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Abstract An n-dimensional cross consists of 2n + 1 unit cubes: the “central” cube
and reflections in all its faces. A tiling by crosses is called a Z-tiling if each cross is
centered at a point with integer coordinates. Periodic tilings of R

n by crosses have
been constructed by several authors for all n ∈ N . No non-periodic tiling of R

n by
crosses has been found so far. We prove that if 2n + 1 is not a prime, then the total
number of non-periodic Z-tilings of R

n by crosses is 2ℵ0 while the total number of
periodic Z-tilings is only ℵ0. In a sharp contrast to this result we show that any two
tilings of R

n, n = 2,3, by crosses are congruent. We conjecture that this is the case
not only for n = 2,3, but for all n where 2n + 1 is a prime.

Keywords Tiling by n-cross · Non-periodic tilings · Enumeration of tilings

1 Introduction

The n-cube in R
n centered at X = (x1, . . . , xn), denoted CX , is the set {(y1, . . . , yn);

yi = xi + αi , where − 1
2 ≤ αi ≤ 1

2 }. A tiling T of R
n by cubes is lattice-like if the

centers of cubes in T form a group under vector addition.
Interest in tilings of R

n by cubes and by clusters of cubes goes back to a conjecture
of Minkowski [14]. In 1907 he asked whether in a lattice-like tiling of R

n by cubes
there must be a pair of cubes that share a complete (n − 1)-dimensional face. This
conjecture was related to Minkowski’s work on positive definite quadratic forms. In
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1930, when Minkowski’s conjecture was still open, Keller [9] suggested that the lat-
tice condition in the conjecture is redundant, that the nature of the problem is purely a
geometric one, and not algebraic as assumed by Minkowski. Thus he conjectured that
each tiling of R

n by unit cubes contains twin cubes. In 1940 Peron [12, 13] verified
Keller’s conjecture for n ≤ 6. However, in 1992, Lagarias and Shor [10] showed that
Keller’s conjecture is false for each n ≥ 10. This remarkable result is on one hand sur-
prising, while on the other hand intuitive. The surprising part is that there is a tiling
of R

10 by unit cubes not containing twins. However, once we have such a tiling, it is
expected that a tiling with this property exists for all higher dimensions. The higher
the dimension of the space, the more freedom we get. Mackey [11] showed that the
conjecture is false for n = 8,9 as well. In 2011 Debroni et al. showed [2], providing
a computer based proof, that there is no counterexample to Keller’s conjecture for
n = 7 if each coordinate of the center of cubes is either an integer or an integer +0.5.

As to Minkowski’s conjecture, in 1938 Hajós translated it into a conjecture on
finite abelian groups. Three years later this reformulation enabled him to answer
Minkowski’s conjecture in the affirmative, see [6].

After Minkowski’ conjecture was settled, tilings of R
n by various clusters of cubes

were considered, see e.g. [4, 15, 19–22, 24]. Thanks to a connection to coding theory,
most attention has been paid to tilings of R

n by crosses and their generalizations. The
cross centered at X, denoted by KX , is the set of 2n+1 cubes, KX = {CT ; T = X±ei

or T = X}, where, as usual, ei = (e1, . . . , en), with ei = 1, and ej = 0 for j �= i. The
origin of tilings of R

n by crosses can be traced to several independent sources. It
seems that Kárteszi [8] was the first who asked whether there exists a tiling of R

3

by crosses. Such a tiling was constructed by Freller in 1970; Korchmaros about the
same time treated n > 3. Golomb and Welch showed the existence of these tilings in
terms of error correcting codes [4]. After the existence question has been answered,
the enumeration of tilings has been studied. In [15] Molnar proved that the number
of pair-wise non-congruent lattice-like Z-tilings of R

n by crosses equals the number
of pair-wise non-isomorphic commutative groups of order 2n + 1. We recall that
two tilings T and S of R

n are congruent if there exists a linear, distance preserving
bijection of R

n which maps T on S , and a tiling T of R
n, where the center of every

cross in T has integer coordinates, is called a Z-tiling.
It turns out that all tilings of R

n by crosses mentioned above are lattice-like.
A tiling T of R

n by crosses with their centers forming a set Σ is periodic if there
exist numbers di , i = 1, . . . , n, such that if P ∈ Σ then P ± diei ∈ Σ as well for
i = 1, . . . , n. A tiling which is not periodic will be called primitive or simply non-
periodic. Obviously, each lattice-like tiling is periodic. Szabo [22] showed that if
2n + 1 is not a prime number, then there exists a periodic Z-tiling of R

n by crosses
that is not lattice-like. When infinitely many tiles are needed for tiling a space S usu-
ally it is most convenient to use either an algebraic approach, or to find a tiling T of
a subspace of S that comprises finitely many tiles and then to extend T periodically
to a tiling of S . However, the two methods cannot be used directly for constructing
a non-periodic tiling of S , and hence in general it is most difficult to find such a
tiling. To the best of our knowledge so far no non-periodic tiling of R

n by crosses has
been constructed. When working on a revised version of this paper we learned that
Etzion [3] asked about the existence of this type of tiling.
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The main result of this paper settles the question of the existence of a non-periodic
tiling of R

n by crosses for values of n when 2n+ 1 is not a prime. In fact, in this case
we are able to enumerate non-periodic tilings of R

n by crosses as well as periodic
ones.

Theorem 1 If 2n + 1 is not a prime, then (i) the total number of non-congruent non-
periodic tilings of R

n by crosses as well as non-periodic Z-tilings of R
n by crosses is

2ℵ0 ; (ii) the total number of non-congruent periodic Z-tilings of R
n by crosses is ℵ0.

Not much is known about the number of tilings of R
n by crosses in the case when

2n + 1 is prime. From Molnar’s result we know that there is the unique, up to a
congruency, lattice-like Z-tiling of R

n by crosses. It is obvious that there is only one
tiling, up to a congruency, of R

n by crosses for n = 1. We will prove that

Theorem 2 For n = 2 and n = 3, any two tilings of R
n by crosses are congruent.

After submitting the original version of this paper we learned that Szabo [23], by
using a computer extensively, has also proved Theorem 2 for n = 3.

We believe, see also [1], that the statement can be extended to all n when 2n + 1
is a prime. Therefore

Conjecture 3 If 2n+1 is a prime number, then there exists, up to a congruency, only
one Z-tiling of R

n by crosses.

The above conjecture, if true, would go totally against our intuition that suggests
the higher the dimension of R

n the more freedom we get; see also a comment on the
Lagarias–Shor result on Keller’s conjecture. There are 2ℵ0 tilings by crosses of R

4

but there would be only ONE tiling of R
5 by crosses. Yet, we believe that we have

some evidence that supports the conjecture. In addition, a result of Redei [17] implies
that when 2n+ 1 is a prime then each lattice-like tiling of R

n by crosses is congruent
to a Z-tilings. Combining it with the above mentioned result of Molnar we find that
there exists a unique, up to a congruency, lattice-like tiling of R

n by crosses if 2n+ 1
is a prime.

As mentioned above each Z-tiling of R
n by crosses can be seen as a perfect 1-

error correcting Lee code. We have been attracted to the area of tilings by crosses
via the Golomb–Welch conjecture. This conjecture is in fact a generalization of the
Kárteszi’s question mentioned above. In order not to have to introduce a lot of notions
and notation we will reformulate the conjecture in terms of tilings of R

n. By the
n-dimensional Lee sphere of radius r centered at a point X, denoted L(X, r), we
understand the set of cubes {CT , T = X + v, where v = α1e1 + α2e2 + · · · + αnen,
αi ∈ Z, and

∑n
i=1 |αi | ≤ r}. Thus the n-cross is the n-dimensional Lee sphere of

radius 1.

Conjecture 4 [4] For n ≥ 3, there is no tiling of R
n by Lee spheres of radius r ≥ 2.

Golomb and Welch proved the conjecture for n = 3, and r = 2. They have also
proved that for each n > 4 there is an rn, rn not specified, so that the conjecture is
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true for all pairs (n, r) with r ≥ rn. Later Post [16] showed that there is no periodic
tiling of R

n by Lee spheres of radius r for 3 ≤ n ≤ 5, r ≥ n − 2, and for n ≥ 6, and

r ≥
√

2
2 n − 1

4 (3
√

2 − 2).
Further, Gravier et al. [5] settled the Golomb–Welch conjecture for n = 3 and all r ,

while Špacapan [18], whose proof is computer aided, proved it for n = 4 and all r .
Horak [7] provided an algebraic proof of the result for n = 4, and also proved the
conjecture for n = 5 and all r .

The proof of Theorem 1 is based on a modification of a tiling of R
n by crosses

given by Szabo in [22]. Therefore in the next section we introduce the necessary part
of his work.

2 Szabo’s Construction

Let En be the n-dimensional vector space over the real numbers. For a set X, by CX

and KX we denote the set of cubes and crosses centered at vertices in X, respectively.
When P = O +v we will write Cv and Kv instead of CP and KP and say that Cv (Kv)

is centered at v. If X is a set of vectors, CX and KX will be used in the same sense as
well. A tiling T of R

n by the set KX of crosses is lattice-like if X is a lattice; a tiling
T by crosses KX is periodic with the block of size d ′

1 × · · · × d ′
n if for each v ∈ X

it is v ± d ′
iei ∈ X, i = 1, . . . , n. Further, T is periodic with the base block of size

d1 × · · · × dn if v ∈ X then v ± d ′
iei ∈ X implies d ′

i = tidi , ti ∈ Z, for i = 1, . . . , n.
In addition, it is obvious that if a tiling T is lattice-like then T is a periodic tiling. In
this case the size of the base block is d1 × · · · × dn where di is the smallest positive
number so that diei ∈ X.

Let M be a set of vectors, M = { c1
2 e1 + c2e2 + · · · + cnen; ci ∈ Z}. Then M is a

lattice and it is spanned by vectors m1 = 1
2 e1, and mi = ei , for i �= 1. In what follows

we consider tilings of R
n by crosses KL so that L ⊂ M. The following two theorems,

which constitute a special case of results proved in [22], will be our main tool in
proving Theorem 1.

Theorem 5 If there exists a factorization of an Abelian group G of the form
G = {0,2g1, g2, . . . , gn,−2g1,−g2, . . . ,−gn} + {0, g1} then there exists a lattice-
like tiling of R

n by crosses KL, where L is a lattice, L ⊂ M. Further, L is the ker-
nel of the homomorphism Φ : M → G given by (c1m1 + c2m2 + · · · + cnmn)Φ =
c1g1 + c2g2 + · · · + cngn, ci ∈ Z.

Theorem 6 Let 2n + 1 = uv, where u,v ∈ Z, u �= 1 �= v. Then the cyclic group C2uv

of order 2uv has a factorization of the above form. This factorization is given by
C2uv = {(j + 2kv)g; j = 0,±1, . . . ,± v−1

2 , k = 0,±1, . . . ,±u−1
2 )} + {0, vg}, where

g is a generator of C2uv .

Combining the two theorems we get the following.

Corollary 7 Let 2n + 1 = uv, u,v ∈ Z, u �= 1 �= v, and let {0,±2vg,±g,±a3g, . . . ,

±ang} + {0, vg} be the above factorization of C2uv . Then the set of crosses KL,



Discrete Comput Geom (2012) 47:1–16 5

where L is spanned by l1 = − 1
2 e1 + ve2, l2 = 2uve2, l3 = a3e2 − e3, . . . , ln = ane2 −

en, constitutes a tiling of R
n.

Proof By Theorems 5 and 6 we need only to show that L is the kernel of the homo-
morphism ( c1

2 e1 +c2e2 +· · ·+cnen)Φ = c1vg+c2g+c3a3g+· · ·+cnang, ci ∈ Z. It

is easy to check that liΦ = 0, for all i = 1, . . . , n. Moreover, |M/L| = | det(l1,...,ln)
det(m1,...,mn

| =
uv
1
2

= |C2uv|. �

Two vectors u and v, where u − v = a1e1 + a2e2 + · · · + anen, are said to be in
relation δ if a1 is an integer. Szabo proved

Theorem 8 [22] Let T be a tiling of R
n by crosses KL. If T is a δ class of L, then

KT is an infinite prism along e1. In other words, if A ∈ R
n belongs to a cross from

KT and λ ∈ R, then P = A + λe1 belongs to a cross from KT as well.

Consider a tiling T of R
n by KL where L is a lattice. Let X be the δ class con-

taining the vector 0. Clearly, X is a subgroup of L. The cosets of the quotient group
L/X are δ classes of L. Let Y be a coset of L/X. Then the set of crosses KL′ where
L′ = (L − Y) ∪ (Y + λe1) constitutes a tiling of R

n. In other words, any translation
of crosses centered in Y along e1 yields a tiling of R

n. This idea has been used in
[22] to construct a periodic tiling of R

n by crosses KL, where L is not a lattice.

3 Proof of Theorems 1 and 2

In the rest of the paper we will use the following notation. We consider only di-
mensions n ∈ N so that 2n + 1 is not a prime. Let u,v ∈ Z, u �= 1 �= v, so that
2n+1 = u ·v. Further, T will stand for the tiling of R

n by crosses KL given by Corol-
lary 7. That is, L is the lattice spanned by vectors l1 = − 1

2 e1 + ve2, l2 = 2uve2, l3 =
a3e2 −e3, . . . , ln = ane2 −en, and C2uv = {0,±2vg,±g,±a3g, . . . ,±ang}+{0, vg}
is the factorization of C2uv from Theorem 6. Clearly, the δ class X containing the vec-
tor 0 is the subgroup of L, which is spanned by vectors 2l1, l2, . . . , ln. The other δ

class Y is obtained by a translation of X by l1, that is, Y = X + l1. So, in this case,
the order of L/X equals 2.

The main idea of the proof is as follows. As stated above, both KX and KY are
infinite prisms along e1. We will prove that both KX and KY consist of infinitely many
connected components. Obviously, each connected component is a prism along e1 as
well. Therefore, when translating KY, we do not have to translate it as one block but
we can translate each connected component of KY by a different vector parallel to e1.
To construct the required tilings of R

n by crosses we will translate the connected
components of KX and KY in a suitable way.

As we do not use here the notion of a connected component in the standard way
we start with a definition.

Definition 9 Let CA be a set of cubes in R
n. We will say that CA forms a con-

nected set if for any two cubes Cu and Cv in CA there is a sequence of cubes



6 Discrete Comput Geom (2012) 47:1–16

Cuo=u, Cu1 , . . . , Cut=v in CA so that any two consecutive cubes Cui
and Cui+1 in the

sequence are adjacent (= join each other along entire (n − 1)-dimensional face;
|ui − ui+1| = 1). Further, if CL is a set of cubes, then CB, where B ⊂ L, is a con-
nected component of CL if CB is connected, and there is no D,B ⊂ D ⊂ L, so that CD
is connected.

The above definition of the connected component does not coincide in general
with the standard definition but it will serve our purpose. Let KA and KB be two
sets of crosses so that each of them is an infinite prism along e1. Then we can shift
them independently (= we can shift them by different vectors parallel to e1) if there
is no cross K so that K ∩ KA �= ∅, and K ∩ KB �= ∅ (we recall that K is a set of
cubes). Thus if we prove that KA and KB are infinite prisms along e1, which form
distinct connected components in the above sense, then KA and KB can be shifted
independently of each other. The following theorem claims that KX, where X is the
δ class containing the vector 0, has infinitely many connected components. In fact
these connected components are connected components also in the standard sense.
However, to show this would make our proof even longer.

Theorem 10 will provide the key ingredient for the proof of Theorem 1. As defined
above, for a set X, KX is the set of crosses centered at vertices in X. Each cross is a
set of 2n + 1 cubes. Abusing terminology slightly, we will understand KX also as a
set of cubes.

Theorem 10 The set of cubes KX consists of infinitely many connected components
Bk, k ∈ Z. In particular, the cube centered at (0,2kv,0, . . . ,0), k ∈ Z, belongs to Bk .

Proof We start with a technical claim that will be frequently used.

Claim 11 (i) Let w = (a, b,0, . . . ,0) ∈ L. Then v|b. In particular, if a = 0, i.e., w =
(0, b,0, . . . ,0), then 2uv|b. (ii) If a vector w ∈ L then w ± ue1 ∈ L.

Proof (i) Let w = (a, b,0, . . . ,0) ∈ L. For i ≥ 3, li = aie2 − ei . Hence w =sl1 + rl2,
where s, r ∈ Z, and consequently w = − s

2 e1 + v(s + r2v)e2; i.e., v|b. For w =be2, it
is w = sl2 = s2uve2, i.e., 2uv|b. (ii) As L is a lattice it suffices to show that ue1 ∈ L.
By (i), the vector − s

2 e1 + v(s + r2u)e2 ∈ L. Setting r = 1 and s = −2u, we get that
ue1 ∈ L. �

To facilitate our discussion we introduction more notation. Let b3, . . . , bn ∈
Z be fixed. We denote by P2(b3, . . . , bn) the set of cubes centered at vertices
(0, t, b3, . . . , bn), where t ∈ Z. Clearly P2(b3, . . . , bn) forms an infinite prism along
the axis e2. The following claims will be needed:

Claim 12 The set of cubes P2(0, . . . ,0) ∩ KX comprises infinitely many connected
components Dk, k ∈ Z. D0 consists of v consecutive cubes centered at vertices
(0, t,0, . . . ,0), where t = 0,±1, . . . ,± v−1

2 . The component Dk, k ∈ Z, is obtained
by translating D0 by 2kve2. In addition, if v ∈ X belongs to P2(0, . . . ,0) ∩ KX , then
Cv is the middle cube of Dk for some k ∈ Z.
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Proof First we show that v consecutive cubes centered at vertices (0, t,0, . . . ,0),
where t = 0,±1, . . . ,± v−1

2 belong to P2(0, . . . ,0) ∩ KX . Since 0 ∈ X, it is CA ∈
P2(0, . . . ,0) ∩ KX for A = (0, t,0, . . . ,0), where t = −1,0,1. By Theorem 6 the
elements jg, j = 2, . . . , v−1

2 belong to the first set of the factorization of the cyclic
group C2uv . Therefore, by Corollary 7, for each j ∈ {2, . . . , v−1

2 } there exists i ≥ 3,
so that li = je2 − ei . As li ∈ X and the cube CA,A = (0, j,0, . . . ,0), belongs to
Kli , we have CA ∈ P2(0, . . . ,0) ∩ KX. X is a lattice, thus −li ∈ X as well. Thus D0
belongs to P2(0, . . . ,0) ∩ KX . Further, because 2kl1 = −ke1 + 2kve2 ∈ X, and KX
is an infinite prism along e1, each translation of D0 by the vector 2kve2 belongs to
P2(0, . . . ,0)∩ KX. On the other hand, as Y = X + l1, and also Y = X+(2k+1)l1, for
each k ∈ Z, the translation of D0 by the vector (2k + 1)l1 = − 2k+1

2 e1 + (2k + 1)ve2
does not belong to KX. Further, KY is an infinite prism along e1. Therefore, D0 and
each translation of D0 by 2kve2 constitutes a connected component in P2(0, . . . ,0)∩
KX. The last part of the statement follows from Claim 11(i). �

Claim 13 For each (n − 2)-tuple (b3, . . . , bn), the set of cubes P2(b3, . . . , bn) ∩ KX
consists of infinitely many components Ek, k ∈ Z. Let l = − (b3l3 + · · · + bnln). Then
the component E0 comprises v consecutive cubes, the cube Cl is the middle cube of
E0; the component Ek is obtained by a translation of E0 by the vector 2kve2. In
addition, if v ∈ X belongs to P2(b3, . . . , bn) ∩ KX then Cv is the middle cube of Ek

for some k ∈ Z.

Proof As l =(0, t, b3, . . . , bn)∈ X for some t ∈ Z, the cube Cl ∈ P2(b3, . . . , bn)∩ KX.
To prove the rest of the statement it suffices to replace in the above proof of Claim 12
the vectors 0 and li by the vectors l and l + li , respectively. �

Claim 13 describes connected components of the prism P2(b3, . . . , bn) in KX.
Now we are going to investigate connected components of the union of two neigh-
boring prisms. More precisely, let 3 ≤ i ≤ n. Set e′

i= (e3, . . . , en), where ei = 1,
otherwise ej = 0. We will describe connected components of (P2(b3, . . . , bn) ∪
P2((b3, . . . , bn) + e′

i )) ∩ KX. By Claim 13, for any tuple (b3, . . . , bn), a con-
nected component of P2(b3, . . . , bn) ∩ KX consists of v consecutive cubes. These
v cubes are followed by v consecutive cubes that belong KY. The next v con-
secutive cubes form a connected component of P2(b3, . . . , bn) ∩ KX, etc. There-
fore, connected components of P2((b3, . . . , bn) + e′

i )) ∩ KX can be seen as a shift
of by P(b3, . . . , bn) ∩ KX by the vector −li = −aie2 + ei . It follows from The-
orem 6 that ai is not an odd multiple of v. Thus, each connected component of
(P2(b3, . . . , bn) ∪ P2((b3, . . . , bn) + e′

i )) ∩ KX is a union of a connected component
of (P2(b3, . . . , bn) ∩ KX and a connected component of P2((b3, . . . , bn) + e′

i ) ∩ KX.
If ai were of the form (2k + 1)v for some integer k, then each connected com-
ponent of (P2(b3, . . . , bn) ∪ P2((b3, . . . , bn) + e′

i )) ∩ KX would coincide with ei-
ther a connected component of (P2(b3, . . . , bn) ∩ KX or a connected component of
P2((b3, . . . , bn) + e′

i ) ∩ KX. Let T = Ek (see Claim 13 for notation) with the mid-
dle cube Cu and R = Ek′ with the middle cube Cw be connected components of
(P2(b3, . . . , bn) ∩ KX and P2((b3, . . . , bn) + e′

i ) ∩ KX, respectively, so that T ∪ R

is a connected component of (P2(b3, . . . , bn) ∪ P2((b3, . . . , bn) + e′
i )) ∩ KX. By
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Claim 13 u = l+2kve2. Further, w = ei + pie2 + 2kve2, where pi is determined in
the unique way by − v−1

2 ≤ pi ≤ v−1
2 , pi ∈ Z, and −ai = t2v + pi, t ∈ Z. We recall

that ai �= (2k+1)v and that the connected components of P2((b3, . . . , bn)+e′
i ))∩ KX

can be seen as a shift of connected components of P(b3, . . . , bn) ∩ KX by the vector
−li = −aie2 + ei . The following claim summarizes our discussion.

Claim 14 Let T be a connected component of the prism P2(b3, . . . , bn), with the mid-
dle cube Cu. Further, let (b′

3, . . . , b
′
n) = (b3, . . . , bn)± e′

j , and let l∗i = ei +pie2 Then
T forms a connected component in (P2(b3, . . . , bn) ∪P2(b

′
3, . . . , b

′
n)) ∩ KX with ex-

actly one connected component E of P2(b
′
3, . . . , b

′
n)∩ KX; this connected component

E has the cube Cu+l∗i as its middle cube.

Now we define sets of cubes Bk , k ∈ Z, and show that Bks are connected com-
ponents of KX. Let k ∈ Z. Then, for each b3, . . . , bn ∈ Z, Bk contains exactly one
connected component of P2(b3, . . . , bn) ∩ KX. It is the component with the mid-
dle cube Cu, where u =b3l∗3 + · · · + bnl∗n + k2ve2 = ((

∑n
i=3 pibi)u2 + b3e3 + · · · +

bnen) + k2ve2 (see Claim 14). Finally, Bk forms an infinite prism along e1; that is, if
Cv ∈ Bk , then Cv±e1 ∈ Bk .

It is obvious that
⋃

k∈Z
Bk = KX and that the set Bk can be obtained by a trans-

lation of B0 by the vector 2kve2. To see that B0 is a connected set it suffices to
show that, for each b3, . . . , bn ∈ Z, the cube Cu, u =b3l∗3 + · · · + bnl∗n, is in the same
connected component as the cube centered at O. The relation “to be in the same
connected component” is transitive. So the statement follows by induction using
Claim 14 in the inductive step. As Bk is a translation of B0, Bk is a connected set
as well.

To prove that, for each k, Bk is a connected component we show first Bks are
disjoint. Indeed, if there were a cube CA, CA ∈ Bz ∩ Bw , where z �= w, then, by
definition of Bks, there exists a prism P2(b3, . . . , bn) and its component T which
belongs to Bz ∩ Bw . However, this implies that the middle cube of T is centered
at b3l∗3 + · · · + bnl∗n + 2wve2, but at the same time it is centered at b3l∗3 + · · · +
bnl∗n + 2zve2 as well. But this is possible only if z = w, a contradiction. There-
fore, Bz ∩ Bw = ∅ for z �= w. If Bz ∪ Bw were a connected set then there would
be a cube CZ ∈ Bz and a cube CW ∈ Bw so that vertices Z and W were at the dis-
tance 1. Let CZ belong to a component D of the prism P2(b3, . . . , bn), and CW be-
longs to a component D′ of the prism P2(b

′
3, . . . , b

′
n). Thus, D ⊂ Bz and D′ ⊂ Bw .

However, by definition of Bks, there is in Bz a connected component D′′ from
P2(b

′
3, . . . , b

′
n) ∩ KX, D′′ �= D′. This in turn implies that D forms a connected com-

ponent in (P2(b3, . . . , bn) ∪P2(b
′
3, . . . , b

′
n)) ∩ KX with two different components of

P2(b
′
3, . . . , b

′
n) ∩ KX, a contradiction with Claim 14. The proof of the theorem is

complete. �

For the coset Y of the quotient group L/X we have Y = X + l1. Hence, as an
immediate consequence of Theorem 10 we get the following.

Corollary 15 The set of cubes KY consists of infinitely many components Dk, k ∈ Z.
In particular, the cube centered at (± 1

2 , (2k + 1)v,0, . . . ,0), k ∈ Z, belongs to Dk .



Discrete Comput Geom (2012) 47:1–16 9

Now we are ready to prove the main result of the paper.

Proof of Theorem 1 First of all we show that the total number of tilings of R
n by

crosses is at most 2ℵ0 . To see this it suffices to note that any tiling of R
n by crosses

KT comprises ℵ0 crosses. Indeed, consider the tiling of R
n by cubes CN, where N

consists of all vectors with integer coordinates. Each cube in CN contains only finitely
many centers of crosses in KT. Since |N| = ℵ0, it is |T| = ℵ0 as well. This in turn
implies that the total number of tilings of R

n by crosses is at most the number of ways
how to choose ℵ0 points in R

n; thus it is at most (2ℵ0)ℵ0 = 2ℵ0 . Therefore, there are
at most 2ℵ0 tilings of R

n by crosses.
We pointed out that KY constitutes an infinite prism along axis e1. Therefore the

set of crosses KL′ where L′ = X ∪ (Y + λe1) constitutes a tiling of R
n for each λ ∈ R.

In other words, any translation of all crosses centered at vertices in Y along axis e1
yields a tiling of R

n. As pointed above, because Y consists of connected components
Dk, k ∈ Z, instead of translating all crosses in Y by the same vector we can translate
connected components Dk independently of each other. We recall that Y = X + l1 =
X + ve2 − 1

2 e1. Thus a cross in T is centered at a vector in Y if and only if the first
coordinate of its center is of the form t + 0.5, where t ∈ Z.

Now we are ready to prove part (i) of Theorem 1. As there are at most 2ℵ0 tilings
of R

n by crosses, to prove this part of the statement it suffices to show that there are
2ℵ0 non-periodic Z-tilings of R

n by crosses. Let r ∈ (0,1) be an irrational number,
r = 0.r1 . . . rk . . . be its binary representation. The tiling Tr will be obtained from the
tiling T by translating connectivity components Dk along e1. Let k ∈ Z, and let q = k

(mod u). If k > 0 and rk = 1, then the connected component Dk is translated by the
vector 2q+1

2 e1. For k ≤ 0, and for k > 0, rk = 0, Dk is translated by the vector − 1
2 e1

for q = 0, and by 1
2 e1 otherwise. It is obvious that Tr is a Z-tiling since each con-

nected component Dk of Y has been translated by a vector tke1, where tk = m + 0.5,
where m ∈ Z. Let Lr be centers of crosses in Tr . In order to prove that Tr is not
a periodic tiling, we show that Tr is not periodic along e2. Consider vectors v ∈ Lr

parallel to e2, that is, v = te2, t ∈ Z. There are two types of those vectors. In the first
case v ∈ L as well. Then, by Claim 11(i), v = s2uve2, s ∈ Z, which in turn implies
v ∈ X, and therefore v ∈ Lr as only crosses with centers in Y have been translated to
construct Tr from T . In the other case, v ∈ Lr but v /∈ L. Then v is a translation of a
vector v∗ in Y. This can happen only if a vector v∗ = (a, b,0, . . . ,0) in Y is trans-
lated by −ae1. From Claim 11(i), v|b, and by Claim 12 and Corollary 15, b is an odd
multiple of v. Thus v∗ has to be of the form (a, (2k +1)v,0, . . . ,0). By Corollary 15,
the cube centered at (± 1

2 , (2k + 1)v,0, . . . ,0) belongs to the connected component
Dk , thus v∗ ∈ Dk . Finally, cf. Claim 11(i), v∗ = (−q − 1

2 + tu, (2k + 1)v,0, . . . ,0),
where q = k (mod u), and t ∈ Z. By the construction of Tr , the connected component
Dk is translated by (−q − 1

2 )e2 if and only if k > 0 and rk = 1. To summarize our dis-
cussion, if v = te2, t ∈ Z, then the cross Kv ∈ Tr if and only if either t = 2kuv, k ∈ Z,
or t = (2k + 1)v, k > 0, and rk = 1. Clearly, this set of vectors is not periodic as r is
an irrational number and therefore rk = 1 at least for one k. Hence Tr is not periodic
along e2, which in turn implies that Tr is a non-periodic tiling.

Instead of proving that for any two irrational numbers r and s the corresponding
tilings Tr and Ts are non-congruent it suffices to consider the family S = {Tr , r ∈
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(0,1), r is irrational}. Clearly any two tilings in S are distinct; we recall that a tiling
T is a set of crosses, and two tilings T and S are called distinct if T and S are
not equal sets. As each Z-tiling is congruent to at most ℵ0 distinct Z-tilings, S has
to contain 2ℵ0 non-congruent tilings. The proof of the first part of the theorem is
complete.

To prove part (ii) of Theorem 1 we first note that there are at most ℵ0 periodic
Z-tilings of R

n by crosses. Indeed, such a periodic tiling is obtained by a periodic
repetition of the base block of a finite size d1 × · · · × dn, di ∈ Z. There are ℵ0 blocks
of different sizes of this type. Moreover, there are finitely many crosses whose centers
are in the base block. Thus, the number of ways how to tile the base block is finite.
In aggregate, there are at most ℵ0 periodic Z-tilings of R

n by crosses. To finish the
proof of (ii) it suffices to show that there are ℵ0 periodic Z-tilings of R

n by crosses.
It was mentioned above that each lattice-like tiling S of R

n by crosses KS is
periodic. It is easy to see that the size of the base block of S is t1 × · · · × tn, where ti
is the smallest number so that tiei ∈ S, i = 1, . . . , n. Therefore, T is a periodic tiling
with the base block of size d1 × · · · × dn, where d1 = u, since −2ul1 + l2 = ue1
is the shortest vector in L parallel to e1. Further, the shortest vector v of the type
v = ke2 ∈ L, is 2uve2, thus d2 = 2uv. Finally, for i ≥ 3, since li = aie2 − ei we
get di = 2uv

g.c.d.(2uv,ai )
because −di li + ai

g.c.d.(2uv,ai )
l2 = diei is the shortest vector of

the form tei ∈ L̇. As di is an integer we get that diei ∈ X for all i,1 ≤ i ≤ n, As an
immediate consequence we get the following.

Claim 16 Let v ∈ L. If v ∈ X then v ± diei ∈ X, and if v ∈ Y then v ± diei ∈ Y for
i = 1, . . . , n. In particular, any translation of Y along e1 produces a periodic tiling
with the same base block as in T .

Now we show that there are ℵ0 non-congruent periodic Z-tilings of R
n by crosses.

Let Bαi
be the component of KX so that Cdiei

∈ Bαi
(we recall that diei ∈ X). Clearly,

α1 = 0, as d1e1 = ue1 ∈ B0. Set

α = l.c.m.{αi,αi �= 0, i = 1, . . . , n}. (1)

To produce ℵ0 periodic Z-tilings of R
n by crosses we will modify the tiling T . First,

we produce a tiling T ′ by translating crosses in KY by 1
2 e1. Clearly, T ′ is a Z-tiling,

and T ′ is a periodic tiling as well, cf. Claim 16, with the base block of the same size
as T is. Set Y′ = Y+ 1

2 e1. Then T ′ is a tiling by crosses KL′ , where L′ = X ∪ Y′.
Further, for a prime number p, we construct a tiling Tp by translating connected
components Bkαp, k ∈ Z, in KX by e1. We show that Tp is a periodic tiling and
that the set S = {Tp; p is a prime} contains ℵ0 non-congruent tilings. Although the
construction of Tp is simple the proof that S has the desired property is quite technical
and involved. We will need the following claims.

Claim 17 Set X0 = {v = (v1, . . . , vn);v ∈ X, v1 = 0, and Cv ∈ B0}. Then X0 is a
sub-lattice of X.

Proof Suppose that v,w ∈ X0. To show that X0 is a lattice it is sufficient to
prove that v − w ∈ X0. By definition of Bks, (cf. Claim 13 as well), if a cube
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Cu,u =(0, u2, . . . , un) ∈ P2(u3, . . . , un) ∩ KX then Cu is the middle of the connected
component of P2(u3, . . . , un) ∩ KX that belongs to B0. Therefore u2 = ∑n

i=3 piui ,
where pis are numbers independent on u (pi are defined after Claim 13). Hence,
if v,w ∈ X0, then Cv and Cw are cubes in the middle of their components, and
v2 = ∑n

i=3 pivi and w2 = ∑n
i=3 piwi . Since X is a sub-lattice of L, v − w ∈ X

as well. Further, Cv−w is the middle cube of a connected component in P2(v3 −
w3, . . . , vn − w3) ∩ KX. As v − w =(0, v2 − w2, . . . , vn − wn) , where v2 − w2 =∑n

i=3 pivi − ∑n
i=3 piwi = ∑n

i=3 pi(vi − wi) we get Cv−w belongs to B0. �

As an immediate consequence we get the following.

Claim 18 If v = (0, v2, . . . , vn), w = (0,w2, . . . ,wn) ∈ X, where Kv ∈ Bs, Kw ∈ Bt

then Kv+w ∈ Bs+t .

Proof By definition of Bks, there are v0,w0 ∈ X0 so that v = v0 + 2sve2 and w =
w0 + 2tve2. This implies v + w = (v0 + w0) + 2(s + t)ve2, which in turn implies
Kv+w ∈ Bs+t since, by Claim 17, v0 + w0∈B0. �

Now we are ready to prove that Tp is a periodic tiling. We recall that Tp is obtained
from T ′ by translating connected components Bkαp, k ∈ Z, by e1. Let Lp = Xp ∪ Y′
be the centers of crosses in Tp . To show that Tp is a periodic tiling we prove that
if w ∈ Lp then w ± d

p
i ei ∈ Lp as well, for i = 1, . . . , n, where d

p
i = di for αi = 0,

and d
p
i = α

αi
pdi for αi �= 0. Set ui=d

p
i ei . Since diei ∈ X, and X is a sub-lattice

of L, we have ui ∈ X for all i = 1, . . . , n. By definition of αi , it is Kdiei
∈ Bαi

.
Clearly, if αi = 0, then ui = diei ∈ B0. For αi �= 0, by Claim 18, we get Kui

∈ Bαp as
ui = d

p
i ei = 1

αi
αpdiei . The tiling T ′ is a periodic tiling with the base block of size

d1 × · · · × dn. Further, since di |dp
i for all i = 1, . . . , n, T ′ is periodic with the block

of size d
p

1 × · · · × d
p
n as well. In other words,

if w ∈ L′ then w ± ui ∈ L′as well. (2)

With respect to (2), to prove that Tp is periodic it is sufficient to show that, for each
w ∈ L′, either both crosses Kw and Kw±ui

have been shifted by e1 when constructing
Tp from T ′ or neither of them was shifted. This is obvious in the case when w ∈ Y′
as in this case w ± ui ∈ Y′ as well, and therefore neither of the two crosses were
shifted. Suppose now that w ∈ X. Then, w ± ui ∈ X as well. Assume that Kw ∈ Bz

and Kw±ui
∈ By . To prove the statement in this case it suffices to prove that either αp

divides both z and y, or αp divides neither of them. We will consider two cases.

(1) Let w =(0,w2, . . . ,wn) ∈ X, and let Kw ∈ Bz. By Claim 18, Kw±ui
∈ By , where

y = z ± αp for those i when αi �= 0, and y = z otherwise. Therefore, for all
i = 1, . . . , n, either both numbers z and y are divisible by αp or both numbers
are not divisible by αp. Hence, we may conclude that in both cases if v ∈ Lp then
v ± ui belongs to Lp as well.

(2) Suppose now w ∈ X, w = (w1, . . . ,wn),w1 �= 0. Put w∗ = w+2w1l1 = (0,w2 +
2vw1,w3, . . . ,wn). Clearly, w ∈ X. Let w∗ ∈ Bz and w∗ ± ui ∈ By . Then,
by (1), either αp|z and αp|y or αp � z and αp � y. Set r = w∗ − 2vw1e2 =
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(0,w2, . . . ,wn). In general r /∈ L′. By definition of Bks, Cr ∈ Bz−w1 and Cr±ui
∈

By−w1.As Bks are infinite prisms, w ∈ Bz−w1 and w ± ui ∈ By−w1 . Hence, also
in this case we have proved that if v ∈ Xp then v ± ui ∈ Xp .

Thus we have proved that Tp is a periodic tiling with the block of size d
p

1 × · · · ×
d

p
n . Let D1 × D2 × · · · × Dn be the size of the base block of Tp . We will show that

for each p ≥ 2 it is p|D2. In fact we prove D2 = 2vαp.
Consider the set of vectors U ⊂ Lp , where U = {v; v = e1 + te2, t ∈ Z}. Let

v ∈ U . Assume first v /∈ L′. Then v − e1 ∈ L′, and consequently v − e1 = te2 ∈ Bkαp

for some k ∈ Z. Then, by definition of Bks, in this case v ∈U if and only if
t = k2αvp, k ∈ Z. In the other case v ∈ L′. If v ∈ X, we get v = −2l1 + kl2 =
e1 + (k2uv − 2v)e2, for some k ∈ Z. On the other hand, each vector of the form
v = −2l1 + kl2 = e1 + (k2uv − 2v)e2 ∈ U . That is, v ∈ X ∩ U if and only if
t = k2uv − 2v, k ∈ Z. Otherwise v ∈ Y′ and thus v = 1

2 e1 + u,u ∈ Y, which in turn
implies v = 1

2 e1 − 1
2 l1 +kl2 = e1 +(k2uv−v)e2 for some k ∈ Z. As before this condi-

tion is also a sufficient condition. Hence, v ∈ Y′ ∩U iff and only if t = kuv−v, k ∈ Z.
Thus, all vectors in U can be split into three periodic sequences: {v′

k = e1 +
k2αvpe2, k ∈ Z}, {v′′

k = e1 + (k2uv − 2v)e2, k ∈ Z}, and {v′′′
k = e1 + (kuv − v)e2,

k ∈ Z}. The base period of these sequences is 2αvp, 2uv, and uv, respectively. The
three sequences are pair-wise disjoint, thus their union is periodic with the base pe-
riod equal to the least common multiple M of their respective base periods. As α is a
multiple of u, we have M = 2αvp, hence D2 = 2vαp.

We have proved that for each prime p the tiling Tp is periodic and the second
dimension D2 of the base block of Tp is a multiple of p. Now we construct an infinite
sequence of primes pi so that the tilings Tpi

, i ∈ N, are pair-wise non-congruent. Set
p1 = 2. Assume that pi, i = 1, . . . , k −1 have been selected. We choose the prime pk

so that pk does not divide any dimension Ds of the base block D1 × · · · × Dn of Tpi

for all i < k. As at least one dimension of the base block of Tpk
is a multiple of pk ,

Tpk
is not congruent to Tpi

for all i < k. We have proved that there are ℵ0 periodic
Z-tilings of R

n by crosses. The proof of part (ii) of Theorem 1 is complete. �

Proof of Theorem 2 First of all we note that each tiling of R
n, n = 2,3, by crosses is

congruent to a Z-tiling. It is not difficult to see that this is true for n = 2. For n = 3,
the statement is proved in [5], Corollary 2.

Let P be a Z-tiling of R
n, n = 2,3, by crosses with centers at P. We assume wlog

that O ∈ P because any translation of a tiling is again a tiling. As mentioned in the
introduction, Molnar [15] showed that if 2n + 1 is a prime then there is only one, up
to a congruency, lattice-like tiling of R

n. So to prove the theorem it suffices to show
that P has to be lattice-like.

Two crosses Kv and Kw in P will be called neighbors if |v − w| = 3. Further, for
Kv in P , we denote by T(v) the set of vectors {w − v; Kw is a neighbor of Kv}̇; the set
will be called the neighborhood of Kv. The neighborhood T(v) is called symmetric
if w ∈ T(v) implies −w ∈ T(v). In what follows we will show that all crosses in P
have the same symmetric neighborhood. Then the theorem will follow from the claim
below:

Claim 19 A tiling P of R
n by crosses is lattice-like if and only if all crosses in P

have the same neighborhood that is symmetric and O ∈ P.
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Proof The necessity of the condition is straightforward. To prove the sufficiency, we
need to show that if v,w ∈ P then v − w ∈ P as well. Consider a digraph G = (P,E)

where two vectors v,w in P are connected by an arc (v,w) in G if |v − w| = 3.
Thus, (v,w) is an arc in G iff (w,v) is. Clearly, G is strongly connected. Let A =
{a1, . . . ,ak} be the joint symmetric neighborhood of all crosses in Ṗ . For (v,w) ∈ E

there is a vector ai ∈ A so that v + ai = w. We label the arc (v,w) with ai . Obviously,
for any vector v ∈ P and for any vector ai ∈ A there is an arc with the initial vertex
v labeled by ai . A vector u ∈ P if and only if u is a linear combination of vectors
in A. Indeed, if v ∈ P, then there is a path S in G from O to v, and v is a linear
combination of vectors that label the arcs on S. On the other hand, if a vector u is
a linear combination of vectors in A, say u = ∑

αiai , consider a path S from O so
that for each i,1 ≤ k ≤ i, the arc labeled ai occurs on S exactly αi times. Then u
is the endvertex of S, that is u ∈ P. Thus, if v,w ∈ P then both v and w are linear
combinations of vectors in A. As A is symmetric, −w is a linear combination of
vectors in A as well. This in turn implies v − w is a linear combination of vectors
in A. �

To show that all crosses in P have the same neighborhood, and that this joint
neighborhood is symmetric, it suffices to prove that any two neighbors in P have
the same neighborhood. Let Ku be an arbitrary but fixed cross in Ṗ . We show that
each neighbor of Ku has the same neighborhood as Ku. Let v ∈ T(u). Since |v| = 3,
v is of type [±31], [±21,±11], or [±13]. These sets of vectors in T(u) of the given
type will be denoted by A,B , and, C, respectively. We set a = |A|, b = |B|, c = |C|.
Further, if, for a cube Cw, we have |w − u| = 2 then this cube belongs to a cross that
is a neighbor of Ku. The vector v = w − u is of type [±21] or [±12]. To simplify
the language, we will also say that, with respect to Ku, the cube Cv is of type [±21]
or [±12]. Each of 2n cubes of type [±21] with respect to u belongs to a cross Kw,
where w − u ∈ A ∪ B . Hence,

a + b = 2n. (3)

Further, there are 4
(
n
2

)
cubes of type [±12] with respect to u; hence

b + 3c = 4

(
n

2

)

(4)

as each cross Kw, where w − u ∈ C, contains 3 cubes of type [±12]. We make two
more simple but useful observations. Both follow from the fact that if v,w ∈ T(u)

then |v − w| ≥ 3.

Observation 1 If b = 2n then for each i,1 ≤ i ≤ n, there is a vector x =(x1, x2, . . . ,

xn) ∈ T(u) so that xi = 2, and also a vector x so that xi = −2.

Observation 2 Any two vectors v,w in T(u) have the same sign in at most one
coordinate; that is, viwi > 0 for at most one i,1 ≤ i ≤ n.

First let n = 2. Then C = ∅, and the only solution of (3) and (4) is a = c = 0,
b = 4; i.e., each vector in T(u) is of type [±21,± 11]
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Claim 20 Let v = (x, y) ∈ T(u). Set w = (−y, x). Then T(u) = {v,−v,w,−w}. In
particular, T(u) is symmetric, and any vector in T(u) determines T(u) in the unique
way.

Proof Let v = (x, y) ∈ T(u). We show that then −v ∈ T(u). Assume wlog that
|x| = 2. As there are four vectors in T(u), by Observation 2, there has to be in T(u)

a vector whose both coordinates have signs different from coordinates of v; hence
either −v = (−x,−y) ∈ T(u), or (−y,−x) ∈ T(u)̇ In the former case we are done,
in the latter case, by Observation 1, (−x, y) ∈ T(u), and one of the vectors (y, x) or
(−y, x) has to be in T(u)̇. This is a contradiction as both vectors (y, x) or (−y, x)

are at distance ≤ 2 from a vector in T(u). To see that w = (−y,x) ∈ T(u), it suffices
to notice that (y, x) would have the same sign in two coordinates with either v or −v.
Therefore, by Observation 1, w ∈ T(u). �

To see that for a neighbor Kw of Ku it is T(w) = T(u) note that then w = u + v,

where v ∈ T(u), but at the same time u = w + (−v), i.e. −v ∈ T(w). By Claim 20,
v ∈ T(w), and consequently T(w) = T(u).

The case n = 3 is much more involved. There are three solutions of (3) and (4):
a = 6, b = 0, c = 4, and a = 3, b = 3, c = 3, and a = 0, b = 6, c = 2. First we show
that for our tiling P it is a = 0. For the sake of simplicity we prove the statement
only for u = O. For u �= O the proof would be nearly identical. Let a ≥ 3. Then
we can assume wlog that (0,0,0), (3,0,0), (0,3,0) are in P. The cube centered at
(1,1,0) belongs in P to the cross Kw, where w = (1,1, ε), ε ∈ {−1,1}, say wlog,
w = (1,1,−1). The cubes centered at (2,1,0) and (1,2,0) have to belong in P to
the cross centered at (2,2,0). This in turn implies that the cube centered at (1,1,1)

has to belong in P to the cross centered at (1,1,2). Now, it is easy to check that
each cross containing the cube centered at (1,2,1) would have the distance <3 from
one of the crosses centered at (0,3,0), (1,1,2), (1,1,−1), (1,2,1), and (2,2,0),
a contradiction. Thus, a = 0, and consequently, b = 6, and c = 2.

As c > 0, there is in T(u) a vector v = (v1, v2, v3) of type [±13]. Let x =
(x1, x2, x3) be of type [±21,±11]. The vector Sv(x) = (y1,y2, y3), where yi+1 =
xi

vi+1
vi

, (the indices taken mod 3), will be called the shift of x with respect to v. Since

|vi | = 1, the shift of x is also of type [±21,±11]. Further, set S
(1)
v (x) =Sv(x), and

S
(k)
v (x) =Sv(S

(k−1)
v (x)) for k > 1. The following claim provides the key ingredient

of the rest of the proof.

Claim 21 Let v,x ∈ T(u), where v be of type [±13] and let x = (x1, x2, x3) be of type
[±21,±11]. Then T(u) = {v,−v,x,−x,Sv(x),−Sv(x), S

(2)
v (x),−S

(2)
v (x)}. In partic-

ular, T(u) is symmetric, and any vector of type [±13] together with any vector of type
[±21,±11] determines T(u) in the unique way since S

(3)
v (x) =Sv(x).

Proof Let v = (v1, v2, v3) ∈ T(u) be a vector of type [±13], and let w =(w1,w2,w3)

be the other vector of type [±13] in T(u). We want to show that w = −v. Assume by
contradiction that, say, v1 = w1. Then, by Observation 2, v2 = −w2, and v3 = −w3.
However, then the vector x = (x1, x2, x3) of type [±2,±1] with x1 = 2v1, see Ob-
servation 1, would have distance 2 from one of v,w. Thus w = −v. Next we show
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that if x ∈ T(u), x = (x1, x2, x3) being of type [±21,±11], then −x has to be in
T(u) as well. We prove the statement for x = (2v1,−v2,0) as in the other cases
the proof would be nearly identical. Note that, by Observations 1 and 2, either,
x = (2v1,−v2,0) or x = (2v1,0,−v3) is in T(u). Assume by contradiction that −x /∈
T(v); then, again by Observations 1 and 2, we must have x′ = (−2v1,0, v3) ∈ T(u).
This implies y = (0,−v2,2v3) and z = (0,−2v2, v3) would have to be both in P,
which is a contradiction as |z − y| = 2. So −x ∈ T(u). To finish the proof of claim
we show that if x ∈ T(u),x = (x1, x2, x3) of type [±2,±1] then Sv(x) ∈ T(u) as
well. Again we will prove it only for the case x = (2v1,−v2,0) ∈ T(u). Suppose
that Sv(x) = (0,2v2,−v3) /∈ T(u). Then y = (−v1,2v2,0) is in T(u) and, as proved
above, −y = (v1,−2v2,0) ∈ T(u) which is a contradiction as |x − (−y)| = 2. �

We are ready to show that if Kw is a neighbor of Ku then T(u) = T(w).
Let w = u + v. Then, as shown for n = 2, v ∈ T(u) and v ∈ T(w). We consider
two cases. Let first v be of type [±13]. By Claim 21, we only need to show
that there is x of type [±21,±11] so that x ∈ T(u) and x ∈ T(w). As argued
above, exactly one of (2v1,−v2,0) and (2v1,0,−v3) is in T(u), and also one of
(2v1,−v2,0) and (2v1,0,−v3) is in T (w). Assume wlog that (2v1,−v2,0) ∈ T(u).
If (2v1,−v2,0) ∈ T(w) as well, we are done. Otherwise, if (2v1,0,−v3) ∈ T(w),
then −(2v1,0,−v3) ∈ T(w) and we arrive at a contradiction as we would have
u + (−v1,0,2v3) ∈ P , w − (2v1,0,−v3) ∈ P , but |(w − (2v1,0,−v3)) − (u +
(−v1,0,2v3))| = |v + (−v1,0,−v3)| = 1. Therefore, in this case T(u) = T(w). Fi-
nally, let w = u + v, where v is of type [±21,±11]. As above, v is in both T(u) and
T(w). By Claim 21, we only need to show that also z ∈ T(w), where z is a vector
of type [±13] in T(u). That is, we need to show that w + z ∈ P . As z is of type
[±13], we have T(u) = T(u + z), see the previous case. Hence, from v ∈ T(u), we
get v ∈ T(u + z). This in turn implies u + v + z = w + z ∈ P , and the proof is com-
plete. �

Remark We proved that, for n = 2,3, there is the unique, up to a congruency, tiling of
R

n by crosses. However, a slightly finer analysis of the proof allows one to determine
the number of distinct tilings; two tilings T and P are considered to be distinct if
T �= P . Consider tilings of R

n, n = 2,3, by crosses so that KO ∈ P . By Claim 20,
there are two distinct tiling of this type for n = 2, as exactly one of the two vectors
(2,1) and (1,2) belongs to the neighborhood of each cross. By Claim 21, there are 8
distinct tilings for n = 3, as we have 4 ways how to choose the pair of vectors v,−v
of type [±13], and exactly one of the two vectors (2v1,−v2,0) and (2v1,0,−v3) of
type [±21,±11] is in the common neighborhood of each cross.
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