise isomorphism testing at all as illustrated in the right of Fig. 7.
Thus our algorithm can be called completely orderly. A canonical labeling orderly al-
gorithm is usually superior for cases where it is difficult to reject multiple isomorphic
augmentations.

Our algorithm has several specific improvements to the generic canonical repre-
sentation orderly algorithm. By exploiting the properties of our canonical labeling, we
prune the search of non-canonical single-element extensions. This pruning is based
on the fact that if a single-element extension corresponds to a modular cut (a special
collection of flats, see Sect. 3.2) containing a certain type of flats, it is non-canonical.
We call these flats taboo flats. This pruning suggests a unified approach for improve-
ment of the canonical representation algorithms using the properties of canonical
labellings.

3.1 Matroid Background

In this section we supplement the discussion of matroids in Sect. 2 with some further
definitions and notation that will be useful below.

As we mentioned in Sect. 2, we regard a matroid as an ordered pair (E, r) where E

is a ground set and r : 2E → Z is a rank function. We add the following definitions to
those in Sect. 2. X ⊆ E is independent if |X| = r(X), otherwise dependent. Similarly,
if a flat X such that cl(X) = X is dependent, it is called a dependent flat. A set X ⊆ E

is a basis if |X| = r(X) = r(M). Given a non-negative integer m ≤ |E|, if every
subset X ⊆ E such that |X| ≤ m is independent (and those are the only independent
sets), M is called the uniform matroid of rank m. A minimal dependent set X ⊆ E

is a circuit. If M has no circuits X ⊆ E such that |X| < r(X), M is called a paving
matroid. e ∈ E is a loop if r(e) = 0 and e, f ∈ E are parallel if r(e ∪ f ) = 1.
A matroid is simple if it contains no loops or parallel pairs of elements. e ∈ E is
a coloop if every base contains e.
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For T ⊆ E, define a function r ′(X) for all X ⊆ E − T as r ′(X) := r(X ∪ T ) −
r(T ). M ′ = (E − T , r ′) is a matroid, called the contraction of M to E − T . Given a
function r ′′(X) := r(X) for all X ⊆ E − T , M ′′ = (E − T , r ′′) is a matroid, called
the deletion of T from M . For the deletion of e ∈ E from M , denoted by M \ e, we
say that M is a single-element extension of M \ e. Given two matroids M and N ,
N is called a minor of M if it is obtained from M by a sequence of restriction and
contraction operations.

3.2 Modular Cuts and Single-Element Extensions

Crapo [8] developed the notion of single-element extensions and found that they are
in one-to-one correspondence with special subsets of flats called modular cuts. In
the point configuration setting, a modular cut is just the set of flats containing the
newly inserted point (cf. Fig. 10). To motivate the axiomatic definition in terms of
rank functions, we make the following observation:

Lemma 1 If F1 and F2 are flats of matroid M , and

1. r(F1 ∪ { e }) = r(F1), r(F2 ∪ { e }) = r(F2), and
2. r(F1) + r(F2) = r(F1 ∪ F2) + r(F1 ∩ F2)

then r((F1 ∩ F2) ∪ { e }) = r(F1 ∩ F2)

Proof Let F̂i = Fi ∪ { e }. From the submodularity property of rank functions, we
have

r((F1 ∩ F2) ∪ { e }) ≤ r(F̂1) + r(F̂2) − r(F̂1 ∪ F̂2)

≤ r(F1) + r(F2) − r(F1 ∪ F2)

= r(F1 ∩ F2)

where the last inequality follows from the second condition of the lemma. �

Pairs of flats satisfying the second condition of Lemma 1 are called modular (as
opposed to strictly submodular). In point configuration terms (see Fig. 9), Lemma 1
says that if (A,B) are a modular pair, and e ∈ aff(A) ∩ aff(B) then e ∈ aff(A ∩ B)

(where aff is the affine hull).

Definition 1 (Crapo [8], Oxley [33]) Let F (M) be the set of flats of a matroid M .
A ⊆ F (M) is called a modular cut if A satisfies the following two conditions:

(i) If F ∈ A and F ′ is a flat of M containing F , then F ′ ∈ A.
(ii) If F1,F2 ∈ A and r(F1 ∪ F2) + r(F1 ∩ F2) = r(F1) + r(F2), then F1 ∩ F2 ∈ A.

The following Lemma shows that every single-element extension yields a modular
cut, i.e. that the set of flats containing the extension element satisfies Definition 1.
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Fig. 9 Pairs of 2-flats in a rank
4 matroid. The right pair is
modular, i.e.
r(F1 ∪ F2) + r(F1 ∩ F2) =
r(F1) + r(F2)

Fig. 10 Illustrating the correspondence between modular cuts and single-element extensions

Lemma 2 (Crapo [8], Oxley [33]) Let N be a single-element extension of a matroid
M , and F (M) and F (N) the set of flats of a matroid M and N , respectively. If
F ∈ F (M) satisfies the following condition, M is a modular cut.

F ∪ e ∈ F (N) and r(F ∪ e) = r(F)

Figure 10 illustrates the relation between modular cuts and single-element exten-
sions. Here we have six points {1, . . . ,6}, and make single-element extensions by a,
b, b′, and c. We list modular cuts corresponding to each single-element extension.

The following Theorem, along with Lemma 2, gives a one-to-one correspon-
dence between single-element extensions and modular cuts. Thus we can generate
all single-element extensions of a matroid M by enumerating all modular cuts of M .

Theorem 6 (Crapo [8], Oxley [33]) Let A be a modular cut of a matroid M on a
set E. Then there is a unique extension Nof M on E ∪ e such that A consists of those
flats F of M for which F ∪ e is a flat of N having the same rank as F . The following
conditions are satisfied for all subsets X of E:

rN(X ∪ e) =
{

rM(X), if clM(X) ∈ A,

rM(X) + 1, if clM(X) /∈ A.
(1)

rM and rN are rank functions of matroids M and N, respectively.

We denote the matroid N in the above theorem by M +A e. Note that r(M +A e) =
r(M) + 1 if and only if A = ∅ and r(M +A e) = r(M) otherwise.
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3.3 Outline of Pruned Canonical Representation Orderly Algorithm for Matroid
Enumeration

In this section, we describe the outline of our pruned canonical representation orderly
algorithm for matroid enumeration.

In the following, we concentrate on generating a list of (canonical) isomorph-free
matroids in IC(n, r) under the assumption that canonical representatives for IC(n −
1, r − 1) and IC(n − 1, r) are known. This is because we can complete the entire
enumeration by iterating this step with increasing n and r .

To implement a canonical representation orderly algorithm, we need to choose
a canonical matroid in each isomorphism class. satisfying the following condition:
each canonical matroid is generated as a single-element extension of a (smaller)
canonical matroid. We describe the details of the choice of canonical matroids in
Sect. 3.4.

The remaining problem is generating all single-element extensions of a matroid.
This can be done with a simple backtracking search on the set of flats. However this
generates many non-canonical matroids which we discard. We propose pruning the
search by exploiting properties of our choice of canonical matroids. In Sect. 3.5 we
identify several families of taboo flats F where any modular cut A containing F

determines a non-canonical single-element extension. By definition, we have only to
search for modular cuts without taboo flats. We describe some types of taboo flat
which can be determined directly in Sect. 3.5.

In the following, we suppose that the ground set of a matroid on n elements is
En = {e1, . . . , en}. We present the outline of the pruned canonical representation al-
gorithm in Algorithm 1.

Algorithm 1 Pruned canonical representation orderly algorithm for matroid enumer-
ation
Input: Canonical matroids in IC(n − 1, r) and IC(n − 1, r − 1)

Output: Canonical matroids in IC(n, r)

for all canonical matroid M in IC(n − 1, r) do
for all modular cut A (�= ∅) of M without taboo flats do

N ← M +A en

if N is canonical then
output N

end if
end for

end for
for all canonical matroid M in IC(n − 1, r − 1) do

output M +∅ en

end for

Details of the choice of canonical matroids and finding taboo flats are discussed
in Sects. 3.4 and 3.5, respectively. Our current implementation uses straightforward
orbit traversal to test matroids for canonicality. This method is fast enough for the
cases we tested.
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Parallelizing enumeration algorithms has been extensively studied, and sophisti-
cated approaches have been developed (see e.g. [7]). Here, we can take a simpler
approach. We can easily parallelize our algorithm by dividing a task into computing
canonical extensions of each matroid in IC(n − 1, r − 1) and IC(n − 1, r). Because
the cost of each divided task is balanced to some extent in our experiments, this direct
parallelization works well.

3.4 Canonical Representation of Matroids

In this section, we describe how we choose a canonical matroid for each isomorphism
class of matroids. In particular we introduce an encoding of matroids based on the
encoding of oriented matroids developed by Finschi and Fukuda [18, 19]. A matroid
M is determined by the set of bases (i.e. minimal sets of rank r). Let M be a rank
r matroid on En = {e1, e2, . . . , en}. Because all bases of M have the same cardinal-
ity r , we can represent the set of bases by describing whether each r-subset of En

is a basis or not. Consequently, a matroid is encoded as a list of
(
n
r

)
Boolean values

corresponding to the r-subsets of En in some canonical order. We choose the reverse
lexicographic order of the r-subsets as follows.

Definition 2 (Reverse Lexicographic Order of Sets) The reverse lexicographic order
of sets is defined as follows: for given distinct r-sets A and B , A ≺ B if max(A) <

max(B) or max(A) = max(B) = em and A \ {em} ≺ B \ {em}.

Definition 3 (Encoding) Suppose that an asterisk (‘∗’) means the corresponding r-
subset is a basis and a zero (‘0’) means otherwise. The encoding of a matroid M of
rank r on En is a list composed of

(
n
r

)
symbols ‘∗’ or a zero ‘0’ where symbol j

corresponds to the j th r-subset in reverse lexicographic order.

Figure 11 shows a matroid with the geometric representation and its encoding
“*0***0****”. We choose a canonical matroid in each isomorphism class based
on the preceding two definitions.

Definition 4 (Canonical Matroid) A canonical matroid of the isomorphism class is
one with the lexicographically smallest encoding within the isomorphism class where
symbols are ordered ∗ > 0. For a given matroid M , rep(M) denotes the canonical
matroid the isomorphic to M .

The canonical matroid which is isomorphic to the matroid in Fig. 11 is the one
encoded as “0***0*****”, which is obtained by an isomorphism exchanging e3
and e4. The next theorem ensures that our choice of canonical matroids satisfies the
condition that a canonical matroid is generated as another single-element extension
of a canonical matroid.

Theorem 7 Let M be a canonical matroid of rank r on En.

1. If en is not a coloop in M , M\en is a matroid of rank r on n − 1 elements which
is encoded as the first

(
n−1

r

)
symbols of the encoding of M . Furthermore, M\en is

canonical.
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Fig. 11 A matroid, its bases in
the reverse lexicographic order
of r-subsets and its encoding

2. If en is a coloop in M , M\en is a matroid of rank (r − 1) on n− 1 elements which
is encoded as the last

(
n−1
r−1

)
symbols of the encoding of M . Furthermore, M\en is

canonical.

Proof First, we prove the rank and encoding in each case.
If en is not a coloop, there are bases of M which do not contain en. Because they

are also bases of M\en, the rank of M\en is r . By definition of the ordering of bases,
the encoding of M\en is the first

(
n−1

r

)
symbols of the encoding of M .

If en is a coloop, then the rank of M\en is r −1 because all bases of M contain en.
In particular the size of the maximal independent set is r − 1, so the rank of M\en is
r − 1. By definition of the ordering of bases, the encoding of M\en is the last

(
n−1
r−1

)
symbols of the encoding of M .

Next, we prove the second part of the theorem. Suppose that M\en is non-
canonical. In this case, there exists an isomorphism on En\en which makes the en-
coding of M\en larger. This isomorphism also makes the encoding of M larger. This
contradicts the supposition that M is canonical. �

3.5 Taboo Flats for Pruning Search of Single-Element Extensions

In this section, we describe several types of taboo flat for implementing the pruned
generation of single-element extensions. We give the following formal definition of
taboo flats:

Definition 5 (Taboo Flat) A flat F of a matroid M is a taboo flat if the following
condition is satisfied: for all modular cuts A containing F , a single-element extension
determined by A is non-canonical.

These types of taboo flat arise from the properties of our definition of canonical
matroids. The first type of taboo flat is given by the following proposition.

Proposition 1 Let M be a canonical rank r matroid on En−1, and A a modular cut
of M . If F ∈ A is a rank r − 1 dependent flat of M of maximum cardinality, then F

is a taboo flat.

Proof Let z(M) be the number of leading zeros in the encoding of M . If G is a rank
(r − 1) flat of M and |G| ≥ r , z(M) ≥ (|G|

r

)
because M is canonical (consider the
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isomorphism that maps G to {e1, . . . , e|G|}). Because F is a maximum cardinality
rank (r − 1) flat and |F | ≥ r ,

(|F |
r

) ≤ z(M) <
(|F |+1

r

)
. From Theorem 6, the rank of

F ∪en is r −1 in N . Similarly,
(|F+1|

r

) ≤ z(rep(N)) <
(|F+2|

r

)
. Because by Theorem 7

z(M) = z(N), it follow that z(N) �= z(rep(N)), thus N is non-canonical. �

Next, we describe the second type of taboo flats.

Proposition 2 Let M be a canonical matroid on En−1, and A a modular cut of M .
We denote a family of r-subsets of En−1 which contains en−1 by R, and let D be the
subset of R before the first dependent flat under the reverse lexicographic order. If
F ∈ A is a flat with E ∪ {en−1} ∈ D for some E ⊂ F such that r(E) = R(F), then F

is a taboo flat.

Proof Consider the isomorphism that exchanges en−1 and en. This isomorphism does
not change the first

(
n−2

r

)
symbols in the encoding of N , so we focus on the remaining(

n−2
r−2

)+2
(
n−2
r−1

) = (
n−2
r−1

)+ (
n−1
r−1

)
symbols. Since by Theorem 6, E ∪{en} is dependent,

the isomorphism moves the location of the first zero in these symbols into the front.
Consequently, N is non-canonical. �

Finally, we remark the following.

Proposition 3 A sub-flat of a taboo flat is also a taboo flat.

Proof Suppose that F is a taboo flat and G ⊆ F is a flat. From Definition 1, G ∈ M
implies F ∈ M. �

The three preceding propositions imply that the ground set En−1 cannot be a taboo
flat while the empty set {} is always a taboo flat.

As an example, we consider taboo flats of the matroid in Fig. 12. Because
{e1, e2, e3, e4} is the largest dependent flat of rank 2, it is a taboo flat according to
Proposition 1. From Proposition 2, flats which contain {e1, e2}, {e1, e3}, {e2, e3},
{e1, e4}, {e2, e4}, {e3, e4} or {e1, e5} are taboo flats. This means {e1, e2, e3, e4} and
{e1, e5, e6} are taboo flats. From Proposition 3, {e1}, {e2}, {e3}, {e4}, {e5}, {e6}, and
{} are also taboo flats. All taboo flats are shown in Fig. 12 as broken line boxes.

3.6 Result of Matroid Enumeration

We used Algorithm 1 to enumerate isomorph-free rank r matroids on n elements
for r ≤ 3, n ≤ 12 and for r = 4, n ≤ 10. For r ≥ n/2, the counts are obtained by
matroid duality. Table 1 summarizes our results. We used 24 processes on 12 dual-
core processors (Opteron 2.1 GHz) for calculation and it took about 3 days. If we sum
up computation time of each processor, it is 79 days. Our parallelization by dividing
a task into extensions of each matroid works well because no subtask is extremely
difficult. In our experiments, all subtasks finish in less than 10 minutes.

The number of matroids of a give rank and number of elements is summarized in
Table 1. The numbers are in complete agreement with previous results. Welsh [40]
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Fig. 12 A matroid and the lattice of its flats (taboo flats are broken line boxes)

Table 4 Number of non-isomorphic simple matroids

r\n 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1

1 1

2 1 1 1 1 1 1 1 1 1 1 1

3 1 2 4 9 23 68 383 5249 232928 28872972

4 1 3 11 49 617 185981 4884573865 * *

5 1 4 22 217 188936 * * *

6 1 5 40 1092 4886374072 * *

7 1 6 66 9742 * *

8 1 7 104 298034 *

9 1 8 156 31898447

10 1 9 229

11 1 10

12 1

Note: r : rank n: size of the ground set

*Non-determined value

asked the question of whether most matroids are paving. Mayhew and Royle showed
paving matroids predominate in matroids on nine elements. 71.71% of matroids on
nine elements are paving, compared to 49.50% of matroids on eight elements. May-
hew and Royle [28] showed the total number of paving matroids of rank 4 on ten
elements is 4,528,127,429. Here we determine all matroids of rank 4 on ten elements
including non-paving ones, which shows 92.6% of rank 4 matroids on ten elements
are paving. Compared to 77.36% of rank 4 matroids on nine elements [36], our result
also gives additional evidence that paving matroids do indeed predominate.

Some previous studies on enumeration of matroids focus on simple matroids, in-
cluding the result of Blackburn, Crapo and Higgs on matroids on n ≤ 8 elements [5]
and one of Betten and Betten on rank 3 matroids on n ≤ 12 elements [3]. We also
show the number of simple matroids in Table 4 and our results are in complete agree-
ment with these previous results.
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4 Orientations of Matroids

In this section, we consider the orientability of the matroids enumerated in Sect. 3.
Section 4.1 introduces the basic notions on orientations. As mentioned in the intro-
duction, orientability of matroids is known to be NP-complete [35], and all known
methods are unsurprisingly exponential time in the worst case. Experimental evalu-
ations are thus crucial. Section 4.2 presents our method for testing orientability and
some experimental results. The experimental results are discussed in more detail in
Sect. 4.3, which investigates minimal non-orientable matroids and the strength of
existing non-orientability certificates.

4.1 Oriented Matroids

Oriented matroids have been studied as a signed refinement of matroids where each
basis is given a sign in a way consistent with e.g. the signs of determinants of full rank
submatrices (we give formal definitions below). There are many equivalent axioma-
tizations of oriented matroids (see [4, Chap. 0] or [23, Chap. 6] for a survey). In this
paper, we find the chirotope axioms the most convenient. A chirotope is a mapping
which represents signed bases. A formal definition is as follows.

Definition 6 Let E be a finite set and r be an integer 0 ≤ r ≤ |E|. An alternating
mapping χ : Er → {−1,0,1} is a chirotope if it satisfies the following two condi-
tions.

(i) The set of r-subsets {x1, x2, . . . , xr} of E such that χ(x1, x2, . . . , xr ) �= 0 is the
set of bases of a matroid of rank r on E.

(ii) [3-term Grassman-Plücker relations] For any x3, . . . , xr , y1, y2, z1, z2 ∈ E,
if χ(z1, y2, x3, . . . , xr ) · χ(y1, z2, x3, . . . , xr ) ≥ 0
and χ(z2, y2, . . . , xr ) · χ(z1, y1, x3, . . . , xr ) ≥ 0
then χ(y1, y2, x3, . . . , xr ) · χ(z1, z2, x3, . . . , xr ) ≥ 0.

Each oriented matroid has two opposite chirotopes, χ and −χ . Formally, we de-
fine an oriented matroid as an ordered pair (E, {χ,−χ}) of a ground set E and the
set of two opposite chirotopes {χ,−χ}. Negation of a chirotope χ into −χ gives an
identical oriented matroid. Because a chirotope is alternating, it is determined with(|E|

r

)
values on r-subsets of E if some canonical ordering on E is given.

If an oriented matroid M is given, the corresponding matroid M is determined
from Definition 6(i). M is the underlying matroid of M and conversely M is an
orientation of M. A matroid M is called orientable if it has at least one orientation.

Signed circuits are another equivalent axiom systems of oriented matroids. For
each circuit C of the underlying matroid, there are two opposite signed circuits
C+, C− : C → {−1,1}. They are obtained from χ as follows. Choose elements
x1, . . . , xr , xr+1 ∈ En such that C ⊆ {x1, . . . , xr+1} and {x1, . . . , xr} is a basis of the
underlying matroid. Then C+(xi) = (−1)iχ(x1, . . . , xi−1, xi+1, . . . , xr+1) and C− is
similar for −χ .

We call two oriented matroids isomorphic when they are equivalent up to two
types of operation, relabeling and reorientation. Relabeling is renaming the elements
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Table 5 Number of non-isomorphic oriented matroids (an asterisk means the corresponding value is not
determined)

r\n 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1

2 1 1 1 1 1 1 1 1 1

3 1 2 4 17 143 4890 461053 95052532

4 1 3 12 206 181472 * *

5 1 4 25 6029 * *

6 1 5 50 508321 *

7 1 6 91 *

8 1 7 164

9 1 8

10 1

*Enumeration not completed

of the ground set and reorientation is reversing the signs of the elements in some
subset of the ground set. Sets of oriented matroids equivalent up to each operation
are called a relabeling class and a reorientation class. Simple oriented matroids are
those whose underlying matroid is simple.

The result of isomorph-free enumeration of oriented matroids by Finschi and
Fukuda [18–20] is shown in Table 5. In the special case of uniform oriented ma-
troids, Aichholzer and Krasser determined 41,848,591 oriented matroids of rank 3 on
eleven elements [2]. Comparing Table 5 to Table 4, we can observe easily that the
number of oriented matroids is much larger than that of matroids.

4.2 Method and Results of Testing Orientability

In this section, we present a method of testing orientability of matroids and some
computational results.

A matroid M of rank r on En is orientable if and only if there is an alternating map
χ satisfying following conditions: (i) the set {{x1, . . . , xr} | χ(x1, x2, . . . , xr ) �= 0} is
equal to the set of bases of M , and (ii) χ satisfies the 3-term Grassman–Plücker
relations (see Definition 6). The condition (i) determines whether the value of χ on
each r-subset of En is zero or non-zero. Thus, the remaining problem is whether there
is an assignment of −1 and 1 to the values of χ on r-subset corresponding to bases
of M .

Our method for testing orientability is to translate this problem into an instance
of SAT problem and solve it with a general SAT solver. We use MiniSAT [14] in
our experiments. The variables correspond to the values of χ on ordered bases of
M and the Boolean values true and false correspond to 1 and −1, respectively. The
constraints are the 3-term Grassman–Plücker relations. This method is similar to that
for generation of oriented matroids using SAT by Bremner, Bokowski and Gévay [6]
and Schewe [37]. However, our case is special since we need only one variable for
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each r-subset because whether the value is zero or non-zero is fixed in a problem
of testing orientability. The method of Gugisch [25] is similar to ours in generating
the underlying matroids first, but does not encode the orientability question as a SAT
instance.

We mention some details of the construction of a SAT instance. First, because the
original 3-term Grassman–Plücker relations have redundancy from a viewpoint of
computation, we use the following equivalent form:

Proposition 4 [4, Lemma 3.5.4] For an alternating mapping χ : En
r → {−1,0,1},

the 3-term Grassman–Plücker relations are equivalent to the following properties:
for any x3 < · · · < xr, y1 < y2 < z1 < z2 ∈ En, the set

S = {χ(y1, y2, x3, . . . , xr ) · χ(z1, z2, x3, . . . , xr ),

χ(y1, z1, x3, . . . , xr ) · χ(y2, z2, x3, . . . , xr ),

χ(y1, z2, x3, . . . , xr ) · χ(y2, z1, x3, . . . , xr )}
satisfies {−1,1} ⊆ S or S = {0}.

Next, we add two types of constraint to narrow the search space. Because if χ is
a chirotope then −χ is too, we may fix the value of χ on one freely selected ordered
base. With this constraint, each orientation of a matroid corresponds to one satisfiable
truth assignment of the SAT formula.

In addition, if χ is a chirotope, its reorientations are too. We may add constraints
so that only one selected representative of a reorientation class corresponds to one
satisfiable truth assignment of the SAT. Such constraints are as follows. Suppose that
a matroid M on En is connected i.e. for any ei, ej ∈ En, there is a circuit containing
both ei and ej . Suppose that Ci is a circuit containing both e1 and ei (i �= 1). If M

has an orientation and its signed circuit Ci is one of the two opposite signatures of Ci ,
there is a reorientation of it such that e1 and ei have the same sign in Ci . By translating
this in terms of chirotopes for each 2 ≤ i ≤ n, we obtain n − 1 constraints. If M is
not connected, we proceed similarly for each connected component. In general, if M

has c connected components, there are n − c constraints of this type. Note that these
constraints to remove redundant reorientations are obtained by utilizing the structure
of the underlying matroid.

Since we have formulated a SAT problem where each solution corresponds to
a reorientation class of our matroid, we can enumerate reorientation classes by enu-
merating solutions to the SAT problem. For a feasible SAT problem (i.e. an orientable
matroid), each successive solution can typically be found relatively quickly. If the de-
sired output is isomorphism classes, then this technique is only efficient if there are
relatively few reorientation classes per isomorphism class. Although in the extreme
case of the uniform matroid this ratio is huge, our experiments with simple matroids
on nine elements show that the median is 3.33 reorientation classes per isomorphism
class, and the third quartile is 8.0. These results suggest that a SAT-based technique
for enumerating isomorph-free orientations of a given matroid may be effective for
many inputs. For inputs with many reorientation classes, an alternative approach such
as that of Finschi and Fukuda [18] or Gugisch [25] may be faster.
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Fig. 13 The Fano matroid F7
and the MacLane matroid ML8

We close this subsection by presenting our experiments on orientability of ma-
troids. Because all matroids on at most six elements are orientable, we have only
to investigate matroids on n ≥ 7 elements. Because all matroids of rank at most 2
are orientable [4, pp. 247–248], we have only to investigate matroids of rank 3 or
more. Furthermore, because orientability is an invariant under duality, we have only
to consider r ≤ n/2. Moreover, because removing loops and parallel elements does
not affect orientability, we have only to investigate simple matroids. The results are
summarized in Table 2. Because it is hard to determine orientability of all rank 4
matroids on ten elements, we investigate a random sample of 1,000,000 matroids to
estimate the ratio of non-orientable ones. We discuss non-orientable matroids further
in Sect. 4.3.

4.3 Non-orientable Matroids

Non-orientable matroids are of interest both in the study of matroids and of oriented
matroids because they show that these two concepts are essentially different, and nei-
ther dominates the other. Minimal non-orientable matroids are of particular interest.

In this section, we limit the discussion to rank 3 matroids. As shown in Table 2,
we have determined minimal non-orientable matroids on n ≤ 12 elements. We will
now examine more closely the smaller ones. The Fano matroid F7 is known as the
unique non-orientable matroid on seven elements. F7 is also minimal non-orientable.
The MacLane matroid ML8 is a known minimal non-orientable matroid on eight
elements. Our result shows ML8 is the unique minimal one on eight elements. F7 and
ML8 are shown in Fig. 13. In fact, Ziegler presented the infinite sequence of minimal
non-orientable matroids [41], which consists of one matroid on 3n − 1 elements for
each n ≥ 3 and starts from ML8. However, these are only some of the minimal non-
orientable matroids.

As the minimal non-orientable instances following F7 and ML8, we present two
minimal non-orientable matroids on nine elements in Fig. 14. These two contains
F−

7 , a single-element deletion of F7, as a submatroid. and may be related to F7. For
matroids on 10 or more elements, the number of minimal non-orientable ones grows
rapidly. We do not show them individually here but they do not have so symmetric
structure as in cases n ≤ 9.

We also investigate these matroids from a viewpoint of representability. If a field F

is GF(2) and GF(3), M is called a binary matroid and a ternary matroid, respectively.
F7 is known as the unique non-orientable one among binary rank 3 matroids. We
obtained the fact that ML8 is special in the following sense:
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Fig. 14 Minimal non-orientable
matroids on nine elements

Theorem 8 ML8 is the unique minimal non-orientable matroid among ternary rank 3
matroids. That is to say, a rank 3 ternary matroid is non-orientable if and only if it
contains ML8 as a minor.

From these facts, minimal non-orientable matroids of rank 3 are neither binary nor
ternary other than F7 and ML8.

In Björner et al. [4, Chap. 6], the authors give six sufficient conditions for non-
orientability of matroids. We tested these conditions using our enumeration of rank 3
matroids on at most twelve elements. None of the conditions were very strong in our
experiments, with two failing to be satisfied by any non-orientable matroid. Björner
et al. also asked whether the six conditions are independent. Our enumeration shows
that three of the six conditions (namely the first and third of Proposition 6.6.1, and
the third from Proposition 6.6.3) are indeed independent from the others.

5 Concluding Remarks

In this paper, we analyze two types of incidence problem in discrete geometry, the
points–lines–planes conjecture and the Sylvester–Gallai type problems, using ma-
troids. Matroids are one of abstract settings for combinatorial structure of geometric
configurations such as point configurations and hyperplane arrangements. Matroids
merely encode incidence information such as collinearity or coplanarity, but their
simplicity makes it possible to enumerate a large amount of matroids.

Thus we introduced a new orderly algorithm for the enumeration of matroids,
i.e. one that does not require pairwise isomorphism tests. This algorithm is based
on a canonical representation for matroids, and generates matroids of a desired rank
and number of elements by recursively generating those with one less element, and
generating single-element extensions. We introduce the notion of a taboo flat as a
way of reducing the number of single-element extensions to be checked.

Our algorithm can enumerate more larger-size matroids than the previous ones.
The main computational result is the complete classification of matroids of rank 4 on
ten elements. When geometric configurations corresponding to specific matroids, the
configurations should be analyzed on oriented matroids, derived from the matroids.
We proposed the testing algorithm of matroid orientability by reduction to a boolean
satisfiability (SAT) problem. With this technique, we enumerated oriented matroids
of rank 3 and at most twelve elements and rank 4 and at most nine elements, and
found several new minimal non-orientable matroids.
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