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Abstract We prove a new, tight upper bound on the number of incidences between
points and hyperplanes in Euclidean d-space. Given n points, of which k are col-
ored red, there are Od(m2/3k2/3n(d−2)/3 + knd−2 + m) incidences between the k red
points and m hyperplanes spanned by all n points provided that m = Ω(nd−2). For
the monochromatic case k = n, this was proved by Agarwal and Aronov (Discrete
Comput. Geom. 7(4):359–369, 1992).

We use this incidence bound to prove that a set of n points, no more than n − k of
which lie on any plane or two lines, spans Ω(nk2) planes. We also provide an infinite
family of counterexamples to a conjecture of Purdy’s (Erdős and Purdy in Handbook
of Combinatorics, vol. 1, pp. 809–873, Elsevier, Amsterdam, 1995) on the number of
hyperplanes spanned by a set of points in dimensions higher than 3, and present new
conjectures not subject to the counterexample.

Keywords Hyperplane arrangement · Incidence bound

1 Introduction

We consider higher dimensional generalizations of two classical extremal problems
from planar combinatorial geometry, and use our upper bound on the number of in-
cidences between points and hyperplanes to obtain a lower bound on the number of
planes spanned by a point set.
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A point and line are incident if the point is on the line. Szemerédi and Trotter
[19] proved the tight result that there are O(m2/3n2/3 +m+n) incidences between n

points and m lines in the plane (Lemma 1, below). Since then, various generalizations
of this upper bound have been proved or conjectured—see [16] for a survey.

One natural generalization is to determine an upper bound on the number of inci-
dences between points and hyperplanes in E

d . In order to prove an interesting upper
bound for this problem, we must restrict the class of admissible arrangements. With-
out such a restriction, the trivial upper bound of mn can be attained by placing the n

points on a single (d − 2)-flat that is covered by each of the m hyperplanes. A num-
ber of upper bounds with various restrictions on admissible arrangements have been
proved [1, 3, 7–9].

A hyperplane in E
d is spanned by a set of points if it passes through d points

that do not all lie on a (d − 2)-flat. Agarwal and Aronov [1] showed that there are
Od(m2/3nd/3 +nd−1) incidences between n points and m hyperplanes spanned by the
points, provided that m = Ω(nd−2). (The subscript on Od indicates that the constant
implicit in the asymptotic notation depends on d .) This problem had been previously
considered by Edelsbrunner et al. [8], and a construction achieving the asymptotic
bound was provided by Edelsbrunner [6, p. 112].

In Sect. 2, we show that there are Od(m2/3k2/3n(d−2)/3 + knd−2 + m) incidences
between k red points and m hyperplanes if the hyperplanes are spanned jointly by the
red points and n − k blue points, provided that m = Ω(nd−2). In the same section,
we provide a construction achieving this asymptotic bound. This bound is equivalent
to Agarawal and Aronov’s in the limiting case that all of the hyperplanes are red (i.e.,
k = n).

Although the bichromatic incidence bound is interesting in its own right, our inves-
tigation of it is motivated by our interest in a second question: What is the minimum
number of hyperplanes spanned by a set of points? To obtain a non-trivial answer to
this question, some restriction on the point set must be assumed even in two dimen-
sions, since a set of collinear points determines exactly one line.

The specific results we are most interested in extending are the weak Dirac [2, 19]
and Beck–Erdős [2] theorems (Lemmas 2 and 3, below).

In contrast to the numerous higher dimensional generalizations of the Szemerédi–
Trotter theorem, there are few extremal results on the number of hyperplanes spanned
by a set of points in more than two dimensions. Hansen proved that a set of points in
E

d that do not all lie on a single hyperplane determines at least one ordinary hyper-
plane, where an ordinary hyperplane is defined as a hyperplane with all but one of its
points on a (d − 2)-flat [14]. Beck proved that a set of points in E

d , not too many of
which lie on any single hyperplane, determines Ωd(nd) hyperplanes [2] (Lemma 17).

Our main result on the number of hyperplanes spanned by a set of points, presented
in Sect. 3, is a three dimensional analog to the Beck–Erdős theorem. We show that a
set of points in E

3, no more than n − k of which lie on a plane or any pair of skew
lines, determines Ω(nk2) planes.

In Sect. 4, we provide an infinite family of counterexamples to a conjecture of
Purdy on the number of hyperplanes spanned by a set of points in E

d [12], and pro-
vide a modified conjecture not refuted by the counterexample. We also conjecture a
generalization of the Beck–Erdős theorem that encompasses the three dimensional
Beck–Erdős analog we prove in Sect. 3.
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1.1 Theorems in Planar Combinatorial Geometry

Our proofs in higher dimensions depend on results from planar combinatorial geom-
etry. Although these theorems were proved in the plane, they apply to points and lines
in any dimension since collinear points remain collinear and distinct under projection
to a suitable plane.

We use the Szemerédi–Trotter incidence bound.

Lemma 1 (Szemerédi, Trotter [19]) There are O(m2/3n2/3 + m + n) incidences be-
tween n points and m lines in E

2.

We also rely on three lower bounds on the number of lines spanned by a set of
points in the plane. The first of these, conjectured independently by Dirac [5] and
Motzkin [15], and proved independently by Szemerédi and Trotter [19] and Beck [2],
is known as the weak Dirac theorem.

Lemma 2 (Szemerédi, Trotter, Beck [2, 19]) A set of n points in E
2 that are not all

collinear contains a point incident to Ω(n) lines.

The second result we use on the number of lines spanned by a set of points was
conjectured by Erdős [10, 11] and proved by Beck. Purdy had previously shown it to
be a consequence of the weak Dirac [17]. It is known as the Beck–Erdős theorem.

Lemma 3 (Beck [2]) A set of n points in E
2 of which at most n − k are collinear

determines Ω(nk) lines.

We will refer to the third result on lines spanned by points that we use as Beck’s
lemma. It was first stated and proved by Beck, and was used by Beck to prove the
Beck–Erdős and weak Dirac theorems.

Lemma 4 (Beck [2]) A set of n points in E
2 of which at most n/100 are collinear

determines Ω(n2) lines.

2 Bichromatic Incidence Bound

In this section, we investigate upper bounds on the number of incidences between the
vertices of an arrangement of red and blue hyperplanes, and the red hyperplanes of
the arrangement. This is dual to the incidence problem stated in the introduction.

2.1 Incidences Between Hyperplanes and Vertices of Their Arrangement

Our results generalize those of Agarwal and Aronov [1], and Edelsbrunner [6]. The
problem they considered is as follows.

In E
d , given a set H of hyperplanes and a subset P of the vertices of their arrange-

ment, let Id(P , H) denote the number of incidences between H and P . Let Id(m,n)
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be the maximum number of incidences over all such sets of n hyperplanes and m

vertices of their arrangement. That is, let

Id(m,n) = max
|P |=m
|H|=n

Id(P , H).

Since each point-hyperplane pair determines at most 1 incidence, Id(m,n) =
O(mn). Edelsbrunner proved that this is tight in the case that m = O(nd−2).

Lemma 5 (Edelsbrunner [6]) If d ≥ 2 and m = O(nd−2), then

Id(m,n) = Θd(mn).

Id(m,n) increases monotonically with m, so Lemma 5 implies that Id(m,n) =
Ωd(nd−1) when m = Ω(nd−2). Edelsbrunner [6] also showed that Id(m,n) =
Ωd(m2/3nd/3) when m = Ω(nd−2). Agarwal and Aronov proved the corresponding
upper bound for these cases [1].

Lemma 6 (Agarwal, Aronov) If d ≥ 2 and m = Ω(nd−2), then

Id(m,n) = Θd

(
m2/3nd/3 + nd−1).

2.2 A Bichromatic Generalization

In E
d , given a set HR of red hyperplanes, a set HB of blue hyperplanes, and a sub-

set P of the vertices of their combined arrangement, let Id(P , HR, HB) denote the
number of incidences between HR and P . Let Id(m, k,n) be the maximum number
of red hyperplane-point incidences over all such sets of k red hyperplanes, n− k blue
hyperplanes, and m vertices of their combined arrangement. That is, let

Id(m, k,n) = max
|P |=m
|HR |=k

|HB |=n−k

Id(P , HR, HB).

If k = n, there are no blue hyperplanes and this is exactly the problem considered
by Edelsbrunner, Agarwal and Aronov.

Theorem 7 If d ≥ 2 and m = O(nd−2), then

Id(m, k,n) = Θd(mk).

Proof The upper bound is trivial.
For the lower bound, take an arrangement of n hyperplanes and m vertices of

their arrangement such that the total number of incidences between the hyperplanes
and vertices is Ω(mn). Lemma 5 implies that such an arrangement exists. Choose k

hyperplanes of the arrangement such that no other set of k hyperplanes is incident
to more of the vertices and color them red. By construction, the average number of



Discrete Comput Geom (2011) 46:611–625 615

incidences between the red hyperplanes and vertices is at least as large as the average
number of incidences between all the hyperplanes and the vertices. Since the average
number of incidences between all the hyperplanes and vertices is Ω(m), the total
number of incidences between red hyperplanes and vertices must be Ω(mk). �

Theorem 8 (Bichromatic incidence bound) If d ≥ 2 and m = Ω(nd−2), then

Id(m, k,n) = Θd

(
m2/3k2/3n(d−2)/3 + knd−2 + m

)
.

If k = n (i.e., there are no blue hyperplanes), then this simplifies to Θd(m2/3nd/3 +
nd−1 + m). Since the points are vertices of the arrangement, m = O(nd), so m =
O(m2/3nd/3). Substituting, we obtain Θd(m2/3nd/3 + nd−1), the bound proved by
Agarwal and Aronov (Lemma 6).

We prove Theorem 8 in two parts. First, following Agarwal and Aronov [1], we
show an upper bound on Id(m,n, k), and then, to show this is the best possible, we
modify Edelsbrunner’s [6, p. 113] construction that achieves the upper bound.

2.3 Proof of the Upper Bound for Theorem 8

Lemma 9 If d ≥ 2 and m = Ω(nd−2), then

Id(m, k,n) = Od

(
m2/3k2/3n(d−2)/3 + knd−2 + m

)
.

Proof In E
d , let HR be a set of k red hyperplanes, and let HB be a set of n − k blue

hyperplanes such that HR ∩ HB = ∅. Let H be their combined arrangement. Let P
be a subset of the vertices of H, each incident to at least one red hyperplane, with
|P | = m.

Lemma 1 (the Szemeredi–Trotter incidence bound) does not require the points to
be vertices of the arrangement of lines, so the theorem is true for E

2. This will be the
base case for induction.

Let P be an arbitrary point of P , and let H(P ) = {H(P)
1 ,H

(P )
2 , . . . ,H

(P )
t } ⊆ H be

the set of hyperplanes that contain P . Let H(P )
R be the set of red hyperplanes that

contain P .
Place a two dimensional plane M in general position, so that the hyperplanes of

H(P ) intersect M at lines L(P ) = {L(P)
1 ,L

(P )
2 , . . . ,L

(P )
t }. We can place M so that no

two members of L(P ) are parallel. Let each L
(P)
i correspond to hyperplane H

(P)
i and

have the same color as H
(P)
i . Let L(P )

R ⊆ L(P ) be the red lines, and let L(P )
B ⊆ L(P )

be the blue lines.
Since P is a vertex spanned by the hyperplanes of H(P ), the lines of L(P ) are not

all concurrent; however, the red lines of L(P )
R might be. If the red lines are concur-

rent, then there must exist a blue line L
(P)
i ∈ L(P )

B that intersects all of the red lines at

distinct points. Otherwise, by the dual weak Dirac there exists a red line L
(P)
i ∈ L(P )

R

and a constant cdirac, such that L
(P)
i intersects at least cdirac|L(P )

R | other red lines at

distinct points. In either case, there exists a line L
(P)
i on M that intersects the lines of
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L(P )
R in at least cdirac|L(P )

R | distinct points, and so the hyperplane H
(P)
i correspond-

ing to L
(P)
i intersects the hyperplanes of H(P )

R in at least cdirac|L(P )
R | = cdirac|H(P )

R |
distinct (d − 2)-flats. Since P is spanned by H, it is also spanned by the intersection
of (d − 2)-flats in H

(P)
i .

Assign P to H
(P)
i , i.e., let f (P ) = H

(P)
i . The process of assignment may be re-

peated for each point in P , assigning them to hyperplanes in H.
Select an arbitrary hyperplane Hi of H. Let P (i) be the set vertices assigned to

hyperplane Hi . That is, P (i) = {P ∈ P : f (P ) = Hi}. Let mi = |P (i)|. Let H′(i)
R be

the set of (d − 2)-flats formed by the intersection of the hyperplanes of HR with Hi ,
and let H′(i)

B be the (d − 2)-flats formed by the intersection of the hyperplanes of HB

with Hi . Let k′ = |H′(i)
R |, and let n′ = |H′(i)

R ∪ H′(i)
B |.

We now have an arrangement, H′(i)
R ∪ H′(i)

B , of (d − 2)-flats contained in (d − 1)-
dimensional space, Hi , that determine a set of points, P (i). Note that for a particular
P ∈ P (i), the number of incidences between P and the (d −2)-flats of H′(i)

R is at least
cdirac times the number of incidences it has with the hyperplanes HR . We apply the
inductive hypothesis to determine an upper bound on Id(P (i), HR),

Id(
P (i), HR

)
� 1

cdirac
Id(

P (i), H′(i)
R

)

= 1

cdirac
Od−1

(
m

2/3
i k′2/3n′(d−3)/3 + k′n′d−3 + mi

)

= Od

(
m

2/3
i k′2/3n′(d−3)/3 + k′n′d−3 + mi

)

= Od

(
m

2/3
i k2/3n(d−3)/3 + knd−3 + mi

)
. (1)

The same logic may be applied to the remaining n − 1 hyperplanes of H. Since
each point P ∈ P is assigned to exactly one P (i),

Id(P , HR) =
n∑

i=1

Id(
P (i), HR

)
.

From the upper bound on Id(P (i), HR) (inequality 1), it follows that

Id(P , HR) = Od

(
n∑

i=0

(
m

2/3
i k2/3n(d−3)/3 + knd−3 + mi

)
)

.

Since each point P ∈ P is in exactly one of the sets P (i), we see that m =
∑n

i=1 mi . Since ϕ(x) = x2/3 is concave, Jensen’s inequality implies
∑n

i=1 m
2/3
i ≤

n1/3(
∑n

i=1 mi)
2/3, and thus,

Id(m, k,n) = Od

(
m2/3k2/3n(d−2)/3 + knd−2 + m

)
. �
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2.4 Proof of the Lower Bound for Theorem 8

The upper bound has three terms. If m = Ω(k2nd−2), then the Od(m) term dom-
inates. If m = O(k1/2nd−2), then the Od(knd−2) term dominates. Otherwise, the
Od(m2/3k2/3n(d−2)/3) term dominates.

We may very easily achieve 1 incidence for each point, so

Id(m, k,n) = Ω(m).

Since Id(m, k,n) increases monotonically with m, Theorem 7 immediately implies
that if m = Ω(nd−2), then

Id(m, k,n) = Ωd

(
knd−2).

We will modify a construction presented by Edelsbrunner [6, p. 112] to demon-
strate the third term in the lower bound. We need the following lower bound in two
dimensions, customarily attributed to Paul Erdős:

Lemma 10 (Edelsbrunner [6])

I2(m,n) = Ω
(
m2/3n2/3).

Lemma 11

Id(m, k,n) = Ωd

(
m2/3k2/3n(d−2)/3).

Proof If m = Ω(k2nd−2), this follows immediately from the fact that Id(m, k,n) =
Ω(m), so we will assume that m = O(k2nd−2). If m = O(nd−2), this follows im-
mediately from Theorem 7, so we will assume that m = Ω(nd−2). If k = Ω(n), the
conclusion follows immediately from the lower bound established by Edelsbrunner,
so we will assume that n − k = Ω(n).

We will construct a set of hyperplanes H from the disjoint union of sets
HR, H1, . . . , Hd−2, to be defined later. The set of vertices of H is P , and we will
count the incidences between P and HR .

We will use a coordinate system (x1, x2, . . . , xd).
Define

p = c0
⌊
m/nd−2⌋,

with c0 to be set later. Since m = O(k2nd−2), we know that p ≤ c1k
2, for some c1

depending on c0.
The set HR contains k red hyperplanes normal to a plane π , with π defined as

π : x1 = x2 = · · · = xd−2 = 0.

The intersection of the arrangement HR with π is a set of lines LR intersecting in
a set of points PR with |PR| = p and I2(LR, PR) = Ω(p2/3k2/3). Since p ≤ c1k

2,
Lemma 10 implies that there exists a constant c0 such that this arrangement is guar-
anteed to exist; choose c0 accordingly. Since the hyperplanes of HR are normal to π ,
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the intersection of HR with any plane parallel to π will be combinatorially equivalent
to the arrangement of LR .

The sets H1, . . . , Hd−2 each contain 
(n − k)/(d − 2)� parallel blue hyperplanes.
Place the sets of hyperplanes so that any d − 2 hyperplanes, one from each set
H1, . . . , Hd−2, intersect in a unique common plane parallel to π . Formally, we can
define

Hi = {
xi = j | j = 0,1, . . . ,

⌊
(n − k)/(d − 2)

⌋ − 1
}

for 1 ≤ i ≤ d − 2. Since there are 
(n − k)/(d − 2)�d−2 ways to choose one hy-
perplane from each set H1, . . . , Hd−2, and each plane forming their intersection ac-
counts for Ω(p2/3k2/3) intersections between vertices of the overall arrangement and
the red hyperplanes of H0, we can conclude that

Id(P , HR, H1 ∪ H2 ∪ · · · ∪ Hd−2) = Ω
(
p2/3k2/3(n − k)d−2) = Ω

(
p2/3k2/3nd−2).

Here, |P | = p
(n − k)/(d − 2)�d−2 = Θ(m). Since p2/3k2/3nd−2 = Θ(m2/3k2/3 ·
n(d−2)/3), this proves the theorem. �

Together, the above upper and lower bounds imply Theorem 8.

3 Three Dimensional Analog of the Beck–Erdős Theorem

In this section, we prove the following three dimensional analog of the Beck–Erdős
theorem for points and lines.

Theorem 12 A set of n points in E
3, of which no more than n − k are on any plane

or on any pair of skew lines, spans Ω(nk2) planes.

3.1 Planes from Incidences

Our basic strategy is to find Ω(nk2) point-hyperplane incidences, and then to ap-
ply the following corollary of Theorem 8 to show that the lower bound on point-
hyperplane incidences implies a lower bound on hyperplanes.

Lemma 13 Let P be a set of n points in E
d , and let K ⊆ P with |K| = k. If there

are Ω(nd−2k2) incidences between points of K and hyperplanes spanned by P , then
there are Ω(nd−2k2) hyperplanes spanned by P .

Proof By the dual of Theorem 8, there are O(m2/3n(d−2)/3k2/3 + nd−2k + m) inci-
dences between k points of P and the m hyperplanes spanned by P . There are three
cases to consider.

Case 1.

nd−2k2 = O
(
nd−2k

)
.

This implies that k = O(1). Since O(1) points have a total of Ω(nd−2) incidences,
some of them must have Ω(nd−2) incidences, so there must be Ω(nd−2) hyperplanes.
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Case 2.

nd−2k2 = O(m).

It immediately follows that m = Ω(nd−2k2).

Case 3.

nd−2k2 = O
(
m2/3n(d−2)/3k2/3).

Solving for m gives m = Ω(nd−2k2). �

3.2 Combinatorial Preliminaries

It will be helpful to establish two essentially combinatorial results (Corollary 15 and
Lemma 16) for application in Case 2 of the proof of Theorem 12 (below).

Lemma 14 (Modified pigeonhole principle) Let 0 < c ≤ 1. If �cka discrete objects
are allocated to k containers, none of which can contain more than ka−1 objects, then
at least 
cka−1/2� of the objects must be in each of at least ck/2 containers.

Proof Partition the k containers into two sets: set A has the containers with at least

cka−1/2� objects; set B has the containers with fewer than 
cka−1/2� objects. Let
na be the number of objects in all the containers of A, and let nb be the number of
objects in all the containers of B.

Since no container has more than ka−1 objects,

na ≤ |A|ka−1.

Since every member of B has fewer than 
cka−1/2� objects,
⌊
cka−1/2

⌋|B| > nb.

Clearly, nb = �cka − na and |B| = k − |A|, so
⌊
cka−1/2

⌋(
k − |A|) >

⌈
cka

⌉ − |A|ka−1,

|A|ka−1 > |A|(ka−1 − ⌊
cka−1/2

⌋)
>

⌈
cka

⌉ − k
⌊
cka−1/2

⌋ ≥ cka/2.

Therefore,

|A| > ck/2. �

When we apply this lemma below, the “objects” in the above lemma are incidences
and the “containers” are points.

Corollary 15 Let 0 < c ≤ 1. If there are at least cka incidences between a set of
d-flats and a set of points, and if no point is incident to more than ka−1 d-flats, then
at least ck/2 points must each be incident to at least 
cka−1/2� d-flats.

This is an immediate consequence of Lemma 14.
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Lemma 16 Let T be a set of n points in E
3 such that no more than n′ lie on any

plane or pair of lines. If there is a subset L ⊂ T of at least n′ − k collinear points,
then

1. no subset of T \ L with more than k points is collinear, and
2. no subset of T \ L with more than k points is on a plane with the line covering L.

Proof Let V ⊆ T \ L with more than k points that is collinear or on a plane with L.
The union of L and V will form a set of more than n′ points. �

3.3 Proof of Theorem 12

Proof Let the full set of n points be T . A plane or pair of lines that is incident to at
least as many points as any other plane or pair of lines exists; we will denote the set
of n − x points incident to this plane or pair of lines by H, and denote T \ H by X .
In other words:

T = H ∪ X ,

|T | = n,

|X | = x ≥ k,

|H| = n − x ≤ n − k.

Since k ≤ x, it will be sufficient to show that Ω(nx2) planes are spanned by T .

Case 1. Suppose that no plane contains more than β3n points of T , where β3 is a
constant from Lemma 17. The following “two extremes” lemma covers this case.

Lemma 17 (Beck [2]) There are positive constants βd and γd depending only on the
dimension such that any set of n points in E

d of which fewer than βdn points are on
any single hyperplane spans at least γdnd hyperplanes, for d ≥ 2.

If |H| ≤ β3n, then no plane contains more than β3n points, which is case 1. For
the remaining three cases, we may assume that |H| > β3n.

Case 2. Let L be the largest set of collinear points in H, and suppose |L| = |H|−x′
with x′ ≤ min(cex/2, β3x/2), where ce is the constant from Lemma 3.

Let Λr be the set of lines spanned by X that do not intersect the line that covers L.

Proposition 18 There is a set of points R ⊂ X with |R| = Ω(x) such that each point
of R is incident to Ω(x) lines of Λr .

Proof Let lt be the number of lines spanned by X , let ls be the number of lines
spanned by X that intersect the line covering L, and let lr = |Λr |. In other words,

lr = lt − ls .
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Since |L| = |H| − x′, Lemma 16 implies that no subset of X larger than x′ is
collinear. Since x′ < x/2, Lemma 3 implies that

lt > cex
2/2.

Lemma 16 also implies that no subset of X larger than x′ is on a plane that cov-
ers L. Consequently, no point of X is on more than x′ − 1 lines spanned by X that
intersect L. Summing over all x points of X and dividing by 2 since each line spanned
by X is incident to at least two points,

ls ≤ xx′/2 ≤ cex
2/4.

Since lr = lt − ls ,

lr > cex
2/2 − cex

2/4 ≥ cex
2/4 ≥ cax

2

for some positive constant ca .
Since lr = Ω(x2) and each line of Λr is on at least two points of X , there must be

Ω(x2) incidences between Λr and points of X . From this, Corollary 15 implies that
there exists a set of Ω(x) points each incident to Ω(x) lines of Λr , completing the
proof of Proposition 18. �

Let P be an arbitrary point in R, and let ΠT be the set of planes spanned by T .
Let I(P,ΠT ) be the number of incidences between P and ΠT .

Proposition 19

I(P,ΠT ) = Ω(nx).

Proof Let A be the set of points on the plane that covers P and L. Using P as
a center, project (X \ A) ∪ L onto a plane M in general position. Let L′ be the
projection of L on M . Let X ′ be the projection of X \ A on M . Each point of L will
project to a distinct point on M , so

∣∣L′∣∣ = |L| = |H| − x′ ≥ β3n − β3x/2 > β3n/2.

Since P ∈ R, Proposition 18 implies that P is incident to Ω(x) lines spanned
by X \ A. Each of these lines will project to a distinct point on M , so

∣∣X ′∣∣ = Ω(x).

Let lm be the number of lines spanned on M by L′ ∪ X ′. Each of these lines
corresponds to a plane through P , so

I(P,ΠT ) ≥ lm.

If |X ′| > β3x/2, throw away all but β3x/2 of the points of X ′ to ensure that the
line containing L′ has more points of L′ ∪ X ′ than any other. Lemma 3 implies that

lm = Ω
((∣∣L′∣∣ + ∣∣X ′∣∣)∣∣X ′∣∣) = Ω

(
(β3n/2)Ω(x)

) = Ω(nx).

This completes the proof of Proposition 19. �
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Repeat the count for each of the Ω(x) points in R to get a lower bound on
I(R,ΠT ), the number of incidences between the points of R and planes spanned
by T .

I(R,ΠT ) =
∑

P∈R
I(P,ΠT )

=
|R|∑

i=0

Ω(nx)

= Ω
(
nx2).

By Lemma 13, this lower bound implies that T determines Ω(nx2) planes.
Since we have shown that the conclusion of the theorem holds when some line is

incident to all but cmx = min(β3x/2, cex/2) points of H, we may assume that no line
is incident to more than |H| − cmx points of H for the remaining cases.

Case 3. Suppose that the points of H lie in a plane.
Let lh be the number of lines spanned by H. Since |H| ≥ β3n and no line is

incident to more than |H| − cmx points of H, Lemma 3 implies that

lh ≥ ce|H|cmx ≥ cecmβ3nx.

Each of the x points in X is incident to a plane for each line spanned by H, so

I(X ,ΠT ) ≥ cecmβ3nx2.

By Lemma 13, this implies that there are Ω(nx2) planes spanned by the point set,
proving the theorem for this case.

Case 4. If none of the previous cases hold, then the points of H must lie on two
skew lines. Let the sets of points on these lines be L0 and L1, with

|L0| ≥ |L1| ≥ cmx.

(If L1 < cmx, we’d be in case 2.) Since |H| ≥ β3n,

|L0| = |H| − |L1| > β3n/2.

Let P be a point in X . Using P as a center, project the points of H onto a plane
M in general position. Let H′ be the projection of H on M . Let l′h be the number of
lines spanned by H′. Since L0 and L1 are skew and P is on neither line, the points of
H′ will lie on crossing lines on the plane M . The projected lines have at most 1 point
in common, so

l′h ≥ (|L0| − 1
)(|L1| − 1

) ≥ 1

2
|L0||L1| ≥ β3cmnx/4.
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Each line spanned by the points of H′ corresponds to a plane through P , so

I(P,ΠT ) ≥ β3cmnx/4.

The same logic holds for each of the x points in X, so

I(X ,ΠT ) ≥ β3cmnx2/4.

By Lemma 13, this implies that there are Ω(nx2) hyperplanes spanned by the full
point set. �

4 Counterexample to Purdy’s Conjecture

In this section, we present an infinite family of counterexamples in dimensions 4 and
higher to a conjecture of Purdy’s, and we replace it with a modified version that is
not subject to our counterexample.

Define the rank of a flat to be one more than its dimension. Purdy’s conjecture
[4, 12, 17, 18] was that, if n is sufficiently large, then any set of n points in E

d that
cannot be covered by a set of flats whose ranks sum to d + 1 spans at least as many
hyperplanes as (d − 2)-flats. Grünbaum found counterexamples for d = 3 with up to
16 points [13], but until now no infinite family of counterexamples has been known.

Theorem 20 In E
d , with d ≥ 4, it is possible to construct a set of n points that

cannot be covered by any set of flats whose ranks sum to d + 1 that spans Θd(nd−2)

hyperplanes and Θd(nd−1) (d − 2)-flats.

Proof We will construct a set of n = k(d − 1) points. First, put d − 1 lines in general
position—we will refer to these lines as the covering lines. On each of the covering
lines, put k points, so that any d −1 of these points, one on each of the covering lines,
spans a (d − 2)-flat.

The total rank of the covering lines is 2(d − 1), which is greater than d + 1 when
d > 3. Since the covering lines are in general position, no more than m lines may be
covered by a flat of rank 2m < d + 1, so there is no way to construct a set of flats
covering the point set with total rank less than d + 1.

We will count the number of hyperplanes spanned by the n points by counting the
number of hyperplanes that contain j covering lines and summing over all possible
values for j .

Let hj be the number of hyperplanes that contain j covering lines. A hyperplane
that contains j lines will contain d − 2j points from the remaining covering lines.
hj is equal to the number of ways to choose the j lines contained in the hyperplane,
times the number of ways to choose the d − 2j lines that each contribute 1 point,
times the number of ways to choose 1 point on each of d − 2j lines. In other words,

hj =
(

d − 1

j

)(
d − 1 − j

d − 2j

)
kd−2j .
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Let h be the total number of hyperplanes spanned by the point set. Since there
are only d − 1 covering lines, a hyperplane must contain at least one of the lines.
Since the lines are in general position, no hyperplane will contain more than 
d/2�
covering lines. Consequently,

h =
∑

j

hj

=
∑

1≤j≤
d/2�

(
d − 1

j

)(
d − 1 − j

d − 2j

)
kd−2j .

Since k = Θd(n),

=
∑

1≤j≤
d/2�
Θd,j

(
nd−2j

)

= Θd

(
nd−2).

We will proceed in a similar manner to count the number of (d − 2)-flats spanned
by the point set.

Let gj be the number of (d − 2(-flats that contain j covering lines. A (d − 2)-flat
that contains j lines will contain d − 1 − 2j points from the remaining lines. gj is
equal to the number of ways to choose j lines contained in the (d − 2)-flat, times the
number of ways to choose d − 1 − 2j lines that each contribute 1 point, times the
number of ways to choose 1 point on each of the d − 1 − 2j lines. In other words,

gj =
(

d − 1

j

)(
d − 1 − j

d − 1 − 2j

)
kd−1−2j .

Let g be the total number of (d − 2)-flats spanned by the point set. Since there are
d −1 covering lines, a (d −2)-flat may be spanned by one point from each line. Since
the lines are in general position, no (d − 2)-flat will contain more than 
(d − 1)/2�
covering lines. Consequently,

g =
∑

j

gj

=
∑

0≤j≤
(d−1)/2�

(
d − 1

j

)(
d − 1 − j

d − 1 − 2j

)
kd−1−2j

=
∑

0≤j≤
(d−1)/2�
Θd,j

(
nd−1−2j

)

= Θd

(
nd−1). �

In place of the disproved conjecture, we propose the following related conjectures.
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We say that a set of points is r-degenerate if it can be covered by any set of flats
(of nonzero dimension) whose dimensions add up to less than r .

Conjecture 21 (Modified weak Purdy) A set of n points in E
d that is not d-

degenerate contains a point incident to Ω(p) hyperplanes, where p is the number
of (d − 2)-flats spanned by the set.

Using a similar hypothesis, we conjecture a generalization of the Beck–Erdős the-
orem that embraces our theorem in three dimensions as a special case.

Conjecture 22 A set of n points in E
d , having no d-degenerate subset of more than

n − k points, spans Ω(nkd−1) hyperplanes.
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