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Abstract Given a real-valued function f defined over some metric space X, is it
possible to recover some structural information about f from the sole information
of its values at a finite set L ⊆ X of sample points, whose locations are only known
through their pairwise distances in X? We provide a positive answer to this ques-
tion. More precisely, taking advantage of recent advances on the front of stability for
persistence diagrams, we introduce a novel algebraic construction, based on a pair
of nested families of simplicial complexes built on top of the point cloud L, from
which the persistence diagram of f can be faithfully approximated. We derive from
this construction a series of algorithms for the analysis of scalar fields from point
cloud data. These algorithms are simple and easy to implement, they have reasonable
complexities, and they come with theoretical guarantees. To illustrate the genericity
and practicality of the approach, we also present some experimental results obtained
in various applications, ranging from clustering to sensor networks.
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1 Introduction

Suppose that we are given a collection of sensors spread out in some planar region,
and suppose that these sensors measure some intensive physical quantity, such as
temperature or humidity. Assuming that the nodes do not know their geographic lo-
cation but that they can detect which other nodes lie in their vicinity, is it possible to
recover some high-level information about the measured quantity, such as the num-
ber of its peaks or valleys, as well as a sense of their prominence? Consider now
the case were we are given a finite set of sample points in Euclidean space, drawn
from some unknown probability density f . Suppose that we can compute at each of
these points a rough estimate of the local density. Can we then infer the number of
prominent peaks of f , which we could later use as the input parameter to a clustering
algorithm? Can we tell how to merge the basins of attraction of the maxima, in order
to guide the clustering? Consider finally the case where a movie database is provided
together with a similarity measure between movies and a measure of popularity for
each movie. Can we extract the prominent peaks of the popularity measure, so as to
provide information on the general trends of the public’s tastes?

These three scenarios are just special instances of a same generic problem: given
an unknown domain X and a scalar field f : X → R whose values are known only at
a finite set L of sample points, the goal is to extract some structural information about
f from the sole information of the pairwise distances between the data points and of
their function values. In the above scenarios one is mainly interested in finding the
peaks and valleys of the function, together with their respective basins of attraction.1

In addition, it is desirable to have a mechanism for distinguishing between significant
and insignificant peaks or valleys of f , which requires to introduce some notion of
prominence for the critical points of a function. This is where topological persistence
comes into play: inspired from Morse theory, this framework describes the evolu-
tion of the topology of the sublevel-sets of f , i.e., the sets of type f −1((−∞, a]),
as parameter a ranges from −∞ to +∞. Topological changes occur only at critical
points of f that are paired in a natural way. For instance, a new connected component
appears in f −1((−∞, a]) when a reaches the f -value of a local minimum, and this
component gets connected to the rest of the sublevel-set as a reaches the f -value of
a saddle. The outcome of this process is a set of intervals, called a persistence bar-
code [16], each of which corresponds to a pair of critical points and gives the birth
and death times of a homological feature of the sublevel-sets of f —see Fig. 1. An
equivalent representation is by a multiset of points in the plane, called a persistence
diagram, where the coordinates of each point correspond to the endpoints of some
interval in the barcode. Such barcodes or diagrams can be used to guide the simplifi-
cation of the graphs of real-valued functions by iterative cancellations of critical pairs
[20, 21]. As such, they provide the desired information for evaluating the prominence
of the peaks and valleys (and in fact of all the critical points) of a scalar field.

Thus, our problem becomes the following: given X, f,L as above, is it possible
to approximate the persistence diagram of f from the pairwise distances between

1In the context of clustering, this approach to the problem is reminiscent of mode-seeking techniques such
as Mean-Shift [17].
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the points of L and from the values of f at these points? The main contribution of
the paper is a positive answer to this question. More precisely, in Sect. 3 we ex-
hibit a novel algebraic construction, based on a pair of nested families of simpli-
cial complexes—derived from the so-called (Vietoris–)Rips complexes of L, defined
below—from which the persistence diagram of f can be approximated (Theorem 2).
We also show the robustness of our construction with respect to noise in the pair-
wise distances or function values (Theorems 3 and 4). From these structural results
we derive algorithms (Sect. 4) for approximating the persistence diagram of f from
its values at a finite set of samples, both in static (fixed f ) and in dynamic (time-
varying f ) settings. We also give a procedure for finding the basins of attraction of
the peaks of f inside the point cloud L and for merging these basins according to
the persistence information, as illustrated in Fig. 1 (right). Our algorithms are based
on variants [14, 15] of the celebrated persistence algorithm. They can be easily im-
plemented, they have reasonable complexities, and they are provably correct for the
most part. To illustrate the versatility of the approach, we provide experimental re-
sults obtained in a variety of applications (Sect. 5): these illustrate the potential of
our method and its general interest. Some of these applications [10, 30] have been
worked on since the short-version of this paper [9].

Related Work Topological persistence and its applications have been an extensively
studied topic since the introduction of the persistence algorithm by Edelsbrunner
et al. [20]. First designed for simplicial complexes in R

3, this algorithm was later ex-
tended to compute the persistent homology of discrete functions over arbitrary finite
simplicial complexes [35]. A number of variants were also proposed, for instance, to
cope with changes in the function over time [15] or to handle pairs of functions de-
fined over nested pairs of spaces [14]. All these methods deal with functions defined
over simplicial complexes, and in some sense our work suggests a way of extending
the approach to a more general class of spaces via finite sampling and modulo some
controlled errors in the output.

Topological persistence has already been used in the past for the analysis and sim-
plification of scalar fields. The original persistence paper [20] showed how to simplify
the graph of a piecewise-linear (PL) real-valued function f defined over a simplicial
complex X in R

3, by iteratively cancelling the pairs of critical points provided by the
persistence barcode of f . This approach was later refined in the special case where X

is a triangulated 2-manifold to only cancel the pairs corresponding to short intervals in
the barcode, thus removing all topological noise up to a certain prescribed amplitude
[2, 21]. In parallel, people have considered computing accurate or simplified repre-
sentations of Morse–Smale complexes that capture important information about the
structure of scalar fields. Indeed, the Morse–Smale complex of a function f : X → R

is a partition of the space X into regions where the flow induced by the gradient vec-
tor field of f is uniform. Building upon the idea of iterative cancellations of pairs of
critical points, it is possible to construct hierarchies of increasingly coarse Morse–
Smale complexes from PL functions defined over triangulated 2- or 3-manifolds [3,
5, 19, 25, 26]. Although our question of finding the basins of attraction of the peaks
of a scalar field may seem a simplistic variant of the above problems, we claim that it
is in fact not, as our context is much more general and our knowledge of the function
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f is much weaker. In particular, the resort to a PL approximation of f in our poten-
tially high-dimensional or even non-Euclidean setting would be prohibitively costly,
if not impossible. Note also that, in applications such as the scenarios described at the
beginning of the section, the knowledge of the basins of attraction of the (significant)
peaks of the scalar field is sufficient for further processing.

A last trend of work in which persistence has played a prominent role is homology
inference from point cloud data, where the goal is to recover the homological type
of an unknown space X from a finite set L of sample points. The idea is to consider
the function distance to L, either inside X or in some ambient space Y where X

is embedded. Under sufficient sampling density, this function approximates the dis-
tance to X, and therefore their persistence diagrams are close, by a stability result
due to Cohen-Steiner et al. [13]. Thus, the sole knowledge of the sample points is
enough to approximate the persistence diagram of the distance to X, from which the
homology of X is easily inferred [11, 13]. In practice, however, the cost of estimat-
ing the distance to L at every point of X or of some ambient space Y is prohibitive,
thus requiring the resort to auxiliary algebraic constructions. Among the most popu-
lar ones is the Rips complex Rα(L), which is the abstract simplicial complex whose
simplices correspond to nonempty subsets of L of diameter less than α. The build-
ing of this complex only involves comparisons of distances, which makes it a good
candidate data structure in practice. Furthermore, as proved in [12], a pair of nested
Rips complexes Rα(L) ⊆ Rβ(L) can provably well capture the homology of the un-
derlying space X, even though none of the individual complexes does. Our algebraic
construction (see Sect. 3) is directly inspired from this property, and in fact our the-
oretical analysis is articulated in the same way as in [12], namely: we first work out
structural properties of unions of geodesic balls, which we prove to also hold for their
nerves (also called Čech complexes); then, using strong relationships between fami-
lies of Čech and Rips complexes, we derive structural properties for the latter. Note
however that the core of the analysis differs significantly from [12], because our fam-
ilies of complexes are built differently. In particular, the classical notion of stability
for persistence diagrams, as introduced in [13], is not broad enough for our setting,
where it is replaced by a generalized notion recently proposed by Chazal et al. [6].

2 Background

Our analysis uses singular homology with coefficients in a commutative ring R, as-
sumed to be a field throughout the paper and omitted in the notation. We also use
some elements of Riemannian geometry and Morse theory (mainly in Sect. 4.3). We
refer the reader to [4, 27, 28] for comprehensive introductions to these topics.

2.1 Geodesic ε-Samples on Riemannian Manifolds

Throughout the paper, unless otherwise stated, X denotes a compact Riemannian
manifold, possibly with boundary, and dX denotes its geodesic distance. Our analysis
turns out to hold for a larger class of length spaces; however, for simplicity, we restrict
the focus of the paper to the Riemannian setting. Given a point x ∈ X and a real value
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r ≥ 0, let BX(x, r) denote the open geodesic ball of center x and radius r , namely
BX(x, r) = {y ∈ X, dX(x, y) < r}. For all sufficiently small values r ≥ 0, the ball
BX(x, r) is known to be strongly convex, that is, for every pair of points y, y′ in the
closure of BX(x, r), there exists a unique shortest path in X between y and y′, and
the interior of this path is included in BX(x, r). Let �(x) > 0 be the supremum of
the radii such that this property holds. Since X is compact, the infimum of �(x) over
the points of X is positive and known as the strong convexity radius of X, denoted
�(X). This quantity plays an important role in the paper because strongly convex sets
are contractible,2 and because intersections of strongly convex sets are also strongly
convex.

In the sequel, L denotes a finite set of points of X that form a geodesic ε-sample
of X, namely, for all x ∈ X, dX(x,L) < ε. Here, parameter ε is homogeneous to a
length, and it controls the density of the point cloud L. Our theoretical claims will
assume this density to be high enough, via a condition on ε stipulating that the latter
is at most a fraction of the strong convexity radius of X.

2.2 Persistence Modules and Filtrations

The main algebraic objects under study here are persistence modules. A persistence
module is a family {Φα}α∈R of R-modules together with a family {φβ

α : Φα →
Φβ}α≤β∈R of homomorphisms such that for all α ≤ β ≤ γ , φ

γ
α = φ

γ
β ◦ φ

β
α and

φα
α = idΦα . Persistence modules are often derived from filtrations that are families

{Fα}α∈R of topological spaces that are nested with respect to inclusion. For all α ≤ β ,
the canonical inclusion map Fα ↪→ Fβ induces homomorphisms between the ho-
mology groups Hk(Fα) → Hk(Fβ) of all dimensions k ∈ N. Thus, for any fixed k,
the family {Hk(Fα)}α∈R forms a persistence module, called kth persistent homology
module of {Fα}α∈R, where the homomorphisms between R-modules are understood
to be those induced by inclusions.

An important class of filtrations are the ones formed by the sublevel-sets of
real-valued functions. Given a topological space X and a function f : X → R,
the sublevel-sets filtration of f is the family {Fα}α∈R of subspaces of X of type
Fα = f −1((−∞, α]). This family forms a filtration because f −1((−∞, α]) ⊆
f −1((−∞, β]) whenever α ≤ β . A real-valued function that has played a prominent
role in homology inference is the geodesic distance to a finite point cloud L. The
0-sublevel set of this function is L itself, while for any α > 0, its α-sublevel set is the
closure of the so-called α-offset Lα , defined as the union of the open geodesic balls
of radius α about the points of L, namely, Lα = ⋃

p∈L BX(p,α). Important struc-
tural properties of growing families of open balls, some of which will be exploited in
Sect. 3.1 of this paper, follow from the properties of the sublevel-sets of the distance
function [8, 29].

Since the offsets of a point cloud L can be difficult to manipulate, they are often
replaced by purely combinatorial constructions in practice. A natural choice is to use
the nerve of the family of open geodesic balls used in the definition of the α-offset
of L. Specifically, the nerve of the family {BX(p,α)}p∈L is the abstract simplicial

2A topological space is contractible if it can be continuously deformed to a point within itself.
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complex of vertex set L whose simplices correspond to nonempty subsets of the
family whose elements have a nonempty common intersection. This complex is also
known as the Čech complex and denoted Cα(L). Thanks to the duality that exists
between unions of open balls and their nerves (see Lemma 3 below), Čech complexes
Cα(L) enjoy many interesting properties that will be exploited as well in Sect. 3.1.

An even simpler combinatorial construction is the so-called (Vietoris–)Rips com-
plex Rα(L), which is the abstract simplicial complex of vertex set L whose simplices
correspond to nonempty subsets of L of geodesic diameter less than α. The building
of this complex only involves comparisons of distances, which makes it a good candi-
date data structure in practice. Furthermore, Rips complexes are known to be closely
related to Čech complexes through the following sequence of inclusions, which holds
in any arbitrary metric space (see, e.g., [12]):

∀α > 0, Cα
2
(L) ⊆ Rα(L) ⊆ Cα(L). (1)

Several other combinatorial constructions, such as the α-shape or the witness com-
plex, have been proven to be useful in the context of homology inference. These will
not be considered in the paper.

Finally, let us mention that the above constructions are parameterized by a unique
quantity α, which one usually lets vary from 0 to +∞ to get a filtration. In contrast,
our filtrations will be obtained by fixing α to some constant value and by letting the
vertex set grow from ∅ to L.

2.3 Persistence Diagrams and Stability

Persistence diagrams have been introduced as a succinct way of describing the alge-
braic structure of a persistence module [35]. There is a restriction though: without
any further assumptions, the algebraic structure of a persistence module can be ar-
bitrarily complicated, thereby making it impossible to find a descriptor that is both
succinct and complete. This is where the concept of tameness3 comes into play:

Definition 1 A persistence module ({Φα}α∈R, {φβ
α }α≤β∈R) is tame if for all α < β ,

rankφ
β
α < +∞.

This condition is restrictive enough for persistence diagrams to be well defined;
yet the concept of tameness remains sufficiently wide to encompass a large class of
persistence modules. In particular, all persistent homology modules of nested families
of finite simplicial complexes are tame. As a consequence, all persistence modules
introduced in Sects. 3 and 4 of this paper will be tame.

Following [6], the persistence diagram of a tame persistence module ({Φα}α∈R,

{φβ
α }α≤β∈R) is defined as a multiset of points in the extended plane R̄

2, where
R̄ = R ∪ {−∞,+∞}. This multiset is obtained as the limit of the following itera-
tive process: given arbitrary values a, ε > 0, we discretize the persistence module
over the integer scale a + εZ, considering the subfamily {Φa+kε}k∈Z of vector spaces

3We borrow this concept from [6], where it is called 0-tameness and made weaker than in [13].
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together with the subfamily {φa+lε
a+kε}k≤l∈Z of linear maps. Its persistence diagram is

defined naturally4 as the set of vertices of the regular grid (a + εZ) × (a + εZ) in
R̄

2, plus the diagonal Δ = {(x, x), x ∈ R̄}, where each grid vertex (a + kε, a + lε) is
given the (finite) multiplicity

mult(a+kε, a+ lε) = rankφ
a+(l−1)ε
a+kε −rankφa+lε

a+kε +rankφa+lε
a+(k−1)ε −rankφ

a+(l−1)ε
a+(k−1)ε,

while each point of Δ is given infinite multiplicity. Then, the persistence diagram of
({Φα}α∈R, {φβ

α }α≤β∈R) is the limit multiset obtained as ε → 0, which is known to be
independent of the choice of a [6].

An important property of persistence diagrams is their stability under small per-
turbations. Cohen-Steiner et al. [13] proposed the first result in this vein: given two
tame continuous real-valued functions f,g defined over a same triangulable space X,
for all k ∈ N, the bottleneck distance between the persistence diagrams of the kth per-
sistent homology modules of their sublevel-sets filtrations is at most supx∈X |f (x) −
g(x)|. Recall that the bottleneck distance d∞

B (A,B) between two multisets in R̄
2 en-

dowed with the l∞-norm is the quantity minγ maxp∈A ‖p−γ (p)‖∞, where γ ranges
over all bijections from A to B .

Recently, Chazal et al. [6] extended the result of [13] by dropping the continuity
and triangulability assumptions, as well as the functional setting. To do so, they had
to introduce a new notion of proximity between persistence modules:

Definition 2 Two persistence modules ({Φα}α∈R, {φβ
α }α≤β∈R) and ({Ψα}α∈R,

{ψβ
α }α≤β∈R) are (strongly) ε-interleaved if there exist two families of homomor-

phisms, {μα : Φα → Ψα+ε}α∈R and {να : Ψα → Φα+ε}α∈R, that make the following
diagrams commute for all values α ≤ β ∈ R:

Φα−ε
μα−ε

φ
β+ε
α−ε

Φβ+ε

Ψα

ψ
β
α

Ψβ

νβ

Φα

φ
β
α

Φβ
μβ

Ψα−ε

να−ε

ψ
β+ε
α−ε

Ψβ+ε

(2)

Φα

φ
β
α

μα

Φβ

μβ

Ψα+ε

ψ
β+ε
α+ε

Ψβ+ε

Φα+ε

φ
β+ε
α+ε

Φβ+ε

Ψα

ψ
β
α

να

Ψβ

νβ

(3)

Under these conditions, Chazal et al. proved the following generalized stability
result [6]:

4In the particular case of a discretized persistence module, this definition does coincide with the one
of [13].
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Theorem 1 If two tame persistence modules are ε-interleaved, then, in the extended
plane R̄

2 endowed with the l∞-norm, the bottleneck distance between their persis-
tence diagrams is at most ε.

An important special case is that of the kth persistent homology modules of
two filtrations {Fα}α∈R and {Gα}α∈R that are ε-interleaved w.r.t. inclusion, that is,
Fα ⊆ Gα+ε and Gα ⊆ Fα+ε for all α ∈ R. In this case, the maps μα and να induced
at homology level by the canonical inclusions Fα ↪→ Gα+ε and Gα ↪→ Fα+ε make
the diagrams of (2) and (3) commute, thus ε-interleaving the kth persistent homol-
ogy modules of the two filtrations. Theorem 1 guarantees then that their persistence
diagrams are ε-close in the bottleneck distance.

Note About the Exposition In order to simplify the exposition in the sequel, we al-
low ourselves some degree of sloppiness in the notation. Specifically, we omit the
ranges of the indices when these are obvious, thus designating a filtration of parame-
ter α ∈ R by {Fα} and a persistence module of parameters α ≤ β ∈ R by ({Φα}, {φβ

α }).
In addition, we use the following shortcuts: the persistence diagram of the kth persis-
tent homology module of a filtration {Fα} is simply called the kth persistence diagram
of {Fα}. Furthermore, the filtration itself is said to be tame if its kth persistent homol-
ogy module is tame for all values k ∈ N. At a higher level, the kth persistent homology
module of a real-valued function f refers by default to the kth persistent homology
module of its sublevel-sets filtration, and f is said to be tame if its sublevel-sets filtra-
tion is tame. Finally, the kth persistence diagram of f is the kth persistence diagram
of its sublevel-sets filtration.

3 Structural Properties

Let X be a compact Riemannian manifold, possibly with boundary, and let f : X →
R be a c-Lipschitz function. As we will see in Lemma 4 below, these assumptions
automatically imply that f is tame. Assuming X and f to be unknown, we want to
approximate the kth persistence diagram of f from the values of the function at a
finite set L of sample points that form a geodesic ε-sample of X. Our main result
(Theorem 2 below) claims that this is possible using an algebraic construction based
on Rips complexes. The main advantage of this construction is that it leads to an easy-
to-compute data structure, which will be described in the algorithms section (Sect. 4).
From now on, Lα denotes the set L ∩ f −1((−∞, α]).

Our construction is inspired from [12], where it is shown that a pair of nested Rips
complexes can provably well capture the homology of a domain even though none of
the individual Rips complexes does. Given a fixed parameter δ > 0, we use two Rips-
based filtrations simultaneously, {Rδ(Lα)}α∈R and {R2δ(Lα)}α∈R, and we consider
the persistence modules formed at homology level by the images of the homomor-
phisms induced by the inclusions Rδ(Lα) ↪→ R2δ(Lα). Specifically, for all k ∈ N and
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all α ≤ β , we have the following induced commutative diagram at homology level:

Hk

(
R2δ(Lα)

)
Hk

(
R2δ(Lβ)

)

Hk

(
Rδ(Lα)

)
Hk

(
Rδ(Lβ)

)

Letting Φα be the image of Hk(Rδ(Lα)) → Hk(R2δ(Lα)), we get that the above
commutative diagram induces a map φ

β
α : Φα → Φβ . Since this is true for all

α ≤ β , the family {Φα}α∈R of vector spaces, together with the family {φβ
α }α≤β

of linear maps, forms a persistence module. By analogy with the terminology of
Sect. 2, we call it the kth persistent homology module of the nested pair of filtrations
{Rδ(Lα) ↪→ R2δ(Lα)}α∈R, and its persistence diagram the kth persistence diagram of
the nested pair. This construction is in fact not specific to families of Rips complexes,
and it allows us to define a persistence module ({Φα}, {φβ

α }) from the k-dimensional
homology groups of any pair of filtrations {Gα} and {G′

α} that is nested with respect
to inclusion: ∀α ∈ R, Gα ⊆ G′

α .

Theorem 2 Let X be a compact Riemannian manifold, possibly with boundary, and
let f : X → R be a c-Lipschitz function. Let also L be a geodesic ε-sample of X. If
ε < 1

4�(X), then for any δ ∈ [2ε, 1
2�(X)) and for any k ∈ N, the kth persistent ho-

mology modules of f and of the nested pair of filtrations {Rδ(Lα) ↪→ R2δ(Lα)}α∈R

are 2cδ-interleaved. Therefore, the bottleneck distance between their persistence di-
agrams is at most 2cδ, by Theorem 1.

In practice, the kth persistent homology module of the pair of filtrations {Rδ(Lα)

↪→ R2δ(Lα)}α∈R does not have to be built explicitly since its persistence diagram can
be computed directly from the filtrations {Rδ(Lα)}α∈R and {R2δ(Lα)}α∈R [14]. The
next two sections are devoted to the proof of Theorem 2. The core argument, based on
a technique of algebraic topology called diagram chasing, is presented in Sect. 3.2.
It makes use of preliminary results on unions of balls and their nerves, introduced in
Sect. 3.1. Finally, Sect. 3.3 addresses the robustness of our main result with respect
to small perturbations of the geodesic distances or function values.

3.1 Preliminaries: Unions of Geodesic Balls and Their Nerves

Let δ > 0 be a fixed parameter. Consider the filtration {Lδ
α}α∈R formed by the

δ-offsets of the subsets Lα . Recall that the δ-offset of Lα is defined by Lδ
α =⋃

p∈Lα
BX(p, δ).

Lemma 1 Let X, f,L be as in Theorem 2. Then, for any δ ≥ ε, the sublevel-sets
filtration {Fα} of f and the filtration {Lδ

α}α∈R are cδ-interleaved w.r.t. inclusion.
Hence, for all k ∈ N, the bottleneck distance between their kth persistence diagrams
is at most cδ, by Theorem 1.
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Proof Consider an arbitrary value α ∈ R and take a point p ∈ Fα . Since L is a
geodesic ε-sample of X, there exists some point q ∈ L such that dX(p, q) < ε ≤ δ.
Since f is c-Lipschitz, we have f (q) ≤ f (p) + cδ ≤ α + cδ, which implies that
q ∈ L∩Fα+cδ . Hence, p belongs to Lδ

α+cδ . Reciprocally, take a point p ∈ Lδ
α . By def-

inition, there exists some point q ∈ Lα such that dX(p, q) < δ. Since f is c-Lipschitz,
we have f (p) ≤ f (q)+cδ ≤ α+cδ. Therefore, p belongs to Fα+cδ . This proves that
{Fα} and {Lδ

α} are cδ-interleaved w.r.t. inclusion. �

We now turn our focus to the nerves Cδ(Lα) of the offsets Lδ
α :

Lemma 2 Let X, f,L be as in Theorem 2. For all k ∈ N, there exists a family of
isomorphisms {Hk(Cδ(Lα)) → Hk(L

δ
α)}α∈R, δ<�(X) such that the following diagrams

(where horizontal homomorphisms are induced by inclusions) commute: ∀α ≤ β ∈ R,
∀δ ≤ ξ < �(X),

Hk

(
Cδ(Lα)

)
Hk

(
Cξ (Lβ)

)

Hk

(
Lδ

α

)
Hk

(
L

ξ
β

)

(4)

As a consequence, ∀k ∈ N, ∀δ < �(X), the kth persistence diagrams of {Cδ(Lα)}α∈R

and {Lδ
α}α∈R are identical.

The proof of this result, detailed below, relies on the following technical lemma5

from [12], which relates good open covers to their nerves. Given a topological space
X and a family {Ua}a∈A of open subsets covering X, the family defines a good cover
if, for every finite subset S of A, the common intersection

⋂
a∈S Ua is either empty

or contractible.

Lemma 3 (Lemma 3.4 of [12]) Let X ⊆ X
′ be two paracompact spaces, and let U =

{Ua}a∈A and U ′ = {U ′
a′ }a′∈A′ be good open covers of X and X

′, respectively, based on
finite parameter sets A ⊆ A′, such that Ua ⊆ U ′

a for all a ∈ A. Then, the homotopy
equivalences N U → X and N U ′ → X

′ provided by the Nerve Theorem [27, §4G]
commute with the canonical inclusions X ↪→ X

′ and N U ↪→ N U ′ at homology level.

Proof of Lemma 2 Let k ∈ N. We claim that, for all α ∈ R and δ < �(X), the family
of open balls {BX(p, δ)}p∈Lα forms a good open cover of the set Lδ

α , that is, for all
l ∈ N and p1, . . . , pl ∈ Lα , the intersection I = BX(p1, δ) ∩ · · · ∩ BX(pl, δ) is either
empty or contractible. Indeed, assuming that I is nonempty, we have that each ball

5Note that the statement of Lemma 3.4 of [12] assumes the parameter sets A,A′ to be equal. However,
the proof of the lemma only uses the facts that A ⊆ A′ and that the cover U is subordinate to the cover
U ′ on its own index set A. In addition, the statement of the lemma does not specify that the homotopy
equivalences considered are the ones provided by the Nerve Theorem [27, §4G], but this appears clearly
in the proof of the lemma.
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B(pi, δ) is strongly convex because δ < �(X). As a consequence, I itself is strongly
convex and therefore contractible, as mentioned in Sect. 2.1. Thus, {BX(p, δ)}p∈Lα

forms a good open cover of Lδ
α . Since this is true for all α ∈ R and δ < �(X), Lemma

3 guarantees that the diagram of (4) commutes for any k ∈ N.
Letting now δ = ξ < �(X) be fixed, the commutativity of (4) implies that the

homomorphisms Hk(Cδ(Lα)) → Hk(Cδ(Lβ)) and Hk(L
δ
α) → Hk(L

δ
β) have same

rank for all values α ≤ β . Therefore, the filtrations {Cδ(Lα)}α∈R and {Lδ
α}α∈R have

identical kth persistence diagrams. �

With these preliminary results at hand, we can now proceed to the proof of The-
orem 2. But before, let us mention an interesting side result that explains why the
tameness condition on the input function f is not necessary in our context:

Lemma 4 Let X be a compact Riemannian manifold, possibly with boundary, and let
f : X → R be Lipschitz-continuous. Then, for any k ∈ N, the kth persistent homology
module of f is tame in the sense of Definition 1.

Proof Let c ≥ 0 denote the Lipschitz constant of f . Given any α < β ∈ R, consider
a finite point cloud L ⊆ X that forms a geodesic r-sample of X for some positive
r < min{�(X),

β−α
2c

}. Such a finite sampling always exists because r is positive and
X is compact. Now, Lemma 1 and our upper bound on r imply that Fα ⊆ Lr

α+cr ⊆
Lr

β−cr ⊆ Fβ . Thus, the canonical inclusion Fα ↪→ Fβ factors through Lr
α+cr , which

implies at kth homology level that rankHk(Fα) → Hk(Fβ) ≤ dimHk(L
r
α+cr ). Now,

since r < �(X), the Nerve theorem [27, §4G] ensures that the union of geodesic balls
Lr

α+cr is homotopy equivalent to its nerve, which is a finite simplicial complex and
therefore has finite-dimensional homology groups. As a result, at kth homology level
we have rankHk(Fα) → Hk(Fβ) ≤ dimHk(L

r
α+cr ) < +∞. �

3.2 Proof of Theorem 2

We will in fact prove the following more general (yet technical) result:

Lemma 5 Let X, f,L be as in Theorem 2. Suppose that there exist ε′ ≤ ε′′ ∈
[ε,�(X)) and two filtrations, {Gα} and {G′

α}, such that for all α ∈ R, Cε(Lα) ⊆ Gα ⊆
Cε′(Lα) ⊆ G′

α ⊆ Cε′′(Lα). Then, for all k ∈ N, the kth persistent homology modules
of f and of the nested pair of filtrations {Gα ↪→ G′

α}α∈R are cε′′-interleaved.

Applying Lemma 5 with ε′ = δ, ε′′ = 2δ, Gα = Rδ(Lα), and G′
α = R2δ(Lα) gives

Theorem 2, the sequence of inclusions assumed in the statement of Lemma 5 being
ensured by (1) in this case. Lemma 5 itself will be instrumental in Sect. 3.3, in prov-
ing the robustness of our main result with respect to small perturbations of geodesic
distances.

Proof of Lemma 5 Let k ∈ N. For clarity, we call ({Φα}, {φβ
α }) the kth persistent

homology module of the nested pair of filtrations {Gα ↪→ G′
α}α∈R, and ({Ψα}, {ψβ

α })
the kth persistent homology module of f .
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On the one hand, for all values α ≤ β , the sequence of inclusions assumed in the
statement of the lemma induces the following commutative diagram at homology
level:

Hk

(
Cε(Lβ)

) aβ

Hk(Gβ)
bβ

Hk

(
Cε′(Lβ)

) dβ

Hk(G
′
β)

eβ

Hk

(
Cε′′(Lβ)

)

Hk

(
Cε(Lα)

)
i
β
α

aα

Hk(Gα)

j
β
α

bα

Hk

(
Cε′(Lα)

)
l
β
α

dα

Hk(G
′
α)

m
β
α

eα

Hk

(
Cε′′(Lα)

)
n

β
α

(5)
This diagram encodes important relations between the persistence module ({Φα},
{φβ

α }) and the homology groups of the Čech complexes. It implies, for instance,
that the rank of φ

β
α is at most the rank of Hk(Cε′(Lα)) → Hk(Cε′(Lβ)). Indeed,

by definition, φ
β
α : Φα → Φβ is the restriction of m

β
α to imdα ◦ bα , and therefore

we have imφ
β
α = imm

β
α ◦ dα ◦ bα = imdβ ◦ l

β
α ◦ bα , which implies that rankφ

β
α =

rankdβ ◦ l
β
α ◦ bα ≤ rank l

β
α . Similarly, the rank of Hk(Cε(Lα)) → Hk(Cε′′(Lβ)) is

equal to rank eβ ◦ (m
β
α ◦ dα ◦ bα) ◦ aα ≤ rankm

β
α ◦ dα ◦ bα = rankφ

β
α . Thus, for

all α ≤ β , the rank of the homomorphism φ
β
α is sandwiched between the ranks of

Hk(Cε(Lα)) → Hk(Cε′′(Lβ)) and Hk(Cε′(Lα)) → Hk(Cε′(Lβ)). If ever these lower
and upper bounds happened to be equal for all α ≤ β , then we could conclude that
({Φα}, {φβ

α }) has the same persistence diagram as the kth persistent homology mod-
ule of the filtration {Cε′(Lα)}α∈R, which by Lemmas 1 and 2 is cε′-close to the kth
persistence diagram of f . However, in full generality the lower and upper bounds
may differ.

On the other hand, Lemma 1 tells us that ({Ψα}, {ψβ
α }) is related to the homology

of the ε-, ε′-, and ε′′-offsets of Lα through the following sequence of homomor-
phisms induced by inclusions: for all α,β such that β − α ≥ c(ε + ε′′),

Ψα−cε

tα−cε

Hk

(
Lε

α

) uα

Hk

(
Lε′

α

) vα

Hk

(
Lε′′

α

) wα

Ψα+cε′′

ψ
β−cε

α+cε′′

Ψβ+cε′′ Hk

(
Lε′′

β

)wβ

Hk

(
Lε′

β

)vβ

Hk

(
Lε

β

)uβ

Ψβ−cε

tβ−cε

(6)
In order to relate (5) to (6), for all α ∈ R, we consider the isomorphisms hα :

Hk(Cε(Lα)) → Hk(L
ε
α), h′

α : Hk(Cε′(Lα)) → Hk(L
ε′
α ), and h′′

α : Hk(Cε′′(Lα)) →
Hk(L

ε′′
α ) provided by Lemma 2 and well defined since ε ≤ ε′ ≤ ε′′ < �(X). Through

the diagram of (4), these isomorphisms relate (5) to (6) and thereby draw a connection
between the persistence modules ({Φα}, {φβ

α }) and ({Ψα}, {ψβ
α }). Note however that

the diagram obtained by combining (4), (5), and (6) may not fully commute: for
instance, there is no particular reason why the linear map m

β
α should be identical to

dβ ◦ bβ ◦ aβ ◦ h−1
β ◦ tβ−cε ◦ ψ

β−cε

α+cε′′ ◦ wα ◦ h′′
α ◦ eα . Nevertheless, the subdiagram

of (5) commutes for all α ≤ β , because it is induced by inclusions. Furthermore,
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Lemma 2 ensures that the following subdiagrams (where homomorphisms l′βα and
n′β

α are induced by inclusions) also commute for all α ≤ β:

Hk

(
Cε(Lα)

)

hα

bα◦aα

Hk

(
Cε′(Lα)

)

h′
α

eα◦dα

Hk

(
Cε′′(Lα)

)

h′′
α

Hk

(
Lε

α

)
uα

l

Hk

(
Lε′

α

) vα

Hk

(
Lε′′

α

)

(7)

Hk

(
Cε(Lβ)

)

hβ

bβ◦aβ

Hk

(
Cε′(Lβ)

) eβ◦dβ

h′
β

Hk

(
Cε′′(Lβ)

)

h′′
β

Hk

(
Lε

β

) uβ

Hk

(
Lε′

β

) vβ

Hk

(
Lε′′

β

)

(8)

Hk

(
Cε′(Lα)

) l
β
α

h′
α

Hk

(
Cε′(Lβ)

)

h′
β

Hk

(
Lε′

α

) l′βα
Hk

(
Lε′

β

)

Hk

(
Cε′′(Lα)

) n
β
α

h′′
α

Hk

(
Cε′′(Lβ)

)

h′′
β

Hk

(
Lε′′

α

) n′β
α

Hk

(
Lε′′

β

)

(9)

For all α ∈ R, let μα : Φα → Ψα+cε′′ be the restriction of the map wα ◦ h′′
α ◦ eα to

the subspace Φα = imdα ◦ bα ⊆ Hk(G
′
α). Symmetrically, let να−cε : Ψα−cε → Φα

be the map dα ◦ bα ◦ aα ◦ h−1
α ◦ tα−cε . Its image is indeed included in the subspace

Φα = imdα ◦ bα ⊆ Hk(G
′
α). To prove that the persistence modules ({Φα}, {φβ

α }) and

({Ψα}, {ψβ
α }) are cε′′-interleaved, it suffices to show that the families of homomor-

phisms {μα} and {να} make the diagrams of Definition 2 commute for all values
α ≤ β ∈ R.

We begin with the trapezoids of (2). Consider the map μβ ◦m
β
α ◦ να−cε . Replacing

μβ and να−cε by their definitions, we get wβ ◦ h′′
β ◦ (eβ ◦ m

β
α) ◦ dα ◦ bα ◦ aα ◦ h−1

α ◦
tα−cε , which by commutativity of (5) is equal to wβ ◦ h′′

β ◦ (n
β
α ◦ eα) ◦ dα ◦ bα ◦ aα ◦

h−1
α ◦ tα−cε . Now, by commutativity of (7), we have eα ◦ dα ◦ bα ◦ aα ◦ h−1

α = h′′−1
α ◦

vα ◦uα , therefore μβ ◦m
β
α ◦ να−cε is equal to wβ ◦ (h′′

β ◦n
β
α ◦h′′−1

α ) ◦ vα ◦uα ◦ tα−cε ,

which by commutativity of the rightmost diagram of (9) is equal to wβ ◦ n′β
α ◦ vα ◦

uα ◦ tα−cε , which is precisely ψ
β+cε′′
α−cε .

Consider now the map νβ−cε ◦ ψ
β−cε

α+cε′′ ◦ μα . Since by definition we have Φα =
imdα ◦ bα ⊆ imdα , the fact that νβ−cε ◦ ψ

β−cε

α+cε′′ ◦ μα coincides with m
β
α over Φα is a

direct consequence of the fact that the map νβ−cε ◦ ψ
β−cε

α+cε′′ ◦ μα ◦ dα coincides with

m
β
α ◦ dα over Hk(Cε′(Lα)), which we will now prove. Replacing μα and νβ−cε by
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their definitions, we get dβ ◦ (bβ ◦ aβ ◦ h−1
β ) ◦ tβ−cε ◦ ψ

β−cε

α+cε′′ ◦ wα ◦ (h′′
α ◦ eα ◦ dα),

which by commutativity of (7) and (8) is equal to dβ ◦ h′−1
β ◦ uβ ◦ tβ−cε ◦ ψ

β−cε

α+cε′′ ◦
wα ◦ vα ◦ h′

α . Now, observe that uβ ◦ tβ−cε ◦ ψ
β−cε

α+cε′′ ◦ wα ◦ vα is nothing but the

homomorphism l′βα induced by the inclusion Lε′
α ↪→ Lε′

β . Therefore, we have νβ−cε ◦
ψ

β−cε

α+cε′′ ◦μα ◦ dα = dβ ◦ (h′−1
β ◦ l′βα ◦h′

α), which is equal to dβ ◦ l
β
α by commutativity

of the leftmost diagram of (9). Finally, we have dβ ◦ l
β
α = m

β
α ◦ dα by commutativity

of (5). Thus, νβ−cε ◦ ψ
β−cε

α+cε′′ ◦ μα coincides with m
β
α over Φα .

It follows from the two paragraphs above that the trapezoids of (2) commute for all
values α ≤ β ∈ R. Before analyzing the case of the parallelograms of (3), let us point
out that Lemma 2 also guarantees the commutativity of the following subdiagram:

Hk

(
Cε(Lα)

) i
β
α

hα

Hk

(
Cε(Lβ)

)

hβ

Hk

(
Lε

α

) tβ−cε◦ψβ−cε

α+cε′′ ◦wα◦vα◦uα

Hk

(
Lε

β

)

(10)

In addition, the following diagram commutes since all homomorphisms are induced
by inclusions:

Hk

(
Lε′′

α

) n′β
α

wα

Hk

(
Lε′′

β

)

wβ

Ψα+cε′′
ψ

β+cε′′
α+cε′′

Ψβ+cε′′

(11)

Consider the map μβ ◦ m
β
α . Replacing μβ by its definition, we obtain wβ ◦ h′′

β ◦ (eβ ◦
m

β
α), which by commutativity of (5) is equal to wβ ◦ (h′′

β ◦ n
β
α) ◦ eα . This map is

the same as (wβ ◦ n′β
α) ◦ h′′

α ◦ eα , by commutativity of the rightmost diagram of (9).

Finally, the commutativity of (11) implies equality with ψ
β+cε′′
α+cε′′ ◦ (wα ◦ h′′

α ◦ eα) =
ψ

β+cε′′
α+cε′′ ◦ μα .

Consider now the map m
β
α ◦να−cε . Replacing να by its definition, we obtain (m

β
α ◦

dα ◦ bα ◦ aα) ◦ h−1
α ◦ tα−cε , which by commutativity of (5) is equal to dβ ◦ bβ ◦ aβ ◦

(i
β
α ◦ h−1

α ) ◦ tα−cε . By commutativity of (10), this map coincides with dβ ◦ bβ ◦ aβ ◦
h−1

β ◦ tβ−cε ◦ (ψ
β−cε

α+cε′′ ◦ wα ◦ vα ◦ uα ◦ tα−cε), which is equal to (dβ ◦ bβ ◦ aβ ◦ h−1
β ◦

tβ−cε) ◦ ψ
β−cε
α−cε = νβ−cε ◦ ψ

β−cε
α−cε since the homomorphisms in (6) are induced by

inclusions.
It follows from the two paragraphs above that the parallelograms of (3) com-

mute for all values α ≤ β ∈ R. This concludes the proof that the persistence modules
({Φα}, {φβ

α }) and ({Ψα}, {ψβ
α }) are cε′′-interleaved. �
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3.3 Stability with Respect to Noise

The guarantees provided by Theorem 2 hold as far as exact geodesic distances and
function values are used in the construction of the Rips complexes. In practice how-
ever, function values are often obtained from physical measurements with inherent
noise, while geodesic distances are not known in advance and have to be estimated
through some neighborhood graph distance. We claim that our analysis is generic
enough to handle these practical situations.

Consider first the case where function values are noisy. More precisely, given a
geodesic ε-sample L of some Riemannian manifold X, and a c-Lipschitz function f :
X → R, assume that the data points p ∈ L are assigned values f̃ (p) that are different
from f (p), and let ζ = maxp∈L |f̃ (p) − f (p)|. Note that the map f̃ : L → R itself
need not be Lipschitz continuous. For convenience, for all α ∈ R, we introduce the set
L̃α of points of L whose f̃ -values are at most α. Note that L̃α may neither contain
nor be contained in Lα in general. However, we have L̃α ⊆ Lα+ζ , which, plugged
into the proof of Lemma 1, yields the following variant of that result:

Lemma 6 For all δ ≥ ε, the sublevel-sets filtration of f is (cδ + ζ )-interleaved with
{L̃δ

α}α∈R.

The rest of the analysis of Sects. 3.1 and 3.2 carries through, with Lα replaced by
L̃α for all α ∈ R and cε and cε′′ replaced respectively by cε + ζ and cε′′ + ζ in (6)
and in the rest of the proof of Lemma 5. We thus obtain the following new bounds:

Theorem 3 Let X, f,L be as in Theorem 2. Assume that the values of f at the
points of L are known within a precision of ζ . Then, for any δ ∈ [2ε, 1

2�(X)) and
any k ∈ N, the kth persistent homology modules of f and of the nested pair of filtra-
tions {Rδ(L̃α) ↪→ R2δ(L̃α)}α∈R are (2cδ + ζ )-interleaved. Therefore, the bottleneck
distance between their persistence diagrams is at most 2cδ + ζ , by Theorem 1.

Consider now the case where geodesic distances are noisy. Specifically, assume
that the geodesic distance dX is replaced by the distance dG in some neighborhood
graph G built on top of the point cloud L. This graph can be either weighted of un-
weighted, depending on the application. For instance, in unsupervised learning the
edges of G are often weighted by the Euclidean distances between their vertices [32],
while in sensor networks edges are usually unweighted because retrieving the exact
geographic locations of the sensor nodes can be difficult—see e.g., [33, §4.4]. Gener-
ally speaking, weighted graphs provide better approximations of geodesic distances,
but their construction requires to have additional information at hand, such as ex-
trinsic distances between the data points. We therefore focus on unweighted graphs,
which correspond to the most general case. In order to make theoretical claims, we
assume that G is a μ-disk graph,6 that is, a pair of data points form an edge in G if
and only if their geodesic distance is less than μ. Assuming that the input point cloud

6Our analysis holds also for quasi μ-disk graphs, modulo a slight degradation of the approximation
bounds.
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L is a geodesic ε-sample of some Riemannian manifold X, we will use the following
bounds on the graph distance [22, Lemma 6.1]:

∀p,q ∈ L,
dX(p, q)

μ
≤ dG(p,q) ≤ 1 + λ

dX(p, q)

μ
, where λ = 1 + 4

ε

μ
. (12)

The two Rips-based filtrations introduced at the beginning of Sect. 3 are now de-
fined with respect to dG, and no longer with respect to dX. To emphasize this aspect,
we denote them respectively by {RG

δ (Lα)}α∈R and {RG
δ′ (Lα)}α∈R. In Theorem 2 we

set δ′ = 2δ because geodesic distances were exact. We will now show that noise
in geodesic distances can be handled by taking a slightly larger δ′. We first relate
{RG

δ (Lα)}α∈R and {RG
δ′ (Lα)}α∈R to Čech filtrations defined with respect to dX:

Lemma 7 Let λ = 1 + 4 ε
μ

be as in (12). Assume that δ ≥ 1 + 2λ ε
μ

, ε′ ≥ μδ, δ′ ≥
1 + 2λε′

μ
, and ε′′ ≥ μδ′. Then, for all α ∈ R, Cε(Lα) ⊆ RG

δ (Lα) ⊆ Cε′(Lα) ⊆
RG

δ′ (Lα) ⊆ Cε′′(Lα).

Proof Let us prove that RG
ξ (Lα) ⊆ Cμξ (Lα) and Cξ (Lα) ⊆ RG

1+2λξ/μ(Lα) for any
arbitrary value ξ ≥ 0. The lemma will then follow by letting ξ be consecutively equal
to ε, δ, ε′, and δ′.

Consider first a simplex {p0, . . . , pl} of RG
ξ (Lα). Equation (12) implies that

dX(p0,pi) ≤ μdG(p0,pi) < μξ for all i ∈ {0, . . . , l}. This means that the open
geodesic balls of same radius μξ about the points pi have p0 in their common in-
tersection, which is therefore nonempty. As a consequence, the simplex belongs to
Cμξ (Lα). Consider now a simplex {p0, . . . , pl} of Cξ (Lα). The open geodesic balls
of same radius ξ about the points pi have a nonempty common intersection, and
therefore the pairwise geodesic distances between the points are less than 2ξ . It fol-
lows then from (12) that the diameter of the simplex in the graph distance is at most
1 + 2λ

ξ
μ

. Thus, the simplex belongs to RG
1+2λξ/μ(Lα). �

Letting Gα = RG
δ (Lα) and G′

α = RG
δ′ (Lα), where δ, δ′ and ε ≤ ε′ ≤ ε′′ satisfy the

conditions of Lemma 7, we can now apply Lemma 5 to get the following guarantee:

Theorem 4 Let X, f,L be as in Theorem 2. Assume that the geodesic distance dX

is replaced by the graph distance dG in the unweighted μ-disk graph G built on top
of L. Let λ = 1+4 ε

μ
. Then, for any δ ≥ 1+2λ ε

μ
, any δ′ ∈ [1+2λδ, 1

μ
�(X)), and any

k ∈ N, the kth persistent homology modules of f and of the nested pair of filtrations
{RG

δ (Lα) ↪→ RG
δ′ (Lα)}α∈R are cμδ′-interleaved. Therefore, the bottleneck distance

between their persistence diagrams is at most cμδ′, by Theorem 1.

This result provides sufficient conditions on parameters δ, δ′ for the analysis of
the previous sections to hold in the case where geodesic distances are not exact. Note
that simple expressions can be derived for δ and δ′, which can be later used in our
algorithms. For instance, if we assume that μ ≥ 4ε, then λ ≤ 2, and therefore we can
choose δ = 2 and δ′ = 9. Then, the conclusion of Theorem 4 holds, provided that δ′
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is less than 1
μ
�(X), from which we derive the following condition on the sampling

density ε and communication radius μ: 4ε ≤ μ < 1
9�(X).

Note finally that Theorems 3 and 4 can also be combined to obtain guarantees in
scenarios where both function values and pairwise distances are approximate.

4 Algorithms

Section 4.1 presents the core algorithm, which derives from the structural results of
Sect. 3. The subsequent sections introduce two improvements to the algorithm: the
first one deals with time-varying functions (Sect. 4.2), and the second one extracts
additional spatial information (Sect. 4.3).

4.1 Core Algorithm

The algorithm takes as input an n-dimensional vector v, an n × n distance matrix D,
and a parameter δ ≥ 0. The ith entry of v stands for the function value at the ith point
of the data set, while the entries Di,j = Dj,i give the distance between points i and j .
No geographic coordinates are to be provided, so that the algorithm can virtually be
applied in any arbitrary metric space. For clarity of exposition, we assume that the
entries of v are sorted, that is, v1 ≤ v2 ≤ · · · ≤ vn. They are not in our implementation.
The algorithm proceeds in two steps:

1. It builds two families of Rips complexes, Rδ({1}) ⊆ Rδ({1,2}) ⊆ · · · ⊆ Rδ({1,2,

. . . , n}) and R2δ({1}) ⊆ R2δ({1,2}) ⊆ · · · ⊆ R2δ({1,2, . . . , n}). The ith complex
in each family is computed from the submatrix of D spanned by the rows and
columns of indices 1, . . . , i. The time of appearance of its simplices that are not
in the (i − 1)th complex is set to vi .

2. For k ranging from zero to the dimension of the complexes, it computes the
kth persistence diagram of the nested pair of filtrations {Rδ({1, . . . , i}) ↪→
R2δ({1, . . . , i})}1≤i≤n.

Upon termination, the algorithm returns the persistence diagrams computed at step 2.
The quality of this output is guaranteed by the structural results of Sect. 3, under suffi-
cient sampling density and in the absence of noise. Observe indeed that the filtrations
built at step 1 are the same as the ones considered in Theorem 2, which therefore
provides the following theoretical guarantee:

Theorem 5 If the data points form a geodesic ε-sample of some Riemannian mani-
fold X with ε < 1

4 �(X) and if the input distance matrix D gives the exact geodesic
distances between the data points, then, for any input δ ∈ [2ε, 1

2�(X)) and any c-
Lipschitz function f : X → R whose values at the data points are given exactly by the
input vector v, the kth persistence diagram output by the algorithm lies at bottleneck
distance at most 2cδ of the kth persistence diagram of f .

Note that the output of the algorithm also gives the homology groups of the under-
lying space X. Indeed, Hk(X) is isomorphic to the linear span of the k-dimensional
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homological features that are infinitely persistent in the kth persistence diagram of f .
Now, by Theorem 5, the bottleneck distance between the diagram of f and the one
computed at step 2 of the algorithm is finite, and therefore the infinitely persistent
homological features in both diagrams are in bijection.

One drawback of our approach is that it is not parameter-free, which makes its
behavior dependent on the choice of the input parameter δ. In some sense, this pa-
rameter controls the scale at which the algorithm will process the data. The issue of
finding the right scale is ubiquitous in geometric data analysis, and several solutions
based on the idea of persistence have been proposed. We suggest to consider a whole
range of values of δ between zero and infinity (or any sufficiently large value). For
each value in this range,7 we apply the algorithm and report the infinitely persistent
homological features in the output persistence diagrams, which supposedly coincide
with the ones of the underlying space X, according to Theorem 5. Then, following
[23] and subsequent work, we claim that relevant ranges of scales can be identified
as ranges of values of δ over which the numbers of infinitely persistent homological
features in all the diagrams are stable.

Finally, note that Theorems 3 and 4 provide theoretical guarantees similar to the
ones of Theorem 5 in cases where the input vector v of function values or the in-
put distance matrix D is noisy, modulo some slight modifications in the choice of
parameters of the algorithm, as explained in Sect. 3.3.

Implementation and Complexity The running time of the algorithm can be bounded
in terms of the size of the data structure, provided that a careful implementation
is built. In our case, the two families of complexes introduced at step 1 are built
simultaneously as filtrations of the largest of the Rips complexes, R2δ({1, . . . , n}),
which by definition contains all the other complexes of the two families. As em-
phasized in [12], the simplices of R2δ({1, . . . , n}) are in bijection with the cliques
of its 1-skeleton graph. Therefore, we first build this graph in O(n2) time by com-
paring the entries of the matrix D with the threshold 2δ. Then, we construct the
simplices of R2δ({1, . . . , n}) iteratively, by increasing dimension. First, all vertices
are created. Then, for each simplex {i0, . . . , ik} created, we look at its 1-ring neigh-
borhood in the graph, and for each vertex il in this neighborhood, we check whether
{i0, . . . , ik, il} forms a clique. If so, then this new simplex is created, and its diam-
eter max1≤r<s≤l Dr,s and appearance time max1≤r≤l vjr are stored. The time spent
checking whether we have a clique and computing the new diameter and appear-
ance time from the ones of the original simplex {i0, . . . , ik} is O(k), while the size
of the 1-ring neighborhood is O(n). Thus, the total time spent building the complex
is O(ndN), where d is the dimension of the complex, and N is its total number of
simplices. Then, within O(N logN) time, we order the created simplices according
to their appearance times, to build the filtration of parameter 2δ. As for the filtration
of parameter δ, observe that each of its simplices must appear in both filtrations at
the same time. Therefore, we can build the filtration of parameter δ in O(N) time
by scanning through the sorted list of simplices in the filtration of parameter 2δ and

7In fact, we only have to consider the finitely many values of δ at which the combinatorial structures of
the Rips complexes change.
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reporting the simplices that have diameter at most δ. Finally, we perform step 2 by
running the algorithm of [14] on our two filtrations. This variant of the standard per-
sistence algorithm has the same worst-case running time of O(N3).

Theorem 6 The total running time of the algorithm is O(ndN + N logN + N3),
where d is the dimension of R2δ({1, . . . , n}), and N is its total number of simplices.

Step 2 is clearly the pacing phase of our method. However, it is reported in [35]
that, although the worst-case running time of the persistence algorithm is O(N3), in
most practical cases it has an almost-linear behavior. Thus, the running time of our
method is likely to be O(ndN + N logN) in practice.

Note also that R2δ({1, . . . , n}) could potentially span the full (n − 1)-simplex and
therefore have as many as 2n simplices. However, there are important cases where
the size of the complex remains bounded. For instance, when the data points are uni-
formly sampled along an m-dimensional Riemannian manifold, a packing argument
detailed in [12] shows that the size of the complex is at most 22m

n and that it even
reduces to 2O(m2)n if a reasonable upper bound on m is known. This reduces the
running time of the algorithm to 2O(m2)n3 and thereby makes the approach tractable
when the data points sample uniformly some low-dimensional manifold, possibly em-
bedded in a high-dimensional space. Sampling uniformity can be achieved in practice
by a landmarking strategy [23].

4.2 Time-varying Functions

It is commonplace in sensor networks and related areas that the functions under study
vary with time. In monitoring applications, for instance, one wants to get a high-level
description of the distribution of some intensive quantity like temperature or humidity
over a fixed domain. Such quantities vary typically on a day scale, and a natural goal
is to be able to maintain accurate approximations to their persistence diagrams under
such variations.

We model the problem as follows: given a finite point cloud L = {x1, . . . , xn} that
is a geodesic ε-sample of some fixed Riemannian manifold X, we want to maintain
accurate approximations to the persistence diagrams of some time-varying function
ft : X → R whose values are known only at the points of L and at a finite number
of instants t0 ≤ t1 ≤ · · · ≤ tk . We assume fti to be c-Lipschitz for all i and some
fixed constant c. Thanks to this assumption, Theorem 5 provides us with theoretical
guarantees regarding the quality of the output persistence diagrams at every instant ti .
The dynamic version of the algorithm works as follows:

• It performs an initialization step at time t0, where it simply applies the core algo-
rithm as in the static setting. The filtrations of parameters δ and 2δ are stored as
two arrays of simplices, sorted according to their times of appearance, which are
derived from the values of ft0 at the vertices.

• At every subsequent instant tj we need to update the two filtrations and then to
recompute their kth persistence diagram for all values k between zero and their di-
mension. In fact, since X and L remain fixed throughout the process, the distance
matrix D does not change, and therefore the Rips complexes Rδ(L) and R2δ(L)
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remain the same. Thus, updating the filtrations boils down to resorting their sim-
plices according to the new appearance times induced by ftj . Computing the new
appearance times is done by scanning through the filtrations and, for each simplex,
finding the vertex of maximal ftj -value. Then, resorting the simplices of each fil-
tration is done in-place in the array of the filtration using insertion sort. The reason
for using this particular sorting algorithm is that it decomposes the permutation
on the simplices into a sequence of inversions.8 This sequence is then provided as
input to the vineyards9 variant of the persistence algorithm [15], which uses this
information to update the kth persistence diagram for all values k at once.

The time complexity of the initialization stage is the same as the one of the static
algorithm, namely O(N3), where N is the total number of simplices of R2δ(L).
Then, at every subsequent instant tj , the time spent updating the appearance times
is O(dN), where d is the dimension of R2δ(L). Consider now the permutation πj

on the simplices induced by the change from function ftj−1 to function ftj . A key
feature of insertion sort is that it decomposes πj into a minimal sequence of inver-
sions, of size |πj |. Its time complexity is thus O(N + |πj |). Finally, the vineyards
algorithm updates the persistence diagrams in O(N) time per inversion. Hence, the
total time spent by our method at instant tj is O((1 + d + |πj |)N). Although d is
bounded by logN , in the worst case, |πj | can be up to Θ(N2), thereby raising the
complexity to Θ(N3), which is no better than if the filtrations and persistence dia-
grams were recomputed entirely at time tj . However, this is a worst-case analysis,
and in many practical situations, |πj | is likely to be small. If, for instance, the values
ft (xi) at the data points follow polynomial trajectories in time10 such that only a con-
stant number (say two) of such trajectories meet at any given time, then between two
instants tj−1 and tj that are close enough, only two function values ft (xi), ft (xj ) are
permuted. As a consequence, only the stars of xi, xj in R2δ(L) are affected by πj ,
and therefore we have |πj | = O(d2

v ), where dv denotes the size of the largest pos-
sible star of a vertex of R2δ(L). The update time of our method at tj becomes then
O((d + d2

v )N) = O((d + d2
v )dvn). If the input point cloud uniformly samples some

Riemannian manifold of dimension m (known within a constant factor), then we have
d = O(m) and dv = 2O(m2), which reduces the update time to 2O(m2)n—a quantity
that is linear in the size of the input, modulo a constant factor that depends on the
intrinsic dimensionality of the data.

Finally, let us mention that, similarly to the standard persistence algorithm, the
vineyards algorithm has been observed to run much faster in practice than expected
in theory [15]. Typically, the observed running time is constant per simplex inversion.
This reduces the update time of our method to O(d + |πj |) in the general case, and

even to a constant 2O(m2) in the practical setting described above.

8An inversion is a transposition between two simplices that are adjacent in the array.
9Originally designed for a single filtration, this algorithm was adapted to our context in Appendix A of
[14].
10This is the usual assumption in the kinetic data structures framework [24].
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4.3 Extracting Additional Spatial Information

Assume the domain X underlying the data to be an m-dimensional Riemannian man-
ifold, and the unknown function f : X → R to be a Morse function, i.e., a smooth
function with only nondegenerate critical points. We want to recover the ascend-
ing regions (a.k.a. stable manifolds) of the maxima of f and the descending regions
(a.k.a. unstable manifolds) of its minima. The ascending region of a maximum p is
the set of points of X that eventually reach p by moving along the flow induced by
the gradient vector field of f . Symmetrically, the descending region of a minimum
q is the set of points that eventually reach q by moving against the gradient flow.
These regions share many interesting properties, among which the following ones
are of particular interest to us: ascending (resp. descending) regions form pairwise
disjoint open cells homeomorphic to R

m that cover X up to a subset of measure zero.
In other words, they can be used as a tool for segmenting the domain X according
to the basins of attraction of the maxima (resp. minima) of f . Furthermore, they can
be used as the main building block of the Morse–Smale decomposition of X induced
by f , since the faces of the complex are obtained as intersections of ascending and
descending regions. Note that the ascending regions of f are the descending regions
of −f , so the problem reduces to finding the descending regions of f from its values
at a finite sampling L of X.

As in the previous sections, the geographic locations of the data points are not
assumed to be known, and the algorithm uses only the connectivity between the data
points in the 1-skeleton graph of the Rips complex R2δ(L), called the Rips graph G

from now on. For simplicity, we assume that the values of f at the data points are all
different. This genericity condition is easily ensured by an infinitesimal perturbation
of f . At a high level, our method is composed of two phases: first, it approximates
the gradient vector field of f at the vertices of G and clusters them according to the
(approximate) basins of attraction in the graph G; second, it uses the 0th persistence
diagram of f to merge the clusters of short lifespans with longer-lasting clusters. The
clustering technique used in the first phase is in fact not new, and it has been shown
to be quite unstable under small perturbations of the function, both in theory [18] and
in practice [34]. The novelty of our approach lies in the way it uses persistence to
merge clusters and regain some stability.

In the first phase, we iterate over the vertices of G in the order of their f -values.
At each vertex v, the direction of −∇f is approximated by the edge e of G that
connects v to a neighbor u minimizing the quantity f (u)−f (v)

|e| , where |e| is the length
of the edge, computed during the construction of the Rips graph G. If no neighbor of
v has a lower f -value than v, then v is a local minimum of f in G and is therefore
kept disconnected. Such a vertex v is called a sink. Note that every nonsink vertex w

is connected to a proper neighbor in G, and by following the approximate direction
of −∇f in the graph we eventually reach a sink because the value of f decreases
strictly along the path followed. We declare this sink as the center of the cluster to
which w belongs.

Recall now that the core algorithm (Sect. 4.1) approximates the kth persistence
diagram of f via the kth persistent homology module of the nested pair of filtrations
{Rδ(Lα) ↪→ R2δ(Lα)}α∈R, where by definition Lα = L ∩ f −1((−∞, α]). In the spe-
cial case of zero-dimensional homology, however, we know that each vertex appears
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both in Rδ(Lα) and in R2δ(Lα) at the same time, and therefore the homomorphism
H0(Rδ(Lα)) → H0(R2δ(Lα)) is surjective. As a result, the 0th persistence diagram
of the nested pair of filtrations {Rδ(Lα) ↪→ R2δ(Lα)}α∈R is identical to the 0th per-
sistence diagram of the filtration {R2δ(L)}α∈R, which can be computed easily from
its 1-skeleton graph G using a variant of the standard union-find data structure, de-
scribed in [20]. This is what phase two of our algorithm does. The outcome is a set
of pairs (v, e), where v is a local minimum of f in the graph G, and e is an edge of
G that connects the connected component created by v in G to some older connected
component. Stated differently, v is a sink, and e is the first edge that connects its
cluster to some older cluster of center u. If the lifespan11 of the cluster of v is shorter
than some user-defined threshold λ, then the algorithm merges the cluster of v into
the cluster of u.

Our implementation uses only one pass through the graph G, during which the
approximate gradients at the vertices are computed and the clusters are formed and
merged on the fly using the union-find data structure of [20]. Thus, once the Rips
graph G is built, the remaining running time is O(|G|A−1(|G|)), where |G| is the
size of G, and A is the Ackermann function. In addition, Theorem 5 provides the
following theoretical guarantee on the output of the algorithm:

Theorem 7 Assume L to be a geodesic ε-sample of X, with ε < 1
4�(X), and f to be

c-Lipschitz. Assume further that there exist two nonnegative values d2 > d1 + 16cε

such that the 0th persistence diagram of f has the following well-separated structure:
D0f = D1 ∪ D2 with max{py − px, p ∈ D1} ≤ d1 and min{qy − qx, q ∈ D2} ≥ d2.
Then, for any Rips parameter δ ∈ [2ε,min{ 1

2�(X), d2−d1
8c

}) and any threshold λ ∈
(d1 + 4cδ, d2 − 4cδ), the number of clusters computed by our algorithm is equal
to the number of basins of attraction of minima of f on X whose lifespans are at
least λ. Furthermore, there is a pairing between clusters and basins of attraction that
modifies the birth times by at most 2cδ.

The well-separatedness of the 0th persistence diagram of f can be interpreted
as a signal-to-noise ratio condition: the relevant peaks or valleys of f must be sig-
nificantly more persistent than the nonrelevant ones, as measured by the difference
between their lifespans. Under such a condition, it is possible to threshold the dia-
grams of f and of the Rips complex R2δ(L) so that the remaining finite point sets in
both diagrams are in bijection and lie at small bottleneck distance of each other.

In addition to the above stability guarantee, it is desirable to have some guarantees
on the locations of our clusters with respect to the basins of attraction of the corre-
sponding minima of f . A result in this vein has been obtained in a recent follow-up
to this work [10].

11Defined as the difference between the times at which e and v appear in the Rips graph G.
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Table 1 Timings on an Intel Core 2 Duo T7500 @ 2.20 GHz with 2 GB of RAM. We used the C++
library ANN [1] for the proximity queries involved in the construction of the Rips graph. The clustering
phase comprises both steps of the algorithm of Sect. 4.3, which are performed simultaneously

Data set Dimension # vertices # edges Rips graph (s) Clustering (s) Total (s)

Crater 2 1,048 7,095 0.01 0.00 0.01

Torus 3 2,034 7,650 0.01 0.00 0.01

Four Gaussians 2 6,354 51,946 0.07 0.02 0.09

Hand 2 19,470 158,395 0.27 0.05 0.32

Double spiral 2 114,563 2,116,035 2.43 0.61 3.04

Octopus 3 770,196 9,540,143 14.56 7.11 21.67

5 Applications & Discussion

We now illustrate the relevance and generality of our approach through three specific
applications. For each application, we describe the context and show some experi-
mentation validation. We also provide timings information in Table 1.

Sensor Networks Our approach was originally designed with the sensor network
framework in mind, where physical quantities such as temperature or humidity are
measured by a collection of communicating sensors, and where the goal is to answer
qualitative queries such as how many significant hot spots are being sensed. Purely
geometric approaches cannot be applied in this setting, since geographic location is
usually unavailable. Rough pairwise geodesic distances however are available, in the
form of graph distances in the communication network. With this data at hand, the
algorithms of Sect. 4 can find the number of hot spots, provide an estimation of their
prominence and of their size in the network, and track them as the quantity being
measured changes.

Because we do not have access to real sensor network data, we test the methods
using synthetic examples. In particular, we assume a unit-disk graph model as the
communication model and test the effect of different communication radii on the
approximation as compared to the persistence we would compute if we had the node
locations. Note that under this model, the communication graph is equivalent to a
Rips graph, and so we present the results in the next section independently of the
sensor network motivation.

Synthetic Examples We test the validity of our theoretical guarantees by compar-
ing the persistence computed using a triangulation and one computed using the Rips
complex. We considered three functions on the unit-square: a mixture of 4 Gaussians
(Fig. 2(a)), its opposite, and a function with the shape of a crater (Fig. 3(a)). For this
experiment, we first constructed a uniform 0.05-sampling of the unit square and sam-
pled the three functions. As ground-truth, we take the piecewise linear function on
the Delaunay triangulation of the points.

We compute the persistence diagrams of the three functions on the triangulations
and compare them to the diagrams computed using the Rips complex. In Figs. 2(b–d)
and 3(b–c), we show the persistence diagrams for the piecewise linear function (in
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Fig. 2 (a) The 4 Gaussians dataset. The point cloud is a 0.05-sample of the unit square. The zero-dimen-
sional persistence diagram (b) and the one-dimensional persistence diagram (c). The (red) crosses mark
the PD for the Rips parameter δ = 0.052, while blue points mark the PD of the input PL function. The
opposite of the function has no one-dimensional feature, so we only show its zero-dimensional persistence
diagram (d)

blue) and for the Rips complex with parameter δ = 0.052 (in red). Since we are on
the plane, we compute the zero- and one-dimensional persistence diagrams, omitting
the later when it is empty. Taking the PL functions as the “true” functions, we can see
from the figures that the Rips diagrams do approximate the true diagrams.

In order to better quantify this proximity, we computed the bottleneck distances
between the diagrams for the triangulations and various values of the Rips parameter
δ. Specifically we use δ = 0.052,0.06,0.065, and 0.07. Since our ground-truth is a
PL function, we can explicitly compute the Lipschitz constant c from the triangula-
tions. For the Gaussians, c = 4.625, and for the crater, c = 7.34. We show the results
in Tables 2, 3, and 4. The first row shows the theoretical bound based on the com-
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Fig. 3 (a) The crater-shaped PL function. The point cloud is a 0.05-sample of the unit square. The ze-
ro-dimensional persistence diagram (b) and the one-dimensional persistence diagram (c). The (red) crosses
mark the PD for the Rips parameter δ = 0.052, while blue points mark the PD of the input PL function

puted Lipschitz constants and the Rips parameter. For completeness, we show the
distance matrix between all the diagrams. From the comparison of the Rips approx-
imations (second row) it can be seen that the theoretical bound can be quite loose,
but certainly holds. In general, the distance from the PL function increases with in-
creasing Rips parameter. This is not required, however. For example, in the case of
the negative of the Gaussians, the PL diagram is better approximated by δ = 0.065
than it is by δ = 0.06. For completeness, we show the distance matrix between all the
diagrams. The distance between the Rips approximation also mostly increasing with
the difference of the corresponding Rips parameters, which can be seen by the gen-
erally increasing values as we move away from the diagonal of the matrix. Note that
although the proofs of Sect. 3 give a weaker interleaving between the various Rips
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Table 2 Bottleneck distance matrix and theoretical bound of the 4 Gaussians dataset for the input PL
function and for various Rips parameters

PL 0.052 0.06 0.065 0.07

Theoretical 0 0.4808 0.5548 0.6011 0.6473

PL 0 0.1827 0.2262 0.2262 0.2910

0.052 0.1827 0 0.0938 0.1047 0.1586

0.06 0.2262 0.0938 0 0.0330 0.0648

0.065 0.2262 0.1047 0.0330 0 0.0708

0.07 0.2910 0.1586 0.0648 0.0708 0

Table 3 Bottleneck distance matrix and theoretical bound of the 4 Gaussians dataset for the opposite of
the input PL function and for various Rips parameters

PL 0.052 0.06 0.065 0.07

Theoretical 0 0.4808 0.5548 0.6011 0.6473

PL 0 0.0614 0.0781 0.0614 0.1571

0.052 0.0614 0 0.0379 0.0333 0.0957

0.06 0.0781 0.0379 0 0.0205 0.0790

0.065 0.0614 0.0333 0.0205 0 0.0957

0.07 0.1571 0.0957 0.0790 0.0957 0

Table 4 Bottleneck distance matrix and theoretical bound of the crater-shaped dataset for the opposite of
the input PL function and for various Rips parameters

PL 0.052 0.06 0.065 0.07

Theoretical 0 0.7639 0.8814 0.9549 1.0283

PL 0 0.2720 0.2865 0.2865 0.3279

0.052 0.2720 0 0.1357 0.1357 0.1771

0.06 0.2865 0.1357 0 0.0094 0.1359

0.065 0.2865 0.1357 0.0094 0 0.1359

0.07 0.3279 0.1771 0.1359 0.1359 0

filtrations, experimentally, the bottleneck distance is dependent on the difference be-
tween the Rips parameters (in a specified range).

Note that the bottleneck distance is computed exactly by finding a minimum-
weight bipartite matching between the diagrams. Only a slight modification is needed
to take into account the possible projections of the points onto the diagonal—see,
e.g., [7] for details.

Clustering Clustering attempts to group points by assuming they are drawn from
some unknown probability distribution. Our approach is inspired from mode-seeking
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Fig. 4 Segmentation result on a sampled hand-shaped 2-D domain. The segmentation function is the
Euclidean distance to the subset of the data points lying on the boundary of the domain. The barcode
shows only three long intervals, corresponding to the palm of the hand and to the two rightmost fingers
(center-right image), which have significant bottlenecks at their base. This suggests that the above function
is not well suited for segmenting this type of shape. Indeed, when a finger (such as the index in our
example) has no bottleneck, the exact distance to the boundary has no local maximum inside this finger,
therefore no ascending region separates it from the rest of the hand. In practice, the inaccuracy of our
gradient estimation creates artificial local maxima which, by chance, cover the fingers (left). However,
our barcode reveals that their ascending regions are actually not persistent. The rightmost image shows the
result obtained with a smaller persistence threshold τ , which divides the palm of the hand before separating
it from the index finger

Fig. 5 Result obtained on the same data set as in Fig. 4, using the normalized diameter of the set of nearest
boundary points as the segmentation function. The barcode shows six long intervals corresponding to the
palm of the hand and to the five fingers. The results before and after merging nonpersistence clusters are
shown respectively to the left and to the right of the barcode

techniques such as Mean-Shift [17]. Given an input point cloud L, we use a simple
density estimator to approximate the local density at the points of L. As Fig. 8 shows,
our estimator can be quite noisy. However, our emphasis is not on accurate density
estimation, but rather on clustering with noisy density estimates. Our estimator is
provided together with L as input to the algorithm of Sect. 4.3, which clusters the
points of L according to the basins of attraction of the local maxima of the estimator
in the Rips graph G2δ built over L. Due to the noisy nature of the estimator, we get a
myriad of small clusters before the merging phase. The novelty of our approach is to
provide visual feedback to the user in the form of an approximate persistence barcode
of the estimator, from which the user can choose a relevant merging parameter τ . For
instance, the example of Fig. 8 is highly nonlinear and noisy, yet the barcode clearly
shows two long intervals, suggesting that there are two main clusters.
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Fig. 6 Segmentation result obtained from a sampling of the interior of an octopus in 3-D. The segmen-
tation function is the squared distance to the boundary of the body, whose barcode (center) somewhat
emphasizes the bottlenecks at the base of the legs. With this segmentation function, there is a small range
of values of the persistence threshold τ (easily computed from the barcode) that allow to recover the eight
legs and the head. Pictures on the left show the result before merging clusters, while pictures on the right
show the result after merging

Fig. 7 Influence of the persistence threshold τ on the data set of Fig. 6
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Fig. 8 A result in clustering. The top row shows the input provided to the algorithm of Sect. 4.3: the
data points (left), or rather their pairwise Euclidean distances, and the estimated density function f (center
and right). The 3-d view of f illustrates how noisy this function can be in practice, thereby emphasizing
the importance of our robustness results (Theorems 3 and 4). The two bottom rows show the results of
the algorithm when applied to −f to get the ascending regions of the maxima of f . Two different Rips
parameters have been used, δ = 15 (center row) and δ = 10 (bottom row). Each row shows the result of the
clustering before (left) and after (right) merging nonpersistent clusters. The persistence barcodes, shown
in the center column, contain two prominent intervals (to the left) corresponding to the two main clusters.
Since the estimated density is everywhere positive, the barcodes have been thresholded at 0. Thus, intervals
reaching 0 correspond to independent connected components in the Rips graph. The ones to the right of the
barcodes are treated as noise and their corresponding clusters shown in black: this is because they appear
lately, meaning that their corresponding peaks of f are low

An important feature of our approach is to make a clear distinction between the
merging criterion, governed by τ and based solely on persistence information, and the
approximation accuracy of the basins of attraction of the maxima, governed by the
Rips parameter δ. In the example of Fig. 8, reducing δ while keeping τ fixed enabled
us to separate the two spirals from the background while keeping them separate and
integral.

Shape Segmentation The goal of shape segmentation is to partition a given shape
into meaningful segments, such as fingers on a hand. This problem is ill-posed by na-
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ture, as meaningfulness is a subjective notion. Given a sampled shape X, our approach
is to apply the algorithm of Sect. 4.3 on some segmentation function f : X → R de-
rived from the geometric features of X. The output is a partition of the point cloud
into clusters corresponding roughly to the basins of attraction of the significant peaks
of f . Thus, we cast the segmentation problem into another problem, namely the one
of finding a relevant segmentation function for a given class of data.

We investigated two functions in our experiments: distance to the set of samples
lying on the boundary, as proposed in [18, 34], and diameter of the set of nearest
samples on the boundary, normalized by the previous distance. We chose these two
functions as a demonstration, but our method can be applied virtually with any seg-
mentation function. The approximate barcodes computed by the algorithm provide
information on the stability of the different segments. This information can be viewed
as an indicator of the relevance of a given segmentation function on a particular class
of data. In Figs. 4 and 5, the barcodes suggest that the second function is superior
to the first one at separating the fingers from the palm of a hand. Yet, the second
function turned out to be too noisy on the octopus data set of Figs. 6 and 7.

Final Remarks

The potential of our approach stems from the observation that many problems can be
reduced to the analysis of some scalar field defined over a given point cloud data. With
the theoretical and algorithmic tools developed in this paper at hand, the users can cast
these problems into the one of finding the scalar field that is most suitable for their
particular purposes. Clustering is turned into a density estimation problem, and shape
segmentation is turned into finding a relevant segmentation function for a given class
of shapes. Many application-specific questions arise from this paradigm, which we
do not pretend to solve in the paper. As mentioned in the introduction, we have begun
working in this direction toward more complete solutions to specific applications.
Particularly, we note that in [10], we address some of the specific issues involved in
clustering. Notably, we extend the results to a probabilistic setting for when samples
are drawn from a nonuniform distribution and begin to address the stability of the
basins of attraction. We have also further explored the segmentation problem. In [30],
we use the HKS function, introduced in [31], to compute mesh segmentations. The
properties of the HKS combined with the persistence-based approach allow us to
give stable segmentations that are invariant under isometric deformations. These two
pieces of work have delved more deeply into specific applications introduced here,
but there remain many interesting open questions.
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