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Abstract We prove that for any finite real hyperplane arrangement the average pro-
jection volumes of the maximal cones are given by the coefficients of the character-
istic polynomial of the arrangement. This settles the conjecture of Drton and Klivans
that this held for all finite real reflection arrangements. The methods used are geo-
metric and combinatorial. As a consequence, we determine that the angle sums of a
zonotope are given by the characteristic polynomial of the order dual of the intersec-
tion lattice of the arrangement.

Keywords Angle sum · Characteristic polynomial · Hyperplane arrangement ·
Zonotope

1 Introduction

Given a polyhedral cone C ⊆ R
n, consider the orthogonal projection of an arbitrary

point z ∈ R
n onto C . The work here is concerned with the dimension of the face z

projects onto. Specifically, consider the following problem as formulated in [4]:

Problem 1 Which fraction of the unit sphere in R
n, as measured by surface volume,

is occupied by the points z for which the orthogonal projection of z onto C lies in the
interior of a k-dimensional face of C ?
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The study of these projection volumes is motivated by p-value calculations in sta-
tistical hypothesis testing; see [4] for more on this motivation. There the projection
volumes of fundamental chambers of finite real reflection arrangements are inves-
tigated. It is shown that for irreducible reflection groups of type An, Bn and Dn,
the projection volumes are given by the coefficients of the characteristic polynomial
of the corresponding reflection arrangement. These results are natural extensions of
those shown by De Concini, Procesi, Stembridge, and Denham [2, 3] for zero dimen-
sional projections onto reflection arrangements.

Here we extend and strengthen these results. In particular, we offer a positive
answer to the main Conjecture of [4] which states that the projection volumes of any
finite real reflection arrangement are given by the coefficients of its characteristic
polynomial.

This follows as a corollary of a stronger result, our Theorem 5, which considers
projections onto cones formed from regions of arbitrary finite real hyperplane ar-
rangements. In order to understand this more general case, we shift our perspective
and consider the average projection volumes over all regions of a given hyperplane
arrangement. Theorem 5 states that for an arbitrary finite real hyperplane arrange-
ment the average projection volumes are given by the coefficients of its characteristic
polynomial. As all regions of a reflection arrangement are isometric, Corollary 5 of
[4] holds for all finite real reflection groups.

The methods utilized in [4] are algebraic, drawing on the structure of a reflection
group. In contrast, here we use combinatorial and geometric techniques to prove our
main result. Projection volumes of cones are related to the characteristic polynomial
through the theory of polytope angle sums. To any linear hyperplane arrangement
there are naturally associated dual polytopes, called zonotopes. A well-known result
of Zaslavsky gives the face numbers of zonotopes in terms of the Möbius function
of the intersection lattice of the arrangement. A little known result of Perles and
Shephard then relates the face numbers of a zonotope to its angle sums. Combining
these results, Theorem 5 equates the angle sums of certain faces of the zonotopes
to both the value of the Möbius function at a given intersection and the projection
volume onto that intersection. We further determine that the angle sums of a zonotope
are given by the characteristic polynomial of the order dual of the lattice of flats of
the arrangement.

2 Projection Volumes

Let C be a polyhedral set in R
d . Unless otherwise noted, C will always be a cone. For

an arbitrary point z ∈ R
d , let πC (z) be the orthogonal projection of z onto C , i.e., πC

is the nearest point map. Say that πC (z) has k-dimensional projection if πC (z) lies in
the relative interior of a k-dimensional face of C . Define νk to be the ratio of volume
of R

d occupied by points x for which the projection πC is k-dimensional. There are
several ways of making this precise. Let X be a cone. Define the volume of X using
any of the following equivalent definitions:
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Volume of X = The ratio of volume of R
d occupied by X

= |X ∩ Sd−1|
|Sd−1|

= |X ∩ Bd |
|Bd | ,

where | · | is the Lebesgue measure, Sd−1 is the unit sphere, and Bd is the unit ball.
The set of points z which project into the relative interior of a face F of C is a

cone which we denote by XF . Set ν(F ) = the volume of XF . If F is contained in
several polyhedral sets, then we use νC (F ) to specify which one. Finally, we define
νk to be the sum of the ν(F ) over all k-dimensional faces F of C. The νk are called
the projection volumes of C . The work here is motivated by trying to determine the
νk for a given cone.

Example 2 [4, Example 2] Consider the cone C = [0,∞)2 equal to the non-negative
orthant in R

2. All points z in the positive orthant (0,∞)2 lie inside the cone and
thus have a 2-dimensional projection πC (z). All points in the non-positive orthant
(−∞,0]2, the polar cone, are projected to the origin, that is, they have 0-dimensional
projection. As all remaining points have 1-dimensional projection, the projection vol-
umes are ν0 = ν2 = 1/4 and ν1 = 1/2.

We will consider polyhedral sets formed by hyperplane arrangements. We re-
view the basics of the combinatorics of hyperplane arrangements and refer the
reader to [11] for much more. A real hyperplane arrangement A is a collection of
codimension-one affine subspaces of R

d . All arrangements appearing in this paper
are assumed finite. The rank of an arrangement A is defined to be the dimension
of the linear space spanned by the normal vectors to its hyperplanes. Specifically,
if A = {H1, . . . ,Hm} and Hi = {z ∈ R

d : ηi · z = bi}, where ηi is a non-zero vector
in R

d , then

Rk(A) = dim(Span{η1, . . . , ηm}).
A region of A is any connected component of the complement of the union of all the
hyperplanes in A. We denote by R(A) the set of all regions of A. When all hyper-
planes pass through the origin, and hence the closure of any region forms a polyhedral
cone, the arrangement is called central. Generally, the closure of any region forms a
polyhedra. Note that any polyhedral cone can be thought of as a region in the hyper-
plane arrangement formed by taking the bounding hyperplanes of the cone.

Much of the combinatorics of a hyperplane arrangement is encoded by its intersec-
tion poset. Given an arrangement A, let L(A) be the set of all nonempty intersections
of collections of hyperplanes in A. We include R

d in L(A) as the intersection of the
empty collection. Define a partial order on L(A) by reverse inclusion of intersections,
that is, x ≤ y in L(A) if y ⊆ x. Then L(A) forms a poset ranked by codimension
d − dim(x). If the arrangement is central, then L(A) contains a unique top element
1̂ and forms a lattice. If it is also the case that 1̂ = {0}, then the arrangement is called
essential.
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The Möbius function μ of a finite poset P is a function from intervals of P to Z

defined recursively by:

μ(x, x) = 1, for all x ∈ P,

μ(x, y) = −
∑

x≤z<y

μ(x, z), for all x < y ∈ P.

Write μ(x) for μ(0̂, x) when P has a minimal element 0̂. The characteristic poly-
nomial of a rank r graded poset with 0̂ and rank function ρ is defined as

χP (t) =
∑

x∈P

μ(x)tr−ρ(x).

If A is an essential central arrangement, then for L(A) this equals

χA(t) =
∑

x∈L(A)

μ(x)tdimx.

Example 3 Consider the hyperplane arrangement A ⊂ R
2 consisting of any three

lines H1, H2, and H3 through the origin. The intersection lattice of this arrangement
is L(A) = {R2,H1,H2,H3, {0}} with its elements ordered as R

2 ≤ H1 ≤ {0}, R
2 ≤

H2 ≤ {0}, and R
2 ≤ H3 ≤ {0}. The Möbius function thus assigns the values μ(R2) =

1, μ(H1) = μ(H2) = μ(H3) = −1 and μ({0}) = 2. The characteristic polynomial
equals χA(t) = t2 − 3t + 2.

In order to understand projection volumes, we will shift our perspective and con-
sider the average projection volumes over all regions of a given hyperplane arrange-
ment.

Example 4 For any three lines passing through the origin in R
2, the average two-

dimensional volume will always be 1
6 as there are 6 regions. To determine the zero-

dimensional volume of a cone, consider the interior angle α of the cone. The fraction
of volume which projects onto the vertex of the cone is 1

2 − α. Thus the average
volumes are ( 1

6 , 1
2 , 1

3 ).

Our main result, Theorem 5, relates the sum of projection volumes to the charac-
teristic polynomial. Before stating the theorem, we recall a well-known result due to
Zaslavsky [12] and, independently, Las Vergnas [7]:

(−1)rχA(−1) = |R(A)|, (1)

where |R(A)| denotes the number of regions of A. In particular, as the coefficients
of χA alternate in sign [9, Theorem 4, p. 357], the sum of the absolute values of the
coefficients of χA(t) equals the number of regions of A.

Theorem 5 Let A be a rank r real hyperplane arrangement in R
d . Then the sum∑

C νk(C) over all regions C of A is equal to the absolute value of the coefficient of
t r−d+k of the characteristic polynomial of A.
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3 Zonotopes

The link between projection volumes of regions of hyperplane arrangements and co-
efficients of characteristic polynomials is via zonotopes. Zonotopes are a rich class
of polytopes equivalently defined as affine projections of cubes, Minkowski sums of
line segments, or polytopes with all faces centrally symmetric.

Zonotopes naturally arise from any central hyperplane arrangement. Throughout
this section, A will always be an essential central arrangement. Consider the face
lattice F(A) of such an arrangement A. This poset records the cellular structure of
the decomposition of space as induced by the hyperplanes. Since the arrangement is
essential and central, F(A) has a unique bottom element corresponding to the origin,
the atoms correspond to one-dimensional rays and in general the j -dimensional cones
are represented by rank j elements of F(A). Next consider a zonotope Z formed by
taking the Minkowski sum of normals of all the hyperplanes in A. Different choices
of normals lead to geometrically distinct zonotopes, but they are all combinatorially
equivalent. Indeed, let F(Z) be the face lattice of Z. Then F(Z) is isomorphic to the
order dual of F(A) union 0̂; see, for instance, [13, Chapter 7]. Informally, for each
region of A we have a vertex of Z, for each pair of neighboring regions we have an
edge of Z, etc.

We will relate projection volumes of regions of A to angles associated to the zono-
tope Z. As an example, consider ν0(C) the zero dimensional projection onto a region
C of A. The set of points x such that πC (x) = 0 is given by the normal cone of C ,
i.e., the cone generated by all opposites of normals of hyperplanes supporting C . The
normal cone is a translate of the cone induced by the corresponding vertex figure of
Z, see Fig. 1.

In general, the normal fan of Z formed by taking the normal cones to all faces of
Z is equal to the face fan of A. As expected by the duality described above, we have
even more generally that the fan of the arrangement is equal to the face fan of the
polar of the zonotope, see [13, Corollary 7.18].

Fig. 1 An arrangement of three
lines with the corresponding
zonotope. The normal cone to C
is given by the dotted rays
emanating at the origin. The
cone prescribed by the vertex
figure sitting inside C is a
translate of the normal cone
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4 Angle Sums of Polytopes

In order to use zonotopes to understand k-dimensional projections, we will need the
theory of angle sums of polytopes. Let P be a polytope, F a face of P and z a point in
the relative interior of F . Define the angle of P at F , α(P,F ), as the ratio of volume
of an epsilon-ball centered at z which lies inside P . Specifically, if B is a sufficiently
small ball centered at z, then α(P,F ) is the ratio of volume of B ∩ P to the volume
of B .

Example 6 We have α(P,F ) = 1 for the improper face F = P of P and α(P,G) = 1
2

for every facet G of P .

Define the kth angle sum of P , αk(P ), as the sum of all angles over faces of
dimension k:

αk(P ) =
∑

dimF=k

α(P,F ).

Example 7 For every d-dimensional polytope P , we have αd(P ) = 1 and αd−1(P ) =
1
2fd−1, where fd−1 denotes the number of (d − 1)-dimensional faces of P .

Angle sums of polytopes satisfy relations similar to those satisfied by the face
numbers of a polytope, where the face numbers f (P ) = (f0, f1, . . . , fd−1), also
called the f -vector, record the number of faces in each dimension; see, for exam-
ple, [1] and [8]. Furthermore, there are strong connections between the angle sums
and the f -vector of a given polytope. We review here a result of Perles and Shephard
relating angle sums and face numbers for the class of equiprojective polytopes.

Equiprojective polytopes are polytopes such that all projections onto sufficiently
generic hyperplanes have the same f -vector. Formally, let Pz be the polytope ob-
tained by orthogonally projecting P onto the hyperplane with normal z. A polytope
is called equiprojective if the face numbers of Pz are the same for all z not parallel to
any face of P .

Theorem 8 (Perles–Shephard [8]) Let P be a d-dimensional equiprojective polytope
and P ′ a generic projection of P . Then for 0 ≤ k ≤ d − 1

αk(P ) = 1

2

(
fk(P ) − fk

(
P ′)),

where we set fd−1(P
′) = 0.

This theorem is actually a corollary of a more general result in the same paper.
Let α(P ) = (α0, . . . , αd−1). Perles and Shephard prove that for any polytope the
vector f (P ) − 2α(P ) is a convex combination of all of the possible f -vectors of
the projections Pz. The proof of this theorem relies on two simple, yet powerful
ideas. The first is that α(P,F ) is one-half of the measure of the normals z such that
the projected image of F is not a face of Pz. The other is that we can compute the
expected number of faces in a projection Pz by either integrating over the unit sphere
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the number of faces for each Pz, or by using the above interpretation of α(P,F ).

Anyone unfamiliar with these ideas is strongly encouraged to begin by reading the
elementary, yet revealing [5]

Theorem 9 (Shephard [10]) Zonotopes are equiprojective.

In order to use the above theorems, we need to understand fk(P ) and fk(P
′) for a

zonotope P . If P is d-dimensional, f0(P ) can be computed from the corresponding
arrangement by (1). The general formula is as follows.

Theorem 10 (Zaslavsky [12]) Let A be an arrangement of hyperplanes in R
d . Then

the face numbers of any zonotope of A are given by

fk =
∑

dimx=d−k

∑

x≤y

(−1)dimx−dimyμ(x, y).

In particular, setting k = 0 recovers (1).

Lemma 11 Let A be an essential central hyperplane arrangement in R
d and let Z

be an associated zonotope. Then α0(Z) = |μL(A)(0̂, 1̂)|.
Proof Write the characteristic polynomial of A as

χA(t) = a0 td − a1 td−1 + · · · + (−1)d−2ad−2 t2 + (−1)d−1ad−1 t + (−1)d ad,

where all the ai are nonnegative. (In fact, they are all positive.) As noted above, the
vertices of Z correspond to the regions of A, so (1) tells us that

f0(Z) = a0 + a1 + · · · + ad−2 + ad−1 + ad .

Let Z′ be the projection of Z into a generic hyperplane x. What is f0(Z
′)? Ev-

idently, Z′ is the Minkowski sum of the images of the projections of the normals
ηi which determined Z, and hence is a (d − 1)-dimensional zonotope. Denote the
images of the normals by η′

i and the associated arrangement by A′. The intersection
poset of any arrangement of linear hyperplanes is completely determined by the di-
mensions of the various intersections of the hyperplanes or, equivalently, by the ranks
of all the possible subsets of normal vectors. The choice of x ensures that for any sub-
set of the ηi its rank is the same as the corresponding subset of η′

i except when the
former has rank d. In that case the rank of the η′

i is only d − 1. From this we see that
L(A′) is just the truncation of L(A). Specifically, L(A′) is L(A) with its coatoms
removed.

Now write the characteristic polynomial of A′ as

χA′(t) = b0 td−1 −b1 td−2 +· · ·+ (−1)d−3bd−3t
2 + (−1)d−2bd−2t + (−1)d−1bd−1,

where all of the bi are positive. Since L(A) and L(A′) agree up to rank d −2, ai = bi

for all 0 ≤ i ≤ d −2. Theorems 8, 9 and 10 imply that α0(Z) = 1
2 (ad−1 +ad −bd−1).

Since the alternating sums of the ai and the bj are zero, as the Möbius values of a
lattice with 1̂, ad−1 − ad = bd−1. By definition, ad = |μL(A)(0̂, 1̂)|. �
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Theorem 12 Let A be an essential central hyperplane arrangement and let Z be an
associated zonotope. Then αi(Z) is the coefficient of t i in the characteristic polyno-
mial of the order dual of L(A).

Proof Applying the same reasoning as in the proof of the above lemma, we find that

αi(Z) =
∑

dimx=d−i

μL(A)

(
x, 1̂

)
.

The result follows as μL(A)(x, 1̂) = μL∗
A

(0̂, x). �

As pointed out by one of the anonymous referees, Lemma 11 and the above theo-
rem are closely related to [6, Theorem 3.1 and Theorem 3.5], results of Greene and
Zaslavsky. In fact, a proof of the main theorem can be presented as a combination of
the Greene–Zaslavsky results and the ideas of the Perles–Shephard paper.

5 Proof of the Main Theorem

We are now ready to prove our main theorem.

Theorem 5. Let A be a central rank r real hyperplane arrangement in R
d . Then the

sum
∑

C νk(C) over all regions C of A is given by the absolute value of the coefficient
of t r−d+k of the characteristic polynomial of A.

Proof Our first observation is that it is sufficient to prove this for essential arrange-
ments. Indeed, suppose that dim 1̂ = d − r > 0. Let V be the orthogonal complement
of 1̂ and consider the hyperplane arrangement AV = {H1 ∩ V, . . . ,Hm ∩ V } ⊆ V.

Now, L(AV ) ∼= L(A), so their characteristic polynomials are identical. Furthermore,
the regions of AV correspond bijectively to the regions of A by C ∩ V ↔ C and
νk(C ∩V ) = νk+d−r (C). Thus the theorem holds for A by applying it to the essential
arrangement AV . Hence, from here on we will assume that A is an essential central
arrangement.

Let x ∈ L(A) and let Fx be the set of faces of A whose affine span is x. Our
second observation is that it is sufficient to prove

∑

F∈Fx

∑

F⊆C
C∈R(A)

νC (F ) = μL(A)(x). (2)

To see that this is sufficient, note that νk is the sum over all pairs νC (F ) with
dimF = k, C ∈ R(A) and F ⊆ C. Each such face F is contained in exactly one Fx

with the rank of x equal to d − k, and the sum of the μL(A)(x) of rank d − k is the
required coefficient of the characteristic polynomial.

Fix Z a zonotope for A. Recall that an element of the intersection lattice x ∈ L(A)

corresponds to a collection of parallel faces of Z, the duals of the cones F ∈ Fx. Each
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of the faces in the zonotope corresponding to x is formed by taking the sum:
∑

λiηi : −1 ≤ λi ≤ 1

over all hyperplanes Hi = {z ∈ R
d : ηiz = 0} in x and translating by some ±1 com-

binations of the ηi corresponding to hyperplanes not in x [13, Chap. 7]. In particular,
all of these faces are isometric.

Let Zx be one of the isometric faces of Z corresponding to the intersection x and
let Ax be the subarrangement of A consisting of those hyperplanes which contain x.

For any x < 1̂, Ax is a non-essential arrangement in R
d but forms an essential central

arrangement if we project onto Vx , the orthogonal complement of x. The lattice of
the projected arrangement is isomorphic to the interval [0̂, x] in the original lattice.
Furthermore, we see by the form of Zx given above, a zonotope corresponding to
the projected arrangement is simply (a translate of) Zx . Lemma 11 then equates the
vertex angle sum of Zx and the Möbius value at the intersection x:

α0(Zx) = μL(A)

(
0̂, x

)
.

This gives the vertex angle sum of Zx in terms of the Möbius function at x. Let
F ∈ F(A) be the normal cone to Zx . Next we relate the vertex angle sum of Zx with∑

C∈R(A) νC (F ).

For a particular C , for which points y ∈ R
d is πC (y) ∈ F ? The set of all such points

form a polyhedral cone which we previously denoted XF . This projection cone is
given by the positive span of the normal cone in Vx of the origin with respect to the
projection of C to Vx and F itself. Since these cones lie in orthogonal subspaces they
form a product cone.

Let w be the vertex of (the translated) Zx which corresponds by duality to C. As
the normal fan of Zx in Vx is Ax , its normal cone is isometric to the cone used to
determine α(Zx,w), the angle sum of Zx at w. Thus νC (F ) = α(Zx,w). By duality,
for a fixed F, there is a one-to-one correspondence between pairs F ⊆ C and the
vertices of Zx. Hence, by Lemma 11, for a particular F,

∑

F⊆C∈R(A)

νC (F ) = μL(A)(x).

As the set of all of the interiors F ∈ R(Ax) form an open dense subset of Vx of full
measure and as previously noted the normal cones are all products, (2) holds and we
are done. �

Theorem 5 can be shown to hold in the greater generality of all finite affine ar-
rangements. As we know of no applications, we only sketch the proof. The main
difficulty in this setting is extending the notion of projection volume. The regions of
affine arrangements can be arbitrary polyhedral sets and hence the definition of ν(F )

from Sect. 2 is no longer adequate. Instead, we again let XF be the set of all points
z ∈ R

d such that πC(z) is in the interior of F. But now we define

νC (F ) = lim
r→∞

|Br(a) ∩ XF |
|Br(a)| ,



426 Discrete Comput Geom (2011) 46:417–426

where Br(a) is the ball of radius r around a fixed point a ∈ R
d . This is necessary, for

example, for bounded faces of the arrangement which are not zero-dimensional. Such
bounded faces in fact have zero projection volumes. After proving that the above limit
exists and is independent of a the argument in the proof of the main theorem can be
repeated.

6 Isometric Regions

As an obvious corollary to Theorem 5 we see that for an arrangement with all iso-
metric regions, the coefficients of the characteristic polynomial give the precise pro-
jection volumes for any fixed region.

Reflection (or Coxeter) arrangements constitute a large class of such arrange-
ments. In [4], projection volumes of reflection arrangements were studied directly
heavily utilizing the structure of the reflection group. The corollary above was es-
tablished for certain families of reflection groups and conjectured for all reflection
groups. Theorem 5 now affirmatively answers this conjecture.

We leave as an open question whether or not there exist other examples of arrange-
ments with isometric cones.

Problem 13 Does there exists a real central hyperplane arrangement with all cones
isometric that is not a reflection arrangement?

Acknowledgement We thank the anonymous referees for several suggestions in improving the exposi-
tion. Especially, the observations concerning the Greene–Zaslavsky results in [6].
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