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Abstract It is known that in the Minkowski sum of r polytopes in dimension d ,
with r < d , the number of vertices of the sum can be as high as the product of the
number of vertices in each summand. However, the number of vertices for sums of
more polytopes was unknown so far.

In this paper, we study sums of polytopes and prove a linear relation between the
number of faces of a sum of r polytopes in dimension d , with r ≥ d , and the number
of faces in the sums of less than d of the summand polytopes. We deduce from this
result a bound on the maximum possible number of vertices of the Minkowski sum of
any number of polytopes in any dimension. In particular, the linear relation implies
that a sum of r polytopes in dimension d , where summands have n vertices in total,
has less than

(
n

d−1

)
vertices, even when r ≥ d .

Finally, we present a construction for any given number of vertices in summands
and show that no other sum can achieve more vertices, establishing a precise tight
bound.

Keywords Polytopes · Minkowski sums · f-Vectors

1 Introduction

The Minkowski sum of two polytopes, P1 and P2, is defined as {x1 + x2 : x1 ∈ P1,

x2 ∈ P2}. Minkowski sums are of interest in various fields of theoretical and applied
mathematics. While some applications only require sums of two polytopes in low
dimensions (e.g., motion planning [5, 8]), others use iterative sums of many polytopes
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in higher dimensions [9, 12]. It is therefore desirable to study the complexity of such
sums.

A trivial bound on the number of vertices of a sum is found as follows. Every
vertex of a Minkowski sum decomposes into a sum of vertices of the summands.
Therefore, there cannot be more vertices in the sum than there are possible decompo-
sitions. Thus, the trivial bound on the number of vertices of a Minkowski sum is the
product of the number of vertices of the summands. That is, if P1, . . . ,Pr are poly-
topes, and f0(P ) is the number of vertices of a polytope P , then f0(P1 +· · ·+Pr) ≤
f0(P1) × · · · × f0(Pr).

If we sum r polytopes in dimension d , with r < d , then the trivial bound is tight.
That is, it is possible to choose summands with any number of vertices so that their
sum has as many vertices as the trivial bound f0(P1) × · · · × f0(Pr) [2].

However, if we sum r polytopes in dimension d with r ≥ d , the trivial bound
cannot be reached, except when summing d segments [10, 11]. We assume here as
in the rest of the article that polytopes have at least two vertices, since summands of
only one vertex can be ignored without changing the properties of the sum.

The f-vector of a polytope encodes the number of the polytope faces of different
dimensions. For fixed f-vectors of summands, maximum f-vectors in the sum can
always be reached by summands in general orientations [3], because slightly perturb-
ing summands so that they are in general orientations can only increase the number
of faces in the sum. Thus, upper bounds on the number of faces of sums of poly-
topes in general orientations also apply to sums of polytopes that are not in general
orientations. We assume hereafter that summands are in general orientations and full-
dimensional.

We recently presented in [1] a tight bound on the maximum number of vertices
and facets in sums of three-dimensional polytopes, by showing that a bound on the
number of vertices of a sum of r summands can be deduced from the number of
vertices of the summands and the number of vertices of sums of each of the

(
r
2

)
pairs

of summands.
The basic reasoning of this previous result is to define a unique witness, called

western-most corner, for all but two vertices of a polytope. These witnesses have the
property that a western-most corner for a Minkowski sum of any number of sum-
mands is also necessarily a western-most corner for the sum of some pair of sum-
mands. So we can find the number of western-most corners of the total sum, and its
number of vertices, by examining individual summands and sums of two summands
only.

In this paper we extend this reasoning. Our main result, presented in Theorem 1,
considerably generalizes the previous one, as it applies to all faces and any dimension.
It is a linear relation between the number of faces of a sum of r polytopes and the
number of faces in the sums of less than d of the summand polytopes:

Theorem 1 Let P1, . . . ,Pr be d-dimensional polytopes in general orientations,
r ≥ d , and each polytope full-dimensional. For any k in 0, . . . , d − 1,

fk(P1 + · · · + Pr) − α =
d−1∑

j=1

(−1)d−1−j

(
r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

(
fk(PS) − α

)
,
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where fk(P ) indicates the number of k-dimensional faces of a polytope P , Cr
j is the

family of subsets of {1, . . . , r} of cardinality j , PS is the sum of polytopes
∑

i∈S Pi ;
α = 2 if k = 0 and d is odd, α = 0 otherwise.

A slightly more general result also applies when summands are not full-dimen-
sional.

The intuitive explanation of the theorem is based on the inclusion–exclusion prin-
ciple. For any face of the whole sum, we can find a witness of its existence by exam-
ining the faces of the same dimension in sums of d − 1 summands. However, if that
witness exists in some sum of d −2 summands, we will find it in many different sums
of d − 1 summands. So we need to offset this by removing an appropriate number of
times the witnesses in sums of d − 2 summands. But that in turn removes too many
times witnesses that exist in some sum of d − 3 summands, so we need to add them
back, etc. As any face of the whole sum does have at least one witness in sums of
d − 1 summands, the alternate sum is smaller than its term for j = d − 1:

Corollary 2 Let P1, . . . ,Pr be d-dimensional polytopes, r ≥ d , and each polytope
full-dimensional. For any k in 0, . . . , d − 1,

fk(P1 + · · · + Pr) ≤
∑

S∈Cr
d−1

fk(PS).

We deduce from this result upper bounds on the maximum possible number of
vertices in Minkowski sums. We find in particular that a sum of r polytopes in di-
mension d , r ≥ d , where summands have n vertices in total, has less than

(
n

d−1

)

vertices. In the case where each summand has at most n vertices, the number of ver-
tices of the sum is less than

(
r

d−1

)
nd−1. The previously known bound for vertices of

Minkowski sums was in O(rd−1n2(d−1)) [4]. This has important implications on the
usefulness of methods that use sums of many polytopes in comparatively low dimen-
sions [9, 12], since we obtain a better bound on their complexity. The actual complex-
ity of O(rd−1nd−1) could also be deduced from Theorem 3.3 of [7], but Corollary 2
is more precise, since it provides the constant for the order of complexity.

We further refine this upper bound by proving the exact maximum possible num-
ber of vertices of a Minkowski sum of full-dimensional polytopes for fixed number
of vertices of summands:

Theorem 3 Let P1, . . . ,Pr be d-dimensional polytopes, r ≥ d , and each polytope
full-dimensional. Then

f0(P1 + · · · + Pr) ≤ α +
d−1∑

j=1

(−1)d−1−j

(
r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

(
∏

i∈S

f0(Pi) − α

)

,

where α = 2 if d is odd, and α = 0 if d is even. This bound is tight.

We achieve this result by giving a construction that reaches this bound and proving
that no sum of full-dimensional polytopes can have more vertices.



522 Discrete Comput Geom (2012) 47:519–537

The rest of the article is organized as follows. We briefly present the background
theory in Sect. 2. In Sect. 3, we introduce the concepts of west and western-most
corner in three dimensions and then formally extend them to higher dimensions
in Sect. 4. We examine in Sect. 5 the maximum possible number of vertices of a
Minkowski sum. Most of the technical proofs are deferred to Sect. 6. Finally, we
summarize our results in Sect. 7.

2 Minkowski Sums

Let P1, . . . ,Pr be r polytopes. Their Minkowski sum is the polytope defined as P1 +
· · · + Pr = {x1 + · · · + xr : xi ∈ Pi ∀i}. We assume hereafter that every polytope is
full-dimensional.

A nontrivial face of a polytope P in dimension d is the intersection of P with a
support hyperplane of P . Vertices, edges, facets, and ridges are the faces of dimension
0, 1, d − 1, and d − 2, respectively. Thus, we can associate with each vector l in the
unit sphere Sd−1 a face of the polytope, which is the intersection of the polytope with
the support hyperplane to which the vector is outwardly normal: S(P ; l) = {x ∈ P :
〈l, x〉 ≥ 〈l, y〉 ∀y ∈ P }, where 〈·, ·〉 represents the standard Euclidean inner product.

Conversely, each face F of a d-dimensional polytope P can be associated with a
region of the sphere Sd−1, called the normal region, which is the set of unit vectors
outwardly normal to some support hyperplane of P , whose intersection with P is
F : N (F ;P) = {l ∈ Sd−1 | F = S(P ; l)} = {l ∈ Sd−1 | 〈l, x〉 > 〈l, y〉 ∀x ∈ F, y ∈
P \F }. Alternatively, the normal region of a face can be defined as the intersection of
its relatively open normal cone with Sd−1. The normal region of a face of dimension
k is a relatively open subset of Sd−1 of dimension d − 1 − k. In particular, the normal
region of a facet of P is a single point of Sd−1, corresponding to the unit vector
outwardly normal to the facet.

We call a subset of the sphere Sd−1 spherically convex if for any two points in the
subset, any shortest arc of great circle between the two points is inside the subset.1 If
the polytope P is full-dimensional, the normal regions of faces of P are all disjoint,
relatively open and spherically convex. They determine a subdivision of Sd−1 into
a spherical cell complex, which we call the Gaussian map of the polytope: G(P ) =
{N (F ;P) : F face of P }.

A property of Minkowski sums is that faces of the sum have a unique de-
composition into faces of the summand. Let F be a face of the Minkowski sum
P = P1 + · · · + Pr , and l be in N (F ;P). Then F = F1 + · · · + Fr , where Fi =
S(Pi; l) is a face of Pi . We deduce that the normal region of a face of the sum
is equal to the intersection of the normal regions of faces in its decomposition:
N (F ;P) = N (F1;P1) ∩ · · · ∩ N (Fr ;Pr). Thus the Gaussian map of the sum is the
common refinement of the Gaussian map of the summands:

G(P1 + · · · + Pr) = {
N (F1;P1) ∩ · · · ∩ N (Fr ;Pr) : Fi face of Pi

}
.

1There exist different definitions of convexity on a sphere. Note that according to this one, the only convex
set containing antipodal points is the whole sphere.
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We can study the number of faces of a polytope by studying the number of cells of
its Gaussian map, as the polytope and its Gaussian map are dual structures.

We say that a face of a Minkowski sum has an exact decomposition F = F1 +· · ·+
Fr when its dimension is the sum of the dimension of the faces in its decomposition:
dim(F ) = dim(F1) + · · · + dim(Fr). That is, the decomposition is exact when there
are no two parallel segments inside different faces in the decomposition. We say that
polytopes are in general orientations when all faces of their Minkowski sum have an
exact decomposition.

For fixed f-vectors of summands, the maximum number of faces of any dimension
in the sum can always be reached by summands in general orientations [3]. Thus,
bounds on the number of faces of such sums apply to all other sums.

Let F be a face of the Minkowski sum P = P1 + · · · + Pr of d-dimensional poly-
topes in general orientations. The face F decomposes into a sum F1 + · · · + Fr of
faces of the summands, with dim(F ) = dim(F1) + · · · + dim(Fr). Even if r ≥ d ,
there are at most dim(F ) faces in the decomposition that are of a dimension more
than 0. Let the support IF ⊆ {1, . . . , r} of F be the set of indices of these faces,
with |IF | ≤ dim(F ). Note that for any subface G of F , G decomposes into a sum
G1 + · · · + Gr , where Gi ⊆ Fi for all i; and so, IG ⊆ IF .

For any subset S = {i1, . . . , is} of {1, . . . , r}, let us define the partial sum PS =
Pi1 + · · · + Pis .

Lemma 4 Let F be a facet of a Minkowski sum P = P1 + · · · + Pr of d-dimensional
polytopes in general orientations. Its normal region N (F ;P) is a node of G(P ).
Then, N (F ;P) is also a node of the Gaussian map G(PS) of a partial sum if and
only if IF ⊆ S.

Proof Let F1 + · · · + Fr be the decomposition of F , with dim(Fi) > 0 if and only
if i ∈ IF . Since the summands are in general orientations, the decomposition is ex-
act, and dim(F ) = d − 1 = dim(F1) + · · · + dim(Fr) = ∑

i∈IF
dim(Fi). The nor-

mal region N (F ;P) contains a single unit vector l, and N (F ;P) is a node of
G(PS) if and only if dim(S(PS; l)) = d − 1. Again, the decomposition is exact,
and dim(S(PS; l)) = ∑

i∈S dim(S(Pi; l)) = ∑
i∈S dim(Fi). Since dim(Fi) > 0 if and

only if i ∈ IF , and
∑

i∈IF
dim(Fi) = d − 1, the result follows. �

3 Sums of Polytopes in Dimension 3

We informally present in this section the argument for the proof of Theorem 1 for
three dimensions, as it is easier to grasp and facilitates the comprehension of the proof
for arbitrary dimensions, which we present in Sect. 4. The result for three dimensions
has already been published [1].

In dimension 3, the Gaussian map of a polytope is a spherical cell complex of S2,
which can be described as a planar graph embedded in S2. The normal regions of
facets, edges, and vertices of the polytope are nodes, edges, and faces of the graph,
respectively. Note that the normal regions of edges of the polytope, edges of the
graph, are arcs of great circles of S2. The Gaussian map of a Minkowski sum is the
overlay of the Gaussian maps of the summands.
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Fig. 1 Example of a Gaussian
map that is the overlay of three
maps. Each western-most corner
of the map is also a
western-most corner in the
overlay of at most two maps

Let P = P1 + · · · + Pr be a sum of three-dimensional polytopes in general orien-
tations. We choose on S2 two antipodal points that do not belong to any great circle
containing an edge of G(P ). In particular, the points are in the interior of two distinct
faces of G(P ). We call these two points north pole and south pole. We define west
in the usual way with respect to the poles as a direction turning about an axis going
through the poles, clockwise from the north pole.

For any spherically convex subset C of S2 that does not contain either pole, we
define the western-most point of C as the point in the closure of C that is to the west
of all points in C. We also define the western-most corner of C. If C is not a vertex,
its western-most corner is the subset of C at distance less than ε of its western-most
point, where ε > 0 is smaller than the distance between any two nonincident cells
in G(P ). If C is a vertex, its western-most corner is its western-most point, that is,
the vertex itself. Note that if C is a cell of G(P ), the western-most point is a node
of G(P ) incident to C; it is unique, because otherwise an edge of G(P ) would be
contained in a great circle going through the poles.

The normal region N (F ;P) of a facet F of the Minkowski sum P is a node of
G(P ). Because the summands are in general orientations, there are no three edges
of different G(Pi) intersecting in a single point. Thus, a node in G(P ) is either a
node in some G(Pi), in which case IF = {i}, or it is the intersection of two edges in
some G(Pi + Pj ), in which case IF = {i, j} (see Fig. 1). So a western-most corner
in G(P ) is always a western-most corner in some G(Pi), or a western-most corner in
some G(Pi + Pj ), whose western-most point is the intersection of two edges. Thus,
we can find the number of western-most corners of G(P ) by counting those in all
G(Pi) and those in all G(Pi + Pj ) whose western-most point is an intersection of
edges. But then, the western-most corners in G(Pi + Pj ) also include corners whose
western-most point is a node of G(Pi) or G(Pj ). Denoting as wk(g) the number of
western-most corners of k-dimensional cells in a Gaussian map g, this means that

wk

(
G(P )

) =
r∑

i=1

wk

(
G(Pi)

) +
∑

1≤i<j≤r

(
wk

(
G(Pi + Pj )

) − wk

(
G(Pi)

) − wk

(
G(Pj )

))

=
∑

1≤i<j≤r

wk

(
G(Pi + Pj )

) − (r − 2)

r∑

i=1

wk

(
G(Pi)

)
, k = 0,1,2.
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In words, we sum the number of western-most corners of different G(Pi + Pj ) and
subtract (r − 2) times the western-most corners in the G(Pi), since they are each
counted (r − 1) times in the first sum.

There is one distinct western-most corner for every cell of a Gaussian map except
the two two-dimensional cells that contain a pole. As the cells of a Gaussian map
correspond to faces of the underlying polytope, we have that for any polytope P ,
w0(G(P )) = f2(P ), w1(G(P )) = f1(P ), and w2(G(P )) = f0(P ) − 2. Replacing wk

in the above equation, we get Theorem 1 for d = 3.
We emphasize a subtle detail of the argument. Let us say that a point p in the

closure of a subset C of the sphere S2 is a local optimum of C if p is the western-
most point for the intersection of C with some open set containing p. The reason we
use the direction west is that the level curves for west, the meridians of geography,
are arcs of great circles, i.e., geodesics; they intersect only once any other geodesic
inside a spherically convex set. This guarantees that all local optima are also western-
most points. This would not be the case had we used the direction south, because the
level curves for south are not geodesics. Using west guarantees that a node that is a
western-most point for G(P ) is still a western-most point when it exists in some map
G(Pi) or G(Pi + Pj ).

4 Generalization to Higher Dimensions

In this section, we generalize the argument of Sect. 3 to higher dimensions. First, we
extend the definition of west and western-most corners. We prove that the extension
has the same property that (about) every cell of a Gaussian map has a single western-
most corner. We also prove that the western-most corner of some cell in the Gaussian
map of a Minkowski sum is also a western-most corner of some cell in any Gaussian
map of a partial sum, where its western-most point is a node of the map. Finally, we
present the formula that allows us to count the number of western-most corners of
the Gaussian map of the Minkowski sum.

Proof of Theorem 1 We first present a sketch of the proof. Let P = P1 + · · · + Pr

be a Minkowski sum of d-dimensional polytopes in general orientations. Because
the summands are in general orientations, a node of G(P ) is also a node of G(PS)

if and only if the support of its underlying facet is contained in S (Lemma 4). This
implies that in all G(PS) where a node exists, the local geometry of the map around
the node is the same as in G(P ). Therefore, if the node is a local optimum in G(P ),
it is also a local optimum in any G(PS) of which it is a node. This implies that a
western-most corner in G(P ) is also a western-most corner in G(PS) if and only if its
western-most point in G(P ) exists in G(PS), i.e., if and only if S contains the support
of the underlying facet of the node. This is what allows us to use a counting argument
to deduce the number of western-most corners of G(P ) from the number of western-
most corners of the Gaussian map of partial sums. Since there is one western-most
corner per cell of the Gaussian map and face of the underlying polytope, this allows
us to find the number of faces of the sum P .

We now extend the definition of west. The Gaussian map G(P ) subdivides the
sphere Sd−1 into a spherical cell complex. The normal regions of ridges of P are
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arcs of great circles on Sd−1, edges of the Gaussian map G(P ). Each of these arcs of
great circles is contained in the two-dimensional subspace that is orthogonal to the
underlying ridge. In the d-dimensional space containing Sd−1, we choose a linear
subspace U of dimension d − 2, so that its intersection with every two-dimensional
subspace containing an edge of G(P ) is just the origin. The next lemma shows that
this is always possible.

Lemma 5 In a d-dimensional space, for any finite family {U1, . . . ,Un} of two-
dimensional linear subspaces, it is possible to find a linear subspace U of dimension
d − 2, such that U ∩ Ui = {0} for any i in 1, . . . , n.

Proof The orthogonal complements U⊥
i of the subspaces Ui in the family are of

dimension d −2. If we choose a vector u that is not in these orthogonal complements,
then for any i, span({u}∪U⊥

i ) is of dimension d −1. If we choose now a vector v that
is not in any of these subspaces of dimension d −1, then for any i, span({u,v}∪U⊥

i )

is the d-dimensional space. Define U = span({u,v})⊥. If a vector is in U ∩ Ui , it is
orthogonal to span({u,v}∪U⊥

i ), which is the whole space, and so it is the origin 0. �

This lemma is a simple extension of the fact that in three dimensions, for any
number of planes going through the origin, we can choose a vector that is in none of
the planes.

Note that the intersection of U with Sd−1 is affinely isomorphic to the sphere
Sd−3. If d = 3, the intersection is the two antipodal points on S2 that we named north
and south poles in Sect. 3, and if d = 2, it is the empty set because U = {0}.

We choose an orthonormal basis e1, . . . , ed of the d-dimensional space, such that
U = span({e3, . . . , ed}). We then define successive polar parameterizations of the
spheres Sk , 1 ≤ k ≤ d − 1 as follows:

S1 = {
sin(θ1)e1 + cos(θ1)e2 : θ1 ∈ [0,2π)

}
,

Sk = {
sin(θk)S

k−1 + cos(θk)ek+1 : θk ∈ [0,π]}, k = 2, . . . , d − 1.

Note that a point of Sd−1 is in U if and only if sin(θj ) = 0 for some j = 2, . . . , d − 1.
For any point of Sd−1 not in U , we define the direction west as θ̇1, the direction of
augmentation of θ1. Note that for d = 3, it is equivalent to the definition of Sect. 3,
and for d = 2, it is a direction running around S1. In Sd−1, west is not defined on the
subspace U because θ̇1 = 0, so that the intersection of U with Sd−1 is a sphere of
dimension d − 3 that plays the same role as poles in three dimensions.

Recall that in our parameterization of Sd−1, θ1 is in [0,2π). Formally, for any
points p and q of Sd−1 that are not in U , we say that p is to the west of q if θ1(p) ∈
[θ1(q), θ1(q) + π] and θ1(q) < π , or if θ1(p) ∈ [θ1(q),2π) ∪ [0, θ1(q) − π] and
θ1(q) ≥ π .

For any spherically convex subset C of Sd−1 that does not intersect U , we define
the western-most point of C as the point in the closure of C that is to the west of all
points in C. The next lemma, proved in Sect. 6.1, shows that the western-most point
exists.
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Lemma 6 If a spherically convex subset C of Sd−1 does not intersect U , it is con-
tained in a hemisphere defined by θ1 ∈ [α,α + π] or θ1 ∈ [0, α] ∪ [α + π,2π) for
some α ∈ [0,π).

We also define as western-most corner of C the subset of C at distance less than
ε of the western-most point, where ε > 0 is smaller than the distance between any
two nonincident cells in G(P ). Note that the western-most point of C is also the
western-most point of the western-most corner of C.

Recall that the Gaussian map of a polytope is a subdivision of Sd−1 into a spherical
cell complex. For any cell C of G(P ) that does not intersect U , the western-most
point of C is a node incident to C, which is unique because otherwise there would
be a great circle containing an edge of G(P ) and intersecting U , which contradicts
the way we chose U . As a consequence, there is one unique western-most corner for
each cell of a Gaussian map that does not intersect U .

We now show that western-most points can be determined locally. We call a point
p in the closure of a subset C of Sd−1 a local optimum of C if p is the western-most
point of the intersection of C with some open subset of Sd−1 containing p.

Lemma 7 A point p is a local optimum of a cell C of a Gaussian map G if and only
if it is a western-most point of C.

The proof is in Sect. 6.1. This lemma is crucial for proving the next result, which
establishes that a western-most corner of some cell of G(P ) is also a western-most
corner of a cell of the Gaussian map of any partial sum G(PS) if and only if its
western-most point is a node of G(PS).

Lemma 8 Let W be a western-most corner of a cell C in G(P ), with N (F ;P) the
western-most point of C. Then, W is a western-most corner of some cell of the same
dimension in the Gaussian map of the partial sum G(PS) if and only if IF ⊆ S.

The proof is in Sect. 6.1. This is the most important lemma. It is the ultimate goal
of the definitions in this section, which is to have a witness of the existence of a cell,
a witness whose presence in the Gaussian maps of partial sums depends on a simple
rule.

However, according to the definitions so far, cells intersecting U do not have a
western-most corner. In any cell that intersects U , it is possible to turn around U ,
always going west, much like the way it is possible to turn around a pole on S2. To
deal with this problem, we consider the restriction of the Gaussian map to U . Let us
denote as SU the intersection of Sd−1 with U . Then, SU is the sphere (0,0) × Sd−3,
and the restriction of a spherical cell complex on Sd−1 to SU also defines a spherical
cell complex on SU . In fact, the restriction to SU of the Gaussian map on Sd−1 of a
d-dimensional polytope is the Gaussian map on SU of the orthogonal projection of
the polytope onto U .

Since SU is a sphere affinely isomorphic to Sd−3, we can define west on SU as
we do for Sd−1 (see Fig. 2). For any cell of G(P ) that intersects SU , we define its
western-most corner as the western-most corner of its intersection with SU in the
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Fig. 2 Representation of a map in S3 by stereographic projection in Euclidean space. West defined in
S3 \ U is turning around the intersection of S3 with a two-dimensional subspace U , which is affinely
isomorphic to S1. Cells intersecting the subspace have their western-most corner defined by a different
direction west, which is the one defined on S3 ∩ U

restriction of G(P ) to SU . If d > 5, this again does not define a western-most point
for every cell, because west is not defined on the intersection of SU with a subspace
of dimension d − 4; so we restrict the Gaussian map to that subspace and start again
recursively.

We present now the complete construction. We have chosen a subspace U of di-
mension d − 2, such that its intersection with any two-dimensional plane containing
an edge of G(P ) is just the origin. Let us write Ud−2 = U and denote as Gd−2

the restriction of the Gaussian map G(P ) to Ud−2. Gd−2 is a spherical cell com-
plex on Sd−3. Then, for any i larger than 2, we define from Ui and Gi a subspace
Ui−2, which is a subspace of Ui , such that the intersection of Ui−2 with any two-
dimensional plane containing an edge of Gi is just the origin. We then define Gi−2

as the restriction of Gi to Ui−2, which is a spherical cell complex on Si−3. This de-
fines a sequence of subspaces Ud−2 ⊃ Ud−4 ⊃ · · · and a sequence of spherical cell
complexes Gd−2 ⊃ Gd−4 ⊃ · · ·. If d is even, the sequences end with G2, which is
a spherical cell complex on S1, and U0 is just the origin and does not intersect S1.
If d is odd, they end with G3, a spherical cell complex on S2, and U1 is a one-
dimensional subspace, whose intersection with S2 defines two antipodal points that
we called north and south pole in Sect. 3.

For each spherical cell complex Gi on Si−1, i ≥ 2, we can define a direction west
for every point of Si−1 that is not on Ui−2, as we have done for G(P ) on Sd−1. Then,
for any cell C of G(P ), let i be the smallest number such that the intersection of C

with Ui is nonempty. We then define the western-most point of C to be the western-
most point of C ∩ Ui , cell of Gi on the sphere Si−1. The western-most corner of C

is also the western-most corner of C ∩ Ui .
Note that if a cell C is of dimension d − k − 1, i.e., it is the normal region in

G(P ) of a k-dimensional face, it does not intersect Ui for any i ≥ k, because Ui was
chosen so as not to intersect edges and nodes of Gi+2, which are restrictions to Gi+2

of cells of dimension d − i − 1 and d − i − 2 in G(P ). For instance, if d is odd, only
normal region of vertices may intersect with U1. Since U1 only intersects Sd−1 in
two antipodal points, there are exactly two cells of dimension d − 1 in any Gaussian
map that intersect U1. These are the only two cells that do not have a western-most
corner. If d is even, west is defined on every point of G2, spherical cell complex on
S1, and so every cell of a Gaussian map has a western-most corner.
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We have now defined a western-most corner for every cell of Gaussian maps, with
the exception, if d is odd, of the two cells that contain a pole. As before, for cells that
do not intersect U , the western-most corner of a cell of G(P ) is also a western-most
corner of a cell of the same dimension in the Gaussian map of a partial sum G(PS) if
and only if S contains the support of its western-most point, or rather the support of
the cell whose restriction is its western-most point. The cardinality of the support is
always less than d .

Now that we have a complete definition of western-most corners, all that remains
is to count them. The support of any face of P has cardinality less than d , so all
western-most corners of cells of G(P ) can be found in the Gaussian map of partial
sums of at most d − 1 summands. It is not difficult to see that for any j ≥ |IF |, there
are

(
r−|IF |
j−|IF |

)
subsets of {1, . . . , r} of cardinality j that contain IF . The formula of

Theorem 1 is based on the following combinatorial equivalence:

Lemma 9 For any 1 ≤ s < d ≤ r ,

d−1∑

j=1

(−1)d−1−j

(
r − 1 − j

d − 1 − j

)(
r − s

j − s

)
= 1.

The proof is in Sect. 6.2. By this lemma, if we count all the western-most corners in
partial sums of j polytopes, multiply by (−1)d−1−j

(
r−1−j
d−1−j

)
, and sum over j , we end

up counting exactly once each western-most corner, no matter what is the cardinality
of the relevant support. Therefore, if wk(g) is the number of western-most corners of
k-dimensional cells in a Gaussian map g, then

wk

(
G(P )

) =
d−1∑

j=1

(−1)d−1−j

(
r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

wk

(
G(PS)

)
, k = 0, . . . , d − 1,

where Cr
j is the family of subsets of {1, . . . , r} of cardinality j . Since there is one

western-most corner of a k-dimensional cell for each d −1− k face of the underlying
polytope, this proves Theorem 1 for any d and k. The only exception is that if d is
odd, any Gaussian map has two regions of dimension d − 1 that contain the poles
and that have no western-most corner. In that case, wd−1(G(P )) = f0(P ) − 2, which
gives the special case of the theorem for d odd and k = 0. Furthermore, each western-
most corner of G(P ) can be found at least once in Gaussian maps of partial sums of
d − 1 summands. The last term of the sum in Theorem 1 is thus an upper bound on
the whole sum, which proves Corollary 2. �

5 Maximum Number of Vertices

In this section, we first present a bound on the number of vertices of Minkowski
sums using Corollary 2. We then prove Theorem 3 by presenting a construction of
Minkowski sums that maximizes the number of vertices of the sum for given number
of vertices of the summands.
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The trivial bound tells us that if r < d , then f0(P1 + · · · + Pr) ≤ ∏r
i=1 f0(Pi).

Consequently, if r ≥ d , we get by Corollary 2 that

f0(P1 + · · · + Pr) ≤
∑

S∈Cr
d−1

∏

i∈S

f0(Pi).

This can be seen as enumerating all possible combinations of d − 1 vertices chosen
each from a different summand. This is necessarily lower than all possible combina-
tions of d − 1 vertices from the summands. If the summands have n vertices in total,
this upper bound is

(
n

d−1

)
, which is in O(nd−1). If each summand has n vertices, then

we have

f0(P1 + · · · + Pr) ≤
∑

S∈Cr
d−1

nd−1 =
(

r

d − 1

)
nd−1.

Proof of Theorem 3 We give a construction that reaches the indicated bound, then
prove that no sum can have more vertices. A construction from [2] allows us to choose
d −1 polytopes (full-dimensional after perturbation) such that the number of vertices
of their sum reaches the trivial bound. We adapt this construction so as to choose r

polytopes such that any partial sum of d − 1 summands reaches the trivial bound.
The previous construction builds d − 1 polytopes P1, . . . ,Pd−1 whose sum has∏d−1

i=1 f0(Pi) vertices. In that construction, each Pi is the convex hull of f0(Pi) ver-
tices disposed in an arc of a circle in the space spanned by ei and ed, where e1, . . . , ed
form an orthonormal basis of the d-dimensional space. The fact that the basis is or-
thonormal is not actually necessary; the construction also works for any linearly inde-
pendent vectors e1, . . . , ed−1 orthogonal to ed. The resulting polytope is then simply
the image of the original construction through a nonsingular linear transformation
and has the same number of vertices.

Let us therefore choose r vectors f1, . . . , fr in the space orthogonal to ed, such that
any subset of d − 1 of these r vectors is linearly independent. That is, we choose r

vectors in generic position. We then build each polytope Pi , i = 1, . . . , r , similarly
to the construction from [2] in the space spanned by fi and ed. If we add a small
perturbation on the vertices, we ensure that each polytope is full-dimensional and
also that the polytopes are in general orientations. We get that the number of vertices
of any partial sum PS of d − 1 of these polytopes is f0(PS) = ∏

i∈S f0(Pi). By
the trivial bound, this implies that the number of vertices of any partial sum PS of
less than d of the polytopes is f0(PS) = ∏

i∈S f0(Pi). And so, by Theorem 1, the
construction reaches the bound of Theorem 3.

Finally, we prove that for a given number of vertices of the summands, no
Minkowski sum of full-dimensional polytopes can have more vertices. We know that
the maximum number of vertices is attained by polytopes in general orientations, so
we can assume that the polytopes are in general orientations. The number of vertices
of their Minkowski sum is given by the formula from Theorem 1.

We then show that this formula never reaches values greater than the values
reached when applied to our construction. We use for this the following lemma, which
shows that for any full-dimensional polytopes in general orientations, our construc-
tion maximizes the sum of two adjacent terms in the alternating sum of the formula.
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Lemma 10 Let P1, . . . ,Pr be full-dimensional polytopes in general orientations.
Then, for any j > 1,

((
r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

f0(PS) −
(

r − j

d − j

) ∑

S∈Cr
j−1

f0(PS)

)

≤
((

r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

(
∏

i∈S

f0(Pi)

)

−
(

r − j

d − j

) ∑

S∈Cr
j−1

(
∏

i∈S

f0(Pi)

))

.

The proof is quite technical. It appears in Sect. 6.3.
The formula from Theorem 1 can be decomposed into such pairs of terms. If d is

even, the term for j = 1 is not in a pair, but it is constant, since the number of vertices
of the summands is fixed. If d is odd, the formula is modified by the value α, but
the total value it adds to the formula is also constant. Given that the formula can be
decomposed into terms maximized by our construction, our construction maximizes
the formula. This concludes the proof of Theorem 3. �

Note, for example, that we cannot extend this result to facets. The maximum num-
ber of facets of a Minkowski sum of polytopes is only known for two summands [6],
so we cannot write an exact upper bound for facets. However, the complexity of the
f-vector is in O(rd−1nd−1), as can be deduced by applying Theorem 3.3 of [7] to the
upper and lower hull of the dual polytopes of summands.

6 Technical Proofs

6.1 Proof of Lemmas 6, 7, and 8

Recall that by Lemma 5, the subspace U can be chosen so that its intersection with
any two-dimensional subspace containing an edge of G(P ) is just the origin. We
prove here that U plays the same role as poles in three dimensions and that our
definition of west has the property that if we “optimize” in direction west over a
spherically convex subset of Sd−1, a local optimum of the subset is also a global
optimum. We start with a few lemmas:

Lemma 11 Let p and p′ be distinct nonantipodal points of Sd−1. Suppose that p and
p′ are on a same subspace. Then, all points on the great circle of Sd−1 containing p

and p′ are on that subspace.

Proof A great circle of Sd−1 is the intersection of Sd−1 with a two-dimensional
space. Suppose that a great circle contains p, p′, and q , with p and p′ on a sub-
space L, but q /∈ L. Then, the intersection of the two-dimensional space containing
the great circle with L is one-dimensional, and so it is a line going through the ori-
gin. Since p and p′ are both on that line and in Sd−1, they are either the same or
antipodal. �
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Recall that e1, . . . , ed is an orthonormal basis of the d-dimensional space chosen
such that U = span({e3, . . . , ed}). For any θ , let us denote as L(θ) the subspace
orthogonal to sin(θ)e1 + cos(θ)e2, i.e., the set {p : 〈p, sin(θ)e1 + cos(θ)e2〉 = 0}.

Lemma 12 A point p of Sd−1 is in L(θ) ∩ Sd−1 if and only if cos(θ1(p) − θ)) = 0
or p ∈ U .

Proof Any p in Sd−1 is written in our parameterization as ρs + u, with ρ ≥ 0,
s ∈ S1, and u ∈ U . We can write s = sin(θ1(p))e1 + cos(θ1(p))e2, and ρ = 0
if and only if p ∈ U . Therefore, 〈p, sin(θ)e1 + cos(θ)e2〉 = ρ(sin(θ) sin(θ1(p)) +
cos(θ) cos(θ1(p))) = ρ cos(θ1(p) − θ). So p is in L if and only if ρ cos(θ1(p)

− θ) = 0, which is if and only if ρ = 0 or cos(θ1(p) − θ) = 0. The result follows. �

Lemma 13 Let K be great circle of Sd−1. Then, either K is inside U ; or K inter-
sects U , K \ U has two connected components K1 and K2, such that for any two
points p ∈ K1, p′ ∈ K2, θ1(p) + π = θ1(p

′); or K does not intersect U , and for any
two distinct points p, p′ in K , θ1(p) �= θ1(p

′), and θ1(p) + π = θ1(p
′) if and only if

p and p′ are antipodal.

Proof Suppose p and p′ distinct in K such that θ1(p) = θ1(p
′); or suppose p and p′

nonantipodal in K such that θ1(p) + π = θ1(p
′); or suppose p′ is in K ∩ U and any

p in K . In all three cases, by Lemma 12, p and p′ are both in the subspace L(θ1(p)+
π/2). By Lemma 11, all points on K are in L(θ1(p) + π/2). Then, by Lemma 12
again, for any q on the arc of great circle, q ∈ U or cos(θ1(q) − (θ1(p) + π/2)) = 0.
Suppose that K ∩ U contains more than two points. Then, some of them are distinct
and nonantipodal, and by Lemma 11, K is inside U . Otherwise, for any q and q ′
antipodal on K \ U , θ1(q

′) = θ1(q) ± π . So there must be two antipodal points of K

inside U separating q and q ′, and so K \ U has two connected components.
The only remaining case is that for any p and p′ distinct in K , θ1(p) �= θ1(p

′);
for any p and p′ in K such that θ1(p)+ π = θ1(p

′), p and p′ must be antipodal; and
K ∩ U is empty. �

Note that if a great circle of Sd−1 does not intersect U , then θ1 is different in any
two points of the great circle. Since the parameterization is smooth on Sd−1 \ U , θ1

augments monotonically and continuously in one direction around the great circle,
except in one point when it drops from 2π to 0.

We now recall Lemma 6 and prove it.

Lemma 6 If a spherically convex subset C of Sd−1 does not intersect U , it is in a
hemisphere defined by θ1 ∈ [α,α + π] or θ1 ∈ [0, α] ∪ [α + π,2π)] for some α ∈
[0,2π).

Proof Let T1(C) be the set of values of θ1 over C in our parameterization. Since C

does not intersect U , T1(C) is connected. Suppose T1(C) is [0;2π), then there are
two points p, p′ in C with θ1(p) + π = θ1(p

′). Because C is spherically convex,
any shortest arc of great circle between p and p′ is contained in C. If p and p′ are
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antipodal, then C is the whole sphere and intersects U . Otherwise, by Lemma 13, the
arc of great circle again contains a point in U . This is a contradiction.

Otherwise, suppose without loss of generality that the supremum of T1(C) is
3π/2. Then, either C is in the hemisphere defined by θ1 ∈ [π/2,3π/2], or there is a
δ > 0 such that there are two points p, p′ in C with θ1(p) + π = θ1(p

′) = 3/2 − δ.
As above, this implies that C contains a point in U , which is a contradiction. �

Let us recall Lemma 7 before proving it.

Lemma 7 A point p is a local optimum of a cell C of a Gaussian map G if and only
if it is a western-most point of C.

Proof By definition, a western-most point is always a local optimum. Assume that p

is a local optimum of C,\ and that some distinct p′ is the western-most point of C

and therefore also a local optimum. Then, the shortest arc of great circle between p

and p′ is in C. Let α = θ1(p
′) − θ1(p). If cos(α) �= 0, then by Lemma 13, the great

circle defined by p and p′ does not intersect U , and θ1 augments continuously from
p to p′ except possibly in one point when it jumps from 2π to 0. So there is a q in the
intersection of the arc of great circle from p to p′ with the open set that proves p is a
local optimum. For q close enough, θ1(q) > θ1(p), and so p is not a local optimum,
a contradiction.

Suppose now that α = π . If p and p′ are antipodal, then any great circle containing
p and p′ is in C, and C is the whole sphere, a contradiction. If p and p′ are not
antipodal, then by Lemma 13, there is a point in the arc of great circle from p to p′
that is in U , and so C intersects U . But this means that C has no western-most point,
a contradiction.

Suppose now that α = 0. Then, p and p′ are incident to a cell, where θ1 is fixed.
But this means that the great circles containing edges of the cell intersect U , which
contradicts the way we have chosen U .

Therefore, it is impossible to have a local optimum p and a distinct western-most
point p′ of a same cell. �

We need to introduce one more lemma before proving Lemma 8. Recall that ε > 0
is smaller than the distance between any two nonincident cells in G(P ).

Lemma 14 Let F be a facet of P , with its normal region N (F ;P) a node of G(P ).
Let p be a point of Sd−1 at distance less than ε of N (F ;P). For any partial sum
PS with IF ⊆ S, the dimensions of the cells containing p in G(P ) and G(PS) are the
same.

Proof In the Gaussian map G(P ), the subset of Sd−1 at a distance less than ε of
N (F ;P) intersects only the normal regions of subfaces of F . Therefore, for any
point p in that subset, S(P ;p) is a subface G of F . Recall that for any subface G

of a facet F , IG ⊆ IF . So for any partial sum PS such that IF ⊆ S, IG ⊆ S, which
means that not only PS has a facet with the same normal region as F , but S(PS;p)

is a subface of that facet with the same dimension as G, and p is in a cell of the same
dimension in G(PS) as in G(P ). �
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We finally have the tools to prove Lemma 8.

Lemma 8 Let W be a western-most corner of a cell C in G(P ), with N (F ;P) the
western-most point of C. Then, W is a western-most corner of some cell of the same
dimension in the Gaussian map of the partial sum G(PS) if and only if IF ⊆ S.

Proof First, if IF �⊆ S, then N (F ;P) is not a node of G(PS), and so W cannot be
a western-most corner. Suppose IF ⊆ S; then N (F ;P) is a node of G(PS). Further-
more, by Lemma 14, the points in W are in a cell of the same dimension in G(PS)

as in G(P ), and the points in the closure of W are in a cell of the same dimension in
G(PS) as in G(P ). As a consequence, since N (F ;P) is the western-most point of W

in G(P ), it is also the western-most point of W in G(PS). But W is the intersection,
of the cell it is in, with an open subset, and so N (F ;P) is a local optimum of the
cell that contains W in G(PS). By Lemma 7, it is also the western-most point of the
cell that contains W in G(PS), and so W is the western-most corner of that cell in
G(PS). �

6.2 Proof of Lemma 9

We prove here the combinatorial equivalence used for formulating Theorem 1. The
relation can also be derived from a protean family of equivalences of the form

c∑

j=0

(−1)c−j

(
a + j

b + c

)(
c

j

)
=

(
a

b

)
, b < a, c ≥ 0.

See also [13, p. 285] on this subject. Let us recall Lemma 9 before proving it.

Lemma 9 For any 1 ≤ s < d ≤ r ,

d−1∑

j=1

(−1)d−1−j

(
r − 1 − j

d − 1 − j

)(
r − s

j − s

)
= 1.

Proof We prove the lemma by induction over r . We know that for any d > 1,∑d
j=0(−1)j

(
d
j

) = 0. We can also write
∑d

j=1(−1)j
(
d−s
j−s

) = 0 for any 1 ≤ s < d ,

and so we have
∑d−1

j=1(−1)d−1−j
(
d−s
j−s

) = 1. We can also write

d−1∑

j=1

(−1)d−1−j

(
d − 1 − j

d − 1 − j

)(
d − s

j − s

)
= 1.

This proves the relation for r = d . Assume that the relation is proved for r . Then,

d−1∑

j=1

(−1)d−1−j

(
r − 1 − j

d − 1 − j

)(
r − s

j − s

)
= 1,

=
d−1∑

j=1

(−1)d−1−j

(
r − j

d − 1 − j

)(
r − s

j − s

)
−

d−1∑

j=1

(−1)d−1−j

(
r − 1 − j

d − 2 − j

)(
r − s

j − s

)
.
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Replacing j in the second sum with j ′ − 1, we get

d−1∑

j=1

(−1)d−1−j

(
r − j

d − 1 − j

)(
r − s

j − s

)

−
d∑

j ′=2

(−1)d−j ′
(

r − j ′

d − 1 − j ′

)(
r − s

j ′ − 1 − s

)
= 1.

In the second sum, the term j ′ = d gives zero, so we can remove it and add one for
j ′ = 1, which also gives zero:

d−1∑

j=1

(−1)d−1−j

(
r − j

d − 1 − j

)(
r − s

j − s

)

−
d−1∑

j ′=1

(−1)d−j ′
(

r − j ′

d − 1 − j ′

)(
r − s

j ′ − 1 − s

)
= 1.

Grouping the sums, we get

d−1∑

j=1

(−1)d−1−j

(
(r + 1) − 1 − j

d − 1 − j

)(
(r + 1) − s

j − s

)
= 1,

and so the relation holds for r + 1, which proves Lemma 9 by induction. �

6.3 Proof of Theorem 3

We prove here Theorem 3, by providing a proof to Lemma 10.
The formula from Theorem 1 that gives the number of vertices of full-dimensional

polytopes in general orientations can be decomposed into pairs of adjacent terms, plus
a constant term. If the sum of each pair is maximal when using our construction, the
sum of all pairs is maximal as well, and so the expression obtains its maximal value
when using our construction. This is shown using Lemma 10 that we recall:

Lemma 10 Let P1, . . . ,Pr be full-dimensional polytopes in general orientations.
Then, for any j > 1,

((
r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

f0(PS) −
(

r − j

d − j

) ∑

S∈Cr
j−1

f0(PS)

)

≤
((

r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

(
∏

i∈S

f0(Pi)

)

−
(

r − j

d − j

) ∑

S∈Cr
j−1

(
∏

i∈S

f0(Pi)

))

.

Proof First, we represent the internal sum
∑

S∈Cr
j−1

f0(PS) as a sum over S ∈ Cr
j :

∑

S∈Cr
j−1

f0(PS) = 1

r − j + 1

∑

S∈Cr
j

∑

i∈S

f0(PS\i ).
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That is, subsets in Cr
j−1 are obtained r − j + 1 times by enumerating subsets in Cr

j

and removing each element in turn. By the trivial bound, f0(PS\i ) ≥ f0(PS)
f0(Pi )

. Since
(
r−j
d−j

) = r−j
d−j

(
r−1−j
d−1−j

)
, we have

((
r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

f0(PS) −
(

r − j

d − j

) ∑

S∈Cr
j−1

f0(PS)

)

=
((

r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

(

f0(PS) − r − j

d − j

1

r − j + 1

∑

i∈S

f0(PS\i )
))

≤
((

r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

(

f0(PS)

(

1 − r − j

d − j

1

r − j + 1

∑

i∈S

1

f0(Pi)

)))

.

All summands Pi are full-dimensional, and so f0(Pi) ≥ d + 1. Since S has j ele-
ments, we have

(
1 − r − j

d − j

1

r − j + 1

∑

i∈S

1

f0(Pi)

)
≥

(
1 − 1

d − j

j

d + 1

)
≥ 0.

So each term is positive. Therefore, the trivial bound f0(PS) ≤ ∏
i∈S f0(Pi) implies

that
((

r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

f0(PS) −
(

r − j

d − j

) ∑

S∈Cr
j−1

f0(PS)

)

≤
((

r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

(
∏

i∈S

f0(Pi)

(

1 − r − j

d − j

1

r − j + 1

∑

i∈S

1

f0(Pi)

)))

.

Now, since we have

∑

S∈Cr
j

(
∏

i∈S

f0(Pi)

)(
∑

i∈S

1

f0(Pi)

)

=
∑

S∈Cr
j

∑

i∈S

∏

i′∈S\i
f0(Pi′)

= (r − j + 1)
∑

S∈Cr
j−1

∏

i∈S

f0(Pi),

we finally get that
((

r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

f0(PS) −
(

r − j

d − j

) ∑

S∈Cr
j−1

f0(PS)

)

≤
((

r − 1 − j

d − 1 − j

) ∑

S∈Cr
j

(
∏

i∈S

f0(Pi)

)

−
(

r − j

d − j

) ∑

S∈Cr
j−1

(
∏

i∈S

f0(Pi)

))

.
�

The above proves that for any choice of polytopes P1, . . . ,Pr , the sum of each
pair of terms in the formula of Theorem 1 is not greater than the term we obtain with
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polytopes of our construction, where we have f0(PS) = ∏
i∈S f0(Pi). Therefore, for

fixed number of vertices of the summands, our construction gives a Minkowski sum
with the maximum number of vertices.

7 Summary

We extend the intuitive concept of west from three dimensions to higher dimensions.
The important property of this concept is that in a spherically convex region, any
local western-most point is also a global western-most point. This enables us to prove
a relation on the number of faces of sums of many polytopes in general orientations.

We use this relation to provide an upper bound on the maximum number of ver-
tices of Minkowski sums for given number of vertices of summands, and we show
that this bound can be reached.

References

1. Fogel, E., Halperin, D., Weibel, C.: On the exact maximum complexity of Minkowski sums of poly-
topes. Discrete Comput. Geom. 42(4), 654–669 (2009)

2. Fukuda, K., Weibel, C.: On f-vectors of Minkowski additions of convex polytopes. Discrete Comput.
Geom. 37, 503–516 (2007)

3. Fukuda, K., Weibel, C.: A linear equation for Minkowski sums of polytopes relatively in general
position. Eur. J. Comb. 31(2), 565–573 (2010). Combinatorics and geometry

4. Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: computational complexity and appli-
cations to Gröbner bases. SIAM J. Discrete Math. 6(2), 246–269 (1993)

5. Halperin, D., Kavraki, L.E., Latombe, J.-C.: Robotics. In: Goodman, J.E., O’Rourke, J. (eds.) Hand-
book of Discrete and Computational Geometry, Chap. 48, pp. 1065–1093. CRC Press, Boca Raton
(2004)

6. Karavelas, M., Tzanaki, E.: The maximum number of faces of the Minkowski sum of two convex
polytopes. In: ACM-SIAM Symposium on Discrete Algorithms (2012)

7. Koltun, V., Sharir, M.: On overlays and minimization diagrams. Discrete Comput. Geom. 41(3), 385–
397 (2009)

8. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral
obstacles. Commun. ACM 22(10), 560–570 (1979)

9. Pachter, L., Sturmfels, B. (eds.): Algebraic Statistics for Computational Biology. Cambridge Univer-
sity Press, New York (2005)

10. Sanyal, R.: Topological obstructions for vertex numbers of Minkowski sums. J. Comb. Theory, Ser. A
116(1), 168–179 (2009)

11. Weibel, C.: Minkowski sums of polytopes: combinatorics and computation. PhD thesis, EPFL, Lau-
sanne (2007)

12. Zhang, H.: Partially observable Markov decision processes: a geometric technique and analysis. Oper.
Res., doi:10.1287/opre.1090.0697 (2009)

13. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York
(1995)

http://dx.doi.org/10.1287/opre.1090.0697

	Maximal f-Vectors of Minkowski Sums of Large Numbers of Polytopes
	Abstract
	Introduction
	Minkowski Sums
	Sums of Polytopes in Dimension 3
	Generalization to Higher Dimensions
	Maximum Number of Vertices
	Technical Proofs
	Proof of Lemmas 6, 7, and 8
	Proof of Lemma 9
	Proof of Theorem 3

	Summary
	References


